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Abstract

Movement primitives, a subdomain of imitation learning in robotics, leverage Machine
Learning to learn movement sequences from demonstrations. Unfortunately, numerous
proposed primitives cannot extract understandable and interpretable physical information
from the learned latent space. The Koopman Theory analyzes highly complex dynam-
ical systems and decomposes them into spatio-temporal characteristics and hence in
interpretable physical information. In the scope of this work, a new class of movement
primitives, the Probabilistic Dynamic Mode Primitives (Pro-DMPs), are introduced based
on the underlying concept of Koopman Theory. A probabilistic dual perspective is proposed
utilizing Gaussian Process State-Space Model. The transition model is assumed to be a lin-
ear stationary Markov sequence, and hence linear dynamics in latent space are considered.
A Gaussian Process is applied to define a distribution over possible observation functions
defining the dependence of the latent sequence on the given demonstration. The variability
within the given demonstrations is represented in the inferred linear trajectories in latent
space and captured by a hierarchical structure. This probabilistic framework naturally
accounts for uncertainties and noise, leading to a nonparametric Bayesian formalism that
allows us to capture time-independent dynamics in latent space. We demonstrated that
the framework is capable of learning and reproducing given demonstrations on several
benchmarks.



Zusammenfassung

Bewegungsprimitive, ein Teilbereich des Imitationslernens in der Robotik, nutzen maschi-
nelles Lernen, um Bewegungsabläufe aus Demonstrationen zu lernen. Unglücklicherweise
sind zahlreiche vorgeschlagene Primitive nicht in der Lage, verständliche und interpre-
tierbare physikalische Informationen aus dem gelernten latenten Raum zu extrahieren.
Die Koopman-Theorie analysiert hochkomplexe dynamische Systeme und zerlegt sie in
räumlich-zeitliche Eigenschaften und damit in interpretierbare physikalische Informa-
tionen. Im Rahmen dieser Arbeit wird, basierend auf dem zugrundeliegenden Konzept
der Koopman-Theorie, eine neue Klasse von Bewegungsprimitiven, die Probabilistische
Dynamische Modus Primitiven, eingeführt. Es wird eine probabilistische duale Perspektive
unter Verwendung von GPSSM erarbeitet. Das Transitionsmodell wird als lineare statio-
näre Markov-Sequenz angenommen, und daher werden lineare Dynamiken im latenten
Raum betrachtet. Mit Hilfe eines Gauß-Prozesses wird eine Verteilung über mögliche
Beobachtungsfunktionen definiert, die die Abhängigkeit der latenten Sequenz von der
gegebenen Demonstration definiert. Die Variabilität innerhalb der gegebenen Demonstra-
tionen wird in den gefolgerten linearen Trajektorien im latenten Raum dargestellt und
durch eine hierarchische Struktur erfasst. Dieser probabilistische Rahmen berücksichtigt
auf natürliche Weise Unsicherheiten und Rauschen, was zu einem nichtparametrischen
Bayes’schen Formalismus führt, der es erlaubt, zeitunabhängige Dynamik im latenten
Raum zu erfassen. Anhand mehrerer Benchmarks haben wir gezeigt, dass das Framework
in der Lage ist, gegebene Demonstrationen zu erlernen und zu reproduzieren.
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1. Introduction

With the deluge of data and the increasing computational power of technologies, Machine
Learning attracts increasing attention to analyze and understand given data from highly
complex systems [1–6]. With the help of mathematics, statistics, computer science,
and engineering techniques, Machine Learning uses an interdisciplinary approach to
conclude, make decisions, and predict future outcomes [2,4–6]. In robotics, imitation
learning is a central area aiming to learn behavior from given demonstrations [7–10].
The concepts of movement primitives, a subdomain of imitation learning, leverages
Machine Learning to learn movement sequences from demonstrations. In general, there
are three distinct types of movement primitives that provide the basis for a large number
of other primitives. Among them, the Dynamic Movement Primitivess (DMPs) are the
first proposed movement primitives and hence laid the foundation for this subdomain in
Imitation Learning [7,11,12]. They rely on stable linear dynamical systems and learn
the nonlinearities by utilizing regression models. The other two primitives are fully data-
driven frameworks not requiring an underlying stable linear dynamical system [9,10]. The
first framework builds on Gaussian Mixture Regression (GMR) and consequently utilizes
Gaussian Mixture Modelling (GMM) to identify clusters in the given demonstrations [9,13].
Subsequently, based on the inferred clusters, regression techniques are applied. The
second framework, the Probabilistic Movement Primitives (ProMPs), offers a probabilistic
approach, relying fully upon regression models [10,14,15]. The regression models learn
to recreate the demonstration as a function based on the time as input. A large amount
of research has been done on these three concepts, and several promising movement
primitives have been proposed [8–10, 16–21]. Unfortunately, many of these proposed
frameworks are unable to extract understandable and interpretable physical information
within the learned latent space.

