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Abstract
Recent advancements in the field of Reinforcement Learning can be viewed in the context of constructing ever more
efficient Stochastic Search algorithms [1][2]. Such approaches formulate the learning problem as a Stochastic Program
[3] and perform sample-based iterative optimization from an initial point and converge to a local optimum. However,
while recognizing the great success of such techniques, most recent approaches focus on finding a single solution to
solve the task at hand, which represents only a point of the overall solution space. In this work, we aim to build on
previous concepts [4][5], that aimed at finding diverse solutions by optimizing over multiple policies at the same time.
Our focus will be on introducing powerful Bayesian non-parametric representations, such as Infinite-Mixture Models
known as Dirichlet Processes [6] into the optimization problem. Such representations, on the one hand, have the great
advantage of allowing for direct exploration in the solution space, while on other hand introducing technical difficulties
in the update step that require applying Bayesian Inference approaches [7][8]. The thesis aims to address these issues
and compare to state-of-the-art on toy problems.
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1 Introduction
The usage of robots in real world scenarios requires the robotic agents to autonomously learn new tasks and adapt to
new and unpredictable environments. The usual way for a robot to learn new skills is through reinforcement learning
(RL) methods, in which the learning is done through trial and error by evaluating the reward or cost of an action at a
given configuration of both robot and environment. Moreover, the robot must be able to generalize its set of skills to be
able to solve a wide range of tasks in different environments.

Implementing reinforcement learning to solve robot tasks imposes many challenges that must be carefully addressed
during design phase. Usually, real robots operate in a very high dimensional and continuous state-action space that are
hard to manage in most reinforcement learning methods. Additionally, this state-action space should not be arbitrarily
explored as some transitions might be prohibitive due to robot or environment damaging. Moreover, the evaluation of
the algorithms on real robots is very resource intensive, requiring data and sample efficiency.

However, robot set-ups also presents some advantageous characteristics over other classical reinforcement learning prob-
lems. First, robot tasks can be often decomposed in a sequence of elemental movements, often known as movement
primitives [9], that can each represent a pre-structures sub-policy for the given task. Movement primitives rely on the
temporal correlations that motor tasks exhibits, modelled by non-linear dynamical systems for each robot movement.
Second, an initial sub-optimal estimation of the policy parameters could be given by imitation learning from an expert’s
demonstration, being further optimized by local reinforcement learning methods.

Lastly, many motor tasks can be solved in a variety of ways, often incompatible to each other. Being able to represent
and identify all of the solutions as separate sub-policies increases the flexibility and robustness of the robotic agent and
its overall policy, as some of these solutions might not be physically possible to execute at some environment conditions
or even due to damages to the robot. This work focus on finding diverse solutions by optimizing multiple sub-policies
at the same time with non-parametric representations, in order to be able to learn multiple solutions without previous
knowledge on the number of components involved. This is done by introducing infinite mixture models known as
Dirichlet Processes to represent our policy and the Relative Entropy Policy Search (REPS) algorithm [1] as our learning
algorithm for the optimization of the policies.

2



2 Related Work
In real robot learning applications, Policy Search (PS) methods are often preferable over another RL methods that re-
quires the estimation of a value function, as this method requires the robot agent to fill a state-action space with samples,
which is very costly and many times infeasible in most robot set-ups. Thus, PS methods that locally optimize initial
sub-optimal solutions are widely used in robot learning tasks.

The base of our local learning algorithm will be the Relative Entropy Policy Search (REPS) algorithm (Peter et al., 2010).
REPS is an Information Theoretic Policy Search that bounds the loss of information between each policy update, allowing
thus the control of the exploitation-exploration trade-off without wide exploration in action space. This bound leads to a
much more stable learning process while keeping the robotic environment safe from damages.

In order to be able to represent and optimize on multiple sub-policies, a hierarchical formulation such as in the Hierar-
chical REPS (HiREPS) algorithm (Daniel et al., 2016) is needed, in which sub-policies that represents different solutions
to a task are selected according to a gating policy. This hierarchical structure based on a mixture model of sub-policies
will be the base of the model developed in this work.

Being able to represent multiple policies does not however necessarily leads to a proper learning of all of these solutions.
Therefore, HiREPS also adds additional constraints in order to properly separate the policies in the solution space and
ensure that the policy search algorithm does not average over multiple solutions.

Although it is possible to keep all of the sub-policies in the solution space properly separated in the HiREPS algorithm, its
learning process is not hierarchical, which may lead HiREPS to stop optimizing over all of the sub-policies except one or
a couple. An alternative to deal with this issue is proposed in the Layered Direct Policy Search (LaDiPS) algorithm (End
et. al), a episodic hierarchical policy search algorithm that combines both the hierarchical policy structure as well as a
hierarchical learning process, optimizing both the sub-policy layer consisting of its mixture components and the gating
policy layer. This model improves the control of properties such as the diversity and the individual learning rates of the
gating and sub-policies, enabling the maintenance of several sub-policies across the learning process.

