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Abstract

In this thesis we develop a variational locally projected regression model. This work is
based on the ideas of principal component analysis, and its probabilistic formulation
and extension to mixture models. The general idea of this thesis is that many datasets
have an underlying structure that is difficult to detect in the data space itself. Doing
regression on such datasets requires overly complex models with redundant parameters
and leads to suboptimal approximations. In this approach, the dataset is transformed into
a higher dimensional latent space using nonlinear projections, such that the representation
of the data and its underlying structure simplifies. A mixture of probabilistic linear
models is trained on the projected data with variational inference, resulting in a bayesian
approximation with uncertainty quantification and reduced parameter redundancy.

Zusammenfassung

In dieser Arbeit entwickeln wir ein variationales lokal projiziertes Regressionsmodell. Diese
Arbeit basiert auf den Ideen der Hauptkomponentenanalyse und ihrer probabilistischen
Formulierung und Erweiterung auf Mischmodelle. Der Grundgedanke dieser Arbeit ist,
dass viele Datensétze eine zugrundeliegende Struktur haben, die im Datenraum selbst
schwer zu erkennen ist. Die Durchfiihrung von Regressionen auf solchen Datensétzen
erfordert iberméfig komplexe Modelle mit redundanten Parametern und fiihrt zu sub-
optimalen Ndherungen. Bei diesem Ansatz wird der Datensatz mit Hilfe nichtlinearer
Projektionen in einen héherdimensionalen latenten Raum transformiert, so dass sich die
Darstellung der Daten und ihrer zugrunde liegenden Struktur vereinfacht. Eine Mischung
probabilistischer linearer Modelle wird auf den projizierten Daten mit Variationsinferenz
trainiert, was zu einer bayesianischen Anndherung mit Quantifizierung der Unsicherheit
und reduzierter Parameterredundanz fiihrt.
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1 Introduction and Overview

With the development of affordable computers and rising processing power, artificial
intelligence and machine learning made considerable advancements in solving previously
intractable problems. The resulting technologies are increasingly important in our lives
and are adapted in various fields.

With the increasing number and size of available datasets, deep neural networks became
one of those advancements. They are easy-to-train universal approximators that can
handle high-dimensional and complex problems while being performant and achieving
exceptional results. A significant disadvantage of neural networks is that it is not well
understood how the learned parameters are related to the given task. They are also prone
to over-parametrization |1, [9], catastrophic forgetting [15], and unseen data can lead to
unexpected behavior [11].

In contrast, probabilistic methods like gaussian process regression (GPR) [21] offer a
principled Bayesian treatment that allows to counteract against over-parametrization
with Automatic Relevance Detection (ARD) [10] and offer uncertainty quantification [17]
for their results. There are, however, several downsides to methods that are using the
Bayesian framework. They are generally computationally more expensive and often have
many hyperparameters, making them difficult to tune and limiting their application to
complex tasks.

Another approach has been to simplify the dataset by combining multiple simpler models
such as mixture models [8] , as well as discarding dimensions by projecting the data
onto a lower-dimensional subspace [20], [5], [3]. Splitting the regression problem into
several sub-problems simplifies the training even with a Bayesian approach. However,
a downside is that data often contains repeating structures that may not be captured
when using several local approximators, leading to redundant parameters and inefficient
learning.

In this thesis, we try to make use of similar structures in the dataset by projecting the
datapoints onto a higher-dimensional latent space, such that the structure simplifies
under the projection. We then utilize a mixture of linear probabilistic models and use
Variational Inference (VI) to do regression on the projected data. This approach seeks to
combine the benefits of the Bayesian framework while being able to approximate complex
high-dimensional data and keeping the computational cost and parameter redundancy
low.




In the following chapters, several foundational techniques are introduced, starting with
Principal Component Analysis (PCA) in Section 2.1.

PCA is a widely used globally linear method that reduces the dimensionality of a given
dataset. In order to diminish its linear restriction, we then introduce the probabilistic
extension of PCA in Section 2.2, which enables a principled way of incorporating mixture
models.

To eliminate the need to specify the dimensionality of the projected data, we show how to
augment Probablistic Principal Component Analysis (PPCA) to a bayesian formulation
in Section 2.3. With Bayesian Principal Component Analysis (BPCA) we are able to use
ARD to infer the dimensionality-hyperparameter from the data.

In Section 2.4 we give an overview of the Expectation Maximization (EM) algorithm used
to efficiently learn the parameters of probabilistic models.

We then address variations of PPCA and BPCA that work with mixture models in Chapter
3. The variations Mixture of Probabilistic Principal Component Analysers (MPPCA)
and Bayesian Mixture Principal Component Analysis (BMPCA) can be applied to
more complex problems and build the foundations for the method proposed in the next
chapter.

Chapter 4 motivates the idea of this thesis, proposes a probabilistic model with a hidden
layer and demonstrates how to derive the learning algorithm with VI.

We end with a summary and propositions for future work.




2 Foundations

In this chapter several foundational technologies are introduced, that form the basic
building blocks to understand the proposed new method.

2.1 Principal Component Analysis

PCA is a technique capable of reducing the dimensionality of data, while minimizing the
loss of information [12,13,20]. It uses eigendecomposition to find an orthogonal coordinate
system, that is aligned with the directions of maximal variance in the data. The data
is then projected onto these principal axes, while omitting dimensions with the least
amount of variance. This results in an approximate representation of the data, with a
lower dimensionality. The linear subspace is called principal subspace. While PCA is a
globally linear method, we will later lift that restriction.

Reducing the dimensionality of a given dataset in a machine learning task, prevents
learning characteristics in the dataset, that have little influence on the given task, helps
reducing the complexity of the learned model and makes the learning process more
feasible.

Let D be the dimension of the given data, and ) the dimension of the principal subspace,
where @@ < D. And furthermore we define {t,},n € {1.N} as the D-dimensional
observations, {X,},n € {1..N} as the Q-dimensional projected data, and w;,j € {1..q}
as vectors representing the principal axes.

Given N datapoints t,,, we first calculate the sample mean by

1
t:NZtn.
n=1

Using the sample mean, we can define the sample covariance matrix S, which correlates
the variance of the data with the axes of the coordinate system of the dataset, with

N

1 _ B}
S=+ > (tn—B(t—1) "

n=1




By using eigendecomposition, we can derive the eigenvectors w; and eigenvalues A; of the
sample covariance matrix S, with

SW,; = )\zwz

The eigenvalue \; describes the variance of the data, along the corresponding eigenvector
W;.

Now we omit D — @ dimensions by choosing the @ largest (where @ < D) eigenvalues and
their corresponding eigenvectors and define a projection matrix W, where each column is
an eigenvector w;, written as

W= (wg,...,w,).

The projection matrix W can be used to project the data on the principal subspace, by
minimizing the sum-of-squares reconstruction cost. The projected X,, are defined as

x, = Wl (t, — t).

The lower dimensional approximate data representation x can be used to reconstruct the
data in the original coordinate space using the inverse projection [6]. The reconstructed
datapoints t,, are given by

t, = Wx, +t

In Figure 2.1 on page 5, we see observations (in blue), that are sampled from a skewed
two-dimensional Gaussian distribution, and the reconstructed datapoints t, in yellow.
We can see that on the omitted dimension, information is lost.




5} p-dimensional observations
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Figure 2.1: PCA applied to a dataset, sampled from a skewed two-dimensional Gaus-
sian distribution. The samples, shown in blue, are projected onto a one-
dimensional principal subspace, which principal axis rotated in the direction
with the biggest variance. The projected datapoints are then projected back
into the original space, and being shown in yellow.




2.2 Probabilistic Principal Component Analysis

PPCA is a probabilistic formulation of PCA as proposed by [18] and [20] , giving several
advantages over the previously introduced non probabilistic version of PCA.

With a probabilistic model, we gain the ability to generate datapoints, deal with missing
data and apply it to classification problems. We can also find solutions for high dimensional
data more efficiently, using the EM algorithm. Furthermore we can combine multiple
sub models into a mixture model in a principled way [6]. If the covariance oI would be
defined as a diagonal matrix W where the diagonal values can differ, this algorithm is
called factor analysis [16].

We again look at a dataset of dimension D, consisting of IV datapoints t,, and introduce
a (Q-dimensional latent variable x,, for every t,.

The dimensionality of the latent space is again supposed to be lower than the data space:
Q< D.

A general transformation between the latent- and dataspace with added noise is given
by
t=y(x;w) + €.

In this case we use a linear transformation, with the projection matrix W, an offset
and added noise €, we can formulate

t=Wx+pu+e, (2.1)

where the projection matrix W is a D x () matrix, whose column vectors span the principal
subspace.