The Koopman Theory addresses the analysis of highly complex dynamical systems [22–27].
This theory considers a linear evolution of selected measurement functions on the given
data in an infinite-dimensional Hilbert space, rather than the nonlinear evolution of the
collected data points themselves [22–24]. As a result of the linear behavior in Hilbert space,
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Koopman Theory allows a subsequent decomposition into spatio-temporal characteristics
of the given dynamical system and thus into interpretable physical information [24]. The
Dynamic Mode Decomposition (DMD) family provides frameworks to approximate the
infinite-dimensional Hilbert space by a finite-dimensional invariant subspace [25–34]. The
origins of DMD lie in fluid mechanics, where it was introduced independently of Koopman
Theory and has attracted considerable attention in numerous research areas [32,33]. Its
increasing success results from its simple formulation and its close connection to Koop-
man Theory [25,26]. The DMD family provides equation-free, data-driven approaches
capable of spatial-temporal decomposition of complex systems without requiring explicit
knowledge of the governing dynamics [28–31]. Since the given data can originate from
highly nonlinear behavior, techniques based on feature mappings or kernelized functions
have been proposed in the literature, hence extending the DMD family [29–31]. Sub-
sequently, the use of spectral decomposition, also known as eigenvalue decomposition,
allows the dynamics to be decomposed into spatio-temporal patterns [25,26]. Based on
these spatio-temporal patterns, the dynamics are analyzed and predictions are made.

1.1. Contribution

This thesis formulates a new class of movement primitives based on the underlying concept
of Koopman Theory. The different approaches of the DMD family approximate the infinite-
dimensional Hilbert space by a finite-dimensional invariant subspace. In the context of
this work, a probabilistic dual perspective is adopted in the beginning. Based on Gaussian
Process State-Space Model (GP-SSM), the evolution in the latent space is assumed to be a
stationary linear Markov sequence, and a Gaussian Process (GP) is considered to describe
the dependence on the given demonstrations. Compared to the DMD family, the inverse
mapping from the latent space representing the invariant subspace back to the observation
space is considered. The probabilistic formulation naturally accounts for uncertainties
and noise and leads to a nonparametric Bayesian formalism for the observation model.
Consequently, nonlinear observation functions between latent and observation space are
included by the assumed the GP. In the context of this work, the Gaussian Process Dynamic
Mode Decomposition (GP-DMD) is proposed, a probabilistic dual variant of the DMD family.
This framework represents a Maximum A Posteriori probability estimate (MAP) of the
sequence in the latent space and the corresponding linear operator. The problem that
the invariant subspace and thus the latent space can have a higher dimensionality than
the observation space involves the risk of overfitting. Accordingly, the Bayesian Gaussian
Process Dynamic Mode Decomposition (Bayesian GP-DMD), a fully Bayesian formalism
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of the GP-DMD, is introduced. This formulation provides a Variational Inference (VI) or
Variational Bayes (VB) method and thus mitigates overfitting and achieves approximations
of the posterior distribution over the linear operator and linear trajectories in the latent
space.

While the GP-DMD and the Bayesian GP-DMD represent a dual perspective of the DMD
family, they are unable to deal with multiple demonstrations. In the concept of move-
ment primitives, learning variability within multiple given demonstrations is an essential
component [8–10]. Therefore, this thesis proposes Probabilistic Dynamic Mode Primitives
(Pro-DMPs), a new class of movement primitives. The Pro-DMPs target to express the
given variability within the given demonstrations in the derived trajectories in the latent
space. Based on the ProMPs [10,14,15,18], a hierarchical structure is provided in the
latent space, extending the GP-DMD framework. As a result, the Pro-DMP embodies an
Expectation Maximization algorithm (EM) and determines optimal point estimates for
the sequence in the latent space and the linear operator. In order to reduce the risk of
overfitting, the Bayesian Dynamic Mode Primitives (Bayesian-DMPs) adopt a fully Bayesian
formalization of the Pro-DMP. As a result of the global linearization in latent space, the de-
rived frameworks capture spatio-temporal characteristics of underlying time-independent
dynamics. The probabilistic dual perspective hence provides frameworks in which the
latent space captures physical information.

1.2. Overview

This thesis is organized as follows. First, an overview is given of the basic paradigms
of Machine Learning in Chapter 2. Thereby the introduction of the Probability Density
Estimation and the related Maximum Likelihood estimate (MLE) and MAP takes place
[2, 4, 6]. Next, the introduction of the Latent Variable Models (LVMs) [3, 4, 35] and the
well-known EM [36, 37] is given. On that basis, fully Bayesian learning is motivated,
and techniques such as VI and VB are derived [3–6]. Also, the relation between the
EM and the VI resp. VB is shown. To introduce nonparametric models, the GP [38,39],
as well as sparse Gaussian Processes techniques [40–43], are discussed next. Chapter 2
concludes withGaussian Process Latent Variable Models (GP-LVMs) [44–49] and Bayesian GP-
LVMs [50] resulting from the combination of LVMs and GPs. Chapter 3 focuses on Koopman
Theory [22–24] and the DMD family [25,26,28,32–34]. Hence, the Koopman Theory is
first discussed to gain insight into the topic. Subsequently, the DMD, a straightforward
approximation, is introduced. With the extended Dynamic Mode Decomposition (extended
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DMD) [25,26,29] and the kernel Dynamic Mode Decomposition (kernel DMD) [25,30,31],
we then consider two extensions of the DMD framework. Eventually, a probabilistic
perspective of DMD is adopted in the context of Bayesian Dynamic Mode Decomposition
(Bayesian DMD) [51]. Chapters 4 and 5 provide the central contribution of this work.
First, an overview of State-Space Models (SSMs) [52–54] and GP-SSMs [54–60] is given.
After that, the GP-DMD and the Bayesian GP-DMD are proposed. Eventually, the new
classes of movement primitives, the Pro-DMP and the Bayesian-DMP, are introduced.
Benchmarks for the validation of the performance of the GP-DMD, the Bayesian GP-DMD,
and the Pro-DMP on different datasets are provided in Chapter 6. In conclusion, Chapter 7
discusses the proposed framework, highlights its advantages and disadvantages, and gives
an outlook for future research.
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2. Machine Learning