This thesis will build on hierarchical concepts from HiREPS algorithm, introducing the non-parametric infinite mixture
model known as Dirichlet Process in order to extend and generalize the current model in HiREPS. Before introducing
the new algorithm, the next chapter will cover the basic concepts on Relative Entropy Policy Search, Hierarchical Policy
Search and Dirichlet Processes.
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3 Foundations

3.1 Relative Entropy Policy Search Method

The main idea of information theoretic policy search is to bound the distance between the old policy q (θ ) and the newly
estimated policy π (θ ) at each update step in order to avoid the new trajectory distribution to concentrate around a local
optima in the reward space. Limiting the information loss of the updates in a robotic environment is also important
to avoid wild exploration in the action space, which might be infeasible and dangerous to some robotic set-ups. The
information theoretic policy search algorithm used in this work is the Relative Entropy Policy Search (REPS) [1], that
formulates the policy search problem as a constrained optimization problem that results in a closed form solution for
estimating the new policy parameters.

3.1.1 The Optimization Problem

In a hierarchical setting for policy search algorithm, the optimization problem for learning upper-level policies can be
formulated as maximizing the average reward Jω as follows:

Jω =

∫

θ

πω (θ )

∫

τ

p (τ | θ )R (τ) dτdθ =

∫

θ

πω (θ )R (θ ) dθ

where instead of finding the lower-level policy parameters θ , we want to find the distribution over θdefined by the
parameter vectorω, allowing for direct exploration in the parameter space. Moreover, we want to bound the information
loss between the newly estimated policy and the old one by limiting the Kullback–Leibler (KL) divergence. By doing so,
the final constrained optimization problem can be formulated as follows:

max
π

∫

π (θ )R (θ ) dθ ,

s.t. ε ≥
∫

π (θ ) log
π (θ )
q (θ )

dθ ,

1 =

∫

π (θ ) dθ .

It is shown in previous work [9] how this constrained optimization problem can be solved by using Lagrangian multipliers,
resulting in a closed-form solution for the new policy:

π (θ )∝ q (θ )exp
�

R (θ )
η

�

where η is the Lagrange multiplier related to the KL-bound constrain.

3.1.2 The Dual Function

The Lagrange multiplier η can be obtained by minimizing the dual function g (η) of the constrained optimization prob-
lem:

g (η) = ηε+η log

∫

q (θ )exp
�

R (θ )
η

�

dθ

where the integral in the dual function can be approximated by samples.
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3.1.3 New Policy Estimation

The new policy π (θ ) is estimated by evaluating the reward R (θ ) at each sample. We can then fit a parametric distribution
πω (θ ) by a weighted maximum-likelihood estimate on the samples with the following weights:

di = exp
�

R (θ )
η

�

Using Gaussians to model our policies, we can update the parameters by a weighted mean and covariance given by the
following equations:

µ =

∑N
i=1 dixi
∑N

i=1 di

,

Σ =

∑N
i=1 di (xi −µ) (xi −µ)

T

Z
.

where

Z =

�

∑N
i=1 di

�2
−
∑N

i=1 (di)
2

∑N
i=1 di

is used to obtain an unbiased estimate of the covariance.

3.2 Hierarchical Policy Search for Robot Reinforcement Learning

In this section, the hierarchical policy formulation where the robotic agent learns both a gating policy and sub-policies,
will be further explained. This model is relevant for some complex tasks that often requires multiple sub-policies to
represent different solutions to a single task, in order to increase the flexibility and robustness of the final policy. In
general, the goal is to find an optimal policy that maximizes the average reward:

J(π) =

∫

π (a)Rada

In HiREPS [4], the inference of a hierarchical policy is formulated as a latent variable optimization problem, where each
latent variable represents the index of the sub-policy that generated a given action. Expectation-maximization methods
can be then used to infer the new policy. In the Expectation step, the responsibilities p (o | a)of the latent variables are
calculated, i.e., the probabilities that the observed data were generated by each sub-policy. Those responsibilities are then
used to update the sub-policies using the previously shown REPS algorithm in the Maximization step. The hierarchical
policy can be then represented as:

π (a) =
∑

o

π (o)π (a | o)

Next, we will introduce information-theoretic constraints to incorporate the REPS algorithm in the hierarchical formula-
tion.

3.2.1 Information Theoretic Constraints

Besides maximizing the average reward of the new policy, it is interesting to limit the loss of information between the old
and new policy, which can be done by limiting the Kullback-Leibler (KL) divergence between the observed data q(a) and
the next policy π(a), i.e.,

ε≥ DK L (π (a)‖q(a)) =
∫

π(a)log
π(a)
q(a)

da

The relative entropy bound ε is directly responsible for controlling the exploration-exploitation rate. The policy update
should converge quickly to a local optimum while not converging too fast enough to miss parts of the solutions. Selecting
a suitable relative entropy bound ε is therefore crucial to the overall performance of the algorithm.
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3.2.2 Learning Multiple Solutions

Being able to represent multiple solutions does not guarantee that the algorithm will actually find different solutions.
Therefore, we must enforce the separation of the sub-policies in the solution space by introducing a limit to the expected
change in the entropy H of the responsibilities of the sub-policies:

κ≥
Ea [H (p (o | a))]

Eq(a) [H (q (o | a))]
=

∫

π (a)
∑

o p (o | a) log p (o | a) da
∫

q (a)
∑

o q (o | a) log q (o | a) da

where we can write
∼
κ≥ Eq(a) [H (q (o | a))]κ to simplify the notation, resulting in the following constraint:

∼
κ≥ Ea [H (p (o | a))] = −

∫

π (a)
∑

o

p (o | a) log p (o | a) da

When several sub-policies overlap in the solution space, there is a high uncertainty in deciding which sub-policy has
generated each observation. Thus, limiting this entropy ensures that different sub-policies represents different and
separate solutions.

