Swarm Intelligence manuscript No.
(will be inserted by the editor)

Using M-Embeddings to Learn Control Strategies for Robot
Swarms

Gregor H. W. Gebhardt - Maximilian Hiittenrauch -
Gerhard Neumann

Received: date / Accepted: date

Abstract Neural networks usually have a predefined structure which requires that the number
of inputs and outputs is known in advance. In the case of swarms this is a severe limitation,
as we might not always have the same number of agents in the swarm. However, also in
other situations we might have to deal with variable numbers of homogeneous observations,
as for example point clouds. Furthermore, such data has usually no ordering (i.e., if we
exchange two swarm agents, we still have semantically the same state of the swarm, if we
exchange two points in a pointcloud, it still represents the same 3D structure) which cannot
be exploited by standard neural network architectures. In this paper, we present a structure,
called the deep M-embeddings which are inspired by the kernel mean embeddings and allow
for a compact representation of a variable set of homogeneous inputs as a fixed size feature
vector. In experimental evaluations, we show that this representation allows to learn complex
policies in a multi-agent environment outperforming a standard multi-layer perceptron both
in the achieved average episode return and in sample efficiency.

Keywords swarm control - reinforcement learning - policy search - representation learning

Acknowledgements Calculations for this research were conducted on the Lichtenberg high performance
computer of the TU Darmstadt. This research was supported by grants from NVIDIA and the NVIDIA DGX
Station.

Gregor H.W. Gebhardt

Computational Learning for Autonomous Systems
Technische Universitidt Darmstadt, Germany
E-mail: gebhardt@ias.tu-darmstadt.de

ORCID iD: 0000-0002-8575-069X

Maximilian Hiittenrauch

Lincoln Centre for Autonomous Systems
University of Lincoln, UK

E-mail: mhuettenrauch @lincoln.ac.uk

Gerhard Neumann

Lincoln Centre for Autonomous Systems
University of Lincoln, UK

E-mail: gneumann@lincoln.ac.uk

2 Gregor H. W. Gebhardt et al.

1 Introduction

Swarms in nature are groups of often simple animals which, as a collective, exposes a complex
behavior. Examples are bees, ants and termites, or fish schools. As a collective they achieve
much higher goals than an individual would be able to, such as building large structures,
defending against predators, or foraging in environments of sparse nutrition (Bonabeau et al.,
1999). Swarm robotics aims to build similar collectives of simple agents which can achieve
higher goals if they act as a collective. Such agent are usually quite limited in their sensory
and motor skills. Also the computational power of these agents is often restricted to a small
micro-processor and little memory. A strength, however, is their inherent redundancy which
adds robustness against failures and a high parallelization of the tasks. For the application
of learning control policies, these limitations pose challenges such as an upper limit on the
complexity of the learned controller. However, learning also profits from the large number
of agents which allows for parallel exploration by either running slightly different control
routines on each agent or by gathering different experiences for the same policy.

In this work, we want to address the problem of learning swarm policies for object
manipulation using reinforcement learning (RL). Learning policies for swarms is a hard task
because it usually implies a large state space and also a large action space. Both spaces
need to be represented and explored in RL to find a good policy for controlling the agents.
Recent development in reinforcement learning which leverages from the power of deep neural
networks in learning compact feature representations allow for learning controllers in such
high dimensional settings with large state and action spaces. Deep reinforcement learning
(DRL) has proven to successfully learn polices directly from large dimensional observations
such as images and for high-dimensional action spaces such as humanoid robots. In DRL,
neural networks have been applied to either approximate a state(-action) value functions
(Mnih et all 2013] |2015; Hasselt et al.l |2016) and/or the policy itself (Schulman et al.,
2015a, 2017; |Arulkumaran et al., 2017 |Lillicrap et al. [2015). In this paper, we use an
actor-critic variant of trust region policy optimization (TRPO) (Schulman et al.| 2015b) to
learn the swarm policy, which we discuss in more detail in Section[2.1}

Learning policies for swarms of robots to act in environments cluttered with objects
using deep networks as function approximators is challenging because of two reasons. First,
networks usually have a predefined structure which requires that the number of inputs and
outputs is known in advance. For swarms this would require that we know the exact number
of agents in the swarm before we learn the policy and later we can also apply the learned
policy only to swarms with exactly the same size. Second, while a neural network itself is
already highly redundant structure (the nodes in a layer are exchangeable), the state space of
a swarm introduces a lot more redundancy into the problem, i.e., having agent a at position
p1 and agent b at position p; is for homogeneous agents equivalent to a being at p, and b at
p1. Furthermore, both of these issues also apply for other observations such as the objects in
the environment.

In this work, we use a network structure that allows to compute a fixed size representation
from a set of observations. With this network structure, we can learn functions that can take
a variable number of observations as inputs. In this structure, each observation is processed
individually by an arbitrary feature network, before the outputs of all observations are
combined into a single feature representation. This combination of feature activations is
inspired by the kernel mean embeddings of distributions |Smola et al.|(2007). In prior work,
Hiittenrauch et al.|(2018) have presented the deep mean embeddings on which we build this
work. We present different variants which involve a mean, a max, or a softmax operation and,
hence, we call them the Deep M-Embeddings.

Using M-Embeddings to Learn Control Strategies for Robot Swarms 3

While the deep M-embeddings solve the issue of a variable number of agents in the
swarm or objects in the environment, we still need to compute an action for each agent.
To this end, we centrally learn a decentralized policy that acts locally on the agent using
a parameter sharing approach (Gupta et al., [2017). That is, we learn a single policy for all
agents which takes the local observations of an agent as input and outputs the local action for
the agent. Thus, the learned policy could be run locally on the individual swarm agents. The
reward signal for learning this policy, however, is a global reward signal to the whole swarm.
A centralized critic is learned from this reward signal and used for updating the local policy.

In experimental evaluations, we compare the variants of the deep M-embeddings with
each other and to a standard multi-layer perceptron which has been used in state-of-the-art
RL literature. We further show, that using the proposed network structure of the deep M-
embeddings enables us to learn complex control strategies for swarms including multi-modal
problems (sorting objects of different types).

1.1 Related Work

After the latest successes of DRL in single-agent learning problems, also the application of
deep learning methods to multi-agent reinforcement learning (MARL) has become an area
of more and more interest in the recent years. The prevalent problems of MARL is the non-
stationarity of the environment which often leads to instabilities in the learning algorithms
that prevent the learner to find good solutions, as well as, depending on the problem, the
partial observability of the system. While most of the contributions in multi-agent DRL focus
on these problems, they usually neglect the problem of the growing dimensionality and the
interchangeability in the state space.