For a probabilistic treatment, we need to introduce a prior distribution over the latent
variable x with

p(x) = N(x[0,I).

The conditional distribution is also gaussian, with a mean given by the linear transforma-
tion (2.1), and for the variance we introduce a new parameter o, resulting in

p(tx) = N (EWx + pr, 0%Ip).




Given the prior- and conditional distribution, we can integrate over the latent variable x to
obtain the marginal distribution over the observed data t. Since we use a conjugate prior
distribution, the marginal is a gaussian with mean @ and covariance C, given by

p(t) = / P(tR)p(%) dx = A(t]s, C). (2.2)

Under the assumption that x and € are independent, we can derive the mean of (2.2) by
using the expectation [20]

E[t] = EWx + p + €] = p.
We see that the mean of the marginal distribution is given by the offset parameter p in
(2.1).
For the covariance C we find
C=E[(Wx+e)(Wx+e)]
=EWxx'W'] + E[ee]
=WW' +5%1p.

Instead of calculating the inverse of the covariance matrix § with dimension D x D
directly, we use the matrix inversion identity [6]

Cl=01-o WM WT,

where
M= W!W + ¢’ (2.3)

This transformation simplifies the inversion of the D x D matrix S, to an inversion of the
@ x @ matrix M, which can be a significant computational advantage on high-dimensional
datasets.

The predictive distribution can now be written as
p(xit) = N XMW (£ — pr), ML),

In the next section, the maximum likelihood solutions are shown.
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Figure 2.2: Graphical model of PPCA. Each observation t,, is modeled by a directed
graph with the mean p, variance o2 and projection W. For each t,, there is a
corresponding x,,.

2.2.1 Maximum Likelihood Solutions

In order to approximate the given data, with the derived model, we need to find the
optimal parameters pu, o and W.

Defining the log likelihood function as

N
Inp(T|p, W,0%) = Inp(t,|W, u, 0”)

n=1
N
=3 Nt 1, C)
n=1
N 1
=) e e - Lt - TC 60— 0}
n=1
N
_ _D _1 L \Te-lg
—zzjl[ S In(27) ~ 3IniC] — 56— )€ (6~ )
ND N 1
_ ¥ v = . TpH-—1 _
=~ el 5 3~ € )

we can set the derivatives w.r.t the parameters equal to 0, and solve the equation for the
corresponding parameter, in order to find the maximum likelihood solutions.




The mean p is defined as the mean of the dataset

B =t

Substituting the result for p back into the log likelihood function and using the sample
covariance matrix S

1 N
S=— (t,—D(t,— 1),
v -0t —0
the log likelihood simplifies to
2 N -1
Inp(T|W, p, 0%) = —E{dln(27r) +In|C| + tr[CT'S]} (2.4)
= L(T|u, W, o).

The maximum likelihood solution for W results in

Wi = Un(Lys — o2I)2R,

where the columns of Uy, are the eigenvectors for S and Ly is a diagonal matrix with
the corresponding eigenvalues at the diagonal [20].

The average variance, that is lost per discarded dimension can be calculated with

If the variance o — 0, this is equal to non-probabilistic PCA.

For the posterior distribution we have

p(zlt) = N (Z MW (t — p),o?ML).

Choosing a suitable value for @) is not always straight forward. While cross-validation can
be used to compare and select the reduced dimension, it becomes computationally costly




for large datasets. In the next chapter, we will introduce a method that will automatically
infer the projection dimensionality from the dataset.

To project a given point X, in the latent space, back to the data space (X,), we need to
calculate the posterior mean of X from

E[X,|t,] = MWL, (t, — 1).

As an example, we sample datapoints t,, from a skewed two-dimensional gaussian distribu-
tion (samples in blue), and plot the one-dimensional projection values X, after projecting
them back into the data space.

1.0
o
° &
05F
0.0}
_0.5 =
° )
°8 o
° © original datapoints
:. © projected datapoints
o
-2 -1 0 1 >

Figure 2.3: PPCA Example. The blue points represent the datapoints t,, with the orange
points represent the projected latent values x,,.
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2.3 Bayesian Principal Component Analysis

One drawback with the previous approach of PPCA is, that we need to choose the
dimension () of the principal subspace. While it sometimes is possible to make an
educated guess by e.g. plotting the dataset, it is not always easily seen [6].

To derive the dimension of the principal subspace automatically, we make use of the
Bayesian framework and its capability to do Automatic Relevance Detection (ARD).
Therefore we assign prior distributions to our model parameters and marginalize over them.
This method is called BPCA. Because the marginalization is analytically untractable, we
will use evidence approximation, which is suitable for a large amount of datapoints and
tightly peaked posterior distributions [5].

S

o | (%) (I
u—@

N

Figure 2.4: Graphical Model of BPCA. Like in PPCA every observation t,, has a corre-
sponding latent variable x,,. In BPCA, the projection matrix W is governed
by the hyperparameter «, to automatically suppress dimensions with low
variance.

First we introduce independent gaussian priors over each column of W, where each column
represents a basis vector of the principle subspace. We set W to be an D x () matrix, where
@@ = D — 1. While this ensures that the data is simplified by at least one dimension, it
does not restrict the solution to use even less dimensions. The resulting dimensionality is
defined by the hyperparameters «;, which control the inverse variance of the corresponding
w;. The probability distribution of W given « is given by

Q
pwWia) = [T(597 2 exp { - Jamwlwi}. (25)

=1

1



By maximizing the marginal likelihood (2.6), some of the «; in equation (2.5) may be driven
to infinity, which in turn will force the corresponding exponent to become increasingly
negative and the corresponding w; is driven zero, therefore practically eliminating the
dimension from the latent space. Using the hyperparameter o to suppress certain wj is
similar to ARD as introduced by [14]. For the marginal likelihood we define

P .0%) = [ pXIW. p02)p(Wlax) aW, (26)
The maximum Wjsp can be found by maximizing the log posterior

D-1
1
Inp(W|D) = L(p, W, 0%) — 3 D ail|wi||? + const, (2.7)
i=1

where L is given by (2.4).

When treating p, 02 and « as parameters without prior distributions, we can determine
p and o2 with maximum likelihood, and a using type-II maximum likelihood [5].

As shown by [7], the update for a results in

Vi

[[wi [

(673N

with the effective number of parameters in w; given by

v =d— oy tI‘(H_l).

H denotes the Hessian matrix, which is the second derivative of Inp(W|D) w.r.t W,
evaluated at Wy p.

To circumvent the calculation of the Hessian matrix, we make the assumption that v; = D,
which simplifies the update of a to

(2.8)

12



For the derivation of the update for W we can use the EM algorithm, which is explained
in Section 2.4.

In the E-step we evaluate the expected sufficient statistics of the latent-space posterior

[5]
E[x,] = M~ 'WT(t, — p),

and
E[x,xL] = ¢*M + E[x,,] E[x,]7,

with M given by (2.3).

In the M-step we keep X constant, while updating W and o2. Getting

Woew = {i(tn -1 E[xn]T] {i Ex,x1] + azdiag(a)] *1,

and

D
1
U?zew - m Z {th - /J’”2 - ZE[XZ]WZG’LU (tn - “’) + TT[E[X’VLX?;]WEBU)WNBW] }
n=1

The update of W and o? is alternated with re-estimation of a using (2.8).

13



2.3.1 Derivation of Variational Inference Updates

Instead of estimating the parameters p, 02 and a with the maximum likelihood approach,
we will now use a fully bayesian treatment and introduce prior distributions for each. The
update equations over all parameters are derived by using VI [3,6, 16].

First we introduce the complete set of model densities

p(x) = N (x]0,1,),
p(t|x) = N(Wx 4 p, 77 1,),
p(p) = N(p|0,37'1),

with C being defined as C = WW ' + 71.

To calculate the posterior update equations, we factorize the joint distribution into a
posterior distribution ¢ for every parameter like

qW, a, p, 7) = ¢(W)g(a)q(p)q(T).

For each function ¢(p), where p is the corresponding variable, we take the logarithm of
the joint density, omitting all terms that do not depend on p, and take the expectations
over all variables, except p itself.