3.2.3 Optimization Problem

To derive the resulting optimization problem, we combine all the equations and constraints derived in this section to
build the following constrained optimization problem:

maxπJ(π) =maxπ
∑

o

∫

π (o)π (a | o)Rada

s.t. ε ≥ DK L (π (o)π (a | o) ‖ q(a)p (o | a)) ,
∼
κ ≥ Ea [H (p (o | a))] ,

1 =
∑

o

∫

π (o)π (a | o) da.

The focus of the remaining of this thesis is to replace this hierarchical formulation with a representation that does not
require the definition of the number of options inside the mixture model that represents the upper-level policy. Therefore,
in the next section, we will introduce a non-parametric representation that will allow us to replace our finite mixture
model (FMM) by an infinite mixture model, know as Dirichlet processes.

3.3 Dirichlet Process

Dirichlet processes are a family of stochastic processes commonly used in Bayesian non-parametric models, whose draws
are Dirichlet distributed probability distributions. In other words, it is a distribution over distributions typically used
as a conjugate prior for discrete distributions that are infinite and non-parametric, i.e. can not be described by a finite
number of parameters. With this prior, we can describe and infinite model with an unknown number of components,
letting those grow freely with the observed data. G ∼ DP(α0, G0) denotes a Dirichlet Process (DP) and can be specified
by two parameters:

• Base distribution G0, which is basically the mean of the DP.

• Concentration parameter α0, which can be interpreted as an inverse-variance of the DP. The larger the α0, the
smaller the variance, and the DP’s mass will concentrate more around its mean. This parameter is also know as
strength parameter, as it can also be seen as the strength of the DP prior over distributions measured in units of
mass (or sample size) of observations.

With this definition, it is possible to extend the finite mixture model used in previously developed Hierarchical Policy
Search methods to a infinite mixture model [10] and therefore overcome the difficulties and limitations involved in
defining the number of components prior to learning.
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3.3.1 Dirichlet Process Construction and Representations

The intuition of a DP and its main properties can be better understood by describing the process through three different
metaphors that will be briefly summarized in the rest of this section.

Pólya Urn Model

The Pólya urn model describes a method to generate independent and identically distributed (i.i.d.) random variables θn
distributed according to G.
In an urn model, we assume G0 to be a distribution of colors; balls correspond to data points whereas colors represent
each probability distribution θn, which we can interpret as a cluster. The process goes as follows:

1. Start with an empty urn.

2. With probability∝ α0, draw θn ∼ G0 and add a ball of that color into the urn.

3. With probability∝ n− 1 (i.e., the current number of balls in the urn), pick a ball at random in the urn, record its
color θn and return the ball into the urn while adding a second ball of the same observed color into the urn.

This method can be summarized as a way to predict a cluster for a new sample based on the existing sample’s assignments
through the following conditional distribution:

θn | θ1:n−1 ∼
α0G0

α0 + n − 1
+

∑n−1
i=1 δθi

α0 + n − 1
(3.1)

where δθi
is a point mass located at θi .

This predictive distribution reveals one of the important properties of DPs. The point masses located at θ1:n suggests that
draws from G will take with some positive probability the same value, implying that G itself is composed of a sum of
point masses, i.e. it is a discrete distribution.

Chinese Restaurant Process

The above described method gives a first intuition on the clustering property of the DP that can be further explored with
another metaphor called the Chinese Restaurant Process (CRP), that defines a distribution of the set of samples {1, . . . , n}
into K < n clusters. Each cluster k contains a partition of the set of samples given by θ1:n , where all the θi ’s are equal to
θk.
The metaphor can be described by the following steps:

1. Assume a Chinese restaurant with an infinite amount of empty tables, representing clusters, each of which can
seat an infinite number of customers, representing data samples.

2. The first customer sits at the first table.

3. Customer n sits at an occupied table k with probability nk/α0 + n − 1, where nk is the number of customers
currently sitting at table k, or sits at a new table K + 1 with probability α0/α0 + n − 1.

This process can also be used to generate parameters for each clusters from a base distribution G0 based on the current
assignments as follows:

θn | θ1:n−1 =

¨

θk with probability nk
α0+n−1

θK+1 with probability α0
α0+n−1

(3.2)

where θK+1 ∼ G0 represents a new draw from G0.
This process illustrates a particularly import property of the DP, that is the rich-gets-richer phenomenon. The larger nk
is, the higher the probability of a new data sample to join it, and thus making larger clusters grow faster. This results in
only a limited number of clusters being occupied although there are an infinite amount of them available, ensuring the
feasibility of sampling from a DP mixture, as will be shown in next sections.
Another interesting aspect to note is how α0 affects the dispersion of the samples by directly controlling the number of
clusters, as the probability of a new cluster being created is proportional to α0, with larger α0 leading to a higher number
of clusters a priori.
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Figure 3.1: Finite Mixture Model (left), Dirichlet Process Mixture Model in stick-breaking representation (center) and
Dirichlet Process Mixture Model in Pólya urn representation (right)

Stick-breaking Process

The above representations showed both the discrete and clustering properties of the DP by taking draws from G. The
stick-breaking process is a constructive method that explicitly shows that G is composed of a weighted sum of point
masses:

G =
∞
∑

k=1

πkδθk
(3.3)

where θk ∼ G0 . The mixture weights π= (πk)
∞
k=1 can be constructed as follows:

1. Start with a stick of length 1 and break it at β1 ∼ Beta (1,α0), assigning the broke off stick length to π1.

2. Recursively break the remaining stick at βk ∼ Beta (1,α0) to obtain the remaining weights π1,π2, . . . ,πk.

The process can be summarized as follows:

βk ∼ Beta (1,α0)

πk = βk

k−1
∏

i=1

(1− βi) (3.4)

The stick-breaking distribution π = (πk)
∞
k=1 satisfies

∑∞
k=1πk = 1 and can be written as π ∼ GEM (α0), named after

Griffiths, Engen and McCloskey.