The deep mean embeddings—on which we build our work—are presented inHiittenrauch
et al.|(2018). The authors successfully employ the deep mean embeddings in the policy and
value function networks that are learned with TRPO in the rendezvous and pursuit evasion
task. In|Gebhardt et al.| (2018)) a swarm kernel based on the kernel mean embedding of the
swarm state is presented. The kernel is used with actor-critic REPS [Kupcsik et al.|(2015) to
learn policies for guiding the swarm with a common input signal to manipulate objects.

Zheng et al.|(2017) present a simulation environment for massive multi-agent RL. which
uses images as representation with multiple layers for storing different entities of information.
The environment is a grid world with discrete states and, thus, a representation of continuous
states, which would be a limitation of images, is not necessary. [Yang et al.| (2018) apply
mean-field theory to approach the problem of increasing dimensionality in settings with
many agents. Instead of modeling the interactions with all other agents, each individual
agent only considers the average effect of its local neighborhood. The derived mean-field
Q-function is applied to actor-critic learning with deterministic policy gradients (Silver et al.}
2014).

Many approaches aim for robustly learning the Q-function in the multi-agent setting.
Lauer and Riedmiller| (2000) introduce distributed Q-learning where optimistic agents only
update their Q-values for positive TD-errors. Matignon et al.| (2007) follow this direction
but instead of neglecting negative updates of the Q-function, they introduce a hysteresis
to the update. |(Omidshafiei et al.| (2017) approach the problem of multi-task multi-agent
reinforcement learning by combining hysteretic Q-learning with deep recurrent Q-networks
(DRQN) using concurrent experience replay memory. DRQNs (Hausknecht and Stone},[2015))
extend the deep Q-networks (Mnih et al.l 2015} 2013) to the partially observable setting
by adding a recurrent LSTM (Hochreiter and Schmidhuber, [1997) layer to the network

4 Gregor H. W. Gebhardt et al.

architecture. By further applying policy distillation (Rusu et al., 2015)), (Omidshafiei et al.
(2017) can combine expert Q-networks of each agent into a multi-task policy. A problem
of this approach is that the trajectories stored in the experience replay memory get outdated
because of the changing behavior of the other agents. To approach this problem, Palmer
et al.|(2018) introduces leniency (Panait et al.,|2006) for controlling the influence of negative
policy updates from the experience replay memory.

Sunehag et al.|(2017) learns agent policies with joint reward signal using a decomposition
of the swarm value function into agent value functions. The centralized Q-function is the
additive composition of the agent Q-functions. Thus, by learning the centralized Q-function,
the agent Q-functions are learned. |[Rashid et al.| (2018): builds on this work, but instead of
additive composition only requires monotonicity in the selection of the optimal action. Thus
allowing for more complex agent value functions.

Gupta et al.|(2017) investigate the application of prominent DRL methods (DQN, DDPG,
A3C, TRPO) to the multi-agent setting by introducing parameter sharing. In this work, we
use this approach with TRPO, but since we assume homogeneous agents, we omit the
agent index. |Lowe et al.| (2017) present the multi-agent deep deterministic policy gradient
(MADDPG), an extension of the actor-critic DDPG (Lillicrap et al., 2015) to the multi-
agent scenario by learning a centralized Q-function as critic, while updating the policies
locally. Similarly, [Foerster et al.| (2017) introduce the counterfactual multi-agent (COMA)
policy gradients. COMA uses a centralized critic that takes the joint action and uses a
counterfactual baseline. This baseline is separate for each agent and uses counterfactuals
in which only the agents action changes to improve the assessment of the impact of the
agents action on the reward signal. Peng et al.|(2017) introduce a multiagent bidirectionally-
coordinated network (BiCNet) with a recurrent structure that allows for information sharing
between agents. However, the proposed learning method requires individual rewards instead
of a global reward signal.

Grover et al.| (2018)) present a framework for learning representations of policies in a
multi-agent setting using an encoder-decoder structure. The representations are learned from
observed trajectories and are used to characterize, imitate, and adapt to the other agent’s
behavior. Similarly, |Al-Shedivat et al.| (2018) introduce a gradient-based meta-learning al-
gorithm based on (Finn et al., 2017) to quickly adapt the agent’s policy to the opponent’s
behavior in a non-stationary competitive scenario. Other approaches use genetic algorithms
such as particle swarm optimization to learn the policies for robot swarms (Pugh and Marti-
noli, 2006} 2007).

2 Preliminaries

We use deep reinforcement learning for obtaining the control policies. In the following
paragraphs we shortly discuss the policy gradient method we applied, and the network
structure we used for approximating policy and value function.

2.1 Trust Region Policy Optimization

In reinforcement learning (RL), the problems which we want to optimize are usually given
as a Markov decision process (MDP). An MDP is defined by the tuple (S, A, P, r, po, ¥),
where S is the set of states, (A is the set of actions, P is the state transition model (usually
defined as a probability distribution P(s’|s, a)), r is the reward function, pq is the initial

Using M-Embeddings to Learn Control Strategies for Robot Swarms 5

state distribution, and y is the discount factor. In each state s, € S, an agent choses an
action according to a (stochastic) policy m(a,|s;). Applying this action results in a transition
from state s; to s,4+ according to P(s;+1|ss, a,) for which the agent receives the reward
r(sy, ar, $;41). Reinforcement learning (RL) aims to find the policy 7* that maximizes the
expected discounted reward of the agent

IE(lO:T SS0:T

T
Zytr(s,,at, Sz+1)} . (D
t=0

If we assume a policy function parameterized by the parameter vector 5, we can find the
optimal policy by applying a policy gradient method. Policy gradient methods try to optimize
a parametric policy by following the gradient of the expected return with respect to the policy
parameters. Directly following the gradient, however, can lead to disastrous behavior as small
changes in the parameter space might lead to large changes in the state-action distribution
p(s, a). To circumvent this problem, the update step is usually subject to constraints on the
divergence of the policy to ensure that the policy changes slowly and gracefully (Kakadel
2001} [Peters et al., 2005). In this work, we use Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015a). By applying a constraint on the Kullback-Leibler (KL) divergence
between the old policy g, and the new policy mg and doing further approximations to the
optimization problem, TRPO optimizes the objective

ZTosa) g a)] @
gy, (S, @)

s.t. E [DKL (a(s, a)||mgy, (s, a))] <.

J(G):E[

Here, 7q,,,(s, @) is the policy with the old set of parameters, A(s, a) denotes the advantage
function and Dy, is the KL divergence which is bound by a hyper-parameter 6.