14



2.3.2 Updating o

The update equations for the posterior over ¢ can be found by

=[] o

wuT

Jaw [mp(wm) +Inpla)

Ing(a

[lnp(t]x W, pu,7) + Inp(W|a) + Inp(ex) + Inp(p) + Inp(7)

p(Wia)p(a)
T1(32)" eso{ - oo 1T 5557

b 1
H T(a) ( ) ) eXP{ - Eai”wi||2 - baai}]

-i=1
r q a p

aty—l (L2 A
oo - (o
- q 5
H Oaf_le_b(wi)o”] .
Li=1

We see that the posterior ¢(a) has the form of a Gamma function I'(a|aq, by) with the
parameters

as well as the shape parameter

i
a=a 5
~ 1
b(wi) =b+ 3 E[|[w|],
P
(2m)4T(a)

15



2.3.3 Updating p
For p we get

- N
I00(0) = B | S Inp(tx,, Woaa, ) + I

-n=1

r N
= EW,w,T,a Z IHN(tn’WXn + w, Tﬁl) + N(H|0, ,31):|
-n=1

_E _ﬁjdhm-—ﬂnl—%t—mm)Tnt—mm»
= LBweTra 9 W 9 - g \In n) THlp n

-n=1
1
= ln27r — = ln 5 uTﬁIu}
N
d 1.1
= EWJ?,ﬂa |:Z {2111271' - iln;
n=1
1
3 (t;ertn — tITWXn —t, T — XZWTTtn — X,IWTTWXH + XTTLWTT;L + IJ/TT[J,)}
d 1
71n27r — flng - = Tﬁlu}

Joining the two quadratic terms g p

N
[Z HTTIIL] + " Blp = pT (B + N7)lp,

we obtain a Normal distribution with variance

Sy =(B+N7)'L

Since ¥, is a diagonal matrix, it is true that 2; = X, which leads to the mean

16



2.3.4 Updating x

The posterior parameters of X can be found with

Ing(x,) = Ewpra [lnp(tn|Wxn 4+ p, 71 +Inp(WJ0,a™!) + Inp(7) + Inp(a) + In p(x,|0,T)
=Ewp, - [lnp(tn]WXn + 1, 7Y + Inp(x,|0,1)| 4+ Co
=Ew, [ — %(tn —Wx,, — ) " 7(t, — WX, — u) + Inp(x0]0,1) + Cl}
= Ew [ - é(tn ~Wx, — ) ' 7(t, — WX, — i) + Inp(x,,|0,1) + 02:|
= —l(tn —Wx, — ) "7 (t, — Wx,, — 1) + In p(x,|0,1) + Cs
= ——(t, —Wx, — ) " 7(t, — WX, — i) — %xlxn + C3
— % [t;[Ttn — tTFWx, — t 7 — X, W Ft, + x| W' 7Wx,,

+X'W T - Ft, + B TWX, + T+ X xn] + C3

= _% [xz (W' FW + D)x,, — (2t) 7W — 21 ' 7W)x,, + ] +C3

— _% [x,flexn — 27 (t] W — W)X, + } + Cs.

The posterior ¢(X) is given by ¢(x) = N (x|m,, X, ), with

S = (W #W + 1)1,
and

T _
my = 73xW (t, — ).

17



2.3.5 Updating W

For the posterior of W we can derive

ln q(w.]) = E[,L,T,(X,X

= Euma,x

= ]Eumax

=Eurax

N
[D " Inp(tx, W, p, 7)] + Inp(x) + Inp(W|a) + Inp(c) + Inp(p) + Inp(7)

%((tn - Wjin - ”)TTI(tn - Wjin - /J’))}

d 1
Ina; — 5 In2r — 2aj”Wj||2:|

1
d
2
N
d 1 1

d 1
lnaj — 511’1271’ — QaijjHQ]

18



N
d LR T T < T T T=
[2ln27r—|—21n7'—2(tn7'tn—tnTijn—tnTu—xnijtn
n=1
+xTwT7-wx +X T — T, + @ TW,X +gln*~—gln2 —lf-Hw-H2
iXn p—p B TWjiXn o O T 5 AT = o i [[W
N
Nd N 1 T 1_ 1_ _ _
— In27 + ) In7 — 5 7D XKW w, — §ajijwj + §X;L|—W;»|—T(tn — )
R | S . 1+
_7T[Ztntn]+572tnp+fu TZtn—fp 7
Nd 1 1
71n27r+—1n7—§ a]+TZx Xn WTW]+§XIWJ~T?(tn—ﬁ)

ZtT + TZtTu—i- — TZt —fu .

The posterior g(w;) is then given by ¢(w;) = N(w;|my, Xy ), with

N 1
Sw = <aj +eran> ,

and

19



2.3.6 Updating 7

To update the parameters of the posterior over 7 we use

N
Ing(7) = InEwaxpu [[Hp(tn|xn,w,a,7)] + Inp(7)

N
= 51117'4‘(@0— 1)In7 — byt

N
1 . . I
— 572 [t — ] WR, — ] - XW't, +X| W WX,
i e 1 — T T
+XW E-a't, + 5 WX, + 5 f).

The posterior ¢(7) and the parameter updates result in

q(1) = T'(r|ar, ET),
with

N
ELT = ag + ?,and

N
. 1 . - I
by =bo+ 5 [l — t] WK, —t]— X W t, + X W WX,

I N T T
+X W BE—F't, + B WX, + 1 f.

2.3.7 Example Task

Using the stated model and the derived parameter updates, we can now apply BPCA
to an example dataset, sampled from a 10-dimensional multivariate normal distribution.
We use a Hinton Plot, to visualize the entries of the projection matrix W. Each value is
represented by a rectangle, where the size represents the absolute value and the color the
sign. The approximation with PCA can be seen in Figure 2.5, and the resulting BPCA
approximation of W in Figure 2.6. We can see that BPCA suppresses the three dimensions
with the least variance in the latent space, simplifying the effective dimensionality of the
data, by driving the correlating columns w; to 0. As an alternative to the hinton plot, we
plot the lengths of the column vectors w; of the BPCA solution, over the column number
¢ in Figure 2.7.
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Figure 2.5: PCA Hinton Plot

Figure 2.6: BPCA Hinton Plot of matrix W
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2.4 Expectation Maximization

The Expectation Maximization algorithm, is a widely used iterative algorithm, that finds
maximum likelihood solutions for probabilistic latent models [6].

Let X be the observed variables, Z the latent variables, and 8 be the model parame-
ters.

In general we want to maximize p(X|@), but maximizing the complete-data log likelihood
p(X, Z|0) is more feasible, so we make use of marginalization. While we use sums here
for discrete latent variables, these can be interchanged with integrals when dealing with
continuous latent variables. p(X|@) is given by

p(X|0) =) p(X,Z|6).
Z
A joint probability of X and Z can be split into a conditional and a prior part
p(X, Z) = p(Z|X)p(X),
which leads to the probability of X being

p0) =2

By taking the logarithm on both sides, and introducing a new function ¢(Z), we can
decompose the right hand side into two parts £(q, 8) and KL(g||p) with

Inp(X|6) = Inp(X, Z|0) — In p(Z|X, )
) P(X,2i6)| P(ZX,0)
—%ham{ iz |- Sawm "

Z

~~

L(q,0) KL(q[lp)
= L(q,0) + KL(¢q|p),
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where

(0]

Z

L(gllp) = %:q {zg)a)}. (2.10)

Since the Kullback-Leibler divergence (2.9) between ¢ and p, KL(q||p) is always greater
or equal to 0, we know that £(q, 0) forms a lower bound on In p(X|@). This lower bound
reaches its maximum when the KL-divergence vanishes, or expressed formally when

q(Z) = p(ZX,9).

The idea of the EM algorithm is to maximize this lower bound. The maximization is
split into two steps, namely the Expectation Step (E-Step) and the Maximization Step
(M-Step). In the E-Step, we keep the parameters 0 fix, while maximizing the lower-bound
L w.r.t ¢(Z). The obtained new values for ¢(Z) are now used in the M-Step, where we
keep them fixed, and maximize the lower bound £ w.r.t the parameters 6 leading to
6"". The E- and M-Step are computed iteratively, until the lower bound converges to
a local maxima. Instead of maximizing the lower bound in each iteration, it is shown
by [6], that it suffices to just increase the lower-bound in each step, leading to the idea of
General-EM.

Next the EM algorithm is exemplary applied to a mixture of gaussians.

2.4.1 Mixtures of Gaussians Example

A Gaussian mixture distribution can be written as a linear superposition of Gaussians in
the form

K
= Z WkN(X|“k7 Zk)a

k=1

where 7y are the mixing weights [6].

Because this superposition should result in a probability distribution, the mixture weights
7, have to satisfy 0 < 7, < 1 and

K
Z?Tk =1.
k=1
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A K-dimensional binary random variable z with 2z, € 0,1 and ), 2, = 1 is now introduced
with p(zr = 1) = 7, and respectively

K
p(z) =[] =
k=1

The conditional distribution of the observed variables X given the latent variable z can be
written as p(x|zx = 1) = N (X|py, L), and respectively

K

p(xiz) = T[NV (xlpr, Zi)™.

k=1

Using the latent variable z; in the exponent, will ensure that only the belonging distribution
is active for each z and x.