3.3.2 Dirichlet Processes Mixture Model

A Dirichlet Process Mixture Model (DPMM) can be viewed as an extension of the finite mixture model (FMM) previously
used in Hierarchical Policy Search methods when the number of components go to infinity [10]. For that reason, the
FMM will be first described before considering the infinite model and its implications.
A graphical representation of a FMM is given in Figure 3.1, which can be equally described by the following probability
distributions:

π | α0 ∼ Dirichlet (α0/K , . . . ,α0/K) (3.5)

zi | π ∼ Multinomial (π) (3.6)

θk ∼ G0 (3.7)

x i | zi , {θk}
K
k=1 ∼ F

�

θzi

�

(3.8)
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In a FMM, the mixture weight π of each component is sampled from a symmetric Dirichlet prior with concentration
parameter α0 as in (5), which is used to parametrize the multinomial distribution from which the components will be
selected as in (6). The component associated to each data point x i is specified by a indicator variable zi ∈ {1, . . . , K}. The
data point x i is then generated by sampling from the distribution F

�

θzi

�

parametrized by the component parameters θzi
as in (8). The component parameters θk are sampled from a common conjugate prior distribution G0.
When it is not possible to determine the fixed number K of components, the FMM should be replaced by a DPMM by
letting K go to infinity, as shown by the graphical representation in Figure 3.1. To generate the the DPMM, the Dirichlet
prior for the mixture weights vector is replaced by the stick-breaking construction π∼ GEM (α0), and the new conditional
distributions for the DPMM are given as follows:

π | α0 ∼ GEM (α0)

zi | π ∼ Multinomial (π) (3.9)

θk ∼ G0

x i | zi , {θk}
∞
k=1 ∼ F

�

θzi

�

By omitting the indicator variables, we can get the DPMM in the Pólya urn representation by letting θi = θzi
, expliciting

the generative process of the component parameters. The graphical representation is in Figure 3.1 and the equivalent
conditional probabilities are the following:

G | G0,α0 ∼ G0

θi ∼ G (3.10)

x i | θi ∼ F (θi)

The conditional distributions of the indicator variables zi can be derived for the FMM [10]:

P (zi = k | z−i ,α0) =
nk,−i +α0/K

α0 + n − 1
(3.11)

where z−i represents the number of data points assigned to the k-th component excluding the i-th point. By letting K go
to infinity, the conditional distributions reaches the following limits:

P (zi = k | z−i ,α0) =
nk,−i

α0 + n − 1
, for cluster k with nk,−i > 0

P (zi = K + 1 | z−i ,α0) =
α0

α0 + n − 1
, for new cluster (3.12)

The above equations illustrate how the DPMM is closely related to the previously described Chinese Restaurant Process,
as Equations (3.12) and 3.(2) are equivalent. Therefore, the rich-gets-richer property of the Dirichlet Process and the
influence of the concentration parameter α0 also apply to the infinite mixture model.

The DPMM gives us a flexible mixture model in which the number of components grows with the observed data, but
the difficulty remains on fitting the component parameters by inferring its posterior distribution. Usually, Expectation
Maximization (EM) algorithm is used for inference in a mixture model, but the non-parametric nature of G makes it
difficult to implement. One usual way of dealing with this issue is to use a Monte-Carlo Markov chain (MCMC) sampling
method called Gibbs Sampling, which will be derived for the DPMM in the next section.

3.3.3 Gibbs Sampling Method for Dirichlet Process Mixtures

Gibbs Sampling is a Markov chain Monte Carlo (MCMC) algorithm used when sampling from a multivariate joint distri-
bution directly is difficult or the distribution itself is not know explicitly, but the conditional probability of each variable
is easier to sample from. The Gibbs sampler generates a Markov chain of samples, in which samples of each variable are
iteratively drawn conditionally on the current values of other variables.

Although implementing a Gibbs sampler on a DPMM based on the Pólya urn representation (10) may seem easier, as the
only unknown variables are {θi}

n
i=1 it is usually very inefficient. With this method, we would draw from the posterior

9



distribution of θi conditioned on all the other variables θ−i and the observations. This means that, at each iteration, the
component parameters must be sampled n times in order to update the parameters of a single data point. As the data
points are grouped in a finite number of components, a more efficient way to implement the Gibbs sampler is to operate
on all of the data points assigned to each mixture component simultaneously. This method is easily implemented when
using the stick-breaking representation of DPMMs (3.9), in which indicator variables z are used to identify at which
component each data point x i is assigned and the component parameters are related to each indicator variable instead
of each data point, as illustrated in Figure 3.1.