The advantage of an action a in state s is the difference between the expected future
return for taking a in state s and from then following the policy 7 over directly following
m from state s. It can be expressed as the difference between the state-action value function
07 (s, a) and the state value function V”(s), i.e.,

A%(s,a) = Q"(s,a) = V7 (s) 3

The estimator of the advantage function A(s, @) can be obtained from samples collected
during roll-outs of the policy with the old parameters using generalized advantage estimation
(GAE) (Schulman et al} [2015b)). Similar to TD(A1), a parameter A allows to scale between
temporal-difference (TD) (4 = 0) and Monte-Carlo (1 = 1) estimates. While TD updates
have less variance, they are highly biased by the current estimate of the value function. In
contrast, Monte-Carlo estimates are unbiased but have a large variance (Sutton et al.,|1999;
Sutton and Barto, [2018)).

TRPO solves the constraint optimization problem by linearizing the objective and uses the
Hessian of the KL as approximation to the covariance of the gradients. As neural networks are
considered as approximator of the policy function, the parameter vector fis usually very high
dimensional. Using the conjugate gradient algorithm alleviates this problem. Additionally,
a line search along the found gradient ensures that the objective improves and that the
constraints are met. GAE requires the estimation of a value function V(s) for estimating the
advantages. This value functions is optimized using a similar objective as in (2) (Schulman
et al.,[2015b).

6 Gregor H. W. Gebhardt et al.

2.2 Neural Networks as Function Approximator for Policy and Value

We use neural networks (NN) to approximate the policy and the value function. Neural
networks consist of multiple layers of linear mappings, with non-linear activations, i.e.,

hi=c(Whi-i +b), i=1,....m)

where h; € R is the output of the i-th layer, W e R4*di-1 g a weight matrix, b € R% abias
vector, o a non linear activation function, and d; is the number of neurons in the layer (or
the size of the layer). The input Zo to the first layer is the input to the neural network, in our
case the observation of the environment. The choice of activation functions is wide, however
most DRL applications use the tanh function or the (leaky) rectified linear unit (RELU).

In TRPO and similar approaches (Schulman et al.,|2017), policy and value approximator
usually use the same network structure up to the last layer as feature network. Note however,
that in TRPO the parameters of the networks are not shared. To obtain a value function, the
output of the feature network is mapped by the last layer to a scalar value. In contrast, the
policy is usually represented as a parametric distribution, where the last layer of the policy
network maps to the parameters of the distribution. Hence, for a Gaussian distribution we
would get

n(aclst) = Nar; p(se), Z(s1)), ©)

where u(s;), 2(s;) is given by the output of the policy network.

2.3 Mean Embeddings of Distributions

A general issue with neural networks is that the structure needs to be fixed in advance before
optimizing the parameters of the network. A variable dimensionality of the inputs during or
after training is hard to implement into the structure of the network. In the case of learning
policies for swarms this is a critical issue since the actual number of agents in the swarm
is not important as long as there are enough agents to solve the task. Moreover, as a key
argument of swarm robotics is the robustness against failures due to the high redundancy,
a policy should be able to deal with changes in the number of swarm agents. Furthermore,
with homogeneous agents, the allocation of the specific agents to the position in the swarm is
arbitrary, switching the position of two agents does not change the state of the swarm. Thus,
if the representation respects this invariance to permutation (i.e. allocation to positions) and
to the size of the swarm, the search space for policy and value function is drastically reduced.

In prior work (Gebhardt et al., |2018), we have leveraged the embeddings of probability
distributions into reproducing kernel Hilbert spaces (RKHS) (Smola et al., 2007) to construct
a kernel function that enables this invariant representation of the swarm. An RKHS H is
uniquely defined by a positive definite kernel function k(X, X’) := (@(X), ¢(X’))4¢, where the
feature function ¢(X) is usually intrinsic to the kernel function and maps the vector X into
a potentially infinite dimensional space. We can embed a marginal distribution p(X) as the
expected feature mapping Ex [¢(X)]. In practice, we use a sample based estimator

ST T
fx = Z] o(i) = & 21] k(%:,). (6)

In (Gebhardt et al.| 2018), we have used such embeddings to represent the swarm as a
distribution, where each agent is a sample from the distribution. While we cannot represent the

Using M-Embeddings to Learn Control Strategies for Robot Swarms 7

embedding explicitly (due to the infinite dimensionality), we can construct a kernel function
which compares two swarm configurations. [Hiittenrauch et al.| (2018) have introduced the
deep mean embeddings, which are inspired by the kernel embeddings of distributions but
use a neural network to explicitly compute the feature mappings. In this work we build on the
deep mean embeddings, but introduce a more broad formulation: the deep M-embeddings.

3 Deep M-embeddings

As input to the deep M-embeddings (DME), we assume N observations 0; € R% from
an environment, where each observation has the same nature (e.g., each observation is the
position of an agent or each observation is the location of an obstacle). Note that the number
of observations, N, does not need to be fixed or predefined, as we will see later on. The
DMEs allow to compute a compact representation of a variable set of homogeneous inputs
to a neural network.

We consider three different types of deep DMEs: deep mean embeddings, deep max
embeddings, and deep soft-max embeddings. All variants of the DMEs have in common that
they map each observation ¢; through a feature network ® : R% — R%, yielding a feature
vector ¢(o;) as output.

The deep mean embedding then combines the feature vectors ¢(o;) by computing the
mean, i.e.,

N
1 S 4,06 .
"N L ¢;@)., j=1....dg @

where j is the index of the output vector. This embedding is the direct translation of the mean
embeddings discussed in Section[2.3]using the feature vector defined by the neural network.

Instead of averaging, the deep max embedding takes the element wise max of the feature
vectors ¢(0;), i.e.,

mj :ml_ElX¢j(5i), _] = 1,...,d¢. (8)

The intuition behind this embedding is that the feature network could learn to activate certain
entries of the feature vector to express details of the inputs. Rather than averaging over these
activations, we might want to combine the activations similar to an operation.

The deep soft-max embedding computes the element-wise soft-max of the feature
vectors. Using a temperature vector ,é, which is a variable of the network and can be learned
alongside the other network variables, the soft-max embedding allows to scale between the
characteristics of the deep mean embedding and the deep max embedding for each element
of the feature vector. The output of the deep soft-max embedding is given by

. exp (B;¢;(01))
Y S iexp (Bi¢(0r)

The deep soft-max embedding is at least theoretically preferable over the mean- and the
max-embedding as it can represent both characteristics. Moreover, these characteristics can
be scaled per element of the feature vector and can be learned along the other network
parameters.

