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Acquiring and Generalizing the Embodiment
Mapping from Human Observations to Robot Skills

Guilherme Maeda1, Marco Ewerton2, Dorothea Koert3, and Jan Peters1,2version final RAL version

Abstract—Robot imitation based on observations of the hu-
man movement is a challenging problem as the structure of
the human demonstrator and the robot learner are usually
different. A movement that can be demonstrated well by a
human may not be kinematically feasible for robot reproduction.
A common approach to solve this kinematic mapping is to
retarget pre-defined corresponding parts of the human and the
robot kinematic structure. When such a correspondence is not
available, manual scaling of the movement amplitude and the
positioning of the demonstration in relation to the reference
frame of the robot may be required. This paper’s contribution is
a method that eliminates both the need of human-robot structural
associations—and therefore is less sensitive to the type of robot
kinematics—and searches for the optimal location and adaptation
of the human demonstration, such that the robot can accurately
execute the optimized solution. The method defines a cost that
quantifies the quality of the kinematic mapping and decreases
it in conjunction with task-specific costs such as via-points and
obstacles. We demonstrate the method experimentally where a
real golf swing recorded via marker tracking is generalized to
different speeds on the embodiment of a 7 degree-of-freedom
(DoF) arm. In simulation, we compare solutions of robots with
different kinematic structures.

Index Terms—Learning and Adaptive Systems, Kinematics,
Optimization and Optimal Control, Motion and Path Planning,
Human Factors and Human-in-the-Loop

I. INTRODUCTION

MAPPING human movements to executable robot tra-
jectories is an essential part of imitation learning and

programming by demonstration. Teleoperation and kinesthetic
teaching have been widely used to avoid the correspondence
problem in imitation learning. Despite being popular, these
methods are not ideal for a variety of reasons. As illustrated in
Fig. 1(b), during kinesthetic teaching, the human must decide
how to move the several joints of a redundant manipulator
when demonstrating a golf swing. This procedure not only
leads to a solution biased by the demonstrator, but even if
a champion player would be in the laboratory available to
demonstrate such a task, the demonstration is compromised as
the robot is kinematically different in size and has a limited
number of degrees-of-freedom (DoFs). Also, among the very
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Fig. 1. (a) Learning from human observations requires the solution of a
non-trivial correspondence mapping. (b) Methods such as kinesthetic teaching
avoid the correspondence problem, but the physical presence of the robot
hinders the movements of truly natural demonstrations. (c) In this paper
different embodiments are used to execute the same human demonstration.

few back-drivable robots available, some are too fragile to
accept aggressive demonstrations, while others are too bulky
to be handled naturally (see Fig. 1(b)).

A. Learning Kinematic Skills from Human Observations

Reproducing human observations is unarguably the most
natural and non-disruptive form of acquiring robot skills. A
common procedure to map upper limb movements from a
human to a robot relies on manually defining the positioning
and scaling of the recorded human demonstration into the
robot’s workspace, often with the help of heuristics such as
pose similarity; or by using some form of retargeting [1].
The solution to this problem is not trivial under dissimilar
or arbitrary robot structures or when the structure of the
human arm is not fully observed. In practice, to facilitate the
correspondence solution, the human demonstrator may also
need to adapt his/her movement to take into consideration the
robot’s kinematic constraints.

To automate this process, one could initially optimize the
transformation between the reference frame of demonstrator
and the robot, aiming at a feasible inverse kinematics solution
(e.g. using a normalized pose [2] or the T-pose [3]). As a
second step, one could then consider optimizing the demon-
stration at the location found in the first step, as a trajectory op-
timization problem; to avoid obstacles in the robot’s workspace
and to scale the human trajectory to fit the kinematics of the
robot. These two steps should not be solved independently,
however, as modifications on the trajectory in the latter step
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could allow for subsequent improvements in the reference
frame transformation of the first step. Another problem is that
of defining a metric that quantifies the suitability of the human
demonstration in relation to the robot structure.

