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Abstract Enabling robots to act in unstructured and unknown environments requires ver-
satile state estimation techniques. While traditional state estimation methods require known
models and make strong assumptions about the dynamics, such versatile techniques should
be able to deal with high dimensional observations and non-linear, unknown system dy-
namics. The recent framework for nonparametric inference (Song et al 2013) allows to
perform inference on arbitrary probability distributions. High-dimensional embeddings of
distributions into reproducing kernel Hilbert spaces (RKHS) are manipulated by kernelized
inference rules, most prominently the kernel Bayes’ rule (KBR). However, the computational
demands of the KBR do not scale with the number of samples. In this paper, we present two
techniques to increase the computational efficiency of non-parametric inference. First, the
kernel Kalman rule (KKR) is presented as an alternative to the KBR. The derivation of the
KKR follows the clear objective of recursive least squares. Based on the KKR we present
the kernel Kalman filter (KKF) that updates an embedding of the belief state and learns the
system and observation models from data. We further derive the kernel forward backward
smoother (KFBS) based on a forward and backward KKF and a smoothing update in Hilbert
space. Second, we present the subspace conditional embedding operator as a sparsification
technique that still leverages from the full data set. We apply this sparsification to the KKR
and derive the corresponding sparse KKF and KFBS algorithms. We show on nonlinear state
estimation tasks that our approaches provide a significantly improved estimation accuracy
while the computational demands are considerably decreased.
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1 Introduction

The ability to reason about past, current and future states in continuous, partially observable
stochastic processes is a fundamental stepstone towards fully autonomos and intelligent
systems. Such models are required in many applications as for example state estimation in
case of incomplete sensory data, smoothing noisy data from mediocre sensors, or predicting
future states from past and current observations.

Traditional state estimation techniques usually require analytical models of the underlying
system, are often limited to a set of models with a special structure, and require knowledge
about the moments of the stochstic processes. When assuming linear Gaussian models
with known mean and covariance for instance, the Kalman filter (Kalman 1960) yields the
optimal solution. However, the requirement of linear Gaussian models with known statistics
imposes a strong limitation to the applicability of this method. For more complex processes,
approximate solutions have to be used instead. Examples are the extended Kalman filter
(McElhoe 1966; Smith et al 1962) or the unscented Kalman filter (Julier and Uhlmann 1997,
Wan and Van Der Merwe 2000). These solution inherit the Gaussian representation of the
belief state to which they apply the non-linear system dynamics. However, the Gaussian
distribution with its unimodal nature is a strong assumption about the belief state which
leads to poor results for systems that yield a more complex distribution over possible states.
Moreover, both the Kalman filter but also it’s extensions to non-linear systems, require that
the dynamics of the systems are known as analytical models. Yet, these analytical models
are often hard to obtain or make simplifying assumptions about the system.

The recently introduced framework for nonparametric inference (Song et al 2013; Fuku-
mizu et al 2013) alleviate the problems of traditional state estimation methods for nonlinear
systems. The basic idea of these methods is to embed the probability distributions into
reproducing kernel Hilbert spaces (RKHS). These embeddings allow the representation of
arbitrary probability distributions using empirical estimators. With the kernelized versions
of the sum rule, the chain rule, and the Bayes’ rule, inference on the embedded distribution
can then be performed efficiently and entirely in the RKHS. Additionally, Song et al (2013)
use the kernel sum rule and the kernel Bayes’ rule to construct the kernel Bayes’ filter (KBF).
The KBF learns the transition and observation models from observed samples and can be
applied to nonlinear systems with high-dimensional observations. However, the computa-
tional complexity of the KBR update scales poorly with the number of samples such that
hyper-parameter optimization becomes prohibitively expensive. Moreover, the KBR requires
mathematical tricks that may cause numerical instabilities and also render the objective which
is optimized by the KBR unclear.

We propose two additions to the framework for nonparametric inference to overcome the
limitations named above. First, we introduce the subspace conditional embedding operator.
In contrast to the conditional embedding operator (Song et al 2009), this operator allows to
estimate its empirical estimator with a much larger data set while maintaining computational
efficiency. We further apply this subspace conditional embedding operator to the kernel sum
rule, kernel chain rule and kernel Bayes rule to derive their subspace versions. We presented
these results in a workshop paper at the large-scale kernel learning workshop at ICML 2015
(Gebhardt et al 2015).

Furthermore, we present the kernel Kalman rule (KKR) as alternative to the kernel
Bayes’ rule. Our derivations closely follow the derivations of the innovation update used



The Kernel Kalman Rule 3

in the Kalman filter and are based on a recursive least squares minimization objective in a
reproducing kernel Hilbert space (RKHS). We show that our update of the mean embedding
is unbiased and has minimum variance. While the update equations are formulated in a
potentially infinite dimensional RKHS, we derive, through the application of the kernel trick
and by virtue of the representer theorem, an algorithm using only products and inversions
of finite kernel matrices. We employ the kernel Kalman rule together with the kernel sum
rule for filtering, which results in the kernel Kalman filter (KKF). In contrast to filtering
techniques that rely on the KBR, the KKF allows to precompute expensive matrix inversions
which significantly reduces the computational complexity and which also allows us to apply
hyper-parameter optimization for the KKF. This work has been presented at AAAI 2017
(Gebhardt et al 2017).

In addition to the KKF, we introduce the kernel forward backward smoother (KFBS)
which computes the embedding of the belief state given all available observations from
the past and the future. The kernel forward backward smoother combines the belief state
embeddings of a forward pass and a backward pass into smoothed embeddings using Hilbert
space operations. Both, the forward and the backward pass are realized by a KKF, where
the backward KKF operates backwards in time starting at the last observation. To scale
gracefully with larger data sets, we rederive the KKR, the KKF and the KFBS with the
subspace conditional operator (Gebhardt et al 2015).

We compare our approach to different versions of the KBR and demonstrate its improved
estimation accuracy and computational efficiency. Furthermore, we evaluate the KKR on
a simulated 4-link pendulum task, on a human motion capture data set (Wojtusch and von
Stryk 2015) and on data from a table-tennis setup (Gomez-Gonzalez et al 2016).

1.1 Related Work

To the best of our knowledge the kernel Bayes’ rule exists in three different versions. It was first
introduced in its original version by Fukumizu et al (2013). Here, the KBR is derived, similar
to the conditional operator, using prior modified covariance operators. These prior-modified
covariance operators are approximated by weighting the feature mappings with the weights
of the embedding of the prior distribution. Since these weights are potentially negative, the
covariance operator might become indefinite, and thus, rendering its inversion impossible.
To overcome this drawback, the authors have to apply a form of the Tikhonov regularization
that significantly decreases accuracy and increases the computational costs. A second version
of the KBR was introduced by Song et al (2013) in which they use a different approach to
approximate the prior-modified covariance operator. In the experiments conducted for this
paper, this second version often leads to more stable algorithms than the first version. Boots
et al (2013) introduced a third version of the KBR where they apply only the simple form of
the Tikhonov regularization. However, this rule requires the inversion of a matrix that is often
indefinite, and therefore, high regularization constants are required, which again degrades
the performance. In our experiments, we refer to these different versions with KBR(b) for
the first, KBR(a) for the second (both adapted from the literature), and KBR(c) for the third
version. Song et al (2013) propose in their framework for nonparametric inference to combine
the KBR with the kernel sum rule to obtain the kernel Bayes filter (KBF). Our kernel Kalman
filter is closely related to this, as we simply replace the KBR with the KKR. We compare
to the KBF in our experiments. Nishiyama et al (2016) recently proposed the nonparametric
kernel Bayes smoother. This approach builds on top of the kernel Bayes filter, which is used
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to compute the estimates of a normal forward pass. The smoothing update is then obtained by
propagating the embeddings backwards in time without performing a second filtering pass.

For filtering tasks with known linear system equations and Gaussian noise, the Kalman
filter (KF) yields the solution that minimizes the squared error of the estimate to the true state.
Two widely known and applied approaches to extend the Kalman filter to non-linear systems
are the extended Kalman filter (EKF) (McElhoe 1966; Smith et al 1962) and the unscented
Kalman filter (UKF) (Wan and Van Der Merwe 2000; Julier and Uhlmann 1997). Both, the
EKF and the UKF, assume that the non-linear system dynamics are known and use them to
update the prediction mean. Yet, updating the prediction covariance is not straightforward.
In the EKF the system dynamics are linearized at the current estimate of the state, and in
the UKF the covariance is updated by applying the system dynamics to a set of sample-
points (sigma points). While these approximations make the computations tractable, they
can significantly reduce the quality of the state estimation, in particular for high-dimensional
systems.

Hsu et al (2012) recently proposed an algorithm for learning Hidden Markov Models
(HMMs) by exploiting the spectral properties of observable measures to derive an observ-
able representation of the HMM (Jaeger 2000). An RKHS embedded version thereof was
presented in (Song et al 2010). While this method is applicable for continuous state spaces,
it still assumes a finite number of discrete hidden states.

Other closely related algorithms to our approach are the kernelized version of the Kalman
filter and Kalman smoother by Ralaivola and d’Alche Buc (2005) and the kernel Kalman
filter based on the conditional embedding operator (KKF-CEO) by Zhu et al (2014). The
former approach formulates the Kalman filter in a sub-space of the infinite feature space that
is defined by the kernels. Hence, this approach does not fully leverage the kernel idea of using
an infinite feature space. In contrast, the KKF-CEO approach embeds the belief state also in
an RKHS. However, they require that the observation is a noisy version of the full state of
the system, and thus, they cannot handle partial observations. Moreover, they also deviate
from the standard derivation of the Kalman filter, which, as our experiments show, decreases
the estimation accuracy. The full observability assumption is needed in order to implement a
simplified version of the innovation update of the Kalman filter in the RKHS. Our algorithm,
the KKF does not suffer from this restriction. It also provides update equations that are much
closer to the original Kalman filter and outperforms the KKF-CEO algorithm as shown in
our experiments. Another approach to state estimation is presented in (Kawahara et al 2007).
In this paper the authors propose to estimate low-dimensional state vectors based on kernel
canonical correlation analysis and then regress a linear transition model of the estimated
state vectors and the nonlinear features of the input.

Learning predictors in the space of predictive state representations to perform filtering
has been proposed in (Sun et al 2016b) and later extended to smoothing in (Sun et al 2016a).
They introduce predictive state inference machines (PSIM) which are (nonlinear) regressors
on predictive states learned from data to perform filtering. With the smoothing machine
(SMACH) they extend this concept for smoothing.

2 Preliminaries

Our work is based on the recent formulations of embedding distributions into reproduc-
ing kernel Hilbert spaces (Smola et al 2007; Song et al 2013). These embeddings allow
to represent arbitrary probability distributions non-parametrically by a potentially infinite
dimensional feature vector. Through the application of derived operators (Song et al 2009;
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Fukumizu et al 2011) it is furthermore possible to apply inference rules entirely in the Hilbert
space. In the first part of this section, we want to give the reader an introduction into this
technology and define the notation we will use throughout this article. We will furthermore
show a modification of this framework which allows to learn the embeddings and inference
rules with much larger datasets while maintaining a low computational complexity.

One of the main contributions of our paper is a novel method for performing Bayesian
updates on a distribution embedded into an RKHS. The derivations of this update rule are
based on a least-squares objective and inspired by the derivations of the Kalman filter update,
thus we name this method kernel Kalman rule. In the second part of this section, we will
recapitulate the classical Kalman filter equations and review the derivations of the innovation
update based on the least-squares objective.