The network structure of a deep soft-max embedding is depicted in Figure[I] The deep
mean embedding and the deep max embedding have the same structure but use a different
reduction for the output of the feature network.

N
m; = Zwij(ﬁj(oi)’ =1,....dg.)
i=1

8 Gregor H. W. Gebhardt et al.

feature network

0
§ 1 softmax
g_: layer
o
=1
= %
3
o
5]
o a ftmax
9" SO)
=) | — embedding
3
1] n-1
3
=4
o
2

%,
o,) /[\

Fig. 1 Structure of the soft-max embedding network. The network takes a variable number of observations as
input. Each observation is mapped by the same feature network (which can be an arbitrary network structure)
to obtain feature activations for each observation. The soft-max layer combines the feature activations of
all observations into a single representation. The temperature parameter ﬁ of the soft-max embedding is a
variable of the network which can be optimized alongside the other network parameters.

4 Learning Swarm Policies

We consider the problem of object manipulation and object assembly with a swarm of
homogeneous agents. The approach we present in this paper learns a policy that acts locally,
i.e., the policy takes the local observations of the agent as input and returns an action for
the agent, similar to |Gupta et al.| (2017). The problem settings in which each agent acts
individually are often formulated as partially observable Markov decision process (POMDP)
as the state and intentions of the other agents are unknown. Solutions to POMDPs usually
require a stateful policy, where the state maintains a belief about the state of the other agents.
Learning such policies requires advanced techniques with recurrent neural networks. To
circumvent this problem, we assume in this paper that each agent get full observations of the
state of the system.

These assumptions, i.e., homogeneous agents and local observations of the full state,
are strong, however they provide some benefits compared to the approach of a single actor
that computes joint actions for the entire swarm. First, the policies that are learned with our
approach could be applied later to robots without the need for a central control unit. Second,
the evaluation of the policy on the agents is parallelized by the swarm. From each step in
simulation, we get multiple samples of state, action, reward and next state, depending on
the number of agents in the swarm. In the next paragraphs, we present the agent model, the
policy network, and the reward functions we have used for learning the swarm policies in
detail.

4.1 Swarm Agents

We assume homogeneous, disc-shaped agents with single or double integrator dynamics. Our
agents are inspired by the Kilobots (see Figure[2]for an example), however, the dynamics and
the perceptual abilities of our agents differ substantially. While the Kilobots are actuated via
two vibration motors that lead to a rotational or linear movement via the slip-stick principle
(Rubenstein et al., 2014), we simulate dynamics that take directly linear and rotational

Using M-Embeddings to Learn Control Strategies for Robot Swarms 9

relative agent
orientation

relative object

ﬂ'* 4 orientation angular and linear

! velocity of other agent
linear
velocity
<= i
S o angular o
.o velocity j relative agent position

~a as polar coordinates

~
-~

-~
relative object position ™

. own position
as polar coordinates X P

and orientation

Fig. 3 Perception model of the swarm agents. The agent observes the other agent’s relative positions in polar
coordinates, the relative orientation (using a sin/cos transformation for the angle), and the angular and linear
velocity (purple). The positions and orientations are also observed relative to the agent’s state (green). Lastly,
the agent observes its own position, orientation, and velocities (blue).

velocities for the single integrator or accelerations for the double integrator. With the single
integrator dynamics, the state of the agent is the position as (x,y) coordinates and the
orientation as angle a. The action is the two dimensional vector a = (v;, v,) with the linear
and angular velocity of the agent. For the double integrator dynamics, the state of the agent
is the position (x, y), the orientation @, and the velocity (v;, vo). The action is in this case the
linear and angular acceleration (ay, a,).

The agents in our setup observe the full state of the envi-
ronment from a local perspective. The relative positions of the
other agents and of the objects are observed as polar coordinates
(r, p), where we transform the angle to sin(p), cos(p). The ori-
entations of other agents and objects are perceived relative to
the own orientation of the agent. If we use agents with double
integrator dynamics, we also observe the velocities of the other
agents. To distinguish between different object types, we added
the color of the objects to the observations of the agents. Finally,
the agents have a proprioception of their own location, their own Fig. 2 A Kilobot.
orientation as sin/cos transformation and in the case of double
integrator dynamics also their own velocity. Figure |§| summarizes the local observations of
the swarm agents. In difference to our model, the Kilobots are not able to perceive the full
state of their environment, but only light intensities and an estimate of the distance to other
agents in their local neighborhood.

4.2 Policy and Value Function Network

To learn policies and value function approximators in scenarios with a variable number of
homogeneous observations, we propose a network structure that uses an M-embedding for
each type of homogeneous observation. For example, in the scenario of object manipulation
with robot swarms, the observations of the swarm agents form a set of homogeneous inputs
and, similarly, the observations of the objects form another set of homogeneous inputs.
We feed the remaining inputs (e.g., the proprioceptive observations of the swarm agent)

10 Gregor H. W. Gebhardt et al.

observations of other agents observations of objects proprioceptive observations
MLP MLP
__/ (leaky) relu __/ (leaky) relu
MLP
__/ leaky relu

mean/max/softmax mean/max/softmax

concatenation

J

MLP
__ leakyrelu

policy parameters / value

Fig. 4 Structure of the policy and value function network. The observations of the other agents and the
observations of the objects are processed by an M-embedding. The proprioceptive observations are processed
by an MLP. The output of the embeddings and the MLP are concatenated and mapped by another MLP to the
parameters of the policy distribution or to a value of the observations.

through a set of fully connected layers. The fixed sized outputs of the M-embeddings are
then concatenated together with the activations of the remaining inputs and fed through
another set of fully connected layers. A schematic diagram of the network architecture is
depicted in Figure[d]

The proposed network structure can then be used in any deep reinforcement learning
method for approximating a value function and/or the policy with sets of homogeneous
inputs. In our experimental evaluations, which we discuss in the next section, we have used
an actor-critic variant of TRPO which estimates a value function from TD(A) errors estimated
using generalized advantage estimation (Schulman et al., [2015b).

5 Experimental Setup and Evaluation

In the following paragraphs, we want to present our experimental setup and discuss the results
we have obtained from the evaluations of the proposed algorithm. With our experimental
evaluations, we address the following questions:

1. How do the different deep M-embeddings perform in comparison to each other?

2. How does our proposed network structure perform against a simple multi-layer perceptron
which has been used in state-of-the-art robot learning applications?

3. Can we solve challenging tasks of swarm robotics such as the assembly of multiple
objects, or the segregation of different object types?