The contribution of this paper is an off-line algorithm
for trajectory generation for robotic arms based on human
observations. Given the kinematic structure of the robot arm,
the method searches for the optimal combination of reference
frame transformation and shape adaptation of a human demon-
stration. The basic idea is to use the residual error that is
output by an inverse kinematics (IK) algorithm to quantify
the “mapping error”. This error arises when a demonstrated
trajectory cannot be suitably reproduced by a robot learner,
due to differences in the kinematic structures and/or in the
relative location between the robot and the demonstrated
trajectory. Since robot-specific information is only applied by
the IK function, the method is general and can optimally adapt
demonstrations to match different robot embodiments, such
as the lightweight 7-DoF KUKA LWR4, an industrial 6-DoF
ABB IRB140, and a fictitious 4-DoF SCARA arm shown in
Fig. 1(c).

B. Problem Statement and Proposed Optimization

Assume a Cartesian trajectory of T time steps provided by a
human demonstrator as XH

1:T . The trajectory is recorded w.r.t.
to the reference frame of the demonstration {D}. A robot arm
in an arbitrary location (e.g. in another laboratory), defined
by the reference frame {W}, is to reproduce the shape of
the demonstration w.r.t. its own reference frame as close as
possible. The transformation W

D T that relates the coordinates
from {D} to {W} is unknown. Also, the robot may be limited
in DoFs and reach such that the original demonstration may
not be exactly reproducible, regardless of the choice of WD T .

This paper proposes solving the mapping from demon-
stration to robot joint trajectories M : XH

1:T → q1:T .The goal
is to find a trajectory X1:T similar to XH

1:T , and a trans-
formation W

D T that expresses X1:T in {W} such that
W
D TX1:T can be accurately reproduced by the robot. In
other words, the joint trajectories of the IK solution q1:T =
IK(WD T (θL)X1:T (θS)) lead to the exact reproduction of the
Cartesian input WD T (θL)X1:T (θS).

In its simplest form, we propose solving the optimization

min
θ={θL,θS}

T∑
t=1

‖WD T (θL)Xt(θS)− FK(qt)‖+

T∑
t=1

‖XH
t −Xt(θS)‖

(1)

s.t. q1:T ∈ [qmin, qmax],

where [qmin, qmax] are the limits for each of the joints of
the robot, and FK(·) is a forward kinematics function. The
first term quantifies, at each time step, the error between
the adapted trajectory in the reference frame of the robot
and the trajectory that the robot end-effector describes when
reproducing qt. As it will be shown in more detail in Section
III-B, this error can be obtained as the output of a numerical

IK solver. The second term penalizes for dissimilarities be-
tween the original trajectory and the current trajectory in the
reference frame of the demonstration. The policy parameters
θ account for shape and location with θS and θL, respectively.
This simultaneous optimization contrasts with conventional
trajectory optimization and motion planning methods where
only θS is taken into account, usually in the joint space of the
robot learner.

II. RELATED WORK: FROM HUMAN
OBSERVATIONS TO ROBOT SKILLS

The problem of kinematically mapping trajectories to dif-
ferent embodiments is well known to the computer graphics
and animation community where a particular approach, re-
ferred to as motion retargeting [1], has found applications
in robotics. The retargeting approach consists in matching
skeletons with different link lengths but approximately similar
kinematic structures. Much of the focus in retargeting has been
proposed to deal with stylistic and human-like mappings both
in animation [4] and robotics [5]. Retargeting with real robots
often needs to address dynamics and mechanical limitations
[6]. More recently, retargeting-based approaches have also
been proposed to program industrial robots [7].

Since the knowledge of the kinematic structure of the
demonstrator is a basic requirement, retargeting methods re-
quire a planned setup with well positioned cameras and exten-
sive use of markers for tracking. The recent use of off-the-shelf
depth cameras for retargeting (e.g. [8], [9]) requires the whole
human body to be facing the camera, free from occlusion. In
both cases, the demonstration of several tasks of interest—
such as the assembly of a product in an occluded factory line,
or the interaction between two humans—is compromised by
setup requirements and the need in estimating the kinematic
structure of the demonstrator.