2.1 Nonparametric Inference with Hilbert Space Embeddings of Distributions

Intuitively, a Hilbert space is an extension of the well known two- or three-dimensional
Euclidean vector space to arbitrary many dimensions, specifically including infinite dimen-
sional vector spaces. Such infinite dimensional Hilbert spaces include spaces where the
single elements are functions, i.e., infinite dimensional vectors that contain for each element
of the domain the corresponding function value in the image. In addition, a Hilbert space
has an inner product that allows to measure distances and angles between its elements. For
a reproducing kernel Hilbert space Hj, this inner product (-,-) is implicitly defined by a
reproducing kernel, with £k : Q X Q — R and k(x,y) =: (¢(x),¢(y)), where ¢(x) is a
feature mapping into a possibly infinite dimensional space, intrinsic to the kernel function.
For example the Gaussian kernel computes the inner product of the feature mappings of its
inputs where the feature mappings itself cannot be written down explicitly as they are into
an infinite dimensional space. Due to the reproducing property of the kernel, all elements f
of the RKHS can be reproduced by & in the sense that the outcome f(x) of the function for a
specific value x can obtained by an evaluation of the kernel function (Aronszajn 1950), i.e.,
f(y) =(f,¢(y)) forany f € Hy.

In a practical setting, we want to embed probability distributions in an RKHS spanned
by samples D = [(xl, Yi)sooos(Xn, yn)]. Based on the representer theorem (Scholkopf et al
2001) and the reproducing property, the elements f of an RKHS Hj, can then be written as

n n
FO =) @ik(xi) = ) ailp(x), 9()) = aTlTe(), (1)

i=1 i=1
with the weights @; € R and where we denote the feature matrix of samples x; by Y, =
[e(x1),...,9(x,)]. In the following paragraphs we will show how probability distributions
can be represented as an embedding in such a reproducing kernel Hilbert space and how the
operators for performing inference in the RKHS can be derived.
2.1.1 Embeddings of Marginal and Joint Distributions
The embedding of a marginal density P(X) over the random variable X is defined as the

expected feature mapping uy := Ex [¢(X)], also called the mean map (Smola et al 2007).
Using a finite set of samples from P(X), the mean map can be estimated as

X 1 n 1
hx =~ leooc,-) = 11, @)
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where Y, is the feature matrix of the samples from the distribution and 1,, € R" is an n
dimensional vector of ones. Because of the reproducing property of the kernel function,
computing the expectation of a function which is an element of the same RKHS resolves to
simple matrix operations. On the other hand, the probability of a single outcome or higher
order statistics of the distributions are not straight forward to obtain.

Alternatively, a distribution can be embedded in a tensor product RKHS Hj x Hj, as the
expected tensor product of the feature mappings (Smola et al 2007)

Cxx = Exx [e(X) ® p(X)] — uy ® py, (3)

where we use ® to denote the tensor product (or outer product) of two vectors. This embedding
is also called the centered covariance operator. The finite sample estimator is given by

R 1 & . N
Cxx = — Z} o(x) ® p(x;) — fix ® fix. 4)

Similarly, we can define the uncentered cross-covariance operator for a joint distribution
p(X,Y) of two variables X and Y as Cxy = % 2t o(xi) ® ¢(yi). Based on these two
definitions for Hilbert space embeddings of probability distributions and with the conditional
embedding operator discussed in the next section, all the rules of the framework for non-
parametric inference (Song et al 2013) can be derived.

2.1.2 The Conditional Embedding Operator

The embedding of a conditional distribution P(Y|X) is not like the mean map a single
element of the RKHS, but rather a family of embeddings where there is one embedding for
each realization of the conditioning variable X. To obtain the conditional distribution for a
specific value X = x., Song et al (2009) defined the conditional embedding operator Cy|x
which, if applied to the feature mapping of x returns the embedding of P(Y|X = x,)

Hypx = Eyx [#(Y)] = Cyixe(x). (%)

Given a finite set of samples D = [(x Y-y (X, yn)] from the conditional distribution
P(Y|X), the conditional embedding operator can be derived from a least-squares objective
(Griinewdlder et al 2012) as

Crix = Oy(K + AL, "YT, (6)

with the feature matrices @, := [¢(y,),...,#(y,)] and U := [@(x1), ..., ¢(x,)], the Gram
matrix K = (1Y, € R™", the regularization parameter A, and the identity matrix I,, € R™",
With the feature mapping of the realization x. this results in

Hypx. = Crixe(x.) = ® (K + AU ,) " CTo(x.) = Oy (K + AL ,) ky,, )
where ky, is the kernel vector of the samples [x,...,X,] and the realization x.. As the

kernel matrices in the inverse and the kernel vector of the realization are finite, the embedding
of the conditional distribution can be represented as a weighted sum of feature mappings

By = ®ya = aid(y)), ®)
i=1

with the feature mappings of the samples [y, ..., y,] and the finite weight vector @ € R”".
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2.1.3 The Kernel Sum Rule

The embedding of Q(Y) = > x P(Y|X)n(X) can be obtained from the kernel sum rule (Song
et al 2013). To that end, the conditional operator is applied to the embedding u% = Y a, of
the prior distribution 7(X),

5 = Cyx ik = ®y(K + A1) Karg. )

Here, we can see again that the result can be represented as a weighted sum over feature
mappings. In order to obtain the distribution Q(Y) as a covariance operator instead of a mean
map, Song et al (2013) also proposed the kernel sum rule for tensor product features which

yields the prior modified covariance operator C7,, as
Cyy = Cor)ix iy (10)
CFy = ®,diag(K + AI,)"'Ka)®], (11)

where C(yy)|x is the conditional operator for tensor product features.

2.1.4 The Kernel Chain Rule

The kernel chain rule (Song et al 2013) yields an embedding of the joint distribution
0(X,Y) = P(Y|X)n(X) as a prior modified covariance operator. There are two versions
of the kernel chain rule. Both apply the conditional embedding operator of P(Y|X) to an
embedding of the prior distribution 7(X). In the first version the conditional operator is
applied to a covariance embedding of the prior distribution. But, this covariance operator
is not estimated directly from samples but approximated from the weight vector @, of the
mean map g% = T, as C‘§X = Y, diag(a@)YT. This yields Version (a) of the kernel chain
rule as

Crx = CyyCix = ®y(K + AL,) "' Kdiag(e)YT. (12)

Version (b) of the kernel chain rule first computes the mean map uj conditioned on the
prior distribution 7(X) by applying the conditional embedding operator to the mean map 7 .
Afterwards, the prior-modified covariance operator of the joint distribution is constructed
from the resulting weight vector which results in

Cry = ®,diag((K + AL,) 'Ka)YT. (13)

Both versions of the kernel chain rule have been used to derive different versions of the
kernel Bayes’ rule as we will depict below.

2.1.5 The Kernel Bayes’ Rule

Given the embedding of a prior distribution 7(X) and the feature mapping of an observation
&(y), the kernel Bayes’ rule (KBR) infers the mean embedding of the posterior distribution
0, (X|Y = y). The idea is to construct a prior-modified conditional embedding operator that
yields the mean map of the posterior if applied to the feature mapping of the observation
(Fukumizu et al 2013)

.uj)hy = C§|y¢(.")- (14)
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This prior-modified conditional operator is constructed from two prior-modified covariance
operators Cy,, and Cy, obtained from the kernel sum and the kernel chain rule, respectively,
using the relation

T T T -1
Xy = Cxy (Cry) - (15)

In the first version, which we denote by KBR(b) following the notation of Song et al (2013),
Fukumizu et al (2013) derived the kernel Bayes’ rule using the tensor product conditional
operator in the kernel chain rule (c.f. Equation 13) and arrived at

-1
A%, =1.DG ((DG)2 + Klm) Dg,, (16)

with the diagonal D := diag((K . + AI,,) ' Ka), the gram matrix G = d);(I)y, the kernel
vector g, and « as regularization parameter. Song et al (2013) derived the KBR using the
first formulation of the kernel chain rule shown in Equation 3.2 which results in

-1
i, = TAT ((DG)2 + Klm) GDg,, 17)

with A := (K + AI ,,) ' Kdiag(a). This second version of the kernel Bayes’ rule is denoted by
KBR(a). As the matrix DG is typically not invertible, both of these versions of the KBR use
a form of the Tikhonov regularization in which the matrix in the inverse is squared. Boots
et al (2013) use a third form of the KBR which is derived analogously to the first version but
does not use the squared form of Tikhonov regularization, i.e.,

i%p, = Yx (DG + «I,,)"' Dg,. (18)

Since the product DG is often not positive definite, a strong regularization parameter is
required to make the matrix invertible. We denote this third version of the kernel Bayes’ rule
consequently by KBR(c).

All three versions of the kernel Bayes’ rule presented above have drawbacks. First, due
to the approximation of the prior modified covariance operators, these operators are not
guaranteed to be positive definite and, thus, their inversion requires either a harsh form of
the Tikhonov regularization or a strong regularization factor and are often still numerically
instable. Furthermore, the inverse is dependent on the embedding of the prior distribution
and, hence, needs to be recomputed for every Bayesian update of the mean map. This
recomputation significantly increases the computational costs, for example, if we want to
apply hyper-parameter optimization techniques.

2.2 The Kalman Filter

The Kalman filter is a well known technique for state estimation, prediction, and smoothing
in environments with linear system dynamics that are subject to zero-mean Gaussian noise
with known covariances (Kalman 1960). The system equations can be formulated as

Xiv1 =Fx,+v,, y,=Hx;+w,, (19)

where x, is the latent state of the system at time 7 and y, is the corresponding observation.
The linear Gaussian model is defined by the system matrix F, the observation matrix H, and
noise vectors v, and w, which are sampled from N(0, P) and N(0, R), respectively.
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From the assumption of Gaussian transition noise and Gaussian observation noise, it
follows naturally that the belief state over the latent state x; is as well a Gaussian distribution
with mean u, , and covariance L, ;. The Kalman filter applies iteratively two update proce-
dures to the belief state to which we will refer to as prediction and innovation update. During
the prediction update the Kalman filter propagates the belief state in time by applying the
transition model, i.e.,

My = F/“l;,t’ Z;,t+l = FZ;,,FT +P. (20)

On new observations y,, the innovation update applies Bayes’ theorem to the a-priori belief
state {g ,, Xy ,} to obtain the a-posteriori mean and covariance as

Bip = My, + O, (v, — Huy ), 1)
E;,t = E;,t - QtHE;,n (22)

with the Kalman gain matrix
Q =X, HT(HZ, H™ +R)".

Another approach to derive the Kalman filter equations follows from a least-squares objective
between the state estimator a-priori and a-posteriori to the observation Simon (2006). This
second approach does not make the explicit assumption that the belief state can be represented
as a Gaussian random variable. Rather this representation follows from the objective to
minimize the variance of the error between the a-priori and a-posteriori estimators. We will
take this second approach as inspiration to derive the kernel Kalman rule in Section 4.

3 Efficient Nonparametric Inference in a Subspace

A general drawback of kernel methods is that the complexities of the algorithms scale poorly
with the number of samples in the kernel matrices. As the conditional embedding operator
and the kernel inference rules require the inversion of a kernel matrix, the complexity scales
cubically with the number of data points. To overcome this drawback, several approaches exist
that aim to find a good trade-off between a compact representation and leveraging from a large
data set. Examples are the sparse Gaussian processes that use pseudo-inputs (Snelson and
Ghahramani 2006; Csat6 and Opper 2002), or a sparse subset of the data which is selected by
maximizing the posterior probability (Smola and Bartlett 2001). Other techniques are based
on approximating the kernel matrices using the Nystrém method (Williams and Seeger 2000)
or random Fourier features (Rahimi and Recht 2007). We approach this problem by proposing
the subspace conditional embedding operators (Gebhardt et al 2015). The basic idea is to
use only a subset of the available training data as representation for the embeddings but the
full data set to learn the conditional operators. In the following sections, we will recapitulate
this approach and show how it can be applied to the framework for nonparamteric inference.