Multiplying the conditional distribution p(x|z) with p(z) and summing over all z we
obtain the marginal distribution p(x) with

K
p(x) =) p(2)p(xlz) = ) N (x|, i)

k=1

The posterior probability that a given x,, belongs to cluster k£ can be represented by the
conditional distribution of z given x:

p(zx = Dp(x[zx = 1)
K
21 Pz = D)p(x[z; = 1)
o WkN(X‘“b Ek)
= —= .
23:1 WjN(X‘Ny %)
7 can be seen as the prior probability of z; = 1 and 7(zx) as the posterior probability

observing X or the responsibility that component k takes, for explaining observation
X.

Y(zk) = plar = 1]x) =

(2.11)

Since the posterior probability distributions might overlap, the association of a datapoint
with a cluster is given as a probability, making this a soft clustering method.

24



2.4.2 EM for Gaussian Mixtures Derivation

The joint probability for x,, and z, can be written as

P(Xn, Zn|0) = p(Xn|Zn, 0)p(2,]6)

-

K
= H [p(xn’znk = 1a0)p(znk = 1’0)]an
k=1

(XTLIIJ’IWEIG) Tk
K

WkN Xn‘u’kvzk)] ,

ol
—_

and for all datapoints as

p(X,Z|0) = H H [Tk N (X g, )]

n=1k=1

If we now take the logarithm on both sides [6], we obtain

N K
Inp(X,Z|%) =) > zppIn [N (%0 |14 )] (2.12)
n=1 k=1

Taking the expectation w.r.t p(Z|X,6?) we can calculate the update equations for the
E-Step with

N K
E,zxeo) [ 10PX Z10)] = >3 "B, ik o0 [2nk] In [mN (X0, 2)],
n=1 k=1

p(xn|2nk = 1>0i)p(znk = 1’01)
ZkK*zl p(xn|znk* = 1>91)p(znk* = 1’02)

P(an = 1|Xn701) =
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E[znk} =0 p(znx = 0%, 0Y)
+1-p(zp = 1[5, 60°)
_ TN (x| pl, 24
Dot TN (1] B

, (2.13)

and

N K
E[Inp(X,Z|0)] = > E[zm] [Inmg + In N (0| Zi)]. (2.14)
n=1 k=1

Maximizing (2.13) corresponds to the E-Step, while maximizing (2.14) w.r.t @ corresponds
to the M-Step. In order to maximize (2.14) we need to derive for the several components
of 6.

Deriving for g only the terms that depend on p yields

Y lnN(Xn‘p’ka zk)

o (= 00— ) "B e )

_9
o
8 | Te—1
87( §[Hk2k o — 2%, 3 )
:—7[22 uk—22 b

We can now use the equalities

;x( TAx) = (AT +A)
aax (a'x) = a,

set the derivative of the derivation equal to zero, and solve for the parameter p; with
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—E[Inp(X,Z[6)] = > E[zu] (2;1)(” z;luk> )
k n=1
N N
= Z E[znk} X, = Z E [an] K,
n=1 n=1

leading to the update equation for parameter p,

25:1 E [an] Xn '
22[:1 E [an}

By =

Next we derive the update equation for ¥, and define the precision A = 2,;1

Starting with the log normal part of (2.14) and using the equalities

olnjAl g1
6tr(AB)_BT
oA

we see that

1 1
InN (X | py ) = B In |Ay| - §(Xn — ) Ak (X — )

(2.15)
1
=5 [m Ag| — tr (Ap(Xp — ) (X, — pk)T)} . (2.16)
Again we take the derivative of (2.16) w.r.t Ay, resulting in
0L g — tr (A — ) (%0 — 1)) (2.17)
1 T
=3 Sk — (Xn = py) (Xn— ) |- (2.18)
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Inserting (2.18) into (2.14) and setting the derivative w.r.t A to zero, we obtain

E[Inp(X,Z|9)] =

8Ak
1 N |
=3 E[znt] [Zk — (%0 — p11) T (%0 — p13,)] = 0
n=1
N N
= ZE[znk]Ek = ZE[an]( Hy) (X — py)
n=1 n=1

We can now divide this result by the sum of expectations of z,; and get the result for 3
with

¥, = Eév:l E[an] (Xn — Nk)T(Xn - Nk).
22;1 E[2nk]

For the derivation of the mixture proportions 7, the constraint Z{f:l 7, = 1 needs to be
fulfilled. Therefore we use a lagrange multiplier A in

f(z), subject to g(x) =0
yields L = f(z) — A\g(z),

leading to

&

d K
df ZE an 1I17Tk— (Zﬂ'k—l)>
n=1 k=1

Zm=1 2kl L
T

N
=> ZE[an] = A\

n=1

N K
=>> ") Elzu] = A

n=1k=1

=1
=N

=>A=N
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The update equation for m; can be written as

1 N

In Figure 2.8 we generated a dataset from three distinct gaussians, and use EM for

clustering.
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Figure 2.8: Expectation Maximization example — Using a generated dataset, that was
sampled from three different multivariate normal distributions, which differ in
their mean and covariances. The EM algorithm was able to find and fit three
clusters. The cluster centers are depicted in orange, with a different color to
represent each fitted covariance.
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3 Mixture Models and Probabilistic Principal
Component Analysis

We now show that PPCA and BPCA can be easily extended to be used with mixture
models. Using a mixture of probabilistic principal component analyzers, we are able
to model more complex datasets, while still using simple densities for the mixture
components.

3.1 Mixtures of Probabilistic Principal Component Analysers

One big advantage of using a probabilistic formulation for PCA is that we can extent it
to a mixture of several analysers. While PCA is limited in its application by its global
linearity property, with MPPCA we can combine several local function approximators,
enabling better approximations of more complex data structures [19].

In the mixture case, we split the model probability p(t) into several submodels, also

called mixture components. Each mixture component p(t|k) has its own set of parameters
2 . . . . . . .

1y, Wi and o, and is weighted with a mixing proportion 7, leading to the model

probability

K
p(t) = mp(tlk),
k=1

where K is the number of components used.

The log likelihood can be formulated accordingly as

N
L= In{p(t,)} (3.1)
n=1

- iln{gwkp(tn]k)}.

n=1

Using our log likelihood, we can now derive an EM algorithm to get update equations for
our parameters. Repeating these updates iteratively will lead to an increasingly precise
approximation.
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3.1.1 EM for Mixtures of Probabilistic PCA

First we introduce the posterior responsibility R, of mixture k for generating data point
t,

(ta|k)m '

Ry = plklt,) = 2 o) (3.2)

Using the posterior responsibility R, in the log likelihood equation (3.1), leads to the
expected complete-data log likelihood [19]

R N
-y

n=1

K
R, ln{ﬂ'kp(tn‘k‘)}. (3.3)
k=1

Maximizing (3.3) w.r.t mx and p; using a Lagrange multiplier leads to the parameter
updates

1 N
e = > R, (3.4)
n=1
N
~ n= Rnktn
fiy = s Ft, (35)
Zn:l Rnk

To find the update equations for Wy and O"%, we need to make sure that EC is increased
with every iteration. While this can be done by maximizing the log likelihood on every
step, it is already sufficient to increase it gradually. This is described as Generalized
Expectation Maximization (GEM) [6].

Inserting the parameter updates (3.4) and (3.5) into the complete-data log likelihood
(3.3) yields

(Lc) = Z ZRnk{ Inmy — B Inoj — 5 e ((Xnk X))

n=1k=1

1 - 1 ~
- ﬁ”tnk — Nk”2 + ?<X7Tﬂc>w;(tn — Iy,) (3.6)
k k

1
~ 53 tr(W, Wy, <xﬂkx7TLk>) } )
i
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Maximizing (3.6) w.r.t to Wy and o3, while keeping f1;, and 7y, fixed [19], we obtain

Wy, = Sy Wy (071 + M "W/ S, W) 71, (3.7)
5 1 i
or = Str(Sk - SEWiM_'W)), (3.8)
where
1 N
_ ~ ~ \T
Sk = 7N ;Rnk(tn — ) (tn — pg)

Iterating the parameter updates, alternating between (3.2)-(3.5) and (3.7)-(3.8) guarantees
to find a local maximum of the likelihood (3.6).

An alternative way to derive the update equations for Wy and az is to use eigen-
decomposition on S by using

W =U,(A, — o°I)'/?R,

where the sum from j = @ + 1 to D means summing over the smallest D — @ eigenval-
ues.