Here, we relax the requirement in tracking (parts of) the
human skeleton and focus only on the task achievement of
a manipulator arm; where the end-effector trajectory (e.g. the
hand of the demonstrator) is the only recorded element. This
approach greatly widens the range of possible setups and
demonstration scenarios. Learning directly from observations
in task space was presented in [10] where the focus was
on the improvement of a policy initialized by the human
demonstration. Their work did not address, however, how to
map the human demonstration into the initial policy on the
robot’s frame—the goal of this paper. In fact, that work used
inverse kinematics directly to follow the straight line trajectory
of the human hand, and therefore their movements had a one-
to-one task space reproduction.

Inverse kinematics has an important role in the human/robot
kinematic mapping. Closed-form solutions [11] have the ad-
vantage of being fast enough for on-line applications at the
expense of being robot-specific. Engineered solutions based
on IK have been used to map intricate systems such as in [12]
and used to generate stylistic and human-like mappings in
animation [13]. In whole body control, IK is usually followed
by an optimization step to satisfy dynamic constraints, such
as balance [3].
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Fig. 2. The proposed method Imitation by Stochastic Optimization of the Embodiment Mapping (ISOEMP). The demonstration is parameterized in both
shape θS and location of the reference frame θL. Stochastic optimization is used to find the optimal shape and location such that the solution is feasible in
relation to the kinematics of the robot, and also respects task constraints such as obstacles and via-points.

When learning from demonstration, an issue associated with
IK is the re-location of the demonstration of the teacher
in relation to the learner’s body. This is usually achieved
manually when obvious, for example, when the kinematic
dimensions of the teacher and learner are similar; or by using
some heuristic such as the T-pose [3] where both human and
robot stand-up with the arms wide open, or other pre-defined
starting poses [2]. In this paper, while recording only the
end-effector trajectory relaxes the knowledge of the teacher’s
kinematic structure, it also brings the issue that references
useful for positioning the observed trajectory w.r.t. the robot
are now lost. Our method provides an automated way to search
for the optimal location of the human demonstration based on
the robot capability in reproducing it.

Since the problem of this paper is essentially to make the
robot to reproduce a trajectory obtained from demonstrations,
another approach is to use trajectory optimization [14], or
motion planning techniques such as [15], [16], [17]. A problem
that arises with such methods is that their formulations require
the knowledge of initial and goal states. While these two states
are known in the reference frame of the demonstrator {D},
we usually do not know their transformation on the frame
of another agent {W}, especially if kinematic constraints
have to be taken into account. This would then require some
pre-processing step where the demonstration can be correctly
located into the reference frame of the learner agent, but may
lead to suboptimal solutions (see a comparison in Section
IV where [17] was used). Our method explicit incorporates
this transformation as part of the simultaneous optimization
of location and trajectory shape.

III. IMITATION BY STOCHASTIC OPTIMIZATION OF THE
EMBODIMENT MAPPING

Fig. 2 illustrates the workflow of the proposed method,
referred to as Imitation by Stochastic Optimization of the
Embodiment Mapping (ISOEMP). Given a trajectory of the
human demonstration, we define the set of parameters θ =
{θL,θS}. θL governs the location of the reference frame of
the demonstration {D} in relation to the robot’s world frame
{W}. The parameter θS governs the shape of the trajectory
and is defined relative to the demonstration frame {D}.

A. Policy Parameterization and Improvement

Assume a demonstration recorded as a Cartesian trajectory
XH

1:T , where Xt = [xt, yt, zt]
T . As an initial policy, the

trajectory is parameterized in a lower dimensional space of
shape parameters

θS = (ΦTΦ)−1ΦTXH
1:T , (2)

where each Cartesian dimension is encoded by a column in
θS ∈ RN×3. The design matrix Φ ∈ RT×N is composed of
N Gaussian basis functions with centers spread evenly in the
interval [1, T ],

Φ =


Φ1,1 . . . Φ1,N

...
. . .