Before deriving the Gibbs sampling method for DPMM, it is easier to start with the FMM case. The Gibbs sampler will
alternately draw samples from each of the variables while keeping all the others fixed: the indicator variables z= {zi}

n
i=1,

the mixture weights π and the parameters of the mixture components θ = {θk}
K
k=1, while the concentration parameter

α0 and the parameters of the base distribution G0 are assumed to be known . Thus, the first step to implement the Gibbs
sampler is to derive the conditional posterior distribution for all these variables by exploiting both Bayes rule and the
inherent Markov properties of FMMs.

First, we derive the conditional posterior distribution for each indicator variable zi:

p
�

zi = k | z−i ,x, {θk}
K
k=1 ,π,α0

�

= p
�

zi = k | x i , {θk}
K
k=1 ,π

�

(3.13)

∝ p
�

zi = k | {θk}
K
k=1 ,π

�

p
�

x i | zi = k, {θk}
K
k=1 ,π

�

(3.14)

= p (zi = k | π) p (x i | θk) (3.15)

= πk f (x i | θk)

In this derivation, the Markov property of the FMM is explored in (13), (14) uses the Bayes rule that posterior∝prior ×
likelihood and (15) uses the definition of indicator variables and the Markov property again.

For the mixture weights π, we derive its conditional posterior:

p
�

π | z,x, {θk}
K
k=1 ,α0

�

= p (π | z,α0) (3.16)

= Dir (ni +α0/K , . . . , nK +α0/K) (3.17)

where nk =
∑n

i=1δ (zi − k). In the above derivation, (3.16) results from Markov property and (17) uses the property of
the conjugate Dirichlet prior.
The conditional posterior for the component parameters need also to be derived. The mixture parameters {θk}

K
k=1 and

weights π are mutually independent conditioning on the latent indicator variables z:

p
�

π, {θk}
K
k=1 | z,x,α0

�

= p (π | z,α0)
K
∏

k=1

p (θk | xk) (3.18)

This result shows how the conditional posterior of θk depends only on the observations xk assigned to its k-th component,
and therefore can be derived as follows:

p (θk | θ−k,z,x,π,α0) = p (θk | xk) (3.19)

∝ G0 (θk) f (xk | θk) (3.20)

Here, (3.19) uses the Markov property and the results from (3.18), while (3.20) uses the Bayes rule.
In (3.17), the mixture weights π are directly sampled from a Dirichlet distribution, which is difficult when extending the
sampler to DPMMs as K go to infinity. One alternative is to derive the conditional posterior of the indicator variable zi
integrating the mixture weight π out [10]:

p
�

zi = k | z−i ,x, {θk}
K
k=1 ,α0

�

= p (zi = k | z−i , x i ,θk,α0) (3.21)

∝ p (zi = k | z−i ,θk,α0) p (x i | zi = k,z−i ,θk,α0) (3.22)

= p (zi = k | z−i ,α0) p (x i | θk) (3.23)

=
nk,−i +α0/K

α0 + n − 1
f (x i | θk) (3.24)
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where (3.21) uses the Markov property, the definition of indicator variables and the results from (3.18), (3.22) uses the
Bayes rule, (3.23) the Markov property and (3.24) the results in (3.11).
With all the conditional posteriors properly derived, it is possible to extend the Gibbs sampling method for FMM to DPMM
by letting K go to infinity. In this case, the conditional prior of zi becomes (3.12) and we can use the result in (3.24) to
rewrite the conditional posterior of z i as follows, for the case when zi is assigned to one of the existing components:

p
�

zi = k | z−i ,x, {θk}
K
k=1 ,α0

�

=
nk,−i

α0 + n − 1
f (x i | θk)

We still need to derive the conditional posterior for z i for the case when it is assigned to a new component, denoted as
K + 1:

p (zi = K + 1 | z−i ,x,α0) = p (zi = K + 1 | z−i , x i ,α) (3.25)

∝ p (zi = K + 1 | z−i ,α0) p (x i | zi = K + 1,z−i ,α0) (3.26)

= p (zi = K + 1 | z−i ,α0) p (x i) (3.27)

=
α0

α0 + n − 1

∫

G0(θ ) f (x i | θ ) dθ (3.28)

In the above derivation, (3.25) uses the definition of indicator variables, (3.26) uses the Bayes rule, (3.27) uses both the
definition of indicator variables as well as the Markov property, and (3.28) uses the result in (3.12) and the definition
of marginal distribution. If zi is assigned to a new component K + 1, a new parameter θK+1 must be drawn from the
posterior distribution based on the prior G0 and the observation x i , increasing K by 1.
As previously investigated, the number K of components is very sensitive to α0 [13], making it necessary to choose a
weakly informative prior and learn it from the data. Applying a Gamma prior to α0 ∼ Gamma (a, b) makes it easy to
draw samples from its posterior via auxiliary method [13].
The whole Gibbs sampling method for DPMM can be summarized in Algorithm 1.
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Given
¦

z(t−1)
i

©n

i=1
,
¦

θ
(t−1)
k

©K

k=1
and α(t−1)

0 from the previous iterations , sample
¦

z(t)i

©n

i=1
,
¦

θ
(t)
k

©K

k=1
as follows:

1. Set z = z(t−1), α0 = α
(t−1)
0

2. For i = 1, . . . , n

a) Remove data point x i from component related to zi

b) If the current component zi becomes empty after Step (2.a), the component and its parameter are removed,
and K decreases by 1

c) Re-arrange the indicator variables z so that all are non-empty

d) Assign a new zi for x i by sampling from the following probabilities

p (zi = k, k ≤ K) ∝
nk,−i

α0 + n − 1
f (x i | θk) nk,−i =

∑

j 6=i

δ
�

z j − k
�

p (zi = K + 1) ∝
α0

α0 + n − 1

∫

G0(θ ) f (x i | θ ) dθ

e) If zi = K + 1, a new parameter θK+1 must be drawn from the posterior distribution based on the prior G0
and the observation x i , and increase K by 1.