4. How does the S variable in the softmax-embedding change during learning?

5. Can we transfer the learned policies to different swarm sizes and a different number of
objects?

Before addressing these questions in Section[5.3] we present the simulation environment, in
which we have conducted our experiments, and give a short overview of the tasks and reward
functions we have used for the evaluation.

Using M-Embeddings to Learn Control Strategies for Robot Swarms 11

5.1 The Kilobot Gym

The Kilobot GynT]is a simulation framework based on the OpenAI Gym (Brockman et al.
2016) which allows to evaluate reinforcement learning algorithms for swarm robotics. The
framework offers two modes of operation: either the agents follow a simple, hard-coded
logic, e.g., a phototactic behavior, where the swarm is controlled via a global input signal
such as a light source; or the agents receive individual actions based on their local state and
observation. While we have used the former mode in prior work (Gebhardt et al.||2018)), we
use the latter in this work to learn a policy that acts locally for the individual agent.

We simulate the physics using the 2D simulation framework Box2d (Catto, 2018)) at a
rate of 10 Hz. At each simulation step, the velocities for all agents are computed (either we
take directly the velocity as action or we integrate the acceleration at each time step) and set
to the respective bodies in the simulation environment. The simulation is stepped 20 times
for each call to the environments step function which results in a time step of 2 seconds per
action. Since the Kilobots are a very slow system, taking such a long time step is not an issue
compared to highly dynamic systems.

5.2 Tasks and Reward Functions

We evaluate the proposed network structure on three tasks of object manipulation with robot
swarms. The first task is simply to push the objects through the environment, the second task
is to assemble a set of objects, and the third task is the segregation of two types of objects.

A critical part of reinforcement learning is the credit assignment of the reward to the
decisive actions for the obtained reward. Techniques such as reward shaping (Ng et al.;,|1999)
have been applied to alleviate this problem. In the multi-agent setting this problem becomes
even more prevalent, since we assume global reward signals that might be induced by any of
the agents actions. Thus, giving credit to the correct action selection of the individual agent
becomes an even harder task. In our setting, we want to achieve a certain manipulation of
the objects, hence the reward is only indirectly coupled with the action of the agent. While
we use techniques such as GAE (Schulman et al.l [2015b)) to learn a baseline that removes
a lot of variance from the estimation of the expected reward of a trajectory, we still noticed
that the learning is very sensible to the selection of the reward function. For example, using
an absolute reward, e.g., the distance of the object to a goal, or a sparse reward, e.g., giving a
reward of 1 if the object is close enough to a goal pose, did prevent the learner from finding
a good solution. Instead, we had to use relative rewards between the current state 5, and the
next state ;1.

Push Objects.The first task is to push the objects in the environment. To evaluate a state-
action pair, we first compute the difference d(o;;, 0;,+1) between the current and the next
position of all objects and then take the sum

re = Z d(0i,1, 0i,1+1)
f

as reward. Thus, the more an object is pushed, the higher is the reward.

I Code available at https://github.com/gregorgebhardt/gym-kilobots

https://github.com/gregorgebhardt/gym-kilobots

12 Gregor H. W. Gebhardt et al.

Assemble Objects. In the second task, the swarm has to assemble all objects in the scene.
First, we compute the point-wise distances d(o;, 0;) between all object positions at the current
time step ¢ and the next time step ¢ + 1, respectively. We then take the sum over the difference
between the distances as reward

I = Z d(0i,1,0j,1) — d(0j 111, 0j.1+1)-

i,j>1

Hence, if the objects approach each other this difference is positive and so is the reward.

Segregate Objects. In this last task, the goal is to segregate the objects in the scene into
groups of the same kind. The reward is composed of two parts: one for assembling each
group of objects with the same type, and one for separating the object groups. The first part
is computed similar to the reward in the previous task, but for each group individually, i.e.,

1 . .
Tg: = Tl Z 6(i € g)6(j € g)d(0iy, 0j,1) — d(0i 141, 0j 141)),

1,j>1

where 6(i € g) is the indicator if object o; belongs to group g and |g| is the cardinality of
group g. Similar to the previous task, this reward reflect if the objects of each group are
approaching each other or not. The second part is computed using the differences of the
point-wise distances of the mean positions of all groups, i.e.,

1
Tu,t = ; Z d(,ug,wl, ﬂh,t+l) - d(/«lg,ts,uj,t),
gh>g

with groups g and 4 and the number of groups n. This reward reflects if the group center
diverge. The total reward of this task is then computed as weighted sum r; = 1.5% 2igler +

Tut-

5.3 Experimental Evaluation

The swarm scenario requires different characteristics of the Deep M-Embeddings. In a first
experiment, we want to evaluate how the different combinations of DMEs perform in our
swarm scenario. The task was to simply move the objects and accordingly the reward function
sums over the distances of the object positions between state s and s”. The learning curves of
the task for different combinations of DMEs are depicted in Figure[5] Most interestingly, using
a mean embedding for the object observations prevents the learning of the policy. Choosing a
softmax embedding for the objects together with a mean embedding or a max embedding for
the swarm leads to worse performance compared to the remaining combinations (including
taking a softmax-embedding for both observations) which all yield approximately similar
results on this task.

Deep M-Embeddings outperform standard multi-layer perceptrons. In a second experiment,
we want to compare the proposed algorithm to learning a simple multi-layer perceptron
(MLP) which has been used for example to learn a policy for a humanoid in|Schulman et al.
(2015b). In this experiment, the task is to assemble the objects in the environment. The
reward function computes the point-wise distance between the objects and returns the sum
over the differences between the distances in state 5 and next state s’. We have learned the

Using M-Embeddings to Learn Control Strategies for Robot Swarms 13

20
Embedding types:

- - softmax mean

swarm objects
g — mean mean
g 15 - mean max
2
2 ——: mean softmax
2 —= max mean
2 10 ~= max max
= —~ - max softmax
b5
E

- - softmax max
- - softmax softmax

0 50 100 . . 150 200 250
iterations

Fig.5 Learning curves for the ‘moving objects’ task for all combinations of DME: for the swarm observations
and the object observations.

- iy - n
:

t=0s t=60s t=120s

‘b
L Y 0 "

[5 t=180s t=240s t=300s

Fig. 6 Exemplary animation of the moving objects task. With the learned policy, the agents collect the objects
and move them in circular trajectories across the environment. For this animation, we used a policy network
with the mean-embedding for the swarm observations and a max-embedding for the object observations.

policies for this task with the combination of DMEs that have showed to yield good results
in the previous experiment and with an MLP with 100, 50, and 25 neurons in three layers
using tanh activations. Figure [8] depicts the learning curves for all policy types. In Figure[7}
we show an exemplary animation of the task with a learned policy.