...
ΦT,1 . . . ΦT,N

 (3)

which also enforces smooth solutions. In practice, the size N
is usually one order of magnitude lower than the raw size of
the sampled trajectory, for example, in the golf swing case,
a 3 second trajectory sampled at 120 Hz is decreased from
3× 120 = 360 points to N = 20 parameters.

The location of the demonstration’s reference frame {D} in
relation to the robot’s frame {W} is given by the parameter
vector θL, whose elements comprise the rotation and transla-
tion entries of a homogeneous transformation between frames
W
D T (θL) such that

W
D T : X1:T → X̄1:T , (4)

where X̄1:T are the Cartesian trajectory coordinates expressed
in the robot’s frame.

Thus, the trajectory X̄1:T is obtained from θ = {θL,θS}
by first recovering the trajectory in the reference frame of the
demonstration X1:T (θS) = ΦθS and then by using (4) to
describe its coordinates in {W}. The bottom left of Fig. 2
illustrates two consecutive updates of the policy. Note that
the trajectory optimization is executed in the local reference
frame {D} but, as it shall be clear in Section III-B, the shape
is influenced by the absolute location of the trajectory since
the cost that updates the policy θS accounts for the accuracy
of the inverse kinematics solution.
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To optimize the policy parameters we rely on stochas-
tic optimization based on episodic model-free reinforcement
learning formulations, such as REPS [18] and PI2 [19]. Such
methods are based on perturbing the policy parameters to run
a N number of noisy roll-outs, rendering a set of exploration
trajectories and their respective costs. A policy improvement is
obtained by a weighted average of the previous noisy policies
where low-cost samples are attributed higher weights (refer to
[20] for an in-depth survey).

Stochastic optimization methods are suited for our problem
since discontinuity of the cost (due to inverse kinematics) is
to be expected, making the use of gradient-based methods
harder, if not impractical. Also, here we focus on kinematic
mappings where roll-outs can be done numerically and assume
that a feedback controller will suitably track the final solution.
However, the use of RL methods keep open the possibility to
run the roll-outs directly on the real robot, which would then
allow us to take into account the dynamics of the robot under
poor control performance.

B. Inverse Kinematics and Task Costs

The goal of the optimization is to decrease a cost where one
of the components, CIK, quantifies the robot’s reproduction
error of the current modification of the demonstration X1:T

when mapped to the robot’s workspace with W
D T (θL)X1:T .

Other costs that account for task constraints, such as obstacle
avoidance and similarity with the original demonstration are
represented in CMP,

C = CIK + CMP. (5)

1) Inverse Kinematics Cost: Algorithm 1 shows a generic
numerical inverse kinematics function for a redundant manip-
ulator. Given a trajectory X̄1:T representing the current noisy
roll-out of π(θ + ε) in the robot’s reference frame, an initial
guess of joint configuration qi, and a learning rate α, for each
time step, the algorithm attempts to iteratively decrease the
Cartesian error by updating the joint configurations until a
maximum number of iterations nIterMax is achieved.

Algorithm 1 InverseKinematics(X̄1:T , qi)
1: qt ← qi
2: for t < T − 1 do
3: while ∼ nIterMax do
4: X̄ ′t ← ForwarKinematics(qt)
5: et ← computeFKError(X̄t, X̄

′
t)

6: Jt ← Jacobian(qt)
7: ∆qt ← αJ−1t et.
8: qt ← qt + α∆qt

For each time step, et stores the minimum error achieved
by the while loop, which yields a trajectory of Cartesian error
e1:T . Thus we define the IK cost of the k-th iteration as

C
[k]
IK = w

T∑
t=1

‖e[k]t ‖. (6)

Note that X̄t = W
D T (θL)Xt(θS), and therefore e[k]t is the

summand in the first term of (1). The scalar w weights

the importance of the IK error with other terms in CMP.
In addition, commonly used terms in trajectory optimization
problems such as joint accelerations can be added depending
on the requirements of the task. Hereinafter, we will use the
superscript (·)[k] to explicitly indicate a k-th iteration when
relevant, and omit it otherwise.