Given the feature matrices ®,, := [¢(y;),...,d(y,)] and Y = [@(x1), ..., ¢(x,)], we
can define the respective subsets ¥, ¢ ®,, and I'y C Y, where |¥,| = |I'y| = m < n.
We assume that the subsets are representative for the embedded distributions. Similar to the
conditional operator discussed in Section 2.1.2, we define the subspace conditional operator
C{fl « s the mapping from an embedding ¢(x) € Hy to the mean embedding py|x € Hy of
the conditional distribution P(Y |x) conditioned on a certain variate x. To obtain this subspace

conditional operator, we first introduce an auxiliary conditional operator C;‘B‘( which maps
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from the subspace projection of the embedding I'T¢(x) to the mean map of the conditional
distribution, i.e.,

fyle = CEXTTo(x). 23)
We can then derive this auxiliary conditional operator by minimizing the squared error on
the full data set

X = arg min |®, - CcTiv,, (24)

= ®,YIT, (CI0,XIT, + 1) 25)

Substituting this result for the auxiliary conditional operator in Equation 23 gives us the
subspace conditional operator as

Cix = GYXIN
e -1
-,k (KTK + u) Il (26)

where K = (I, € R™™ is the kernel matrix of the sample feature set (', and its subset
I',. Since we assume that m < n, the inverse in the subspace conditional operator is in
R™*™ and, thus, of a much smaller size than the inverse in the standard conditional operator
shown in Equation 6. Additionally, we can make use the feature matrix I'T on the right hand
side of the subspace conditional operator and represent the mean embedding always in the
subspace spanned by the features I'.. This allows to avoid representations and computations
in the high-dimensional space spanned by the features of the full sample set. In the following
sections we will rederive the kernel sum rule, the kernel chain rule and the kernel Bayes rule
based on the subspace conditional embedding operator analogously to Song et al (2013).

3.1 Relation to Other Sparsification Approaches

Many other sparsification techniques for kernel methods exist. The two most important
techniques among these are probably the Nystrom method (Williams and Seeger 2000;
Drineas and Mahoney 2005) and the random Fourier features (Rahimi and Recht 2007). Both
methods are closely related to our approach. However, a major difference is that the subspace
conditional operator still is an operator in the RKHS defined by the kernel function. The
Nystrom method as well as the random Fourier features use finite dimensional approximation
of the feature function intrinsic to the kernel function and thus the resulting operators are
finite matrices that operate on the finite dimensional weight vectors of the mean embedding.
See Appendix A.2 on how these sparsification approaches can be applied to the conditional
operator.

3.2 The Subspace Kernel Sum Rule

Analogously to Song et al (2013), the subspace kernel sum rule is simply the subspace
conditional operator applied to the embedding of a distribution 7(X), i.e.,

- -1
1 = CF iy = @, (KTK + /lI) 'Y, e, 27)
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where py = Y, a is the embedding of the prior distribution 7(X). We construct the sub-
space kernel sum rule for tensor product features differently than Song et al (2013). Instead
of applying the conditional operator to the mean embedding and then approximating the
covariance operator with the resulting weights (c.f. Equation 11), we first approximate the
covariance operator C¥ from the weights @ of the mean map % and then multiply the
subspace conditional operator to both sides of it

s, T 3 T
Gy = CixCix (Cilx) = G diag(a) (T (G )
=®,KLg diag(a/)LITEI?Td);. (28)

o -1 _
Here, we denote L := (K TK+AI] KT e R™" 1o keep the notation uncluttered. This

definition of the subspace kernel sum rule follows from the kernel chain rule for tensor product
features, where the conditional operator CY|  1s applied to the covariance embedding C% , to
obtain the covariance embedding Cy, (c.f. Equation ). The subspace kernel sum rule follows
from applying the transpose of the condition operator a second time from the right-hand

side.

3.3 The Subspace Kernel Chain Rule

The subspace kernel chain rule is a straight forward modification of the kernel chain rule
by Song et al (2013). We simply apply the subspace conditional operator Cfl  from the left
side to a covariance operator Cgy = T diag(@)YT approximated from the weights @ of the

prior mean map py
CiX = CyxCix = ®, KL diag(a)¥]. (29)

With the subspace kernel sum rule and the subspace kernel chain rule we can now construct
the subspace kernel Bayes’ rule.

3.4 The Subspace Kernel Bayes’ Rule

The Bayes’ rule computes a posterior distribution P(X|Y) from a prior distribution 7(X) and
a likelihood function P(Y|X). Fukumizu et al (2013) derive a conditional operator Cy v from
the prior modified covariance operators C,, and Cy,,. We follow this approach and construct

the subspace kernel Bayes’ rule (subKBR) from the prior modified covariance operators C}‘?}f

and C{fif which we obtain from the subspace kernel chain rule and the subspace kernel sum
rule for tensor product features, respectively. When applied to the embedding of a variate y,
the subspace kernel Bayes’ rule returns the mean embedding of the conditional distribution
P(X|y) as

Hxyy = Cxipd) (30)

-1
ey =GR (CH) 90, 31
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From the subspace kernel chain rule, we obtain
S _ (S T
Cyxy = (CY|XC§X) (32)
=, diag(a/)L;ZIZT(I); (33)
and from the subspace kernel sum rule
S _ S s \T
G = Gl Cix (Clix) (34)
= ® KLy diag(a)LLK T ®]. 35)

To keep the notation of the subspace kernel Kalman rule uncluttered, we define the following
matrices

A= diag(@)L} (36)
D:=Lg diag(e)L} € R"™", (37
E := K'GK e R™"™, (38)

where G = (D; @, is the kernel matrix of the samples y;. Using the same form of the
Tikhonov regularization as the kernel Bayes’ rule in Fukumizu et al (2011) and substituting
the prior modified subspace covariance operators from Equations 33 and 35 results in

-1
Cor o) (39)

T _CS,IT CSJT 2 I
Hxpy =Cxy [(Cyy | T7

=, AK"®] |(®,KDK®]) ®,KDR"®] + yI| ®,KDR"®]4(y)  (40)

- Y AE [(DE) +yI|”' DKg,, (41)

where we apply the matrix identity A (BA + AI)™' = (AB+AI)™' A with A = ®,K to
obtain a finite matrix in the inverse. The term g, = (I); &é(y) denotes the kernel vector of
the new observation y. Since E and D are both in R">™, the matrix inversion is only in
O(m?) instead of O(n?). The whole kernel Bayes’ rule is in O(nm?) and, thus, scales linearly
with the number of sample points (given a fixed reference set) instead of cubically as for the
original kernel Bayes’ rule.

3.5 Experimental Evaluation

We compare the performance, learning time and run time of the subspace kernel Bayes’
filter in comparison to the standard kernel Bayes’ filter with a simple toy task. We simulate
a pendulum which we randomly initialize in the ranges [0.1x, 0.47] and [-0.57,0.57] for
the angle 6 and the angular velocity 6, respectively. The pendulum has a mass of 5kg and
a friction coefficient of 1. We apply Gaussian white noise to the system with a variance
of 1, and to the observations with a variance of 0.1. Additionally, the observed angles are
randomly perturbed by an offset of /4. These random perturbations occur with a probability
of 0.1 in every time step. Each episode consists of 30 time steps with Az = 0.1.

Figure 1 shows that the subspace KBF has a slightly better performance when the
training set equals the subspace set and maintains the performance of the standard KBF with
an increasing number of training samples while the subspace set is fixed to 100 samples.
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Fig. 1: The subspace variant of the kernel Bayes’ filter outperforms the standard kernel
Bayes’ filter in both, the tarining time depicted in the left plot and the run time depicted in
the middle plot, while maintaining a similar performance to the standard kernel Bayes’ rule
as depicted in the right plot. The size of the subspace is fixed to 100 samples.

However, at the same time the learning time of the subspace KBF increases at a much lower
magnitude and the run time is nearly constant while the learning and run time of the standard
KBR grow cubically. The samples for the subspace kernel Bayes rule are drawn uniformly
without replacement from the full sample set.

4 The Kernel Kalman Rule

In this section we will present the kernel Kalman rule (KKR) as an alternative to the kernel
Bayes’ rule (Fukumizu et al 2011). We assume a prior belief state over a variable X embedded
in a Hilbert space Hj, as

IJ)_(J = Ext Y1021 [‘ID(X)]

and new measurement y, embedded in a Hilbert space H,, as ¢(y,). With the kernel Kalman
rule we want to infer the embedding of the posterior belief state

By = Ex,y,, [e(X)] € Hi

from the prior belief and the new measurement. The derivations for the KKR are inspired by
the ansatz from recursive least squares (Gauss 1823; Sorenson 1970; Simon 2006), and thus
the resulting update equations follow from a clear optimality criterion.

4.1 Derivation using Recursive Least Squares
Let CY| « be a conditional embedding operator of the observation model P(Y|X) that yields
for a given belief state embedded in the Hilbert space Hj the distribution over possible
observations embedded into the Hilbert space H,. We call this conditional embedding
operator also observation operator. The objective of the KKR is then to find the mean
embedding py that minimizes the squared error

3 (600 - Cyetx) R (80 €y s )

with some metric R, in an iterative fashion. In each iteration, we want to update the prior
mean map py , based on the measurement y, to obtain the posterior mean map u%, .
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From the recursive least squares solution, we know that the update rule for obtaining the
posterior mean map p3, . s

Hx, =My, +Q (¢(yr) - CY‘X;&,,), (43)

where @ is the Hilbert space Kalman gain operator that is applied to the correction term
6 =9y, - CYle;m. We call this rule the kernel Kalman rule (KKR). It remains to show
how to obtain the Kalman gain operator. As we will show in the next paragraphs that this
rule is an unbiased estimator of the posterior mean map, we cannot obtain the optimal Q;
by minimizing the error directly. Instead, we will show in Section 4.1.2, how we can find an
optimal Q; by minimizing the covariance of the error instead.

4.1.1 The Kernel Kalman Update is an Unbiased Estimator of the Posterior Mean Map

The embedding of the observation ¢(y,) in the correction term §; is a single-sample estimator
of the embedding of the true distribution over observations py, ,. We make the assumption
that the error of this single-sample estimator is independent from the state x;, as we can
obtain the embedding of the distribution over the observations from the observation operator
and the prior distribution yuy , as

d(y,) = Hyix, t $r = Cy‘x”)_(,t +&, (44)

where ¢, denotes the error of the single sample estimator to the embedding of the true
distribution. By taking the expectation it is easy to show that the error of the single-sample
estimator is zero-mean and thus ¢(y,) is an unbiased estimator for My x,- We refer to
Appendix B.1 for a more detailed derivation. Similarly, the error of the a-posteriori estimator
to the embedding of the true state is given as

& = p(x)) - px, (45)
= ¢(xs) —px, —Qu(P(y,) = Cy xHx., ) (46)

where we use Equation 43 to substitute the embedding of the posterior belief. By substituting
¢(y,) with Equation 44 and defining the error of the a-priori estimator analogously as
&; = p(x;) — puy ,, we arrive at

8t+ = So(xt) - ”;(,t - Qt(cylxso(xl) + {t - Cylx”;(,t) (47)
_ (I - thYlX) (p(x:) - Hx,) - QL 48)
= (T-ac, )& -ag, (49)

with identity operator 7. We can now apply the expectation operator and exploit its linearity
to obtain

Elsf] =E[(T-@G, ) s - Q)]
= (r-ac,)Elsr] -@E[4]. (50)

Since the residual of the observation operator is zero mean (E[{,] = 0), we see that, given an
unbiased a-priori estimator (E[&;] = 0), the a-posteriori estimator obtained from the kernel
Kalman update is unbiased (E[&] ] = 0) independent of the choice of Q. Thus, we cannot use
the expected error of the estimator as an optimality criterion for the Kalman gain operator.
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4.1.2 Finding the Optimal Kernel Kalman Gain Operator

If the expected error—or the first moment of the error distribution—is already zero, taking
the covariance of the error—or the second moment—is a consequent choice. Hence, we chose
the kernel Kalman gain operator Q; which minimizes the expected squared loss E [(8;’) T s;“]
or equivalently the variance of the estimator. The objective for minimizing the variance can
also be reformulated as minimizing the trace of the a-posteriori covariance operator C, Xt of
the state x, at time ¢, i.e., ming, E [(87)1- 8:'] = ming, Tr C;X’t. Using the formulation of
the posterior error from Equation 49 and the independence assumption of ¢, and &, allows
us to reformulate the a-posteriori covariance operator as

Cix, = (Z - Q,CYIX) Cixs (I - Q,CYIX)T +QRQT, (51)

where R = E[{, 7] is the covariance of the residual of the observation operator. Taking the
derivative of the trace of the covariance operator and setting it to zero leads to the solution
for the kernel Kalman gain operator

-1
Q = Cixs Gl (CrxCrx Gl + R) - (52)

We provide a detailed derivation of the optimal Kalman gain operator in Appendix B.2. From
Equations 51 and 52, we can also see that it is possible to recursively estimate the covariance
embedding operator independently of the mean map or of the observations. This property
will allow us later to precompute the covariance embedding operator as well as the kernel
Kalman gain operator to further improve the computational complexity of our algorithm.
Following Simon (2006), the update of the covariance operator can be further simplified to

C;X,z :C;(X,t - thyp(C;(X,t' (53)

The derivations of this simplification can be found in Appendix B.3. In the following section
we will show how to obtain the empirical Kalman update rule from a finite data set.