Machine Learning aims at analyzing and interpreting patterns and relationships from
given data of an unknown process [1–6]. Based on these learned relationships, Machine
Learning interdisciplinarily leverages mathematics, statistics, computer science, and
engineering techniques to conclude, make decisions, and predict future outcomes of
interest. In particular, the daily growing deluge of data and the increasing technologies’
computational power are increasing the interest in Machine Learning in various modern
research fields from physics and robotics to economics and beyond [26, 61]. In the
following sections, an overview of Machine Learning paradigms necessary to understand
the work, is provided.

Sections 2.1, 2.2 and 2.3 give an overview of classical paradigms in Machine Learning
to understand the intricacies and effects of Bayesian formalism. Fitting parameterized
models to represent given data is discussed. Basic techniques derive optimal estimates
of parameters expressing the probabilistic framework as an optimization procedure in
logarithmic space [3–6]. However, the resulting parameters correspond to a point estimate
responsible for an optimum in the probability log-density function. For this reason, the
techniques of the full Bayesian formalism are discussed to circumvent the points estimate by
treating the parameters as random variables [3,4,6]. Additional variables are introduced
to handle fragmentary data and express more complex structures in the probabilistic
paradigms [4,6,35].

In Sections 2.4 and 2.5, the constraint imposed by parameterizing a model to express
possible functions for given data is removed. The supervised learning paradigm discussed
proposes a generalization of the Gaussian probability distributions to infinite-dimensional
function spaces [4,6,38,39]. Thus, the restriction of the possible functions responsible for
the data is done by a probability distribution. Functions are assigned a higher probability
value the more they represent the given data.

Eventually, Sections 2.6 and 2.7 present a central framework of this work. It leads to a
proposed Bayesian formalism that considers a regression problem with unknown inputs.
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Optimal estimates for the inputs are inferred, considering the distribution over all possible
functions responsible for the data. Therefore, it appears to combine the techniques
proposed in the earlier sections. The ideas and assumptions made in these sections form
the basis for the techniques derived in this work.

2.1. Probability Density Estimation

The data used in Machine Learning in general results from underlying unknown stochastic
random processes [4]. For this reason, it is useful to adopt a probabilistic perspective in
which the given data is considered as a set of random variables drawn from an unknown
probability density function. In Probability Density Estimation, the central challenge is
to find suitable approximations of this density function that captures as many properties
describing the given data as possible [2–6,35,61]. However, unknown sources not captured
by the data induce further random noise and complicate the search for satisfactory
approximations [4].

p(θ | Y,M) =
p(Y | θ,M)p(θ | M)∫︁
p(Y | θ,M)p(θ | M) dθ

=
p(Y | θ,M)p(θ | M)

p(Y | M)
,

a core quantity in Machine Learning [2,4–6]. Using Bayes’ Rule, also called Bayes’ Theorem,
the posterior distribution is composed of a likelihood and a prior distribution. In general,
the likelihood does not integrate to one. Therefore, the denominator, called marginal
likelihood or evidence, ensures that the posterior distribution is normalized and represents
a valid probability density function [4,6].

It is straightforward to take the „best guess“ as the optimal solution for the parameters

θ∗ = argmax
θ

p(Y | θ,M),

known asMaximum Likelihood estimate (MLE) [2–6,61]. The MLE is a popular probabilistic
paradigm in Machine Learning, which is characterized by its simplicity. It considers an
optimization problem on the observed data’s log-likelihood, assuming that each data point
was drawn independently. The prior p(θ) is uninformative, constant, and thus equal for
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Figure 2.1.: This figure illustrates the disadvantage of overfitting on a data set from a
sinusoidal stochastic process with additional random noise. While (a) accu-
rately represents the underlying sinusoidal process, (b) and (c)’s more com-
plexmodels overfit the data. This behavior is a well-known drawback inmax-
imizing the likelihood of parametric models in Machine Learning [4,6].

all parameters. Therefore, the only relevant quantity for the optimization problem is the
likelihood function. This optimization can achieve nearly perfect results if enough dataY is
available. However, Figure 2.1 illustrates a major drawback of using Maximum Likelihood
estimate (MLE). Considering only the likelihood and the selected parametric modelM
carries the risk of overfitting [4,6]. Increasing the model’s complexity leads to an increase
in maximum likelihood and a perfect fit to the data points Y. However, the increase in
complexity comes with the disadvantage that the functional forms are highly fluctuating
and extreme, and the model does not capture the underlying stochastic process of interest.
From a mathematical perspective, this occurs due to a resulting underdetermined system
with fewer observations than parameters [4]. This is a well-known drawback of MLE [4,6].