While Algorithm 1 is an optimization procedure by itself,
a typical inverse kinematics solver has no influence on the
input X̄1:T . Our method aims at modifying X̄1:T such that
it minimizes e1:T by both changing the shape of the demon-
stration X1:T (θS) and its position relative to the robot with
W
D T (θL). We define a kinematically feasible solution when
e1:T becomes a vector of zero values.

2) Task Achievement Cost: Since CIK accounts for the
kinematic feasibility of the solution, costs related to via-point
requirements and obstacle avoidance can be computed and
optimized directly in task space. Conventional motion planning
and trajectory optimization penalties are used. In our specific
application the cost takes the form

C
[k]
MP = v1

T∑
t=1

‖XH
t −X

[k]
t ‖+ v2Collision(X̄

[k]
1:T )+

v3Viapoint(X̄ [k]
1:T ),

(7)

where the first term penalizes for solutions that look dissimilar
to the original human demonstration in the frame {D}. The
second term computes obstacle collision cost in the frame of
the robot {W}. The last term can optionally penalize for via-
points, including desired start and initial states particular to
the current robot’s task, thus the trajectory must be expressed
in {W}.

C. Adding Noise for Exploration

It is critical in stochastic optimization methods to perturb the
policy parameters in a way that induces efficient exploration.
To optimize the demonstrated trajectory, a noise model to
disturb θS suitable for motion planning problems was pro-
posed in STOMP [17] where the covariance matrix from which
exploration noise is sampled is given by

Σε,S = (ATA)−1,

with A = blockdiag ([1 -2 1]),
(8)

where A is a finite-differencing matrix. A characteristic of
Σε,S is to create smooth perturbations spread over the whole
trajectory. Particularly important for our method is that the
exploration provided by (8) has the effect of generating
gradual changes of shape between consecutive iterations of the
optimizer, which is useful to maintain the similarity with the
original human demonstration. We borrow from STOMP the
same kind of exploration, but instead of adding the sampled
noise at each time step of the trajectory, we add the noise on
each of the shape parameters in θS . Thus, the covariance has
dimensions RN×N rather than RT×T .

The original STOMP algorithm was designed for start and
goal-oriented exploration of trajectories. While this form of
structure is suitable when kinematically feasible start and goal
configurations are known in advance, this form of exploration
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Fig. 3. The effect of clipping the covariance matrix allows the stochastic
optimizer to search for solutions where the trajectory floats around the
obstacle, leading to less deformations of the trajectory. Differently from goal
oriented motion planning, this effect is beneficial since it adds an extra degree
of freedom when searching for the optimal location of the demonstration.

does not apply to our problem as a bad initial guess on the
location of the trajectory may render start and goal positions
whose IK solution does not exist. Therefore, we propose a
modification of the covariance obtained by clipping Σε,S such
that the covariance at the extremities do not collapse to zero.
This modification and its effect can be visualized in Fig. 3
where the upper row shows the plot of the rows of Σε,S and
a simple toy-problem, free from kinematic constraints, solved
by REPS where a letter “a” is modified from perturbations
sampled from Σε,S such that it does not pass over the
obstacle. The bottom row shows the effect of using the clipped
covariance and the letter solution. Note that the first solution
requires large deformations of the trajectory since the start and
goal states are not explored.

To optimize the location of the reference frame {D}, each of
the elements in θL are perturbed independently with additive
Gaussian noise, N (0,Σε,L), where Σε,L is diagonal. As a
requirement of REPS, PI2, and other stochastic optimizers, the
scaling of the covariances Σε,L and Σε,S must be adjusted by
the user given the problem at hand.