4.2 Empirical Kernel Kalman Rule

The equations for the kernel Kalman rule that we derived in the previous section are based
on embeddings in infinite dimensional Hilbert spaces and operators that map between these
spaces. In practice, these embeddings and operators are estimated from a finite set of samples
D= [(xl, Yi)ooor (Xn,y n)] . In this section we will show how we can reformulate the kernel
Kalman rule with manipulations of finite matrices by applying the kernel trick, i.e., matrix
identities. Based on the data set O and the corresponding feature matrices 'y and @, the
finite sample estimators of the prior mean embedding and the prior covariance operator are
given as

fx, ="em; and  Cxx, =S, YT, (54)

respectively, with weight vector m; and positive definite weight matrix S; . Using this finite
sample estimator of the covariance operator, the finite sample estimator of the conditional
operator from Equation 6, and by approximating the covariance of the residual of the ob-
servation operator with a small diagonal R = «Z, we can rewrite the kernel Kalman gain
operator as

Q =Y S;07®] (®,0S;0T®] + 1), (55)
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with the observation matrix O = (K + AI)~'K. Here, the approximation of R = T also acts
as a small regularization in the inverse to ensure its positive definiteness and to improve the
numerical stability of the kernel Kalman rule. However, Q; still requires the inversion of an
infinite dimensional matrix. Using matrix identities, we can solve this problem and arrive at

Q =",S;07(GOS; 07 +«I)™' ®], (56)
0,

where we defined Q, = S;07(GOS; O + «I)™' € R™" with the Gram matrix of the
observations G = (l); @, . Based on this reformulation of the kernel Kalman gain operator, we
can obtain finite vector/matrix representations of the update equations for the estimator of the
mean embedding (Equation 43) and the estimator of the covariance operator (Equation 53).
For the weight vector m,, we arrive at

m:— = mt_ + Qt (g:yt - GOmt_)’ (57)

where 8y, = (IJ; &(y,) is the embedding of the measurement at time ¢. Similarly, we can also
obtain the update equation for the weight matrix S; as

S, =S; - 0,GOS;. (58)

The algorithm requires the inversion of a m X m matrix in every iteration for computing the
kernel Kalman gain matrix Q,. Hence, similar to the kernel Bayes’ rule, the computational
complexity of a straightforward implementation would scale cubically with the number of
data points m. However, in contrast to the KBR, the inverse in Q, is only dependent on time and
not on the estimate of the mean map. Thus, the kernel Kalman gain matrix can be precomputed
since it is identical for multiple parallel runs of the algorithm. Furthermore, if the stream of
incoming measurements is reliable (no time steps without incoming measurement), S, will
converge to a stationary matrix and by that Q, will become stationary as well. While many
applications do not require to perform state estimations in parallel, it is a huge advantage for
hyper-parameter optimization as we can evaluate multiple trajectories from a validation set
simultaneously. As for most kernel-based methods, hyper-parameter optimization is crucial
for scaling the approach to complex tasks. So far, the hyper-parameters of the kernels for the
KBF have typically been set by heuristics as optimization would be too expensive.

4.3 The Subspace Kernel Kalman Rule

In Section 3 we have already shown how we can apply the subspace conditional embedding
operator to leverage from large data sets but at the same time maintain the computational
tractability of the learned models. In this section, we will now show how we can apply this
technique to the kernel Kalman rule to obtain the subspace kernel Kalman rule (subKKR).

A core difference between the KKR and the subKKR is the representation of the embed-
ded distributions. While we represent the embeddings for the kernel Kalman rule as weight
vector m; and weight matrix S, , we use the projections into a subspace

n; =Tlp =TI m; = K'm,, (59)
P, =T1Cxx [y =TTV S, (1T, =K'SK. (60)

to represent the distribution for the subspace kernel Kalman rule. These projections will
later allow us to express all operations in the lower dimensional subspace instead of the
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space spanned by the full data set. Matrix manipulations with the full data set are then only
necessary during the learning phase of the KKR not while performing inference.

We use a slightly modified version of the kernel Kalman gain from Equation 52 where
we approximate the covariance operator R with a diagonal matrix 7. With the subspace
conditional embedding operator of the distribution P(Y|X), as derived in Section 2.1.2

e -1
Cix = @K (KR + 1) T, 61)

we obtain the subspace kernel Kalman gain operator as
-1

Q= Cxx, (C)§|X)T (C)§|XC§X,: (Cgp()T + KI) (62)

We can further derive a finite matrix representation of the operator using matrix identities
and the projection into the subspace spanned by the features I as

_ _ -1 _
r’Qs = P (057 (KTGKOSP;(OS)T + KI) KT o], 63)

o;

where we define the subspace kernel Kalman gain matrix QF using the short hand 05 :=
(K"K + AI)™". A detailed derivation can be found in Appendix B.5. Note that Q5 € R"™"
and not R"*™_ however when applying the subspace KKR in an inference algorithm, we
can use the matrix K on the right side as a projection for the high-dimensional embedding
of the distribution over the variable Y to which the gain is applied (see Algorithm 2 for an
example). From here, the update equation for the projection of the mean map becomes

ni, =y, + 0F (gy, - GROSny), (64)
And similarly, we can derive the update equation for the covariance embedding as
P =P; - Q°GKOSP; (65)

In contrast to the kernel Kalman gain presented in the previous section, but also in contrast to
the kernel Bayes rules discussed in Section 2.1.5, the subspace kernel Kalman gain requires
only the inversion of an m X m matrix instead of an n X n matrix, where m < n. Still, the full
data set of n samples can be used to learn the Kalman gain operator.

4.4 Experimental Comparison of (sub)KKR and (sub)KBR

We compare the performance of the (subspace) kernel Kalman rule to the performance of
the (subspace) kernel Bayes rule on a simple stationary filtering task for estimating the
expectation of a Gaussian distribution. We sample 500 context variables ¢; uniformly from
the interval [—5, 5] as the mean of the Gaussian distributions. Afterwards we draw one single
sample s; for each context from N(c;, %) and learn the kernel Kalman rule and the different
versions of the kernel Bayes rule with the context variables as states and the samples as
observations. For the performance comparison (Figure 2), the KKR and the KBR are learned
with a kernel size of 200 samples, subKKR and subKBR are both learned with 200 samples
to span the subspace and the full set of 500 samples to learn the operators. In the comparison
of time efficiency, the respective kernel size and subspace size is denoted as column header,
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- == KKR SUDKKR everes KKR(a) wereess KKR(b)
""" KBR() SubKER - - - - ML # 200 300 400 500
KKR 0.1110  0.3360 0.7155 1.3965
subKKR | 0.1820  0.4655 0.9130 1.6075
KBR(a) 29395 9.2395 21.5035 41.6955

MSE to context

102 4 KBR(b) 0.8695  2.5840 5.7580  10.9900
; 4 6 s 10 KBR(c) 0.5455  1.5575 3.3695 6.4465
# seen samples subKBR 2.3530 4.7625 7.6540 12.7960

Fig. 2: Performance of the KKR up- Table 1: Time consumptions of the KKR and KBR
dates vs the KBR updates for esti- update methods for different kernel sizes. The up-
mating the mean of a Gaussian dis- date was performed on 10 samples from 10 different
tribution with 1-10 seen samples. distributions. The subspace KKR and KBR updates
The ML estimate serves as a base- are trained with 500 samples in the full data set.
line. Depicted are the median and the Both KKR methods outperform the KBR methods
(0.15, 0.85)-quantiles of the MSE to  clearly as they are able to process the update on the
the true mean over 20 runs. 10 different distributions in parallel.

while the subKKR and subKBR have always been learned with the full data set of 500
samples. All data were drawn uniformly without replacement from the full data set.

To evaluate the methods, we generate a data set with ten context variables from the same
uniform distribution. Now, we draw ten samples from the Gaussian around each context
and update each method iteratively with these ten samples. For each update we compute
the squared error to the true context and take the mean over all ten context variables. We
use squared exponentials as kernel functions and optimize their bandwidths as well as the
regularization parameters using CMA-ES (Hansen 2006). Figure 2 shows the median and
the (0.15,0.85)-quantiles of the MSE to the true context over the number of seen samples.
As a baseline we depict the maximum-likelihood (ML) estimate of the expectation. We see
that while in the beginning all methods perform similar to the ML estimate, with more
seen samples KKR and subKKR outperform all variants of the KBR. Moreover the choice
to depict the median and (0.15, 0.85)-quantiles over mean and standard deviation is due to
the instable optimization behavior of the KBR which produced a lot of outliers. In Table 1
we state the time consumed to perform ten KKR/KBR updates on 10 estimation tasks for
different kernel sizes. Here, the KKR/subKKR methods benefit from their ability to process
the updates for all 10 estimation tasks in parallel. Yet, the ability to precompute QI/QZS and
S./P, is not even exploited.