One appealing way to address the risk of overfitting consists of reducing confidence in
the model’s MLE solution. For this purpose, uncertainty and variability in the parameters
θ and hence in the model’s estimates are considered. From a Bayesian perspective, this
consideration is done by incorporating a priori knowledge about the parameters into the
posterior estimate

θ∗ = argmax
θ

p(Y | θ,M)p(θ | M),

resulting in the well-known Maximum A Posteriori probability estimate (MAP) [2–6,61].
The use of a prior leads to a regularization term in the optimization problem that imposes
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additional constraints on the parameter values. Depending on the amount of data, the
model balances the best estimate between the prior probability and the likelihood. The
uncertainty about the optimal estimate increases, and the prior solution is preferred when
the data set becomes smaller. Conversely, as the number of data increases, the confidence
in the likelihood estimate increases. As a result, the uncertainty and hence the prior is
neglected, and the MAP solution converges to the MLE solution [4–6]. Consequently, prop-
erly estimating the prior leads to sophisticated solutions and mitigates the aforementioned
problem of overfitting [4,6].

2.2. Latent Variable Models

One important feature in unsupervised learning and thus in Probability Density Estimation
is the consideration of Latent Variable Models (LVMs) [3–6,35]. In these models, the joint
density is assumed to be augmented by some unobserved or hidden random variables
called latent variables. The likelihood expands to a marginal likelihood over these latent
variables

p(Y | θ,M) =

∫︂
p(Y,X | θ,M) dX,

considered as data set X = {x0, · · · ,xT }. The number of latent variables usually grows
with the number of observationsY [4,6]. For discrete instead of continuous latent variables,
the integral is replaced by a sum. On the one hand, the use of LVMs follows from incomplete
or fragmentary data. On the other hand, it offers the possibility of taking dependencies
between observations into account without increasing the parameter size significantly. In
this way, it is possible to model correlations and hierarchical structures and thus handle
more complex distributions [3,6,35]. However, these advantages come together with the
cost of inducing dependencies between the parameters. These dependencies are expressed
by the log-likelihood of the data forming the logarithm over integrals

log p(Y | θ,M) = log

∫︂
p(Y,X | θ,M) dX

=

T∑︂
t=1

log

∫︂
p(yt,xt | θ,M) dxt⏞ ⏟⏟ ⏞
def
=L(X,θ)

, (2.1)
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which is generally intractable [3, 4, 6, 35]. This intractability complicates the use of
the aforementioned probabilistic paradigms MLE or MAP and causes difficulties training
generative models.

Instead of working directly on Equation (2.1), a convenient and deterministic way is
moving to a more tractable approach by introducing a lower bound [3–6]. This introduction
involves extending the joint density model and the likelihood with an auxiliary distribution
called the variational distribution q(X). A variational distribution either has a parametric
form or expresses a family of functions. Thus, using Jensen’s inequality [62], the data’s
log-likelihood changes to

L(X,θ) =

T∑︂
t=1

log

∫︂
p(yt,xt | θ,M) dxt

=
T∑︂
t=1

log

∫︂
q(xt)

p(yt,xt | θ,M)

q(xt)
dX

≥
T∑︂
t=1

∫︂
q(xt) log

p(yt,xt | θ,M)

q(xt)
dX (2.2)

=
T∑︂
t=1

∫︂
q(xt) log

p(xt | yt,θ,M)p(yt | θ,M)

q(xt)
dX

=

T∑︂
t=1

(log p(yt | θ,M)−KL(p(xt | yt,θ,M) ∥ q(xt))) ,

def
= LELBO(q(xt), θ),

resulting in the tractable lower bound known as Evidence Lower Bound (ELBO) or free
energy [3–6,63,64]. The optimization of this lower bound leads to the well-known iterative
Expectation Maximization algorithm (EM)

E step: q(xi)
∗ ← argmax

q(xi)
LELBO(q(xi),θ) ∀i,

M step: θ∗ ← argmax
θ

LELBO(q(xi)
∗,θ),

where the variational distribution q(X) and the model parameters θ are subsequently op-
timized, as shown in Figure 2.2 [2–6,36,37]. The E step tightens the ELBO by minimizing
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LELBO (q, θ)

KL(q ‖ p)

log p(Y | θ)

KL(q ‖ p) = 0

LELBO (q, θ)

log p(Y | θ)

LELBO
(
q, θ∗

)

KL(q ‖ p)

log p(Y | θ∗)

E step

M step

Figure 2.2.: This figure shows the cyclical process of the well-known Expectation Maxi-
mization algorithm. The EM maximizes the actual marginal log-likelihood
log p(Y | θ) taking unobserved latent variables into account. The Ex-
pectation step (E step) tightens the lower bound by minimizing the Kull-
back–Leibler divergence between the variational distribution q and the true
posterior distribution p. Classical Maximum Likelihood estimate is then ap-
plied in the Maximization step (M step), and the parameters θ are optimized.
This optimization increases the lower bound LELBO and thus maximizes the
marginal likelihood [3,4].

10



the KL divergence (see Appendix B) between the variational distribution q(X) and the
latent variables’ posterior distribution p(xt | yt,θ,M). The parameters of the model are
updated in the M step. Working with exponential families such as Gaussian distributions
(see Appendix A) allows the posterior p(xt | yt,θ,M) to be analytically determined in
closed form. Jensen’s inequality (see Equation (2.2)) vanishes completly and the ELBO is
equal to the marginal log-likelihood [3]. Consequently, the M step directly optimizes the
marginal log-likelihood. In general, the vanishing of Jensen’s inequality is not always the
case [3]. The KL divergence, for instance, does not become zero, resulting in a constant
deviation between the variational and posterior distributions. This deviation results in a
constant offset between the true marginal log-likelihood and the calculated ELBO. Thus,
the introduction of the ELBO entails the risk of an offset in the estimation of the optimal
parameter values θ∗ [3]. The EM algorithm nevertheless provides a convenient way to
estimate the parameters’ optimal values for a selected model. Additionally, it provides an
approximation of the posterior distribution of the latent variables.