3. For k = 1, . . . , K

a) Sample parameters θk for each component from the following distribution:

θ
(t)
k ∝ G0 (θk) f

�

x(t)k | θ
(t−1)
k

�

4. Set z(t) = z

5. Sample α(t)0 ∼ p(α0 | K , n, a, b) via auxiliary variable method [13].

Algorithm 1: Gibbs sampling for DPMM
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4 Contribution
In this chapter, the finite mixture model used in hierarchical formulations such as in HiREPS will be extended to the
infinite mixture case with the use of Dirichlet Process to model the mixture components of a policy and REPS to perform
the local optimization of the sub-policies.

4.1 Relative Entropy Policy Search in Infinite Mixture Model

In this chapter, the finite mixture model used in hierarchical formulations such as in HiREPS will be extended to the
infinite mixture case with the use of Dirichlet Process to model the mixture components of a policy and REPS [1] to
perform the local optimization of the sub-policies.

In HiREPS [4], as shown in previous chapters, a finite mixture model was used, in which the number of options repre-
senting the sub-policies must be somehow set prior to the learning, and the update of the policies parameters is made
through Expectation-maximization with the weights provided by the REPS algorithm. With the proposed method in this
thesis, the sub-policies will be represented by a Dirichlet Process, allowing the number of components in the mixture to
grow freely with the data without any prior knowledge of the underlying structure of the overall policy. The upper-level
policy is controlled by the concentration parameter α0 of the Dirichlet Process, that is directly related to the responsibil-
ities of each sub-policy. Finally, the sub-policies are updated via Gibbs Sampling [10] with the weights provided by the
previously described REPS algorithm.

In order to properly implement the Gibbs sampler to the update of the sub-policies, we must first define the prior G0 used
to each mixture component and derive its posterior distribution based on the observed data x, as well as the marginal
likelihood of x i . To be able to model the sub-policies in the most flexible way, the Normal-inverse-Wishart distribution
was chosen as our base distribution G0, allowing the learning of both mean and covariance matrix of each sub-policy. In
the next section, the equations needed to the implementation of the Gibbs sampler will be presented.

4.1.1 Normal-inverse-Wishart Distribution as Prior

A Normal-inverse-Wishart distribution is the conjugate prior of the multivariate normal distribution, with unknown mean
and covariance matrix. It is defined by four parameters NIW(µ0,κ0,Λ0,ν0) and it is possible to generate a random
variable with two basic steps [12] :

1. Sample Σ from an inverse Wishart distribution with parameters Λ0 and ν0

2. Sample µ from a multivariate normal distribution with mean µ0 and covariance matrix 1
κ0
Σ

In step (2.e) of the previously shown Gibbs sampling algorithm, new component parameters θK+1 must be drawn from the
posterior distribution based on the prior G0 and the observation x i . It can be shown [12] that the posterior distribution
of the parameter of the Normal-inverse-Wishart distribution is given as follows:

p (µ,Σ | x,µ0,κ0,Λ0,ν0) = NIW (µ,Σ | µn,κn,Λn,νn)

µn =
κ0

κ0 + n
µ0 +

n
κ0 + n

x̄

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + S +
κ0n
κ0 + n

( x̄ −µ0) ( x̄ −µ0)
T

where S =
∑N

i=1 (x i − x̄) (x i − x̄)T is the scatter matrix.

In step (3.a) of the previously shown Gibbs sampling algorithm, the updated parameters of each component θk must be
drawn from the marginal likelihood of xk. It can be shown [12] that this distribution is derived as follows:
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∫

G0(θ ) f (x i | θ ) dθ =
1

πnd/2

Γd (νn/2)
Γd (ν0/2)

|Λ0|
ν0/2

|Λn|
νn/2

�

κ0

κn

�d/2

With those equations in hand, we can now fully implement a version of the Gibbs sampling algorithm with REPS opti-
mization.

4.1.2 Infinite Mixture Models with Relative Entropy Policy Search

In order to optimize over the sub-policies, we need to incorporate the weights from REPS algorithm into the Gibbs sam-
pler. Instead of directly applying the weights to the mean and covariance matrix of the sub-policies, we apply them to
the parameters of the inverse scale matrix Λ right before the update step (3.a) of the Gibbs sampling algorithm.

The learning in the upper level policy is controlled by the concentration parameter α0 of the Dirichlet Process, that
affects both the quantity of components to be stay active during the learning process, as well as the responsibilities of
each sub-policy. The learning of α0 is currently being done by sampling α(t)0 ∼ p(α0 | K , n, a, b) via auxiliary variable
method [13]. It is useful to initialize α0 with a non-informative Gamma prior, but the sensitivity of the Gibbs sampler
to the concentration parameter is too high, making the task of properly initializing and updating α0 one of the biggest
challenges in this hierarchical policy search model.
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5 Experiments
In this chapter, all of the conducted experiments with the Gibbs sampler and the REPS with applied to infinite mixture
models will be further detailed.