5 Applications of the Kernel Kalman Rule

In Section 4, we have shown how we can derive the KKR as an alternative operator for
Bayesian updates in the framework for nonparametric inference. In this section we will
present two applications of the kernel Kalman rule. In Section 5.1 we will first present
the kernel Kalman filter (KKF) and discuss details about the implementation. A subspace
variate of the KKF is presented in Section 5.2 and experimental results of both are shown
in Section 5.3. The kernel forward backward smoother (KFBS) is presented as another
application of the KKR in Section 5.4 and a subspace variate is discussed in Section 5.5. We
finally show experimental evaluations of the KFBS and the subKFBS in Section 5.6.
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5.1 The Kernel Kalman Filter

Similar to the kernel Bayes’ filter (Fukumizu et al 2013; Song et al 2013), we can combine
the kernel Kalman rule with the kernel sum rule to formulate the kernel Kalman filter (KKF).
To learn the models of the KKF, we assume a data set D = {(X1, x1, Y1), - - - » (X1s Xm> Y ) }
consisting of triples with preceding state X;, state x;, and measurement y; as given. We
further assume the states to be Markov, i.e., the state x; is only dependent on its predecessor
%;. Based on this data set we define the feature matrices W'y = [@(x1),...,9(xm)], (; =
[p(x1), ..., 9(Xm)], and @, = [$(y1), ..., P(yn)]. In contrast to the KBF, we represent the
belief state as mean map px,; = ¥, m, and as covariance operator Cxx,; = Y, YT

The forward model P(X|X) that propagates the posterior belief state at time 7 to the prior
belief state at time ¢ + 1 can then be learned as conditional embedding operator

— . =1 oeT
CX‘X—YX(K”+/U) T;z’ (66)

which we also call transition operator. Here, K ;z is the Gram matrix of the features of the
preceding states Y. The posterior belief state at time  is then propagated to the prior belief
state at time ¢ + 1 time by applying the kernel sum rule. That is, we apply the transition
operator to the posterior mean map and the posterior covariance embedding at time ¢ and
obtain prior mean map and prior covariance embedding at time ¢ + 1, i.e.,

px.es1 = Cy gy, = CxTmf, & m;, =Tm} (67)
C)EX,[+1 = CX‘XC;XJC;DZ +V < St_+1 = TS:—TT +V. (68)

Note that the propagation of the covariance embedding is slightly different to the kernel
sum rule by Song et al (2013), however this formulation follows directly from the kernel
chain rule (c.f. Equations 28 and 11). Analog to the observation matrix O (c.f. Section 4.2),
we denote the transition matrix T = (K ¢z + ApI) ™' K ¢y, where K¢y = T;Tx is the kernel
matrix of the preceding states and the states. The covariance of the transition residual V and
its finite matrix representation V' can be obtained as

V= % (chXTx - Tf) (CxpzT)‘ - Yi)T (69)
- % ('I‘X (Kgx + AD7 YT, - 'I‘i) ('I‘x (Ksz + A1)~ 0Tr, - TX)T (70)
:'I‘i%((K+/lI)"1K—I) ((K+M)“K—1)TT; 1)

\ %

On the new prior belief state that we obtain from the transition update, we can afterwards
apply the kernel Kalman rule as observation update. Before we give a condensed summary
of the kernel Kalman filter in Algorithm 1, we will discuss how we obtain the embedding
of the distribution over the initial states in the next section. To extract some meaningful
information from the RKHS-embedded distributions, we furthermore need to find mapping
of the embedded distribution back into the state space. In Section 5.1.2, show how we
approached the so-called preimage problem and shortly discuss other solutions.
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5.1.1 Embedding the Initial State Distribution

Before running the filter on incoming measurements y;, we need to initialize the belief state
with an initial mean map px,o and an initial covariance operator Cxx,0. We can obtain these
inital embeddings from a data set Dy = {x?, .. .,x?\,} which consists in general of samples
from the initial distribution of the system. Practically, we can obtain this data set by taking the
inital states from multiple training episodes or—if we assume a stationary distribution—we
can also take all training samples for the initialization. We can obtain the initial mean map by
first embedding a uniform distribution into the RKHS spanned by the features of the initial
states A . Afterwards, we apply a conditional operator to map this distribution into the

Hilbert space spanned by the features Y, as

1

N
1

=1 mg = (K + /ll)ilK()lNﬁ. (73)

px,0 = Como =X (K + )T 1y (72)

where K¢ = T}’I‘X o is the kernel matrix of the training samples and the samples in Dy, and
1y denotes the N-dimensional all-ones vector. Similarly, we can obtain the initial covariance
embedding operator as

1
Cxx.0 = YxSo YT = 5 T (K + ADT'KKT(K + AT =Y omgm YT (74)

Hence, we can obtain the initial weight vector m and the initial weight matrix So by
computing the mean and the covariance over the columns of the matrix Co = (K + AI)™'Ko.

5.1.2 The Pre-image Problem / Recovering the State-Space Distribution

Recovering a distribution in the state space that is a pre-image of a given mean map is still
a topic of ongoing research. There are several approaches to this problem, such as fitting a
Gaussian mixture model (Mccalman et al 2013), or sampling from the embedded distribution
by optimization (Chen et al 2012). In the experiments conducted for this paper, we approach
the preimage problem by matching a Gaussian distribution, which is a reasonable choice if
the recovered distribution is unimodal. Since we embed the belief state for the kernel Kalman
rule as a mean map and as a covariance operator, obtaining the mean and covariance of a
Gaussian approximation is done by simple matrix manipulations. The space of the samples
R4 together with the linear kernel k(x,x2) = (x1,x2) = xIxz forms an RKHS as well.
Therfore, we can simply define a conditional embedding operator that maps from the Hilbert
space of the feature vectors to the Hilbert space of the samples as

Cpre = X(K + A1)~ (75)

By applying this conditional operator now to the belief state, we obtain the mean of the
embedded distribution in the sample space

n, = Cpreﬂx,t = CpreEb, [‘P(X)] = Eb, [Cpre‘P(X)] = Ebt [X] (76)
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Similarly, we can also apply this operator to the covariance embedding to obtain the covari-
ance of the belief state in the sample space

X = CpreCXX,thTre
= Cpre (Bp, [¢(X) ® (X)] = px, ® pix,;) Cpre
= Ep, [Cpre‘l’(x) ® ‘P(X)Cl;rre] = Cpreltx, ® ﬂx,tcl;rre
=Ep, [X®X]-n,®n] 17

However, also any other approach from the literature can be used in the kernel Kalman filter
algorithm.

Algorithm 1: The Kernel Kalman Filter

input: triples {(X1, x1, ¥1), - - -» (X Xpms Ym) }»
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X and Y analogously,
let X be the matrix of all data points used to compute the initial embeddings

compute kernel matrices .
K =k(X,X),Kzx = k(X, X), Kzx = k(X, X),and G = g(Y,Y)
compute model matrices
T=Kszz+A) 'Kz andO = (K + AI)"'K
compute initial embeddings
kernel matrix with samples of the initial distribution: K¢ = k(X, X), Co = (K + AI)"'K,
compute mean and variance over the columns: mg = mean(Cy), So = var(Cyp)
loop
if new observation'y, available then
compute kernel Kalman gain
0, =S;07(GOS;07 +«I)”!
innovation update
m; =m; + 0,(g.y, ~GOm;)
S; =S; -Q,GOS;

transition update

I + -
mt+l_Tmt’ SHI

=TSITT+V

project into state space
n, =X0Om;, X;=X0S;07XT

5.1.3 Embedding Observation Windows

So far, we assumed that we have access to the latent states x; in our training set. However,
in many setups we only have access to the partial observations y; which do not have the
Markov property. Yet, we can still learn a KKR model from the provided data by embedding
time windows y,_ .., of size k as internal state representation. Similar approaches have
been used by auto-regressive HMMSs (Shannon et al 2013). With longer data windows, the
transitions become more and more Markov. How many observation each data window has to
contain depends on two factors: on the dimensionality of the underlying system and on the
signal-to-noise ratio of the measurements y;.
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5.2 The Subspace Kernel Kalman Filter

The subspace kernel Kalman filter (subKKF) is a natural extension of the KKF that leverages
the subspace formulation of the conditional embedding operator presented in Equation 26
and its application to the framework for nonparametric inference as well as the subspace
formulation of the kernel Kalman rule derived in Section 4.3.

In contrast to the KKF, we assume for the subKKF a data set of triples {(xi, x{, Y1),
«« oy (Xms Xy, ym)}, Where x/ is the successor state to x;. The representation of the belief
state changes from weight vector m, and weight matrix S, to the subspace projections of
the embeddings n, = TI(,m, = K'm; and P; = TIY, S, YIT, = K'S,K, respectively.
Additionally, both update procedures of the kernel Kalman filter, the transition update and
the innovation update, have to be substituted by their subspace counterparts. The transition
update is realized by the subspace kernel sum rule and the innovation update by the subspace
kernel Kalman rule. The equations are depicted in Algorithm 2.

Since we represent the belief state as a projection into the subspace defined by T',,, we
can directly obtain the initial belief state by projecting the uniform embedding in the RKHS
spanned by the samples from the initial distribution as

I I

ny = rxTx,OlNN = KglNﬁ, (78)
1 I s(,s\T

Po= ST YT 0T = K (K5 (79)

Here, K g is the feature matrix of the reduced sample set and the samples from the initial
state distribution. For the mapping back into the state space, we can similarly to the KKF
define a subspace conditional operator as
N e (T gL
Cs. = XK (K K+ /11) I, (80)
By applying this operator to mean map and covariance embedding, we obtain the mean and
variance in state space from the subspace projections as

e -1
no=XK (KR +a1) n, 81)
_ (-1 = -1 _ -1 _
¥, = XK (KR +a1) P (R'R+a1) K'XT. (82)
A concise description of the subspace kernel Kalman filter can be found in Algorithm 2.

5.2.1 Selecting the Sample Set to Span the Subspace

To learn the subspace kernel Kalman filter models, we assume that we have a large data set
of size m but we represent the belief states in a subspace spanned by only n samples, where
n < m. A crucial problem is though how to select the subset of n samples from the full data
set of m samples. We propose two approaches to address this problem which aim at different
characteristics of the subset.

The first approach simply samples uniformly without replacement from the full data set.
The result is a subset that resembles statistically the full data set, i.e., regions that have a high
density in the full data set will have a high density in the subset and vice versa.

The second approach is a bit more sophisticated in its selection strategy. The goal is
here to get an optimal coverage of the sample space in the subset according to a certain
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measure. To do so, we select the first sample randomly from the full data set into the subset.
Afterwards, we iteratively extend the subset by adding samples according to the following
criterion: we compute the maximum kernel activation for each sample in the full data set
with the samples in the current subset, then we extend the current subset by taking the sample
from the full data set with the minimal maximum activation. We call this second strategy the
kernel activation heuristic.

Algorithm 2: The Subspace Kernel Kalman Filter

input: triples {(x1, X[, Y1), - - -» (Xm> X705 Yim) 3
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X’ and Y analogously,
let X be the matrix of all data points used to compute the initial embeddings

select subset
X s ~ random strategy, or X s ~ min-max-activation strategy

compute kernel matrices
K=k(X,Xs),K' =k(X’,Xg),andG = g(Y,Y)

compute model matrices

TS = RTK (KR + 1) and 05 := (R'K + 1)

compute initial embeddings

kernel matrix with samples of the initial distribution: K 69 =k(Xs,Xo)

compute mean and variance over the columns: m, = mean (K 59), So = var (K g)
loop

if new observationy, available then
compute subspace kernel Kalman gain

0’ =p; (05)" (K'GROSP; (09)" + KI)_lkT

note that you can apply the matrix K7 to the kernel matrix G in the innovation update
already at learning time to increase computational efficiency.

innovation update

nf =n; +Q% (g:yr —GKOSn;)

P! =P; -Q0SGKOSP;

transition update

- _ 7S+ —
"t+l_T ng, Pz+1

-T5P} (TS)T +Vs

project into state space _ _
n, = XKOSn,, X,=XKOSP,05K™X"

5.3 Experimental Evaluation of the Kernel Kalman Filter

We evaluate the performance of the KKF and the subKKF on two experiments on simulated
environments, a pendulum and a quad-link, and one experiment on real-world data from a
human motion tracking data set (Wojtusch and von Stryk 2015). For all kernel based methods,
we use the squared exponential kernel, where we choose the kernel bandwidths according to
the median trick (Jaakkola et al 1999) and scale the median distances with a single optimized
parameter.
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Fig. 3: Comparison of KKF to KBF(b), KKF-CEO, EKF and UKF. All kernel methods
(except fullKKF) use kernel matrices of 100 samples. The subKKF method uses a subset of
100 samples and the whole dataset to learn the conditional operators. Depicted is the median
MSE to the ground-truth of 20 trials with the [0.25 0.75] quantiles.