2.3. Bayesian Learning

The extension of MLE by the Expectation Maximization algorithm achieves the handling
of Latent Variable Models but still maximizes the log of a probability density function. It
searches for an optimal parameter value for a selected model, considering only the density.
Even if a prior p(θ) is considered and thus the probability density function is reshaped,
MAP again provides only an optimal point estimate of θ∗. A suitable and intuitive way is
to consider the probability density and the probability mass and thus the entire posterior
distribution. Indeed, this consideration is a part of Bayesian Learning or Bayesian Statistics
by treating the unknown parameters as random variables [3–6]. This treatment changes
the previous optimization problem of parameters into a Probabilistic Inference problem.

The quantity of interest becomes the marginal likelihood over possible latent variables X
and the parameters θ, represented as

p(Y | M) =

∫︂∫︂
p(Y,X,θ | M) dXdθ

=

∫︂∫︂
p(X,θ | Y,M)p(Y | M) dX dθ. (2.3)

This evidence of a selected modelM can be seen as the expectation of the likelihood
given the posterior distribution of all latent variables. The consideration of the entire
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posterior distribution due to the Bayesian modeling fully addresses uncertainty and
variability in estimating the parameters θ. Also, the Occam’s Razor effect resulting from
marginalization across parameters penalizes overly complex models [6]. However, for
most probabilistic models, the corresponding likelihood in Equation (2.3) is intractable,
and exact Probabilistic Inference is daunting [3,4,6].

Instead of directly inferring the marginal likelihood, two well-known families of techniques
in the research community consider the approximation of Equation (2.3). First, numerical
sampling techniques such as Markov Chain Monte-Carlo (MCMC) are used [4–6,65–67].
These stochastic approximation techniques converge to the true distribution given a
sufficient number of samples [4,6]. However, the computational complexity grows expo-
nentially with the number of dimensions of the latent space. Therefore, these algorithms
suffer from the well-known curse of dimensionality [4,6].

In contrast, a deterministic way is to consider the approximation inference methods
known as Variational Inference (VI) or Variational Bayes (VB) [3–6,63,64,68–73]. The
family of these methods results when we extend the Expectation Maximization algorithm
introduced previously. Here, the Probabilistic Inference problem is again considered as
an optimization function of the data’s log-likelihood. Like in section 2.2, they introduce
a variational distribution q(X,θ) over all latent variables and apply Jensen’s inequality
resulting in an ELBO

L(X,θ) =
T∑︂
t=1

log

∫︂∫︂
p(yt,xt,θ | M) dxt dθ

≥
T∑︂
t=1

∫︂∫︂
q(X,θ) log

p(yt,xt,θ | M)

q(X,θ)
dX dθ

=

T∑︂
t=1

(log p(yt | θ,M)−KL(p(xt,θ | yt,M) ∥ q(X,θ)))

def
= LELBO(q(X, θ)).

However, allowing every possible choice of q(X,θ) entails intractability due to the depen-
dencies between all latent variables X and θ [3,4,6]. There are, in general, two ways to
restrict the shape of the distribution. One way assumes that the variational distribution has
a particular parametric form qω(X,θ) parameterized by ω. This transforms the ELBO’s
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optimization into a nonlinear optimization problem

ω∗ = argmax
ω

LELBO(qω(X,θ)),

and thus can be solved by applying classical methods of nonlinear optimization [4, 6].
An alternative is to constrain the variational distribution q(X,θ) to represent a particular
family of possible distributions. This restriction requires a pre-assumed factorization of
the variational distribution

q(X,θ) =
T∏︂
t=0

q(xt)q(θ),

the so-called mean field assumption. The mean field assumption makes the optimization
problem tractable. Applying Calculus of Variations and the Euler-Lagrange formalism
leads to optimal parameters for each factor of the variational distribution [3]. Like EM, a
cyclic procedure results

VBE step: q(xi)
∗ ← argmax

q(xi)
LELBO(q(xi), q(θ)) ∀i,

VBM step: q(θ)∗ ← argmax
q(θ)

LELBO(q(xi)
∗, q(θ)),

in which each factor is successively updated while the others are kept fixed. In the research
community this procedure is popularly known as Variational Bayes Expectation Maximiza-
tion algorithm (VBEM) [3]. Due to the maximization of a convex lower bound, an optimal
solution is guaranteed [4,6,74]. However, the accuracy of the optimal solutions depends
on the assumption made about the variational distribution. If the true posterior distribu-
tion is representable by a functional form or lies in the family of possible distributions,
the KL divergence vanishes. Otherwise, the resulting variational distribution gives an
approximation and an offset between the marginal log-likelihood and the ELBO [3,4,6].
The choice of the best setting is therefore crucial.