The Deep M-Embeddings can discern multiple object types. In the third experiment, we
wanted to investigate if a learned policy was capable to distinguish between two object types
and treat them differently. The task of this experiment is to segregate two types of objects
and assemble each group individually. The agents observe the type of the object as a one-
hot-encoding with the other object observations. The reward should be positive if the swarm
moves objects of the same type closer together and separates them from objects of the other

14 Gregor H. W. Gebhardt et al.

°
o o
L °
& .
°
e o o® &° °
° &
uy “‘
° ©
® ‘@
°
°
) t=0s t=60s t=120s
00°
: !
- o0 ©
t=180s t=240s t=300s

Fig. 7 Exemplary animation of the assembly task. The agents successfully assemble the objects in a rotary
movement. For this animation, we used a policy network with the mean-embedding for the swarm observations
and a max-embedding for the object observations.

3.0

20

ddi . . .
Bty s Fig. 8 Learning curves of the ob-

mean episode return
o
5

o R ject assembly task for different
0.0 max max . .
- softmax max combinations of the DMEs for
- - softmax softmax . . .
P swarm and object observations in
-10 comparison to a standard MLP as
0 50 100 150 200 .
iterations policy network.

type. To this end, the reward function computes for each object type the point-wise distances
of the objects and the mean object position. From there, the reward is computed is then
computed based on the differences in the point wise distances and the mean positions from
the current to the next state. Learning curves for this experiment can be found in Figure [0
An animation of the task can be found in Figure[I0]

We can see, that the policies are capable to successfully segregate the two object types.
However, the agents always prefer to segregate one of the two object types and neglect the
other. In general, such a task would require an hierarchical approach in which an upper
hierarchy decides which object type should be segregated or a recurrent approach in which
the policy is able to make long term decisions. We leave such an approach for future work.

The B-values of the soft-max embedding change during learning. In addition, we have
inspected the B-values of the softmax-embedding in this experiment. Figure@depicts the
B-values of the value function network and the policy network, where we have used a softmax

Using M-Embeddings to Learn Control Strategies for Robot Swarms

15

12 Embedding types:
swarm objects
0 mean max
— max max
- - softmax max
08 __ softmax softmax

06 - MLP

0.4

mean episode return

0.2

0.0

200

300 400
iterations

500

600

700

Fig. 9 Learning curves for the segregation task. The colored lines and shaded areas show the mean and two
times the standard deviation of the best four out of five trials. The trials that were not included into the statistics

are depicted in gray.

.9
n®’

.
3 »

Lot
n®
e
o

t=90s

YO

§ B

t=270s

t=450s

Fig. 10 Exemplary animation of the segregation task. The agents successfully separate the objects into two
groups. For this animation, we used a policy network with the softmax-embedding for the swarm observations
and a softmax-embedding for the object observations.

embedding for both, the swarm observations and the object observations. Interestingly, the
B-values did change only slightly in the policy network, while they changed to much larger
extend in the value function network. The changes in the policy network are too small to have
an effect on the characteristics of the softmax-embedding. In the softmax-embedding for the
swarm observations in the value function network, the changes of the -values are roughly
equally distributed into positive and negative changes. Thus, some of the features have
developed a more max-like characteristic (positive changes), while others have developed a

16 Gregor H. W. Gebhardt et al.

value function network

j b L | i Al

Al (R R | l||l|l‘-||-|-u H naeg ||"|1||‘|1u"||' ARl

changes of the B-values in the softmax-embedding for the swarm observations

: m||||||u'1|"""‘||||'||~-nn|"ru‘--m-*'|||'|-"1|||""
4

Number of TRPO iterations: changes of the B-values in the softmax-embedding for the object observations
50 mm 150 mm 250 policy network
001 I i
0.00 I.;I.Il'1l.-_' a ..-.I._l-_,_lll.-,. ._-ll..,,-,'_l]‘,_,_ S
-0.01
changes of the B-values in the softmax-embedding for the swarm observations

0.02 I
0.01
-0.01
-0.02

changes of the B-values in the softmax-embedding for the object observations

Fig. 11 Changes of the 8-values in the softmax-embeddings of the policy network and the value function
network after 50, 150, and 250 learning iterations. While the optimization changes the 5-values in the value
function network, the parameters in the policy network do not change.

more mean-like characteristic (negative changes). In contrast, the changes of the g-values in
the softmax-embedding for the object observations in the value function network are nearly
all negative. Hence, all these features were updated towards a more mean-like embedding.
The latter finding is a bit contradicting to the results of the first experiment in which mean-
embeddings for the object observations did lead to very poor performance. An explanation
to this could be that for the value function network it is more important to have a distribution
over the object features while for the policy network the exact locations of the objects are
crucial.

Learned policies are transferable to other swarm sizes and numbers of objects. Finally,
we have investigated the transferability of the learned policies to different swarm sizes and
different numbers of objects in the environment. We evaluated this ability with the policies
learned on the object assembly task and the object segregation task. In the object assembly
task we have used a policy with mean embedding for the swarm observations and with max
embedding for the object observations. In the object segregation task with used a softmax
embedding for both. Figure[T2]depicts the average episode return for different settings of the
number of agents and objects in both tasks. We can clearly see that the policy generally can
be transferred to scenarios with more and less agents in the swarm as well as more and less
objects in the environment. While more agents seem to have a positive impact on the outcome,
changes in the number of objects tend to have a negative effect on the results. This can be partly
explained by the limited space in the environment. Note however, that the reward function
and thus the return is not completely independent of the number of objects as we compute
the mean over the point-wise object distances. The more objects we have in the environment,
the smaller this distance will be already in the beginning and, thus, the smaller the return
we can obtain. With too many agents in the environment (i.e., 25 agents), the return tends to

Using M-Embeddings to Learn Control Strategies for Robot Swarms 17

agents # agents
5 10 15 20 25 5 10 15 20 25
2 0.4
oy = 0.8 0.9
° °
* £
object assembly object sorting

Fig. 12 Evaluation of the transferability to different swarm sizes and different numbers of objects in the
environment. Depicted is the mean return over 10 roll outs. The orange squares denote the settings in which
the evaluated policy has been learned. Numbers are given for min/max results and for the learning setting.

decrease because the agents start to obstruct the efforts of other agents by pushing objects
from different sides. While this experiment should demonstrate that the learned policies can
be transferred to different swarm sizes and different numbers of objects, using a variable
number of observations during the learning of the policies could further improve the results.
Videos of all experiments can be found athttps://tinyurl.com/dme-videos.