5.3.1 Pendulum

In this experiment, we used a simulated pendulum as system dynamics. It is uniformly
initialized in the range [0.17,0.47] with a velocity sampled from the range [-0.5%,0.5%].
The observations of the filters were the joint positions with additive Gaussian noise sampled
from N(0,0.01). We compared the KKF, the subspace KKF (subKKF) and the KKF learned
with the full dataset (fullKKF) to version (a) of the kernel Bayes filter (KBF(a)) (Song et al
2013) (the other versions, KBF(b) and KBF(c), yielded worse results in this experiment)
and the kernel Kalman filter with covariance embedding operator (KKF-CEO) (Zhu et al
2014), as well as to standard filtering approaches such as the EKF (Julier and Uhlmann
1997) and the UKF (Wan and Van Der Merwe 2000) (which require a model of the system
dynamics). To learn the models, we simulated episodes with a length of 30 steps (3 sec). For
the KKF and all KBF models, we use a kernel size of 100 samples, for the fullKKF, we use
all available training samples and for the subKKF we use a set of 100 samples to span the
subspace and the full data set to learn the operators. The samples are selected from the full
data set using the kernel activation heuristic. The results are shown in Figure 3. The KKF
and subKKF show clearly better results than all other non-parametric filtering methods and
reach a performance level close to the EKF and UKF.

5.3.2 Quad-Link

In this experiment, we used a simulated 4-link pendulum where we observe the 2-D end-
effector positions. The state of the pendulum consists of the four joint angles and joint
velocities. We evaluate the prediction performance of the subKKF in comparison to the KKF-
CEO, the EKF and the UKF. All other non-parametric filtering methods could not achieve
a good performance or showed to be not feasible down due to the very high computation
times. As the subKKF outperformed the KKF in the previous experiments and is also
computationally much cheaper, we skip the comparison to the standard KKF in this and the
subsequent experiments.

In a first qualitative evaluation, we compare the long-term prediction performance of the
subKKF in comparison to the UKF, the EKF and the Monte-Carlo filter (MCF) as a baseline.
This evaluation can be seen in Figure 4. The first five steps of of the end-effector trajectories
were observed by the filters, the following 30 steps were predicted. The UKF is not able to
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(a) anim. QL (b) MCF (c) UKF (d) subKKF

Fig. 4: Example trajectory of the quad-link end-effector. The filter outputs in black, where
the ellipses enclose 90% of the probability mass. All filters were updated with the first five
measurements (yellow marks) and predicted the following 30 steps. Figure (a) is an animation
of the trajectory.
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Fig. 5: 1, 2 and 3 step prediction performances in mean euclidean distances (MED) to the
true end-effector positions of the quad-link.

predict the movements of the quad-link end-effector due to the high non-linearity, while the
subKKEF is able to predict the whole trajectory.

We also compared the 1, 2 and 3-step prediction performance of the subKKF to the KKF-
CEO, EKF and UKF (Fig. 5). The KKF-CEO provides poor results already for the filtering
task. The EKF performs equally bad, since the observation model is highly non-linear. The
UKF already yields a much better performance as it does not suffer from the linearizion of
the system dynamics. The subKKF outperformed the UKF.

5.3.3 Human Motion Data

The human motion dynamics (HuMoD) database by Wojtusch and von Stryk (2015) consists
of the datasets of several motions executed by two subjects. All datasets contain the recordings
from a motion capture system with 36 markers as well as the recordings of the electrical
activity of 14 muscles in the legs. Additionally, data from the treadmill such as ground
reaction forces and velocities are available. The x-, y-, and z-locations of the markers were
recorded at SO0Hz, the muscle activities at 2000Hz, and the data from the treadmill at
1000Hz. Furthermore, the database contains joint positions and joint trajectories derived
from the marker positions via a kinematic model of the human body. In our experiments, we
use the marker locations, the derived locations of the joints and the muscle activities. We
subsample all data to a common frame rate of 50Hz and transpose the x- and z-position of all
markers such that the T12-marker (marker at the 12th thoracic vertebra) has (x = 0,z = 0) in
all frames. Note that in the HuMoD database, the x-axis points in the motion direction (i.e.,
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Fig. 6: Example sequence of 4 postures and the measured muscle activities. The marker
and skeleton in green depict the ground-truth, the estimates from the models are depicted
in black/blue. The learned models estimate the marker and joint positions from the muscle
activities. The first row shows the estimated positions from the subKKF, the second row
shows the estimated positions from the subKBF and the third row shows the estimated
positions from a sparse GP. For all three models, we used a sample set of 2000 samples and
a sparse subset of 500 samples.

along the treadmill), the y-axis points upwards and the z-axis forms a right-hand coordinate
system towards the right side of the treadmill. We used walking motions at 1.0m/s, 1.5m/s,
2.0m/s, and running motions at 2.0m/s, 3.0m/s, and 4m/s, captured from one subject. For
evaluating the trained model, we used a test data-set in which the subject transitions linearly
from Om/s up to 4m/s and back to Om/s.

In the experiment, we compare the performance of subKKF, subKBF, and sparse Gaus-
sian process (SGP) in restoring the marker and joint positions from the muscle activities.
We learn all three models using the marker and joint positions as state variables (or outputs)
x; and the muscle activities as observations (or inputs) y;. We use a set of 2000 samples to
learn the kernel matrices and a subset of 500 samples to define the subspace (or as inducing
inputs). For subKKF and subKBF, we used a window size of 2. While we could easily carry
out the optimization of the parameters for the subKKF and for the SGP, the optimization of
the parameters for the subKBF was not feasible in a considerable amount of time.
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Fig. 7: Performance of the subKKF and the Fig. 8: Performance of the subKKF on Hu-
subKBF on the HuMoD transition data for MoD test sequences after 0, 10, 20, 30 and

different sizes of the subspace. 40 iterations of the CMA-ES optimizer.
# 200 400 600 800 1000
subKKF 6.66 591 5.94 5.87 5.92
subKBF 7.48 6.73 6.63 6.55 6.70
SGP 76.33 70.15 68.46 63.13 58.97

subKKF | 0.61+0.10s 1.71+0.17s 3.84+0.40s 7.21+0.85s 11.72+0.41s
subKBF 59+1.3s 170£11.3 s 352+15 s 620£15 s 9274174 s

Table 2: Top: performance of subKKF, subKBF, and SGP for the HuMoD transition data
for different sizes of the subspace. Bottom: time consumptions of subKKF and subKBF
for filtering 100 test sequences of length 50 from the HuMoD data set.

Figure 6 depicts marker and joint positions of four exemplary postures together with the
muscle activities during that period of time. The locations of the exemplary postures in the
time linen are depicted by vertical lines in the plot of the muscle activities. While this is only
a qualitative example, it depicts how the subKKF outperforms the subKBF and the SGP in
restoring the positions of the markers and the joints.

We compare the performance of subKKF, subKBF and SGP for different sizes of the
subspace (inducing inputs). Figure 7 depicts the performance of subKKF and subKBF. The
results of the SGP can be seen in Table 2 which are clearly worse in comparison to the filtering
approaches which take the temporal correlation of the data into account. Furthermore, Table 2
also depicts the time consumption of subKKF and subKBF for the evaluation of the transition
data in the HuMoD data base. The gain in efficiency of the subKKF over the subKBF which
is around the factor 100 can be seen clearly. In Figure 8, we depict the performance gain
of the subKKF over the number of iterations of the CMA-ES optimizer. We see that in this
case, the first 10 iterations yield a bigger jump in performance than the following 40 steps.
However, from our experience, this is very specific to the problem and the initial setting of
the parameters, which were in this experiment already very close to the optimal parameters.

5.4 The Kernel Forward-Backward Smoother

Smoothing is in contrast to filtering a post-processing routine. While filtering refers to a
routine where the current state is estimated recursively from all past observations, smoothing
computes the best state estimates given all available observations from the past and the
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future. Hence, for a given time series of observations [y, ..., yr], we want to obtain the
belief p(x;|y1,...,yr)forall 1 <t <T.

One well-known and simple approach to smoothing is the forward-backward smoother.
During a forward pass the standard filtering algorithm is applied to the observations. Af-
terwards, on the backward pass, an inverse filter is applied to the same time series of
observations. Finally the filter estimates of forward and backward pass are combined into the
smoothed estimates. Since the information from the observation should be incorporated only
once into the smoothed estimate, we need to combine the posterior estimate of the forward
pass with the prior estimate of the backward pass (or vice versa). The problems of this routine
are usually that it requires an inverse model of the underlying system for the backward pass
and an initialization of the final state. If we assume that the system has a finite state space,
these issues are however not applicable for the KKF as we can learn the models in the feature
space from data.

5.4.1 Computing the Smoothed Belief State as a Weighted Average

Assuming that we have the a-posteriori belief states from the forward pass and the a-priori
belief states from the backward pass as

{vchi)s o (rmcie)l a0 Got)ooo (150G )| 83)

respectively, we can combine the mean maps into a smoothed belief state as the weighted
average

Ms,t = Zf,tﬂ}’; + Zb,t#;,,- (84)

Since both, the estimator from the forward pass and the esitmator from the backward pass,
are unbiased, the weighting operators Zy,; and Zj; need to satisfy 7 = Zr, + Zp;, i.e.,

E [p(X,) - 1] = 0 (85)

B o) - Zpa] "+ Zoas”| 20 (36)
Elp(X0)] - Z5.E [#f] + ZnE 7] 20 (87)
pr = (Zo + Zoa) e =0 (88)

= Zp+Zoi=1 (89)

Thus, the weighting operators can be expressed by each other as Z;,; = I — Zy,; and vice
versa. We substitute this representation back into the smoothing update in Equation 84 to
obtain

,uS,t = -Zf,tﬂ}’t + (I - -Zf,t) /’l;,t‘ (90)
5.4.2 Finding the Optimal Weighting Operators

‘We obtain the optimal weighting operators by minimizing the squared error of the smoothing
mean map which is equivalent to minimizing the trace of the smoothed covariance embedding
operator Cs 4, i.€.,

E[(eX)— )T (0(X) — )] =E[Tr (o(X)) — 11f) (p(X) — 1§)T] = Tr Gy 9D
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We can then use Equation 90 to rewrite the covariance opartor as

Cor =B |(¢(X0) - Zputty, + (T = Zp) i) ()] ©2)
=B[(Zplg —a)+a) ()] 93)

where € = ¢(x;) — /J;’ . is the error of the a-posteriori estimate of the forward pass and
e = @o(x;) — My, 18 the error of the a-priori estimate of the backward pass and where we
used the relation @(X;) = T9(X;) = (Zr.r + Lo)p(Xe) = (Zge + (T = Zr.0))p(Xy). By
expanding the square and since the cross-covariances of the errors from forward and the
backward pass are zero (i.e., E[Effg ] = 0), we arrive at

Cs:=E [Zf’t (efefT + ehe;) Z;t - Zf!tehe; - ehe;ZJI’t + Ebeg] ) 94)

Lastly, we can take the derivative and set it to zero to obtain the optimal Zy,; as

0L ‘9;2;” =28|Zp (e +e,6]) - 6,€] | (95)
02 Zp, (B|eel| +2[e,e]) - E [6,€]] (96)
0 Zp(Cli +Cu) - Gy 97)
Zri =Gy, (Gl c,;,t)f1 . 98)

From the condition on the weighting operators stated in Equation 89, it furthermore follows

-1
that Z,,, = C;, (G}, +C;,) -
5.4.3 Smoothing the Covariance Embedding Operator
Taking the representation of the smoothed covariance in Equation 94 and substituting the co-

variance operators and the optimal weighting operator Zy ; gives us the following smoothed
covariance operator

-1
Coi =Gy =G (Gl + G) G (99)
-1
:c;_,—(f—c;, (¢t +ci) )cl;, (100)
+ + VA
=cf, (¢l +C) i (101)

From the optimal solution of the weighting operator, we can now see that the smoothing
update of the covariance embedding operator can be expressed as

Cst = ZbiCp, = Z14Cy, (102)

In the following section, we will show how the smoothing update can be expressed with
finite samples using vector/matrix operations.
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5.4.4 The Empirical Kernel Forward-Backward Smoother

We assume that we are given the weight vectors and weight matrices from the forward and
the backward pass as {(m;;,l,S;’l), .. .,(m]t’T, S}"T)} and {(m}, .S} )....(m, .S, 1)},
respectively. Since the weighting operator Z;,; can be expressed by Z¢,; and vice versa, we
only need to compute one of the weighting operators which we choose to be Zr ;. We add
the identity operator with a small scalar vy in the inverse to improve the numerical stability
and obtain

Zr =G (Gl + G +7I)_] (103)
=085, 0T (0 (S5, + 55, ) 0T+ yI)_l (104)
=085, (T (S), + S5, ) + 71)71 YT (105)
=085, (K (S}, +S5,) +71)_l 1T, (106)

Zfa

where we used again the matrix identity A(BA + I)™! = (AB + I)"' A and defined the finite
weighting matrix Z 7 ,. With this weighting matrix we can now combine the mean maps of
the forward and the backward pass as

Ms,t = Zf,t/vl]t,; + (I - Zf,l) ﬂi,z (107)

= Tfo,,T;/,t;’t + (I - Tfo,,T;) Hp.: (108)

= Yfo,th;’, +my , — 0 Zyp Kmy, (109)
Com =, (my,, + 2K (m], —mj ) (110)

And similarly we can obtain the smoothed estimate of the covariance operator as

Gl = Zp.Cy, (111)
=Y Zp XTYLST AT (112)
Yo SSAT =0 Zy KST, YT (113)

A concise description of the kernel forward-backward smoothing algorithm can be found in
Algorithm 3.