Central parameters in the previously mentioned algorithms are the so-called hyperparam-
eters of the probability density model. For instance, the hyperparameters are the natural
parameters of the prior distribution p(θ). In a Gaussian distribution, this corresponds
to the mean and the covariance or precision matrix. While the EM algorithm iteratively
infers over the unknown latent variables X and maximizes the model’s parameters θ,
the VBEM algorithm transforms this into a purely Probabilistic Inference problem [3–6].
However, in the methods presented so far, the hyperparameters are always assumed to be
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fixed. Therefore, it is a reasonable extension to maximize them as well [3,6]. The VBEM
algorithm first infers over the latent variables X and θ. Subsequently, a maximization
step (M step) is performed to optimize the hyperparameters while keeping the variational
distributions fixed. This extension is called Empirical Bayesian learning. This extension
abandons the fully Bayesian approach due to maximizing over the hyperparameters. In
other words, only optimal point estimates for the hyperparameters are considered again,
without taking uncertainties and variabilities into account [3,6].

2.4. Gaussian Processes

The previous sections consider Probability Density Estimation. The presented methods
are interested in an approximation of the probability density model responsible for the
given observations. For this purpose, parametric models M are utilized, which are
parameterized by θ. Due to this parameterization, these Machine Learning methods
belong to the so-called parametric methods [4,6]. In parametric methods, training and
prediction seem to form two completely independent phases [4, 6, 39]. The predictive
density distribution, given by

p(y∗ | Y,M) =

∫︂
p(y∗ | Y,θ,M)p(θ | Y,M) dθ

=

∫︂
p(y∗ | θ,M)p(θ | Y,M) dθ,

clearly shows this separation. The probability of a new data point y∗ depends only
on the modelM and the parameters learned θ. In a sense, parametric methods rely
solely on the trained model and seem to neglect the given data Y. Thus, the choice
of parameterization is an essential component [4–6]. On the one hand, a too strongly
parameterized model limits the representability of arbitrary functions. On the other hand,
low restriction leads to complex models with many parameters and thus to the danger of
overfitting [4,5,39]. While the discussed Bayesian learning (see Section 2.3) is one way
to find a satisfying tradeoff, another attractive way is to consider nonparametric Bayesian
methods such as Gaussian Processes (GPs). In Machine Learning, Gaussian Processess
are traditionally used for regression and classification problems and are thus a topic
in supervised learning [4, 6, 38, 39, 61, 75]. This paradigm combines the learning and
prediction phases attractively. Instead of assuming a parametric model and considering
a distribution over the parameters, GPs infer directly over functions [38, 39]. Loosely
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Figure 2.3.: These figures show the behavior of Gaussian process regression when at-
tempting to capture the underlying sinusoidal stochastic process. On the
left side (a), only a zero-mean Gaussian process prior is given. Therefore,
the resulting trajectories evolve around the zero-mean without following the
sinusoidal shape. On the right side (b), two data points are given. The tra-
jectory of the mean function captures parts of the sinusoidal shape from
the given data. The sampled trajectories tend to follow the mean and thus
the sinusoidal the closer the distance to the observations. As the distance
increases, the trajectories become less constrained and take on arbitrary
smooth forms [39].

speaking, the idea is to constrain the functions using only a prior distribution over all
possible functions. The probability assigned to a function increases the more it fits the
observed data. Thus, the inference problem is transformed into an infinite-dimensional
functional space [4,6,39]. In general, however, dealing with infinite-dimensional objects
is challenging.

A convincing prior distribution over possible function values f(·) is the generalization of
a Gaussian distribution called Gaussian Process Prior. Given some set of input variables
X = {x0, · · · ,xT }, the Prior forms a multivariate Gaussian distribution over corresponding
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function values F = {f0 = f(x0), · · · , fT = f(xT )} by

F ∼ GP (mX,KXX) ,⎡⎢⎢⎢⎣
f0
...

fT

⎤⎥⎥⎥⎦ ∼ N
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
m(x0)

...

m(xT )

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
k(x0,x0,θ) · · · k(x0,xT ,θ)

... . . . ...

k(xT ,x0,θ) · · · k(xT ,xT ,θ)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where mX and KXX correspond to a mean vector and a covariance or kernel matrix [38].
Due to this generalization of Gaussian distributions, the handling with infinite-dimensional
objects becomes feasible [39]. It is very common to set the mean function m(·) to zero,
hence, it is also done in this work. The entries of the kernel matrix corresponding to
some kernel functions k(·, ·,θ) depending on adjustable parameters. In the left part of
Figure 2.3, samples drawn from a zero-mean Gaussian Process prior are shown. They
exemplify the resulting smooth trajectories and evolution around the zero-mean function.
Since no data of the underlying process is given, these trajectories are not sinusoidal.