6 Conclusions

In this paper, we present a method to learn policies for manipulating objects with a swarm of
homogeneous agents. The policy for the agents is learned from a common reward signal using
a centralized critic and distributed actors. Each agent uses the identical policy to compute
its actions based on the local observations. To allow for variable number of observations (of
other agents but also of objects in the environment) and to reduce the search space of the
parameters, we introduce the deep M-embeddings. The deep M-embeddings are inspired by
the kernel mean embeddings and provide a network structure that computes a fixed size feature
representation from a variable number of inputs. We show in experimental evaluations, that
the deep M-embeddings can be employed to learn complex policies for object manipulation
with robot swarms in which they outperform classical multi-layer perceptrons in terms of
the achieved return but also considering the sample complexity.

The different forms of the deep M-embeddings—mean embedding, max embedding and
soft-max embedding—allow to learn embeddings of different characteristics. Our experi-
ments justify, that these characteristics are necessary to learn the policies in the swarm
settings. While mean and max embeddings can be used to learn a representation for the
swarm state, the object state needs to be represented by a max or a soft-max embedding.
While the S-values in the soft-max embedding are learned with the other parameters of the
network, it seems that the learning is rather slow and not sufficient find the best characteristics
as the use of soft-max embeddings for both, the swarm and the object observations, does not
yield good results. In future work, these issues need to be investigated more thoroughly to
understand why certain characteristics are necessary for certain types of observation and to
leverage the adaptability of the soft-max embeddings better.

https://tinyurl.com/dme-videos

18 Gregor H. W. Gebhardt et al.

References

Al-Shedivat M, Bansal T, Burda Y, Sutskever I, Mordatch I, Abbeel P (2018) Continuous
adaptation via meta-learning in nonstationary and competitive environments. In: Interna-
tional Conference on Learning Representations, URL https://openreview.net/
forum?id=Sk2ulg-0—-

Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) A brief survey of deep
reinforcement learning. IEEE Signal Processing Magazine 34(6):26-38, DOI 10.1109/
MSP.2017.2743240, URL http://arxiv.org/abs/1708.05866

Bonabeau E, Dorigo DARDFM, Dorigo M, Théraulaz G, Theraulaz G (1999) Swarm Intel-
ligence: From Natural to Artificial Systems. OUP USA

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016)
Openai gym. arXiv:160601540 [cs] URL http://arxiv.org/abs/1606.01540

Catto E (2018) Box2d is a 2d physics engine for games. URL https://github.com/
erincatto/Box2D

Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep
networks. arXiv:170303400 [cs] URL http://arxiv.org/abs/1703.03400

Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S (2017) Counterfactual multi-agent
policy gradients. arXiv:170508926 [cs] URL http://arxiv.org/abs/1705.
08926

Gebhardt GH, Daun K, Schnaubelt M, Neumann G (2018) Learning robust policies for
object manipulation with robot swarms. In: Proceedings of the 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane

Grover A, Al-Shedivat M, Gupta JK, Burda Y, Edwards H (2018) Learning policy represen-
tations in multiagent systems. arXiv:180606464 [cs, stat] URL http://arxiv.org/
abs/1806.06464

Gupta JK, Egorov M, Kochenderfer M (2017) Cooperative multi-agent control using deep
reinforcement learning. In: Autonomous Agents and Multiagent Systems, Springer Inter-
national Publishing, Lecture Notes in Computer Science, pp 66—83

Hasselt Hv, Guez A, Silver D (2016) Deep reinforcement learning with double g-learning.
In: Thirtieth AAAI Conference on Artificial Intelligence, URL https://www.aaai.
org/ocs/index.php/AAATI/AAAIL1G/paper/view/12389

Hausknecht M, Stone P (2015) Deep recurrent g-learning for partially observable mdps. In:
2015 AAAI Fall Symposium Series, URL https://www.aaai.org/ocs/index.
php/FSS/FSS15/paper/view/11673

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation
9(8):1735-1780, DOI 10.1162/neco0.1997.9.8.1735, URL |https://doi.org/10.
1162/neco.1997.9.8.1735

Hiittenrauch M, Sosi¢ A, Neumann G (2018) Deep reinforcement learning for swarm systems.
arXiv:180706613 [cs, stat] URL http://arxiv.org/abs/1807.06613

Kakade S (2001) A natural policy gradient. In: Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and Synthetic, MIT
Press, Cambridge, MA, USA, NIPS’01, pp 1531-1538, URL http://dl.acm.org/
citation.cfm?1d=2980539.2980738

Kupcsik A, Deisenroth MP, Peters J, Ai Poh L, Vadakkepat P, Neumann G (2015) Model-
based contextual policy search for data-efficient generalization of robot skills. Arti-
ficial Intelligence URL http://www.ias.informatik.tu-darmstadt.de/
uploads/Publications/Kupcsik_AIJ_2015.pdf

https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1606.01540
https://github.com/erincatto/Box2D
https://github.com/erincatto/Box2D
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1806.06464
http://arxiv.org/abs/1806.06464
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1807.06613
http://dl.acm.org/citation.cfm?id=2980539.2980738
http://dl.acm.org/citation.cfm?id=2980539.2980738
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Kupcsik_AIJ_2015.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Kupcsik_AIJ_2015.pdf

Using M-Embeddings to Learn Control Strategies for Robot Swarms 19

Lauer M, Riedmiller M (2000) An algorithm for distributed reinforcement learning in cooper-
ative multi-agent systems. In: In Proceedings of the Seventeenth International Conference
on Machine Learning, Morgan Kaufmann, pp 535-542

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015)
Continuous control with deep reinforcement learning. arXiv:150902971 [cs, stat] URL
http://arxiv.org/abs/1509.02971

Lowe R, WU Y, Tamar A, Harb J, Pieter Abbeel O, Mordatch I (2017) Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Advances in
Neural Information Processing Systems 30, Curran Associates, Inc., pp 6379-
6390, URL http://papers.nips.cc/paper/7217-multi-agent—-actor—
critic-for-mixed-cooperative-competitive—-environments.pdf

Matignon L, Laurent GJ, Le Fort-Piat N (2007) Hysteretic g-learning : an algorithm for
decentralized reinforcement learning in cooperative multi-agent teams. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS’07., San Diego,
CA., United States, vol sur CD ROM, pp 64-69, URL https://hal.archives-
ouvertes.fr/hal-00187279

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M
(2013) Playing atari with deep reinforcement learning. arXiv:13125602 [cs] p 9, URL
https://arxiv.org/abs/1312.5602