However, using the EM approach can have computational advantages [19], since unlike
in PPCA, the covariance matrix S; for every model has to be re-computed in each
iteration.

In Figure 3.1, we use a spiral datasets with added noise and five mixture components to
test the algorithm.
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Figure 3.1: MPPCA model with K = 5 mixture components, optimized with EM on a
spiral dataset with added noise. The black dots represent the means of each
component, the datapoints are colored according to their responsible mixture
component. At the bottom we see how the EM algorithm monotonically
increases the log likelihood function between each iteration and the cluster
weights .
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3.2 Mixture of Bayesian Principle Component Analysers

After extending PPCA to use mixture models, MPPCA still has the downside of not
automatically inferring the dimensionality of the latent space. Furthermore a new
hyperparameter, representing the number of models in use, has been introduced, which
also needs to be chosen manually. In order to infer these values automatically using
Bayesian model comparison |2, 8|, we now look at the mixture formulation of BPCA,

called BMPCA.
The graphical model from Figure 2.4 of BPCA, is extended as shown in Figure 3.2.

e N N
@

- NJ - KJ

(,%
G%

Figure 3.2: Graphical Model of BMPCA - For each of the observations t,, shaded in gray,
there are corresponding latent variables x,, and z,,. For each model we have
a projection matrix Wy, as well as a model mean p;. The columns of Wy,
depend on the shared hyperparameters «.

As in MPPCA, we use mixing proportions @ = {7}, and introduce a discrete latent
variable z,, with dimension @, which is a one-hot vector, for every datapoint t,,, defining
which mixture component is responsible for modeling t,,. Instead of having only a single
mean p and single projection matrix W, we now have one p;, and Wy, for each mixture
component. We also use the hyperparameter o to automatically prune columns of Wy,
which in turn lowers the dimensionality of the latent space. While every sub model could
have its own set of o, we share them between all models, to get a continuous non-linear
manifold [8].

The prior distribution for Wy, is given by

Q
(67 1
p(Wila) = [[(22)Pr2 exp{ - Qa@-wizwk@},
=1
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and the latent variables z,, are modeled by

p(z = 0g|m) = 7,

with d; being a Dirac delta, where only the k-th element equals to 1, and all other
elements are 0.

For the mixing proportions, we use a Dirichlet prior, paremetrized by u and normalized
by the term Z(u), resulting in

1 K K
p(m) = Dir(w|u) = Z) H 772’“_1(5<Z7rk — 1>.
k=1 k=1

The likelihood of the observation t,, given the parameters is a Normal distribution with
the projected mean WyXx,, + u;, and precision 7. The latent variable x,, and sub-model
mean p,;, are both modeled by Normal distributions with zero mean, and the densities
over 7 and ay; are Gamma distributions.

The update equations for our parameters, are derived using VI. The likelihood functions
and prior distributions for our model are

N
[[p(tal%0, W, Z, 1, @0, 7) | p(X)p(Z |70)p(7)p (W) p()p(p2)p(7)- (3.9)

We again make the assumption that the ¢(...)-distributions can be factorized. The
factorization for this model is given by

QZX, 7w W, o, p,7) = QX| Z)Q(Z)Q(7) Q(W|a) Q) Q1) Q(). (3.10)
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3.2.1 Model Definition

The equations describing our model are given by

p(tnywkn M, T) = N(tn|wkxn + i TﬁlI)an)

a 1
(ﬁ)p/z €xp { - 2OéiW;;[;Wki},

pani) = T'(awilaa, ba),

—

.
Il
—

p(Wilar) =

p(Xn) = N(x,/0,1),
p(r) =I(7lar,br),
p(py,) = N(pgl0, 871).

3.2.2 Variational Inference Derivation of the Posterior Distribution

We now calculate the log over the posterior distributions of our parameters, starting with
(6778

Updating o

To find update equations for the posterior over a we use

Ing(ag;) = E | Inp(wWyilag) + 1Hp(04ki)}

[ N 1
=FE|In <(O2é:;) 2 exp{ — 204szszH2}> + lnF(aki|aa,ba)

d d 1
=K B Inay; — B In27 — iakiHWkiHQ —InT(an) + aaInby + (aq — 1) Inay; — baaki]

1
=FE lnaki(g +aq — 1) + agi(—bo — §Hwkz||2) - gll’lQﬂ' —InT(aq) + aq lnba]

d 1
= Inagi(5 +aa —1) + agi(=ba — 5 Ew [lwil[*]) + const.
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By taking the expectations over all parameters except ay;, we find a solution, that can
be expressed as a Gamma Distribution

K Q
Q(a) = H Hr<ak1’aaa (kl))v
k=1:i=1
with
aq = Qo + 57
b(kz) b(kz) 4= 1 E [Hwkzuz]
Updating x

The parameter updates for X can be derived with
(80 20 = 00) = B 200 10 (6 3, Wi s, ) + Inplx,)|

d 1 1
=E [2 In2m + B InT — §T(t7—|;tn - tIWan - tZsz — xgwgtn + XZW;—W]CX”

1
FXTW g a4 Wi, gl ) + G In2a 4 Sl x|

= x, (I1+E[7]E,[W} W,])x,, + X, E[7] <Ew W] ](t, — E, [xnyk])> +

Sorting all terms by their dependency on X, X, x,, and those that are not dependend on X,
we can see that the posterior distribution ¢(x,|z, = dx) is a Normal distribution, with
mean m, and covariance 3,. The derivation yields

Q(X|Z) = Han\zn_ék)
Q(Xn |2y = 8) = N (x,|m{™), =),

m(nk) ?E(k) (t - Nk)?

(T4 7 Ey W] W,]) .
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Updating 7

The posterior distribution over 7 can be written as

- N K
ina(r) =B 323 Inp(t, W . 7) + np(r)|
r N K

— 5| 30 Y A6 Wik, + )+ Inp(r)

r N K
d 1 1
=E|> ) zu [2 In2m + - In7 - 2T<tztn —t WX, —t) p, — X Wt +x] W W;x,

+ xZWkTuk — u;tn + ;L;kan + “;“kﬂ —InT(a;) +arInb; + (a; — 1) InT — b7

N K 1
_E [m(aT_ I
1 N K
+ T< DT [t;tn Wi, — £ g — XTW] b, + X W Wi,
+ Xy W gy — )t 4l Wik, + uluk} )] :

Taking the expectations and sorting the terms leads to

In7(ar — 14+ 50),
—_——

ar—1

~ Nd
ar=ar — 1+ —,

2

and

N K
~ 1
b= b+ 5 30D Bl el ud -+ W] W B )

+ 2E[u] | EIW, Efx,[k] — 2t] E[W,] Elx,q k] — 2¢] Elpy] .
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Updating the projection matrix W
To update the parameters of the posterior over W we can write

r N K
ngwi) =E | 305 Inp(ta Wi, iy 7) + 1np<wkiyaki>}

r N K

— 5 | 30 Y A (6 Wik, + )+ Inp(r)

r N K

=E ZZznk[;ZIHZW—{—;lnT

1
L <t;tn Wik — £ g — XWX W] W,

W e — it + L Wi, + uzuk)}

o d/2 1 9

Sorting the terms and evaluating expectations we get

N -1
() _ (diagE[ak] FE Y Ef] Efox] |k:])

and
] N
my”) = S Elr] Y Elzu] EXalk)(tni — Elui]).
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Updating the means u
For p we can derive the parameter updates with

r N K

ng() = E [ 353 Inp(t, W s, ) + 1np<u>]
: N K
=E | ) ) 2np NN (6a[Wixy, + pay) + In N (pe]0, 5—11)]

(. [d 1
=FE ZZznk[21n27T+2lnT

1
_L (t;tn Wik — € gy — XWX W] W,

2

- XTW e — 1t + Wi + u;uk)]
d 1 1

which can be written as

K
Q(u) = [TV (ulmp), =),
where
N —1
k= (5 +E[r] Z]EW]) Iy
n=1
and
N
mp) = S0 Elr] > Elza] (t, — EW] Efx,[K]).
n=1
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Updating the mixture weights =

The updates for the parameters of the mixture weights 7 can be derived with

N
Ing(m) = E[ln | [ p(znklme)] + Efln p(ry)]
N
=E[>_ zuk Inm] + Efln Dir(m |a®))]
N
= E[(Z znk) Inmg] + E[(ur, — 1) In7g] + const

= E[(Z Znk)] + (ug — 1) In7y, + const,

(1 —1)
leading to the update
N
up = up + ZE[an]
n=1

To summarize the derivation, the resulting g-distributions conclude to

= HHN(@ki\mii“),Eﬁf)),

k=11=1 B

Q(T) = F(T|Zi7'7 b‘f')v
K

Q(II) = [ [ Dir(rr.[a*))
N
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In Figure 3.3, we apply the derived equations on a 3-dimensional spiral dataset and show
the distribution of the mixture components along the spiral. Also shown in color, is the
assignment of the datapoints to the sub-models, given by z,;. We see that the BMPCA
algorithm suppresses some of the mixture components by driving their mean values to 0,
and not assigning any datapoints to them.