In a regression problem, the outcoming function should match given observations Y =
{y0, · · · ,yT }. Assuming a Gaussian likelihood measuring the uncertainty between the
observations and the functions with some precision value λy the posterior distribution is
expressed by

p(F | Y,X) ∝ N (Y | F, λ−1
y I)GP(F | 0,KXX),

which is analytically computable in closed form [4]. The most probable function values F
given the inputs X and observations Y correspond to

˜︁µ = KXX

(︁
KXX + λ−1

y

)︁−1
Y, (2.4)

˜︁Σ = KXX −KXX

(︁
KXX + λ−1

y

)︁−1
KXX. (2.5)

The mean value of the function ˜︁µ corresponds to the observed data Y if λy → ∞ or,
equivalently, the variance converges to zero. The predictive density distribution of an
unknown observation F∗ for a new input variable X∗ is given by

p(F∗ | X∗,D) =

∫︂
p(F∗ | X∗,F)p(F | Y,X) dF,
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and represents another interesting query. The integrand corresponds to a multivariate
Gaussian distribution represented by⎡⎣Y

F∗

⎤⎦ ∼ GP
⎛⎝⎡⎣0

0

⎤⎦ ,

⎡⎣KXX KXX∗

KX∗X KX∗X∗

⎤⎦⎞⎠ ,

due to its assumed Gaussian nature [4,6]. Similar to predicting the value function for
known observations Y, the marginalization is analytically solvable and forms a Gaussian
distribution [4]. In this way, the new observation’s predictive probability results in

p(F∗ | X∗,D) ∝ N (F∗ | ˜︁µ∗, ˜︁Σ∗
),

with the mean vector and covariance matrix

˜︁µ∗ = KX∗X

(︁
KXX + λ−1

y

)︁−1
Y, (2.6)

˜︁Σ∗
= KX∗X∗ −KX∗X

(︁
KXX + λ−1

y

)︁−1
KXX∗ . (2.7)

The predicted function values differ from the predicted mean value the greater the distance
to the given values Y. The closer the distance, the more they are constrained. The right
part of Figure 2.3 shows this behavior for two observations of the dataY. The curve of the
mean function already captures parts of the sinusoidal shape. The samples drawn from
the resulting distribution tend to follow the mean close to the observed data points. With
an increasing number of data points, the model provides a closer fit to the data [4,38,39].

The properties of the sampled trajectories, such as smoothness, are determined by an
appropriate choice of the covariance or kernel function [39]. An overview of the kernels
relevant to the context of this work is given in the Appendix C. A kernel usually represents
a similarity measure between two points [4]. In case when the two points are close to
each other and show strong similarities, they are assigned a high value. Consequently, the
resulting function values similarly exhibits high similarities. Further, the use of nonlinear
kernels enables a mapping into a nonlinear feature space. This mapping extends Gaussian
processes’ capabilities and is also known as the Kernel Trick in Machine Learning [4,6].
Learning the kernel parameters θ is done by maximizing the marginal log-likelihood given
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by

L(θ) = log p(y)

= log

∫︂
p(Y | F)p(F | X) dF

= logN
(︁
Y | 0,KXX(θ) + λ−1

y

)︁
= −T

2
log 2π − 1

2
log|KXX(θ)| − 1

2
Tr
(︁
K−1

XX(θ)YYT
)︁
, (2.8)

which is computable in closed form due to its Gaussian nature [4,6,38,39].

In summary, the Gaussian process framework does not rely on parametric methods and
leverages the seen data to predict future outcomes. Therefore, the complexity of the
method depends on the size of the given data [38,39,43,54]. For this reason, the Bayesian
Gaussian process belongs to the nonparametric methods. In these methods, the number
of parameters and the complexity increase with the size of the data [4,6]. The automatic
adjustment of the complexity seems attractive in itself. However, it is associated with
a high computational cost. The computation time increases cubically

(︁
O(T 3)

)︁
with the

number of given data due to the inversion of the kernel matrix (see Equations (2.4) to (2.7)
and (2.8)) [38, 39, 43]. In the next chapter, techniques that mitigate this problem are
proposed and discussed.

2.5. Sparse Gaussian Processes

As mentioned in the previous chapter, the cubic complexity associated with increasing data
size is a challenge for Gaussian Processes (GPs). Numerous works focused on this problem
and have proposed sparse Gaussian Process methods [40–43,75–79]. These methods allow
scaling of Gaussian process models to large data sets without unfavorably affecting the
prediction quality [80]. A subset of sparse Gaussian process techniques considers global
approximation techniques. These techniques apply an approximation of the T × T kernel
matrix KX,X. Such techniques use low-rank matrix approximation to decompose the
kernel into the following product

KXX = K
X˜︁XK−1˜︁X˜︁XK˜︁XX

,
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where the middle term corresponds to aD×D Kernel overD ≪ T data points ˜︁X [80–82].
The use of deterministic techniques from this domain results in approximations that
cause high prediction variance and are consequently unfavorable [80,83]. Probabilistic
techniques, therefore, model this decomposition in the probabilistic generative model.
They consider the so-called inducing inputs ˜︁X as parameters living in the same space as
the function inputs X [77]. The prior distribution over all possible functions, expressed
by a Gaussian Process prior, expands to

p(F | X) =

∫︂
p(F, ˜︁F | X) d˜︁F

=

∫︂
GP
(︃⎡⎣F˜︁F

⎤⎦ ⃓⃓⃓⃓ ⎡⎣0
0

⎤⎦ ,

⎡⎣KXX K
X˜︁X

K˜︁XX
K˜︁X˜︁X

⎤⎦)︃ d˜︁F
= GP

(︂
F | ˜︁µ, ˜︁Σ)︂ ,

taking into account the inducing inputs and corresponding outputs ˜︁F, known as inducing
variables [40–43,76,77]. The resulting prior distribution again forms a Gaussian process
prior with corresponding mean and covariance˜︁µ = K

X˜︁XK−1˜︁X˜︁X˜︁F,˜︁Σ = KXX −K
X˜︁XK−1˜︁X˜︁XK˜︁XX

.