5.4.5 Initialization of the Backward Kernel Kalman Filter

A critical aspect of the classical forward-backward smoothing algorithm is the initialization
of the belief state for the backward pass. Often the distribution over the initial state is well
known but not a distribution over the terminal state, where it is often not even clear how a
terminal state is defined. For the backward kernel Kalman filter, two approaches can be used
to initialize the belief state. The first approach assumes that we have multiple episodes in
the training data, where each episode terminates in a terminal state of the system. We can
then compute the initialization for the backward pass analogously to the initialization for the
KKEF described in Section 5.1.1. The second approach simply assumes that the system has
a stationary distribution which is covered by the training data. The initialization is then the
embedding of the distribution over all the samples in the training set.
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Algorithm 3: The Kernel Forward-Backward Smoother

input: triples {(X, x, xi, Y1)« o oo (Koo Xiis X Ym) 3
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X , X’ and Y analogously,
let X be the matrix of all data points used to initialize the forward pass
let X be the matrix of all data points used to initialize the backward pass

learn the forward filter .

See Algorithm 1 with data matrices X, X, X, and Y.

learn the backward filter

See Algorithm 1 with data matrices X7, X, X’, and Y, note that you need to learn the transition
model from X’ to X.

apply forward filter
Compute filtered estimates {(m} I S;Z. 1) e (m; T S} T)}

apply backward filter and compute smoothed estimates
loop
if observationy, available then

compute kernel Kalman gain

Q1. = 55,07(G(0S;, 0T+ R, ) + 1)

innovation update

my  =my  +Qp (8, —GOm;)
+ e —

S, =8p: ~ 95,608},

transition update

:Tbm+ S

— + T
b,t’ =TSy, T, +Vo

my -1 b1

compute smoothed estimate

-1
Zsi =S, (K (s]tyt + sb’t) +yI)
m;=my, +Zs;.K (m;;t -my
Sy = Zf,,KS;.’t

project into state space
177 =X0Om;, Li=XO0S;0TXT

5.5 The Subspace Kernel Forward-Backward Smoother

If we use the subspace kernel Kalman filter to perform the forward and the backward pass, we
obtain as outcome the subspace projections n; of the mean map and P, covariance embedding
instead of the weight vectors m, and weight matrices S, respectively. To perform smoothing
on these subspace projections, we need to find the weighting matrices for the smoothing
update analog to Equation 90. Though, as the representation is already in a finite domain, we
can directly apply the optimal solution found in Equation 98 to the subspace projections of the
covariance operator. Hence, the weighting matrix for the subspace kernel forward-backward
smoother (subKFBS) becomes

-1
z5, =Py, (P +P;) (114)
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From here, we can obtain the equations for the smoothing update of the subspace kernel
forward-backward smoother easily by

ny =25 mp, +(1-25,)n,,  and (115)
Py, =73 P, (116)

Algorithm 4 gives a compact description of the subKFBS.

Algorithm 4: The Subspace Kernel Forward-Backward Smoother

input: triples {(X1, x1, x;, Y1) - e os (Kmms Xy Xy Ym) s
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X, X’ andY analogously,
let X be the matrix of all data points used to initialize the forward pass
let X7 be the matrix of all data points used to initialize the backward pass

learn forward and backward filter

See Algorithm 1 with data matrices X, X, X’, and Y for the forward filter and data matrices X , X,
and Y for the backward filter. Note that you need to learn the transition model for the backward
filter from X to X.

apply forward filter

Compute filtered estimates {(";1’ P}’l) e (n}’T, P}’T)}
apply backward filter and compute smoothed estimates

loop

if observationy , available then
compute subspace kernel Kalman gain

_ _ -1 _
s_p- (05) (R'GROSP;  (05)" +«1) KT
t b,t b,t
innovation update

— S KOS n— — p- SGKOS P-
nj,, =ny, +0f gy, ~GKOSn; ). P =P, -0QSGROSP

b,t

transition update

- _ S+ - _pSp+ s\T . ys
n,,=T°ny .. P, =T°P,, (T ) +V

compute smoothed estimate

z5,=p;, (Pr,+P;,)

_ 7S s\, - _ S
ns,t_Zf,tn;,[-'—(l_zf,t)nb,t’ PS,,—Zf,,P},,

project into state space _ _
ns..=XKOSn,, X;,=XKOSP, ,05K'XT

5.6 Experimental Evaluation of the Kernel Forward Backward Smoother

We evaluate the kernel forward backward smoother with two experiments. In the first ex-
periment on data from a simulated pendulum, we show the performance gain of the KFBS
over the KKF. In the second experiment, we apply the KFBS on data of a table tennis ball
recorded with a camera-based tracking system and show how the KFBS and subKFBS are
able to restore the full trajectory of the ball while only having observations at the first four
and at the last time step.



The Kernel Kalman Rule 33

Vi v —— smoothed
Df --------- pendulum
¢ ! R s—
0 T T T 0 T T T T T
0.5 Eam/\m/msaﬁ 0.5 0.5 |
0 T T T T T 0 T T T T T 0 T T T T T
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
time step time step time step

Fig. 9: Qualitative comparison of the forward and the backward pass to the smoothed
estimates of the KFBS on a simulated pendulum. The upper plots show the mean and
variance output of the filter/smoother, the lower plots show the profiles of the standard
deviation. While the forward pass already yields good estimates in the first half of the time
series, the smoother incorporates the good estimates from the backward pass in the second
half and outperforms the filters. In addition, the smoother yields a more confident about its
estimate.

5.6.1 Pendulum

We simulate a pendulum similar to the one from Section 5.3.1, however we initialize the
pendulum in the range [—0.257, 0.257] and with a angular velocity sampled from the range
[-2%,2Z%]. During the simulation, we apply Gaussian process noise with o = 0.01 and
as observations we use the angular displacement with Gaussian observation noise with
o = 0.2. To learn the KFBS models, we sample 100 episodes with each 30 steps where a
step corresponds to 0.1 second. The training samples are 200 windows of four observations,
which we select by the kernel activation heuristic explained in Section 5.2.1. To find the
optimal parameters, we apply CMA-ES (Hansen 2006) where we use the negative log-
likelihood of the ground-truth to the smoothed estimate as optimality criterion. During the
optimization, we use a test-dataset of 10 episodes, where we still observe at each time step.
Later, we evaluate the smoothing performance on an evaluation-dataset where we do not
observe at each time step but only at r = [1 —4,6,11,16,21,27 — 30]. This optimization
procedure yielded better results than directly optimizing with only partial observations.

In Figure 9, we show a qualitative comparison of the forward and the backward pass
to the smoother. The results are as expected: the forward pass yields better results in the
first half of the episode, and the backward pass yields better results in the second half. The
smoother combines both estimates and outperforms the filter results. The smoothing can
also be observed in the profiles of the standard deviation. While the variance from the filters
increases at each time step without observation until the next measurement, the variance of
the smoother is much smaller and only rises slightly between the observations.

In Figure 10, we compare the performance of a standard KKF to the KFBS and the
subKFBS for different kernel sizes on the same state estimation task for a simulated pendulum.
The subKFBS has been learned with 300 samples in the full data set. Depicted are the median
and the [0.15, 0.85]-quantiles of the MSE over 20 repetitions. The KFBS and the subKFBS
clearly outperform the KKF for small kernel sizes (50, 100) and also yield better results for
larger kernel sizes(150, 200). The subKFBS yields slightly better results than the KFBS. In
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Fig. 10: The KFBS and the sub KFBS
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‘ ‘ tions. Depicted are the median and
50 100 150 200 the [0.15, 0.85]-quantiles of the MSE
kernel size / subspace size over 20 repetitions.

addition, we see from the quantiles of the MSE that the KFBS and the subKFBS have a more
stable behaviour in the optimization process than the KKF.

5.6.2 Tabletennis

In a second experiment, we perform smoothing on observations of a table tennis ball (Gomez-
Gonzalez et al 2016). The data set contains 54 trajectories of a table tennis ball tracked with
a camera system, where each trajectory contains 51 observations which are recorded with
a frequency of 100 Hz. We train the subKFBS with 34 trajectories, use 10 trajectories for
optimizing the parameters using CMA-ES (Hansen 2006). The remaining 10 trajectories are
used for evaluating the results. For the smoothing task, the ball has been observed at the first
five time steps and then again at the last time step.

Figure 11 shows qualitative examples of smoothed trajectories using the subKFBS in
comparison the output of the subKKF. Here, we used data windows of size 4 and learned
the models with 300 samples in the training data set and 100 samples in the subset. We
optimized the regularization parameters and all bandwidths with CMA-ES (Hansen 2006).
The plot shows how the subKFBS can estimate accurately the path of the ball only from
observations at the beginning and at the end of the trajectory, while the subKKF diverges
from the actual trajectory over time. In addition, the plot also depcits how the subKFBS,
which is only learned from noisy observations, returns a trajectory that is more smooth than
the noisy data recorded by a camera-based tracking system.

We also compare the KFBS to the subKFBS for different kernel sizes with the same
smoothing task on recorded table tennis ball data. Figure 12 shows a comparison of the
MSE, depicting the median and the [0.05, 0.95]-quantiles over 20 repetitions. The KFBS has
been learned with a varying kernel size of 50, 100, 150, and 200 samples. The subKFBS
uses the same number of samples to span the subspace but learns the models always with
400 samples in the full training set. While the subKFBS outperforms the KFBS for all kernel
sizes, the KFBS achieves a similar performance to the KFBS when learned with 200 samples.

6 Conclusion & Future Work

In this paper, we have presented the kernel Kalman rule (KKR) as an alternative to the
kernel Bayes’ rule (KBR) in the framework for nonparametric inference Song et al (2013). In
contrast to the KBR, the KKR is computationally more efficient, numerically more stable and
follows from a clear optimization objective. We have further combined the KKR as Bayesian
update with the kernel sum rule to formulate the kernel Kalman filter (KKF). The kernel
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Fig. 11: In comparison to the KKF, the KFBS
is able to reconstruct the trajectories of a ta-
ble tennis ball from observations at the first
five and at the last two time steps. The plot
shows the z-coordinate of two trajectories of
a table tennis ball recorded with a camera-
based tracking system. We learned the sub-
KFBS/subKKF with 100 samples in the sub-
space and 300 points in the training set.

Fig. 12: The subKFBS performs better than
the KFBS in the table tennis ball smooth-
ing task. This difference in the MSE between
the estimates and the noisy recorded data is
more prevalent for small kernel sizes and de-
creases with the number of samples in the
Gram matrices. Depicted is the median and
the [0.05, 0.95]-quantiles of the MSE over 20
repetitions.