10.0

Figure 3.3: BMPCA applied to a three-dimensional spiral dataset, using 7 mixture compo-
nents. The bigger points describe the mean of each model, while the smaller
points represent the given data. Each point is colored according to its assign-
ment to one of the mixture components. In this case, model number 4 and
5 have been automatically suppressed by the BMPCA algorithm, and their
means were forced to be 0, moving them to the origin.
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4 Variational Locally Projected Regression

After building up the foundations, we now formulate the proposed Variational Locally
Projected Regression model.

4.1 Motivation

When doing regression on a dataset, using probabilistic mixture models, often times the
data contains several repetitive structures. As a simple example, lets do regression on a
sine function, using 6 linear models as the mixture components.

Figure 4.1: Sine Example — Approximation of a sine function, with several linear local
models. The red and blue lines illustrate how multiple local models can have
similar parameter solutions, when repeating structure is present in a dataset.

The points in Figure 4.1 depict the learned mean of each component, while the lines
represent a learned parameter, in this case the slope of the underlying sine function. We
can see that all the sub-models shown in red, have the same model parameters, except
for a shift in the mean. The same happens with all the sub-models shown in blue.

When doing regression on this data directly like Dirichlet Process Mixtures of Generalized
Linear Models (DP-GLM) [17], this repeating structure can result in several mixture
models having similar solutions for their parameters. To reduce the parameter redundancy,
we project the dataset into a higher-dimensional latent space, such that the repeating
structure simplifies under the projection. In the sine-example, the means of each "red"
model, and the means of each "blue" model, could be projected onto the same coordinate
in the latent space. Doing this will enable us to approximate the dataset with fewer
mixture components or fewer parameters.
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Let the dataset consist of pairs of datapoints (X,,y,) which can be seen as the inputs
and outputs of the underlying process that we want to approximate. Both x,, and y,, are
vectors of dimension D. Furthermore let K be the number of mixture components.

We now project each input sample Xx,, onto a corresponding latent variable h,, by using a
projection matrix W, and a translation vector by, such that h, = Wyx,, + b,. The latent
variable h,, is of dimension @, where QQ > D.

We then transform h,, into the ouput space with dimension D, projecting it onto the
output samples y,. For this projection we introduce a projection matrix A; and a
translation vector ¢, such that y, = Agh,, + ¢;. Which of the components relates to a
given datapoint is represented in a latent variable z,j, which is equal to 1 for only one
component k per datapoint n, and 0 for all other components.

In order to find a set of parameters, that minimize the approximation error, we use VI to
find iterative update equations.

The graphical model of this approach is shown in Figure 4.2.

|
¢

A

Figure 4.2: The input space x,, is projected onto the latent variable h,, and then project
onto the output space y,,. The K mixture components are characterized by a
set of parameters 6, and assigned to each datapoint by z,.
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4.2 Model Definition

We now construct the model equations for Variational Locally Projected Regression. To
formulate this within a probabilistic framework, we introduce prior distributions over the
model parameters, as well as the Likelihood functions for the variables.

The categorical mixture weights 7 are sampled from a Dirichlet distribution, which is
parametrized by a vector u, as

7 ~ Dir(7|u).

The projection matrices W and A are sampled from Matrix-Normal distributions, with
their variance matrices A and A come from a Wishart distribution, and the translation
vectors b and ¢ from Normal distributions. The sampling process is described by

A~W(T, v),
A~W(O,9),

W~ MN(V,A,P),
A~ MNM, A K),
b ~ N (my, kA),
c~N(mggA).

The variance matrices A and A are shared between the Matrix-Normal and Normal
distributions.

We sample the mean and variance for the density over X from a Normal-Wishart distribu-
tion

T'~W(E§),n~N(vy,AT),

and to generate x we use a Normal distribution

x~N(n,T).

The one-hot labels z are sampled from a Categorical distribution parametrized by
with
z ~ Cat(m).
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The density of h given the selection variable z, the input datapoints X is modeled by
h~ N(Wx+b,A), and y is generated by y ~ N(Ah + ¢, A).

The complete set of model equations with the complete data likelihood is summed up
below.

Complete data likelihood
p(x,y) = p(ylh, z)p(h|x, 2)p(x|2)p(z)

Likelihood distributions

P(= = ) = 7
p(h|x,z) = N (h|z, Wx + b, A)
p(y/h,z) = N(y|z,Ah + ¢, A)
p(x|z) = N(x|z,n,T)
Prior distributions
p(W,A,b) = N(W|V, A, P)W(A|¥, v)N (bjmy, A)
p(Aa A, C) = N(A‘Mv A, K)W(A|@, ¢)N(C|mc, gA)
p(n|L)p(T) = N(n|v, BLYW(T|E0, &o)
p() = Dir(r|u)
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4.3 Variational Inference Derivation

We now derive update equations with variational inference for all variables ©®

O =[z,m,W,A,A,A n,T hl

Here we use the mean-field assumption, which states that the posterior densities can be
factorized with

Q(®) = Q(2)Q(m)QW, A)Q(A, A)Q(n, T)Q(h).

4.3.1 Updating the mixture weights =

To derive the posterior over 7, we take the expectation over all variables except 7, for
the log of all terms that depend on 7, using

N
Inq(me) = Egoy[In ] [ p(zanlme)] + Eq( [Inp(ry )]

N
= B> 2k In ] + gy [In Dir(my [a®)]
N

= Eq(z) [(Z an) In 7Tk] + Eq(z) [(uk - 1) In 7Tk] -+ const
N
=Eq(2)[(D 2nk)] + (ux — 1) In 7 + const.

&

(Tr—1)

The update for the parameters u result in

N
up = up + ZE[an].
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4.3.2 Updating the projection matrix W

Here we update the parameters of the density over the projection matrix W, to obtain
new values for P and V. We again take the expectations over all variables except of W
itself. For the updates, we get

Ing(WIA) = Eq(zp,p) Inp(H|Z,X, W, b, A) + Inp(W|A))]

K N K
=Eyzpn) | DD 2ok NN (o[ Wia, + b, A) |+ In MN (W Vo, A, Py, )

K N
1 1 1 7 7 —
=3 Z Zrnk (R, — Wiz, — by,) " A(Ry, — Wy, — by) + tr(AS; )]
k=1n=1
K

1
-5 > tr(Po(Wy, — Vo) " A(Wy, — Vi) + const
k=1

K
1 _ _ _ _ _
= -3 > " tr(RH'AH - 2RH' AW, X — 2RH' AB,
k=1

N
+RX"W[ AW, X + 2RX' W, AB;, + RB; AB; + RA > 3;")

n=1

=

— =) tr(PoW AW, — 2PgW ' AV, + PgVj AV;) + const

and

P =P+ XRX'
V = (VoPy + HRX' — B,RX")(Py + XRX ")~
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4.3.3 Updating the translation vector b

The parameter updates for b are given by

Inq(b|A) = Ey(zwn [Inp(Y|Z,X, W, b, A)] + Inp(b]A)

K N
1 o -
= = 5303 k[ — Wiy — )T Al — Wi, — by) + (A )]

k=1n=1
1 K
— 5 Z(bk — mbO)TﬁoA(bk — mbo) -+ const
k=1
1 K N K N B
= 3 Z(KO + Z Tnk)kaAbk -2 Z bIIA(HOmbO + Z Tk (R, — Wkwn)) + const,
k=1 n=1 k=1 n=1

and

N
K =Ko+ g Tnk
n=1

KoMy + S0 ran (B — Wiy,)

= N
Ko+ Y ey Tnk

Where we have used the following identities for the quadratic expectation terms,

En(hTAR) = h' Ah+ tr(AS; ),
Ey(b' Ab) = b' Ab+ tr(Ax A
=b' Ab+r 4,
Eu(WTAW) = Ptr(A7'AT) + VT AV
=Pd+V'AV,

and the definition of the responsibility variable r;

E[an] = Tnk-
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4.3.4 Updating the precision matrix A

For A we can derive

Ing(A) = Ey(zwpn [Inp(H|Z, X, W, b, A)] +Inp(A) + Eywe) [Inp(WIA) + Inp(b]A)]