5.1 Clustering

Before trying to optimize the sub-policies with REPS, we should be able to apply the pure Gibbs sampler in order to
update the mixture components parameters based on the assignments of each observed data sample. The natural first
step to implement this algorithm is thus to apply it in a simple clustering problem of a Dirichlet-distributed data in order
to investigate and understand its behaviour.

5.1.1 2D Clustering

The first example to be investigated is a 2D clustering problem with its data distributed according to Figure 5.1 and the
means of each clusters stated in Table 5.1.

5.1.2 4D Clustering

In order to investigate the performance of the Gibbs sampler in a higher-dimensional space, another clustering example
was built with 4-dimensional clusters, with its respective means presented in Table 5.1.

5.2 Dirichlet Process Mixture Model with REPS

The idea of applying REPS to the infinite mixture model is to optimize the sub-policies evaluating the contribution of
each observed data sample regarding to the average reward applying weights to each of the data samples. The idea of
applying REPS to the infinite mixture model is to optimize the sub-policies evaluating the contribution of each observed
data sample regarding to the average reward applying weights to each of the data samples. We tested the algorithm in
a 2-dimensional test bench function called Himmelblau function, illustrated in Figure 5.2. This function will act as the
reward in our reinforcement learning task, and the goal is to find all of its zeros denoted in Table 5.2. The algorithm will
be run for three different values of the concentration parameter α0 and the initial data distribution while keeping the
other parameters fixed.

5.3 Initial Settings

For all tests, the base Normal-inverse Wishart distribution prior is set in such a way that acts as a non-informative prior
[12] to the sub-policies or clusters, i.e. NIW(0, 4.5, I , d + 1), where d is the dimension of the data.

µ0 µ1

-5 5

-5 -5

5 5

5 -5

15 -5

15 5

µ0 µ1 µ2 µ3

-5 5 -2 2

-5 -5 -2 -2

5 5 2 2

5 -5 2 -2

Table 5.1: Clustering problem: means of clusters for 2D and 4D case
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Figure 5.1: 2D Clustering problem: application of Gibbs sampler to a clustering problem in order to investigate its behavior
and update the mixture components parameters

Figure 5.2: Himmelblau function: the testbench function will provide the rewards to our reinforcement learning environ-
ment, and the goal is to find all of its zeros. Image from Wikimedia Commons, the free media repository

µ0 µ1

3.0 2.0

-2.8 3.13

-3.78 -3.28

3.58 -1.85

Table 5.2: Zeros of the Himmelblau function

16



For the 2D clustering problem, the Gibbs sampler was run a total of 100 times with n= 100 samples.
For the 4D clustering problem, the Gibbs sampler was run a total of 100 times with n= 200 samples.
For the DPMM with REPS case, the optimization loop will be run 100 times, where at each iteration the Gibbs sampler
will be run 150 times in order to fit the new policy parameters with n = 500 samples. The entropy bound ε is set to a
low value 0.1 to avoid premature convergence. Three different values for the concentration parameter α0 will be used:
10, 15 and 11.
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6 Results

6.1 2D Clustering

The results of the 2D Clustering problem can be viewed in Figure 6.1. In the figure, only the clusters that hold more than
5% of the total data are represented. It is important to note here that the Gibbs sampler returned a higher number of
clusters K = 12 that contained only an insignificant portion of the data, as we expected from the formulation of infinite
mixture models.
It is also possible to analyse the accuracy of the clustering as well as the number of clusters across the iterations in Figure
6.2 . From this figure, it is possible to observe how fast the algorithm converges to the final accuracy and number of
clusters, with less than 20 iterations needed.
In Figures 6.3 to 6.8, each of the cluster means were sampled 100 times in order to visualize the variance at each
dimension.

6.2 4D Clustering

It is also possible to analyse the accuracy of the clustering as well as the number of clusters across the iterations in Figure
6.9 .
In Figures 6.10 to 6.13, each of the cluster means were sampled 100 times in order to visualize the variance at each
dimension.

Figure 6.1: 2D Clustering problem: Comparison of initial data distribution with final clustering result
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Figure 6.2: 2D Clustering problem: Accuracy and number of cluster across iterations

Figure 6.3: 2D Clustering problem: Mean values of cluster K0sampled 100 times

µ0t rue µ1t rue µ2t rue µ3t rue

-5 5 -2 2

-5 -5 -2 -2

5 5 2 2

5 -5 2 -2

µ0test µ1test µ2test µ3test

-4.70686 5.29424 -2.30452 1.2903

-5.00184 -4.63845 -2.42868 -2.25678

5.44083 5.01058 1.66255 2.18746

4.1167 -5.15411 2.21012 -1.4298

Table 6.1: 4D Clustering problem: Comparison of true mean of the clusters with final means after Gibbs Sampling
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Figure 6.4: 2D Clustering problem: Mean values of cluster K1sampled 100 times

Figure 6.5: 2D Clustering problem: Mean values of cluster K2sampled 100 times
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Figure 6.6: 2D Clustering problem: Mean values of cluster K3sampled 100 times