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller
M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Ku-
maran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep
reinforcement learning. Nature 518(7540):529-533, DOI 10.1038/nature14236, URL
https://www.nature.com/articles/naturel4236/

Ng AY, Harada D, Russell SJ (1999) Policy invariance under reward transformations: Theory
and application to reward shaping. In: Proceedings of the Sixteenth International Con-
ference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, ICML 99, pp 278-287, URL http://dl.acm.org/citation.cfm?id=
645528.657613

Omidshafiei S, Pazis J, Amato C, How JP, Vian J (2017) Deep decentralized multi-task multi-
agent reinforcement learning under partial observability. In: International Conference
on Machine Learning, pp 2681-2690, URL http://proceedings.mlr.press/
v70/omidshafieil7a.html

Palmer G, Tuyls K, Bloembergen D, Savani R (2018) Lenient multi-agent deep re-
inforcement learning. In: Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, AAMAS ’18, pp 443451, URL http:
//dl.acm.org/citation.cfm?i1d=3237383.3237451

Panait L, Sullivan K, Luke S (2006) Lenient learners in cooperative multiagent systems.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM, New York, NY, USA, AAMAS ’06, pp 801-803, DOI 10.1145/
1160633.1160776, URL http://doi.acm.orqg/10.1145/1160633.1160776

Peng P, Wen Y, Yang Y, Yuan Q, Tang Z, Long H, Wang J (2017) Multiagent bidirectionally-
coordinated nets: Emergence of human-level coordination in learning to play starcraft com-
bat games. arXiv:170310069 [cs] URL http://arxiv.org/abs/1703.10069

Peters J, Vijayakumar S, Schaal S (2005) Natural actor-critic. In: Machine Learning: ECML
2005, Springer Berlin Heidelberg, Lecture Notes in Computer Science, pp 280-291

Pugh J, Martinoli A (2006) Multi-robot learning with particle swarm optimization. In:
Proceedings of the Fifth International Joint Conference on Autonomous Agents and Mul-

http://arxiv.org/abs/1509.02971
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments.pdf
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments.pdf
https://hal.archives-ouvertes.fr/hal-00187279
https://hal.archives-ouvertes.fr/hal-00187279
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236/
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645528.657613
http://proceedings.mlr.press/v70/omidshafiei17a.html
http://proceedings.mlr.press/v70/omidshafiei17a.html
http://dl.acm.org/citation.cfm?id=3237383.3237451
http://dl.acm.org/citation.cfm?id=3237383.3237451
http://doi.acm.org/10.1145/1160633.1160776
http://arxiv.org/abs/1703.10069

20 Gregor H. W. Gebhardt et al.

tiagent Systems, ACM, New York, NY, USA, AAMAS ’06, pp 441448, DOI 10.1145/
1160633.1160715, URL http://doi.acm.org/10.1145/1160633.1160715

Pugh J, Martinoli A (2007) Parallel learning in heterogeneous multi-robot swarms. In: 2007
IEEE Congress on Evolutionary Computation, pp 3839-3846, DOI 10.1109/CEC.2007.
4424971

Rashid T, Samvelyan M, de Witt CS, Farquhar G, Foerster J, Whiteson S (2018) Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning.
arXiv:180311485 [cs, stat] URL http://arxiv.org/abs/1803.11485

Rubenstein M, Ahler C, Hoff N, Cabrera A, Nagpal R (2014) Kilobot: A low cost robot with
scalable operations designed for collective behaviors. Robotics and Autonomous Systems
62(7):966-975, DOI 10.1016/j.robot.2013.08.006

Rusu AA, Colmenarejo SG, Gulcehre C, Desjardins G, Kirkpatrick J, Pascanu R, Mnih
V, Kavukcuoglu K, Hadsell R (2015) Policy distillation. arXiv:151106295 [cs] URL
http://arxiv.org/abs/1511.06295

Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P (2015a) Trust region policy op-
timization. In: International Conference on Machine Learning, pp 1889-1897, URL
http://arxiv.org/abs/1502.05477

Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015b) High-dimensional continu-
ous control using generalized advantage estimation, URL http://arxiv.org/abs/
1506.02438

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimiza-
tion algorithms. arXiv:170706347 [cs] p 12, URL http://arxiv.org/abs/1707.
06347

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Determinis-
tic policy gradient algorithms. In: Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, JMLR.org, Beijing,
China, ICML’14, pp [-387-1-395, URL http://dl.acm.org/citation.cfm?
1d=3044805.3044850

Smola AJ, Gretton A, Song L, Scholkopf B (2007) A hilbert space embedding for dis-
tributions. In: Proceedings of the 18th international conference on Algorithmic Learn-
ing Theory, Springer Berlin Heidelberg, Lecture Notes in Computer Science, vol 4754,
pp 13-31, DOI 10.1007/978-3-540-75225-7, URL http://link.springer.com/
chapter/10.1007/978-3-540-75225-7_5

Sunehag P, Lever G, Gruslys A, Czarnecki WM, Zambaldi V, Jaderberg M, Lanctot M,
Sonnerat N, Leibo JZ, Tuyls K, Graepel T (2017) Value-decomposition networks for
cooperative multi-agent learning. arXiv:170605296 [cs] URL http://arxiv.org/
abs/1706.05296

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, second edition edn.
Adaptive computation and machine learning series, The MIT Press, Cambridge, MA

Sutton RS, McAllester D, Singh S, Mansour Y (1999) Policy gradient methods for rein-
forcement learning with function approximation. In: Proceedings of the 12th International
Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA,
USA, NIPS’99, pp 1057-1063, URL http://dl.acm.org/citation.cfm?id=
3009657.3009806

Yang Y, LuoR, LiM, Zhou M, Zhang W, Wang J (2018) Mean field multi-agent reinforcement
learning. arXiv:180205438 [cs] URL |http://arxiv.org/abs/1802.05438

ZhengL, Yang J, Cai H, Zhang W, Wang J, Yu Y (2017) Magent: A many-agent reinforcement
learning platform for artificial collective intelligence. arXiv:171200600 [cs] URL http:
//arxiv.orqg/abs/1712.00600

http://doi.acm.org/10.1145/1160633.1160715
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://link.springer.com/chapter/10.1007/978-3-540-75225-7_5
http://link.springer.com/chapter/10.1007/978-3-540-75225-7_5
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://arxiv.org/abs/1802.05438
http://arxiv.org/abs/1712.00600
http://arxiv.org/abs/1712.00600

	Introduction
	Preliminaries
	Deep M-embeddings
	Learning Swarm Policies
	Experimental Setup and Evaluation
	Conclusions