K N K
=Ejzwpbh) [Z Dz NN (B Wiy + by, A) | + Y InW(A|®(, )
k=1n=1 k=1

K
> InN(bmy,, koA)

k=1

K
+ Eq(w) [Z In MN(Wk|V(), Py, A)| + Eq(c)

k=1

N 1 K N
> raen|Al = 330D ruE [(hn Wiz, — by) T ARy — Wi, — bk)}
n=1 k=1n=1

Il
+
N | —
M=

b
—_

K
In|A| - %ZE [tl’(Po(Wk — Vo) AWy, — V0>)]
1 k=1

K
In[A] = 3 S E [(br — mi,) (k) (b — )|
k=1

_|_
NI
M) =

DN | =
=~
Il

+
N | =

K
1
(vo—d—1)In|A] - 5 > (5 A) + const
k=1

M= M= T

E [tr(RHTAH — 9RH" AW, X — 2RH' AB;

N | —
Bl
Il
—_

+RXW] AW, X + 2RX W] AB;, + RB{ABk)}

1
-5 E [tr(Pow,jAwk — 9PWT AV, + PoV] AVO)}

k=1
1 K
-5 ;E[a) = 1) T (0 A) (b — )|
1 K N m K 1 K
+§ernklnw+521nyAy+§ZlnyA|
k=1n=1 k=1 k=1
1 & 1<
+§Z(u0—d—1)ln\A]—§Ztr(\I'0 A) + const
k=1 k=1
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K
1 _ _ _ _ _ _
= -5 S tr(RA'AH - 2RH' AW, X — 2RH ' AB,

k=1
N
+RX' W, AW,X + 2RX "W AB), + RB; AB; + RA Y %, )
n=1
1 K
-5 > tr(PoW, AW), — 2PgW ' AV, + PgV] AVy)
k=1
1< - _
-3 ;(b — ) (KoA) (b — my,)
1 K N m K 1 K
+ §ZZrnkln\A\ + EZIn]A] + 521@&;
k=1n=1 k=1 k=1
1 & 1 &
+5 > (vo—d—1)In|A| - 5 > (5 A) + const
k=1 k=1
1 K N
=3 > tr(R(H - WX — B)(H - WX - Bp) TA +R(D %, 1)A
k=1 n=1
1 K
A A T
-5 D (W, — Vo)Po(Wy, — Vo) T A)
k=1
1 & _ _
-5 ; tr(ko(b — M, ) (b — ™a, ) TA)
1 K N 1 K
+3 Z(l/o —d+m+ Z rok) In|A| — 3 Ztr(\PglA) + const,
k=1 n=1 k=1
leading to

N
Vk:V0+1+’m+Z7“nk,

n=1

N
U = 0 0> (R — Wy, — By) (R — Wiz, — by) T + 5,1
n=1

+ (Wi, — Vo)Po(Wi — V) T + rig(b — my, ) (b — my,) '




4.3.5 Updating the projection matrix A

For the projection matrix A the parameter updates are derived by

Ing(AlA) = Eg(z ) Inp(Y|Z,H,A, ¢, A) +Inp(A|A)]

K N K
= IEq(z,c,h) Z Z Znk lnN(yn|Akhn + ¢k, A) + Z In MN(AHM[), Ko, A)
k=1n=1 k=1

K N
1 7 1 —
-T2 DD run(yn — Arhy — &) T Ay, — Achn — &) + o tr(ATAAS)
k=1n=1

K
- % Ztr(Ko(Ak — M) " A(A;, — Mp)) + const
k=1

K
1 _ _
- - > tr(RYTAY — 2RY' AAH - 2RY ' AG;,

k=1
N
+RH'AJ AAH + 2RH' A AC, +RC; AC, + RATAAY 37
n=1
1 K
-5 Z tr(KoA, AA;, — 2KoAT AM, + KoMJ AMj) + const
k=1

K
1 R
-3 > (- 2A] A(MoK, + YRH' — C,RH ')
k=1 N
+A{ AAL(K) + HRH' +R> %, 1)) + const,
n=1
resulting in

N
K:KO+HRHT+RZE,:1,

n=1

N
M = (MoK, + YRH' — C,RH')(K, + HRH' +RY_ =, 1)~".

n=1
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4.3.6 Updating the translation vector c

To update g and m,. we derive
Ing(c|A) = Eq(zan) (Inp(Y|Z,H, A, ¢, A)] + Inp(c|A)

K N
1 . o
=3 Z Z’I“nk(yn —Avh, —c) " Ay, — Ayh, — c)

k=1n=1
1 K
2 Z(Ck —myg,) ! goA(c — my,) + const
k=1
K N K N B
=3 Z(QO + Z T‘nk)C;—AC]g -2 Z c,IA(gOmCO + Z Tk (Y, — Axhy)) | + const,
k=1 n=1 k=1 n=1

resulting in
N
g=go+ Z T'nk;
n=1

90y + Sy k(Y — Arhn)
90 + ZnNzl Tnk

C

4.3.7 Updating the latent variable h

For ¢g(h,,) we derive very similar to the previous parameters

Ing(h,) = Ee [Inp(yn|z,, Ah,, A) + Inp(h,|z,, Wx,, A)]

k
=E [Zznk[lnN(YR|ZN7Akhn + Ck, Ak) + lnN(hn’znvkan + bka Ak)]

Tk (Yo ArYn — V) ApArh, —y) Arc, — b A, Ay, +h) A AjAh, — ¢ Ay,

I
] =

e
Il

1
+ hIAgAkék — ézAkAkhn + E;—Akék + dg_l + Kd + h;LrAhn — hI]W_kan
—hAb, — x W, Ah, + x/ W, AW,x,
+x[W] Aby — b, Ah,, + b, AW, + b, Ab; + 1~ 'd + X Pdx,,),
leading to
T - -1
X = (Ak AA; + A) ,
my, =3, [(y" —¢)AA, + (x'W' +b )A].
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4.3.8 Updating the precision matrix A
The posterior of A can be updated with

Ing(A) = Eyz pcn Inp(Y|Z, H A, ¢, A)] + Inp(A) + Eyac) I p(A|A) +Inp(c|A)]

K N K
= IE:q(z,A,c) Z Z Znk lnN(yn|Akhn +ecp, A) |+ Z In W(A|®O, (;50)

k=1n=1 k=1
K K
+Eqqa) | D InMN (Ag[Mo, Ko, A) | +Eyq) | Y InN(c|mey, goA)
k=1 k=1
1 K N 1 K N
_ T
= + 5 ;nz::lrnk lIl |A‘ — 5 ;nz::l?"nkﬂ‘z [(yn — Akhn — Ck) A(yn — Akhn — Ck)}

K

K
N T TN

K

+ ; Zln\A\ - fZIE [ — M) (90A)(er — mco)]

(po —d —1)ln|A|—thr ©,'A) + const

+
N | =

M TM= T

E [tr(RYTAY — 9RY' AAH — 2RY' AC,,

DN | =
B
Il
—

+RHTA] AAH + 2RH"A] AC, + RCZACk)]

M=

E [tr(KOA;AAk — 2KoAT AMy + KoM, AMO)}

DN | =
B
Il
—

E[(c —me,) T (908) (e —me,)|

N m K 1 K
Z_j nkln|A\+2;ln\Al+2kzlln]A]

K
1
(60 —d—1)In|A] - > w(®;'A) + const
k=1

l\D\ N =
M7 [~ 11>

N =
o
Il
—
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K
1 o _
= -3 Z tr(RY' AY — 2RY' AA,H — 2RY' AC;,
k=1
N
+RH'A; AAH + 2RH' A{ AC; + RC; AC;, + RA, AA, Y 55 1)
n=1
K

1 o _
-5 > tr(KoAy AA; — 2KoA" AM, + KoMj AMp)

(é - mco)T(90A>(é - mco)

M\l'—‘
M=

k

1

1 K N m K 1 K
+ 520 raIn|Al+ T Y A+ 2 Y In|A
k=1n=1 k=1 k=1
1 & 1 &
—1
+§Z(¢0—d—1)ln|A|—§Ztr(®o A) + const
k=1 k=1
1 _ _ o
= - 5Ztr(R(Y—AkH—Ck)(Y—AkH—Ck)TA)
k=1
—1§:tr((A — My)Ko(Ax — Mg)TA)
2k:1 k k
1 . ) .
=5 2 tr(go(e — me,) (€ —me,) " A)
k=1
1 K N 1 K
+§Z(¢0—d+m+zrnk)ln|A|—EZtr(GglA)Jrconst,
k=1 n=1 k=1

yielding the update equations

N
Ok =do+1+m+Y rur,

n=1

N N
_ _ N _ AL _ AT AR _
@k 1 = @0 1 + E rnk(yn — Akhn — ck)(yn — Akhn — Ck)T + E TnkAk AAkEh 1
n=1 n=1

+ (Ak — Mo)K{)<Ak — M())T + go(é — mco)(é — ch)T.
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4.3.9 Updating the one-hot latent variable z

Since most terms depend on z, this derivation is more involved, why it is split into parts
first, before reassembled in the end.