D. The ISOEMP Algorithm

Algorithm 2 ISOEMP(θL, Σε,L, θS , Σε,S , (·))
1: for k < K do // Updates
2: [C

[k]
IK , C

[k]
MP]← rollOut([θ[k]L , θ

[k]
S ]) // Clean roll-out

3: if [C
[k]
IK + C

[k]
MP] < minTotalCost then

4: return success
5: for n < N do // Noisy roll-outs
6: [εL, εS ]← sample(Σε,L,Σε,S)

7: [CIK, CMP]← rollOut([θ[k]L + εL, θ
[k]
S + εS ])

8: C [k][n] ← [CIK + CMP]

9: [θ
[k+1]
L ,θ

[k+1]
S ]←Optimizer(θ[k][1:N ],C [k][1:N ])

Algorithm 2 shows the ISOEMP pseudo-code. Line 2 quan-
tifies the total cost with a “clean” roll-out, when the current

policy parameters are free from noise. This clean solution
allows us to compute its cost, which is compared to a minimum
desired value minTotalCost. The loop in line 5 generates
a N number of policy variations by perturbing the current
parameters with additive noise sampled from Σε,L and Σε,S .
A stochastic optimizer is then given access to the policy
variations and their respective costs to update the next policy.
Note that in the case the covariance matrix Σε,S is zero, the
algorithm will search for the transformation W

D T (θL) that best
matches the robot kinematics without changing the shape of
the original human demonstration (see Fig. 11(a)).

IV. EXPERIMENTS: IMITATING HUMAN DEMONSTRATIONS
OF WRITING AND GOLF SWING

In this section we evaluate our method in two different tasks
of imitating natural human observations. First with a planar
toy-problem, and later with real robot experiments.

A. Illustrative Toy-Problem: Drawing the Demonstration of a
Letter on a Constrained Space

As shown in Fig. 4, in this simulated toy-problem a hand-
written letter “a” written by a human using a mouse on
a computer screen must be reproduced by a planar serial-
link manipulator with three revolute joints. Joint limits were
set such that the robot’s workspace largely overlaps with an
area where the robot was forbidden to write. Under those
constraints, it is not possible to draw the same shape of the
original letter without going through the forbidden area. An
alternative shape must be found while resembling the original
human writing. The bottom plots show the trajectory of inverse
kinematic error e1:T for each policy update. Note from the
error in (b) that several solutions have discontinuities when
parts of the trajectory are out of the arm reach, and gradient-
free stochastic optimizers prove suitable. As a local method,
the quality of the final solution depends on the initial guess.
The solution in (a) has a final shape that better resembles the
initially demonstrated letter when compared to the solution
found in (b).

On the same problem, we compared our method with
STOMP. As a motion planner based on trajectory optimization,
STOMP assumes that the initial and final states in joint space
are given. This is an ill-posed problem for STOMP as initial
and final states are only known in respect to {D}, but not
{W}. This would require an initial search of the positioning
of the demonstration in the robot’s workspace, which by itself
could be solved as an optimization problem. To make the
comparison possible, we used the clipped noise covariance
described in Section III-C such that the trajectory is allowed
to “float” in the workspace and initial and final conditions do
not need to be assumed.

Fig. 5(a) shows the ISOEMP and STOMP solutions found
given the same initial conditions and cost. In the case of
STOMP, the cost C is computed from the forward kinematics
of the current solution, whose joint positions are saturated
at the joint limits. As shown in the figure, due to the bad
placement of the initial demonstration in relation to the robot’s
workspace, the robot can only write the letter partially. Both
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Fig. 4. The robot reproduces a letter “a” demonstrated by a human. The
robot must find where to position the reference frame of the demonstration
in relation to itself, and also how to modify the shape of the letter such that
it does not pass over the forbidden circular area. (a) An initial guess close to
the robot. (b) A initial guess that starts far from the robot. The axes on the
top plots were removed to improve clarity.