Kalman filter can be applied to nonlinear state estimation tasks as it learns the probabilistic
transition and observation dynamics as linear functions on embeddings of the belief state
in high-dimensional Hilbert spaces from data. In difference to existing kernel Kalman filter
formulations, the KKF also provides a more general formulation that is much closer to the
original Kalman filter equations and can also be applied to partially observable systems.

While the KKF can be applied to state estimation and prediction based on past obser-
vations, we extend this work by introducing the kernel forward backward smoother (KFBS)
which infers the belief state from current, past, and future information. We have shown in
an experimental evaluation how this additional information leads to a performance gain of
the KFBS over the KKF. As kernel methods typically scale poorly with the number of data
points in the kernel matrices, we have introduced a sparsification technique that leverages
from the full training set while representing the embeddings only with a small subset of the
data. This technique leads to significant gains of the computational efficiency while yielding
similar or even slightly better results than whithout the sparsification.

We have shown that it is possible to learn the kernel Kalman rule and other kernelized
inference methods also from partial observations if sliding windows of the time series
provide sufficient statistics. However in future work, we want to concentrate on learning the
transition dynamics in the RKHS with an expectation-maximization algorithm in case of
missing information about the latent state as we think that this leads to better models of the
dynamics and also improves the accuracy of the estimated variance.
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A Derivations for the Subspace Conditional Operator

A.1 Derivation of the Subspace Conditional Operator

We define the subspace conditional operator Cfl x as the mapping from an embedding p(x) € Hx to the

mean embedding uy|, € Hy of the conditional distribution P(Y |x) conditioned on a certain variate x. To
obtain this subspace conditional operator, we first introduce an auxiliary conditional operator C;‘,LT"X which
maps from the subspace projection of the embedding I'L ¢ (x) to the mean map of the conditional distribution,
ie.,

fype = CExTTo(x). 17

‘We can then derive this auxiliary conditional operator by minimizing the squared error on the full data set

Cyjx =arg Ilﬂin||‘1’y -ori, (118)

0= acaux H‘P - C;l});(FTTxHZ (119)

0= —2( - cus Ty )Y;rx (120)

C;j’;(rw YIr, =o,Yir, (121)
: -1

Pix = @ YT, (CI0 0T, + A1) . (122)

‘We can then substitute this result for the auxiliary conditional operator in Equation 23 and obtain the subspace
conditional operator as

_ T
CPix = Ci T (123)
-1
= @, YIT, (P10, Y10, +a1)7' ] (124)
e - -1
- @,k (KTK + u) T, (125)

where K = YL, € R s the kernel matrix of the sample feature set (', and its subset T'y.
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A.2 Comparison to Other Sparsification Approaches

The Nystrém method replaces a n x n Gram matrix K with the low-rank approximation K = CWZC T,
where C € R™ is a matrix of m sampled columns from G and W is “the best rank-k approximation to
the matrix W, which is a matrix whose elements consist of those elements in G in the intersection of the
chosen columns and the corresponding rows” (Drineas and Mahoney 2005). Applying this technique to the
conditional embedding operator applied to an embedding py = Y, m x would result in

Cyixpx = @, (CWCT + A ,) ' CW;CTmx (126)
= ®,CW;(CTCW} + Al ) 'CTmx. 127)

Thus, the subspace conditional operator implements the Nystrém method withC = K and W = I.
The idea of the random Fourier features is to compute the Fourier transform p of the kernel method k.
Random samples are drawn from the distribution over frequencies p which are then used to construct a feature
function z(x) which approximates the feature function intrinsic to the kernel function, i.e.,z(x)Tz(y) ~ k(x,y).

Let Z € R™*" be the feature matrix of the n data points with 7 random features. We could approximate the
conditional embedding operator as

Cyixtx = O, (ZZT +AL,) ' ZZTmx (128)
=Q,Z(ZTZ+ ) ZTmx. (129)

Again, it is easy to observe the similarity to our approach if we replace Z by K.

B Derivations for the Kernel Kalman Rule and its Applications

B.1 The Residual of the Observation Operator is Unbiased

We can easily show that the residual of the observation operator is unbiased by taking the expectation

Ey[¢:]=EBy[¢(y,) - Cy xp(2x:)] (130)
=By x[00,) - Cy xp(x:)] (131)
=By x[00 )] = CyxHx (132)
=Ex[By|x[¢(» )]l - Ex[Ey x[¢k,)]] = 0. (133)

Here, we used the definition of the conditional embedding operator found in Song et al (2013).

B.2 Derivation of the Optimal Kalman Gain Operator

‘We want to find the kernel Kalman gain operator Q; which minimizes the expected squared loss E [(s;’) T 8;’]
or equivalently the variance of the estimator. The objective for minimizing the variance can also be reformulated
as minimizing the trace of the a-posteriori covariance operator C;f( . Of the state x at time 7, i.e.,

IginE[(e;)Te?] =rginTrIE[:-:,+ (89)7] (134)
13 t

= minTrE[((er) - s, ) (e - uk, )| (135)

=minTr Cy . (136)
Qr ’
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By substituting the posterior error with &7 = (I — Q; CY‘ X)s; — Q& , we can now rewrite this a-posteriori
covariance operator as

Cxx.. =E[&] (e7)7] (137)
=B|((T-@cyx)er -t ((T- ey )sr - as)] (138)

= (T-@Cy ) ElerET] (T-@icy ) - (139)
QE[ZET] (T-QCy ) - (T-Qcy ) Elsr¢]] QT+ (140)
QE[z,.¢T] @f (141)

Since the residual of the observation operator &, is assumed to be independent from the estimation error and
since we assume the a-priori estimate to be zero mean we get

E[L )T =E[& | B[] =EE)T]|E[¢,] =E[s/4]] = 0. (142)
With this insight the posterior covariance operator can be reformulated as
Yxi= X ! RQ 143
Cix.o = (T-@Cyx) Crx (T-QiCyx) + @R, (143)
where R = E[{; ¢, ,T ] is the covariance of the residual of the observation operator. Taking the derivative of the

trace of the covariance operator and setting it to zero leads to the solution for the kernel Kalman gain operator
as

0=2(7-@QCyy) Cix. (-Cx) +2QR (144)

Q:Cy xCxx. Cyx + QR =Cxx,Cyx (145)

Q (CY‘XC)}X’,C)T,‘X + R) = Cix.(Clix (146)
-1

Q = Cxx.iClx (Cyix Cxx. i + R) - (147)

B.3 Simplifying the Update of the Covariance Operator

Following the derivations in (Simon 2006), we can find a simpler formulation for the update of the covariance
operator in Equation 51. First, we substitute the kernel Kalman gain from Equation 52 using the notation

U = (Cy x Cxx. O + R which yields
_ 1 _ T _ 1 T
Chxr = (7= Crxa Chx U™ Cyix) G () + Crxar O U7 R (- ) (148)
By expanding both terms we obtain

Cxx.t = Cxxut =~ Cxx.t Coix U Cy x Cxxt = Cxxt O x U Cyx Cxxot (149)

Y|X Y|X Y|X
C;(X,tc;leufl Cyix C;(X,tc;‘xfzr' Cyix Cxx.it (150)
C}}X’tC;lX‘LI"lﬂ’LI"ICYlXC;(XJ (151)

If we now combine the second and third as well as the last two terms in this equation, we arrive at

Cxx.t = Cxxut = 2Cxx,: Oy x U Cy 5 Cxxo* (152)
Crx.i e U™ (Cyix Cxx.r Ol x + R) U™ Cy 3 Cxo (153)

= Cxx,r = 2Cxx,0Chix U Cy x Cxx.o + Cxx, Oy x U UUT'Cy  Cxx (159

= Cxx.i ~ Cxx. Oy x U Cy x Cxx.t (155)

= Cxx.t ~ QCyx Cxx.c (156)
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With this update equation for the estimator covariance, which is more concise and more similar to the original
equations of the Kalman filter, we can summarize the kernel Kalman rule as follows: 1. compute the kernel
Kalman gain operator Q, (Equation 52), II. update the estimator of the mean embedding g3, . (Equation 43),

III. update the estimator of the covariance embedding C;( x.; (Equation 53).

B.4 Derivations for the Sample-based Kernel Kalman Rule

The Kalman gain operator can be rewritten with the sample estimators of mean embedding, covariance
embedding and conditional embedding operator as

-1
Q =", S;07®] (®,05;070] +xI) (157)

However, this formulation still has the inversion of a potentially infinite dimensional operator. To this end, we
can apply the matrix identity A(BA +I)~! = (AB + I)™' A to the kernel Kalman gain matrix as follows

-1
Q =Y,S;0T®] [myos;oT ] +KI] (158)
| S ) N | N—
A B A
=1, S;0T(®] ®,05;07 +xI)™' ®] (159)
_ | —
A B A
=, S;0T(GOS;07 +«I)™' ®], (160)
L 1
0,

where we defined @, = S;OT(GOS;0T + «I)™' € R™" with the Gram matrix of the observations
G = (D; ®,. Based on this formulation of the kernel Kalman gain operator, we can now derive finite
vector/matrix formulations for the update equations of the estimator of the mean embedding (Equation 43)
and the estimator of the covariance operator (Equation 53). For the estimator of the mean embedding, we
obtain

B =y, + Q (900 - Cy itk ) (161)
Yom} =Yym; + 10,0 (¢(y,) ~® (K +AI,)" Y}Yxm;), (162)
=Comy +70.0, (®Tp,) — IO (K + ) YA o7 ), (163)

m; =m; +0, (g;y, —GOm?), (164)

where g., = (D;qi(y ;) is the embedding of the measurement at time 7. And the estimator for the covariance
operator gets

C;;X,t = é}_(X,t - Tthq);Cyp( é}_(X,t (165)
Ty ST =0 S;YT - 0,0, @] @, (K + AL ,,) " AT, S, YT (166)
=Y S;YL -0, Q,G (K +Al,,) KS; YT 167)

S; =S; -0,GOS;. (168)

B.5 Derivation of the Subspace Kernel Kalman Gain Operator/Matrix

To derive the gain operator of the subspace kernel Kalman rule, we apply the subspace conditional operator

[ - -1
Cyix = @K (KTK +/U) rL (169)
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to the kernel Kalman gain from Equation 52 and obtain

_ T _ T -1
@ = Cxx.e (CEix) " (CixCxxr (CE1x ) +7) (170)
_ — _ _ _ _ -1
=1, S;RO0%)TKT®] ((I)yKOSKTS,‘K(OS)T Kol +KI) ) (171
B

o -1
Here, we denote O := (K TR + a1 ) . To obtain a finite dimensional matrix in the inverse, we apply again
the matrix identity A(BA + I)~! = (AB + I)"' A and arrive at

_ _ _ _ _ -1 _
QS =Y STRO5)T (KTq>$ ®,KOSKTS;K(05) +K1) K] (172)
1 T ]
B A
_ _ _ _ _ -1 _
=Y, STRO5)T (KTGKOSKTS;K(OS)T + KI) KT®]. (173)

Using the projecting the subspace kernel Kalman gain into the subspace spanned by the features I'%. leads to

_ _ _ _ _ =1 _
rrqs = r;YxS;K(OS)T(KTGKOSKTS;K(OS)T +K1) KTo] (174)
_ _ -1 _
= P;(0°)"(RTGKOSP;(0°)" +«I) K" o], (175)
o7

where we define the subspace kernel Kalman gain matrix Qf. Using this representation, we can obtain the
update equations for the subspace projections of mean embedding as

Dy, =TX (l&,z +@} (¢(vt) - Cﬁ‘xu},,)) (176)
i, =nx., +0F (gy, ~GROSny), a7

and similarly for the covariance operator as

ITCix, Iy =TX (é}_(X,t - Qtscff\xé)_(x,z) B (178)
P; =P; - Q7 ®]®,KOSTT x5 T (179)

=P; -QSGKOSP; (180)