Figure 6.7: 2D Clustering problem: Mean values of cluster K4sampled 100 times
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Figure 6.8: 2D Clustering problem: Mean values of cluster K5sampled 100 times

Figure 6.9: 4D Clustering problem: Accuracy and number of cluster across iterations
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Figure 6.10: 4D Clustering problem: Mean values of cluster K0sampled 100 times

Figure 6.11: 4D Clustering problem: Mean values of cluster K1sampled 100 times
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Figure 6.12: 4D Clustering problem: Mean values of cluster K2sampled 100 times

Figure 6.13: 4D Clustering problem: Mean values of cluster K3sampled 100 times
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µ0 µ1

3.0 2.0

-2.8 3.13

-3.78 -3.28

3.58 -1.85

µ0 µ1

-2.82373 2.64739

2.97223 -1.21415

Table 6.2: DPMM with REPS and α0 = 10: Comparison of the zeros of the Himmelblau function with means of the final
sub-policies

Figure 6.14: DPMM with REPS and α0 = 10: average reward and number of mixture components across iterations of the
Gibbs sampler

6.3 Dirichlet Process Mixture Model with REPS

6.3.1 First Run

At the first run with concentration parameter α0 = 10, a comparison of the final optimized sub-policies means with the
actual zeros of the Himmelblau function can be seen in Table 6.2.
In Figure 6.14, it is possible to see the total average reward of all sub-policies and the total number of components across
the iterations of the Gibbs sampler.

6.3.2 Second Run

At the second run with concentration parameter α0 = 15, a comparison of the final optimized sub-policies means with
the actual zeros of the Himmelblau function can be seen in Table 6.3.
In Figure 6.15, it is possible to see the total average reward of all sub-policies and the total number of components across
the iterations of the Gibbs sampler.

6.3.3 Third Run

At the third run with concentration parameter α0 = 11, a comparison of the final optimized sub-policies means with the
actual zeros of the Himmelblau function can be seen in Table 6.4.
In Figure 6.16, it is possible to see the total average reward of all sub-policies and the total number of components across
the iterations of the Gibbs sampler.
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µ0 µ1

3.0 2.0

-2.8 3.13

-3.78 -3.28

3.58 -1.85

µ0 µ1

3.3643 1.90181

-3.98164 2.83827

-3.49055 -3.43048

Table 6.3: DPMM with REPS and α0 = 15: Comparison of the zeros of the Himmelblau function with means of the final
sub-policies

Figure 6.15: DPMM with REPS and α0 = 15: average reward and number of mixture components across iterations of the
Gibbs sampler

µ0 µ1

3.0 2.0

-2.8 3.13

-3.78 -3.28

3.58 -1.85

µ0 µ1

-2.71741 -2.52

-3.80124 -3.46003

3.46121 -1.42731

Table 6.4: DPMM with REPS and α0 = 11: Comparison of the zeros of the Himmelblau function with means of the final
sub-policies
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Figure 6.16: DPMM with REPS and α0 = 11: average reward and number of mixture components across iterations of the
Gibbs sampler
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7 Discussion

7.1 Learning Performance

Comparing the performance of the Gibbs sampler in the 2D and 4D environment (Figures 6.2 and 6.9), it is possible to
observe how harder it was for the Gibbs sampler to cluster the data points accurately for a higher-dimensional problem,
along with ending the iterations with a higher number of final clusters. This might indicate a possible difficulty in apply-
ing this method to a high-dimensional robotic set-up.

The trials of the Dirichlet Process Mixture Model with REPS showed a lot of difficulties in achieving a satisfactory result.
It wasn’t possible to find all of the four solutions in any of the presented tests, while the solutions that were found pre-
sented a low precision, which may lead to bad final results as well as a very unstable learning (Figures 6.15 and 6.16)
process depending on the reward function under optimization. The results also show a quick convergence in all cases,
even though not all of the solutions were found or the precision of the present solutions is not that high.

The lack of robustness shown by the presented results indicates a high sensitivity of the algorithm to the hyperparameters
of both upper and lower level policies. The usage of an algorithm such as REPS to optimize the sub-policies requires a
lot of available samples in order to present good results, but unfortunately the computational cost of the Gibbs sampler
is too high, making the increase of data samples prohibitive.

7.2 Conclusion

The presented results show that it is possible to obtain multiple solutions to a task with a hierarchical representation using
infinite mixture models such as Dirichlet Process. However, it is still an open problem how to guarantee the convergence
to all of the solutions instead of only part of them. In HiREPS, this problem was mitigated with the introduction of a limit
to the expected change in the entropy H of the responsibilities of the sub-policies. As these responsibilities are directly
correlated to the concentration parameter α0, it is reasonable to assume that developing a proper method for initializing
and updating α0 might be a way to achieve a satisfactory non-parametric hierarchical policy search method.
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8 Outlook
In order to use a higher number of samples to improve the quality of REPS’s output, it is possible to replace the Gibbs
sampler by a much less computational-costly sampling method to fit the new parameters of the policy, such as the Varia-
tional Inference method [8].

Another open problem is how to properly control the learning in the upper-layer policy with the concentration parameter
α0 in order to keep a higher number of active components during the learning phase and not to loose important infor-
mation in the process. Layered approaches [5] in policy search explore this issue and should be further investigated to
improve the model.
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