methods successfully search for a location of the letter while
preserving the original shape. Fig. 5(b) shows the case where
an obstacle is added. A total of 25 random initial placements
of the demonstration are made and the plot shows the average
cost Ctotal as a function of the number of parameter updates.
The patches represent the mean ± one standard deviation.
The trajectories shown in (b) illustrate one of the solutions.
ISOEMP has larger cost during the first iterations when the
original demonstration tends to be placed on the top of the
obstacle, which is a consequence of the explicit search of the
location of {D}. STOMP, on the other hand, deviates from
the obstacles from the first iteration and therefore the cost is
lower at the beginning, but this also leads to poor convergence
and large trajectory deformations. After the 10-th iteration in
average, ISOEMP finds a location of lower cost and the small
changes in the shape dominates the subsequent updates.

B. Generalizing Golf Skills from Human Demonstration

The method was evaluated on a real golf swing task where a
human demonstration using motion capture data was mapped
to the kinematics of different robots. We chose the golf swing
as a task that although simple and easy to demonstrate as nat-
ural human movement, is not easily achievable by kinesthetic
teaching and teleoperation. A swing trajectory of the tip of the
golf club was recorded with a marker tracking system shown
in Fig. 6 as a sequence of snapshots.

Fig. 7 shows the ability of the method in mapping the
recorded demonstration to a trajectory that fits the kinematics
of an industrial 6-DoF ABB IRB140. As shown in Fig. 7(a),
the trajectory is too far from the robot’s reach and the end-
effector trajectory cannot reproduce it. After the optimization,
Fig. 7(b) shows that the demonstration was reshaped such that
it fits the robot’s kinematics and also allows the golf-club to
pass through a via-point that represents the ball location, which
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Fig. 5. A comparison of ISOEMP and STOMP. (a) In free space both methods
find the reference frame transformation that leads to minimal trajectory
deformations. (b) When an obstacle is placed, STOMP leads to large trajectory
deformations, that during the first iterations achieve lower costs, but leads to
poor final results. The explicit search of the reference frame transformation
allows ISOEMP to find locations that require less deformations of the
demonstration.

includes the orientation of the hitting. Fig. 7(c) shows the
initial and final solutions where the orientation of the final
trajectory is aligned with the via-point pose. Fig. 7(d) shows
traces of the updates.

We evaluated the ability of the algorithm to scale the
demonstration under different dissimilarity weights (v1 in (7)).
Initially, we scaled the original golf swing by a factor of 3 in
the XY directions, resulting in a trajectory that spans roughly
7 meters in the longest direction. Note that given such a large
span, there is no frame transformation W

D T (θL) that results
in a low CIK cost unless the demonstration is scaled down
in certain directions. To simplify the analysis, we ignored the
presence of obstacles. The weight w used in (6) was set to a
fixed value of 100. The weight of the dissimilarity v1 was set
to 1, 10, and 100 values. Their effect can be seen in Fig. 8
where the table shows the IK error values normalized to the
highest value. The deviation was computed as the average
Euclidean distance between the original demonstration and the
current solution in the frame {D}, over the whole trajectory.
The figure shows that low penalty in the dissimilarity leads to
accurate IK solutions with shapes that have a large deviation
from the original demonstration, and the opposite effect when
the dissimilarity is heavily penalized. Note that trajectories
have a large deformation in the direction of the swing, which
generates high costs in CIK, while having less deformations
on the width of the swing. The method provides a form
of adaptive scaling, where the directions that can be readily
reproduced maintain the maintain closer similarity with the
demonstration.