The derivation is split with

In Q(Z) = Eh,A,C,A,W,b,AﬂT |:11’1 [p(y,}h zZ, A7 C, A)p(h|X7 Z, W7 b7 A)p(X‘Z, n, I‘)p(Z|ﬂ')]

K N
=EnAcAawbAr [ + Z Z Znk INN (¥, |Aghy, + ¢, A)
k=1n=1

i
K N
+) )z In N (hy, [Wix,, + by, A)

k=1n=1

(2
K N
+ 0> zak NN (|7, T)

k=1n=1

3)

K N
+Zzznk1mk]

k=1n=1
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Part (1) can be written as

EAhea |YoAYn — Y, AArh, -y, Ac, —h, Aj Ay,
+h Al AALh, +h!A] Ac, — ¢] Ay, + ¢/ AA, + ¢/ Acy
=y, Ay, -y, AAch, —y] Ag, — h,A] Ay,
+EnanhlA] AAh,] + b A} Ac, — ¢ Ay, + ¢ AAh, + E.alc] Acy]
=y, Ay, —y) AAsh, —y, A¢, —h, A/ Ay,
+h, Kdh, + tr(Kds; ') + h) A} AAsh, + (A AA.S; ') + h) A} Ag,
— ¢, Ay, + ¢, AAsh, + ¢ Agy, + tr(g7 ')

= (Y, — Ayh,, — Ek)TA(yn —Azh, —¢,) + ﬁZKdﬁn + tr(KdZ; 1) + g td + tr(A;AAkE,‘Ll).
With A being a symmetric precision matrix we can define
EA[A] AA,] = Ktr(A—'AT) + A AA,

= Ktl’(Id) + A;AA]C
= Kd + A} AA,

Enanlh) Al AAh,] = B, a[h) E4[A] AA;TR,]
=By alh (Kd + Ay AAy)h,]
= Ena[h)Kdh,] + Ej a[hT A, AAsh,]
— h, Kdh,, + tr(Kds; ') + h, A} AAsh, +tr(A] AAZ; ),

and

EC’A[C;AC;C] = é;Aék + tr(gill).
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Part (2) can be written as

K N
1
Eh,W,b,A[ 2zzznkh — Wi, — bg) TA(h, — Wix,, — by)

k=1n=1

K N
1
= Eh,VV,b,A |: 5 Z Z nk hTAh — hTAWan — hTAbk - XTWTAh
k=1n=1
+x! W] AW;x,, + X! W] Ab;, — b Ah,, + b, AW;x,, + b;Abk)]

1 T I
=3 Znk(Epa [h Ah ] h, AW,x, — h, Ab, — x| W, Ah,,
k=1n=1

+ XI EW,A [WZAWk Xp + X;[W;[\Bk - B;‘/_Xﬁn + Bk/_\kan + Eb,A |:b;Abk:| )

(B, Ahy, + tr(AS; 1) — b, AW,X,, — h,, Ab, — x| W} Ah,,
+x (Pd + W, AW},)x,, + x W, Ab; — b, Ah,, + b, AW;x,, + b, Ab; + x~'d)

i
I

I

ol o
M=
iM-

K N
1 _ _ T - - _
=73 Z Z 2k (M, — Wixp, — bk)TA(hn — Wix, —by) + tr(AE,:l) + k7td 4 dx, Px,,)
k=1n=1
1 KX B ) o i )
=73 Z Z 2ok ((hy, — Wix, — bg)  A(hy, — Wix, — by) +tr(AZ, 1) + k7 1d + dx, Px,,),
k=1n=1

where we used the identities

Eja[h] Ah,] = h, Ah, + tr(AS; ),

Ew AW, AW,] = Ptr(A~TA) + W, AW,
= Pd + W, AW,
and
E,.[bj Aby] = b, Aby, + tr(Ax A"
_ b, Aby + - ld.
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Part (3) can be written as

K N
CEID D) SEMYEATS

k=1n=1

K N 1
=20

k=1n=1

k=1n=1

1
2

Bl 0] - 5 In(2A) — 5 By 06— 1) Talo — 0]

2

D 1
Elln [Tk} - 5 In(27) - 5 By, 1, [, TrxXp, — %, Timy, — 1 TaX + n;rknk]]

1 _

Bl 0] - 5 In(2m) — 5106~ 74) T, )]

InAj; = E[lndet Ay
D .
= Zw(lw) + DIn2 + Indet Wy,
i=1

In7y, = E[lnmg] = o (ur) — (@).

The results from (1), (2), and (3) can now be combined to

Ing(z) =Enacawpax | In[p(ylh z A c, A)p(hx,z, W, b, A)p(z|r)]

(1) +(2) + (3) + Elln .
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4.3.10 Updatingnand I

For the Normal-Wishart prior over nn and I', we can see from the Variational Mixture of
Gaussians example in [6] that

a(n: T) = N (mglve, (BTR) " W(Tk|Ex, &),

with
Br = Bo + Nk,
1 _
Ve = 5 (Bovo + NiXp),
Bk
——1 ——1 /BONIC = - T
= == —i—NkSk—}—iXk— X — ,
k 0 50+Nk( ’Yo)( ’Yo)
=& + Np+ 1,
and
N
Ne =Y ruk,
n=1

We now have the complete set of parameter update equations, to learn our model on a
given dataset.
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4.4 Validation Examples

4.4.1 Cosmic microwave background dataset

To evaluate our algorithm, we apply it to the cosmic microwave background dataset [4],
which has an input and output dimensionality of 1, in Figure 4.3. We use 50 mixture
components, and a hidden space with dimensionality 3.

20000 +

10000 A

—10000 A

—20000 A

0 200 400 600 800

Figure 4.3: The cosmic microwave background dataset approximated by the proposed
algorithm. The prediction mean is given by the red curve, while the 1,2,3
standard deviation is shown in purple.
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4.4.2 Regression on a Non-Linear Toy Dataset

The next example is a dataset, created by the function
y = sin(2z) + 2 exp(—1622) + N(0,0.16).

As shown in 4.4,we are able to successfully model the dataset with 25 mixture compo-
nents.

Figure 4.4: The derived algorithm applied to a non-linear toy dataset, with 25 mixture
components. The prediction mean is indicated in red, and the 1,2,3 standard
deviation is indicated in purple.
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5 Conclusion

We now conclude this thesis by giving a summary of the presented work, and offer an
outlook for potential future research.

5.1 Summary

We have shown how the PCA method is able to effectively reduce the dimensionality
of a given dataset, by projecting the datapoints onto a principal subspace with a given
dimension, such that the loss of information is minimal. We then introduced the proba-
bilistic formulation of PCA, called PPCA. This probabilistic treatment allows extending
the method to use the fully Bayesian framework and incorporating mixture models. In
chapter 2.3 we showed that BPCA can automatically infer the dimensionality of the
principal subspace from the data, and that an EM algorithm can be derived to efficiently
compute the solution, even for big datasets. The MPPCA algorithm showed how to
incorporate mixture models for PPCA, allowing to operate on complex datasets. We then
addressed how the mixture model approach can also be used with BPCA. BMPCA was
able to use a mixture of Bayesian principal component analyzers, while automatically
inferring the dimensionality of the latent space, as well as the number of models.

We presented the idea of Variational Locally Projected Regression, showing how it is
possible to make use of hidden structure, by projecting a given dataset onto a higher
dimensional latent space. Followed by a derivation of an algorithm with VI, that can
compute solutions even for complex datasets. The derived algorithm has then been
sucessfully used, to model two example datasets.

5.2 Future Work

In future research, several topics can still be addressed.

The method introduced in this thesis, makes use of mixture models where the number
of mixtures is a hyperparameter. To eliminate the need for this hyperparameter, an
extension to infinite mixture models could be formulated.
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Furthermore, similar to Deep Neural Networks (DNN), instead of using only a single pro-
jection layer, this method could be extended to make use of multiple hidden layers.

To improve the efficiency of the training phase, the stochastic updates could be imple-
mented over batches, such that scaling to larger datasets becomes feasible.

Due to using a Bayesian treatment, the prior distributions require several hyperparameters,
which have to be defined and rely on educated manual tuning. A method for optimizing
these parameters could increase the predictive performance and make the method easier
to use.

Finally the method could be applied to an inverse dynamics learning task, and tested on
a real platform.
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