Fig. 9 shows under the same costs, initial conditions, and
number of iterations, the solutions achieved by robots with
very different kinematics (see Fig. 1(c)). Due to the limited
DoFs of the SCARA robot, the deviations required from
the original demonstration and the reproduction error are the
largest. The IRB140 and the LWR4 robots achieve roughly
the same cost CIK, however, note that their final trajectory
solutions are not the same. The LWR4 final trajectory has more
similarity with the original demonstration than the solution
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Fig. 6. A sequence of snapshots where the human demonstrates a golf swing movement while the tip of the club are recorded in Cartesian coordinates.
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Fig. 7. The human demonstration is mapped into a feasible trajectory that
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with the original demonstration using the ABB IRB140 model. The initial
demonstration was scaled to be 3 times larger in the XY directions. The
method provides automatic scaling of the demonstration as the directions that
can be readily reproduced by the robot will contribute with a lower cost in
CIK.

found by the IRB140 robot. This could be given by the fact
that, compared to the IRB140, the LWR4 arm is structurally
closer to that of the human demonstrator, with an extra DoF
and longer reach.

Finally, we evaluated the method using a real LWR4 arm.
To avoid large dynamical disturbances and damages to the
robot hands, a light, plastic golf club was used. Due to the
limited space available in the laboratory, we fixed the yaw
rotation such that the club could only swing on a plane that
is parallel to the base frame of the robot. Fig. 11 shows three
different solutions obtained by our method which differ by
via-point constraints where in each case, the initial human
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Fig. 9. Comparison of solutions found when using the same costs, initial
conditions and number of iterations under different robot structures. The plots
are given on the reference frame of the demonstration.

demonstration (traced curves), was initially set at an arbitrary
location somewhat close to the robot.

In Fig. 11(a) the shape of the original human demonstration
was preserved by freezing updates in θS by setting Σε,S = 0.
In this case, ISOEMP simply searches for the optimal location
of the original demonstration in relation to the robot’s frame.
The optimized location of {D} was found to be [68.8, -0.3,
47.0] cm in the XYZ directions away from the initial guess
location. Fig. 11(b-c) shows the generalized trajectories for
the case where the instant of the ball hitting was used as
a temporal via-point with varying speeds. The speed refers
to the magnitude of the projected velocity vector onto the
horizontal plane. The hitting instant was set to have a speed
50% lower in (b) and 50% higher in (c), both in relation to
the original human demonstration. Large deformations of the
movement are observed since all trajectories are constrained
to have the same duration of the original demonstration. The
method could still find kinematically feasible solutions1. A
sequence of snapshots of the robot executing the mapped
swing trajectory can be seen in Fig. 10. A video of the
experiment accompanies this paper and will be available at
http://ieeexplore.ieee.org. A high resolution version is
available at http://youtu.be/6o8was_tZZ4.

V. CONCLUSION

This paper proposed a method that allows a robot to acquire
kinematics skills directly from natural human movements
recorded as Cartesian trajectories. To solve the correspondence
problem between the different teacher-learner embodiments,
we proposed using the residual error of the IK algorithm as
a metric to quantify the accuracy achieved by the robot when

1The experiment was set in this manner to validate the IK adaptation.
A trivial solution would be to accelerate/decelerate the whole trajectory
uniformly without any shape changes.
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Fig. 10. A sequence of snapshots where the robot hits the ball with a velocity 50% faster than the hitting originally demonstrated by the human.
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Fig. 11. The traced curves represent the original human demonstration.
The solid curves represent the solution of ISOEMP when generalizing the
demonstration to different speeds at the via-point. (a) Original velocity profile
preserved, (b) 50% slower at the hitting instant, (c) 50% faster at the hitting
instant.

reproducing perturbed trajectory variations. Using stochastic
optimization, the method searches for a local optimum where
the error in the kinematic mapping and the satisfaction of
task constraints are minimized. We showed that our framework
is capable of mapping and generalizing skills with robots of
different kinematics given the same trajectory of an observed
human. A promising application of the method is learning
human-robot collaborative tasks from the observation of two
human coworkers. Finally, we envision that the contribution
of the method can be greatly boosted with a combination
of video image analysis; when the method here proposed
will allow the use of the massive amount of truly optimal
human demonstrations—for example, of professional player’s
movements—already documented in videos.
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