These equations already show the advantage of using inducing points, which only require
an inversion over a D ×D matrix, thus reducing the complexity to O(TD2). In order to
avoid running into high prediction variances, we extend the predictive density distribution
to

p(F∗ | X∗,Y,X) =

∫︂∫︂
p(F∗ | X∗,F, ˜︁F)p(F, ˜︁F | Y,X) dFd˜︁F,

considering the inducing variables and inducing inputs. Instead of inferring exactly this
distribution, the assumption is made that the inducing variables form sufficient statistics
for the predictions [77]. Consequently, the likelihood of a new data point F∗ depends
solely on the inducing variables and not on the tuple (F, ˜︁F). This reason implies the name
inducing variable and inducing inputs. Under this assumption, the predictive probability
density is formed

q(F∗ | X∗) =

∫︂∫︂
p(F∗ | X∗, ˜︁F) p(F | X˜︁F)q(˜︁F)⏞ ⏟⏟ ⏞

q(F,˜︁F)

dFd˜︁F,
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where q(F, ˜︁F) is a variational distribution that approximates the true posterior distribution
p(F, ˜︁F | Y,X, ˜︁X). The goal is to optimize the inducing inputs ˜︁X to minimize the KL
divergence between the two distributions. This minimization is similar to maximizing an
Evidence Lower Bound, using the variational method discussed in Section 2.3 [3,4,6].
Thus, if the marginal log-likelihood is assumed, the ELBO is as follows

log p(Y | X) = log

∫︂
p(Y | F)p(F | X) dF

= log

∫︂∫︂
p(Y | F)p(F | X, ˜︁F)p(˜︁F | ˜︁X) dFd˜︁F

≥
∫︂∫︂

q(F, ˜︁F) log p(Y | F)p(F | X, ˜︁F)p(˜︁F | ˜︁X)

q(F, ˜︁F) dFd˜︁F
=

∫︂∫︂
p(F | ˜︁F)q(˜︁F) log p(Y | F)p(˜︁F | ˜︁X)

q(˜︁F) dFd˜︁F
def
= LELBO(˜︁X, q(˜︁F),θ),

depending on the inducing inputs ˜︁X, the kernel’s hyperparameters θ, and the variational
distribution q(˜︁F). An optimal Gaussian distribution in closed form is obtained from the
derivative w.r.t. q(˜︁F) using Euler-Lagrange and Variational Calculus. Substituting this
optimal distribution into the lower bound leads to a new objective given by

LELBO(˜︁X,θ) = logN (Y | 0,K
X,˜︁X(θ)K−1˜︁X˜︁X(θ)K˜︁XX

(θ))

− 1λ2

2
Tr
(︂
KXX(θ)−K

X˜︁X(θ)K−1˜︁X˜︁X(θ)K˜︁XX
(θ)
)︂
,

where gradient descent based optimization techniques are used to optimize the corre-
sponding hyperparameters and inducing inputs [77]. The trace term accounts for the total
variance between the true function F and the inducing variables ˜︁F [50,77]. While maxi-
mizing the likelihood, the variance between F and ˜︁F is minimized. If the inducing inputs˜︁X match the given inputs X, the trace vanishes, and the full Gaussian process is obtained
(see Equation (2.8)) [77]. A closer look at the augmentation of the marginal log-likelihood
reveals further that the inducing inputs only affect the inducing variables and thus the vari-
ational distribution. The marginalization of the inducing variables renders the influence of
the inducing inputs vanishes as well. For this reason, the inducing variables are referred to
as variational parameters [50,54,77]. They only influence the variational approximation
q(˜︁F) and not the original joint density model p(Y,F). Thus, they only change how tightly
the Lower Bound corresponds to the marginal log-likelihood [50,54,77].
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2.6. Gaussian Process Latent Variable Models

In numerous fields of research, high-dimensional data Y is used. For instance, fluid
mechanics or computer vision analyze given data in images or video frames [4, 6, 25,
26]. Thus, the dimensionality of a single data point is sometimes enormous. However,
in these high-dimensional spaces, the data points are close to each other and form a
much less-dimensional manifold [35]. The continuous LVMs (see Section 2.2) used in
Machine Learning aim to determine a mapping into such a low-dimensional manifold
while preserving the data’s inherent structure [4, 6, 35]. Subsequently, analysis and
interpretation of the data take place in this low-dimensional spaces. The mapping of
a point xt in the latent space to a single scalar observation in the observation space is
expressed by

ynt = f(xt, cn) + ϵnt, (2.9)

where cn is a vector describing the parameters of the mapping f(·, ·) [35,44–46]. The
associated ynt corresponds to the nth row and the tth column of the given observation ma-
trix Y. N and T denote the dimension and the number of given observations, respectively.
Assuming an independently drawn noise ϵnt ∼ N (0, λ−1

Y I) the mapping in Equation (2.9)
is equivalent to

p(Y | X,C) =

N∏︂
n=1

T∏︂
t=0

N (ynt | f(xt, cn), λ
−1
Y ), (2.10)

a Gaussian likelihood function [4, 35, 44]. The variables in the latent space resulting
from the dimensionality reduction are collected in a matrix X ∈ RM×T . In dimensionality
reduction frameworks, usually, the latent space dimension is smaller than that of the
observations, i.e., M < N . Several frameworks in these fields like Principle Component
Analysis (PCA), Factor Analysis (FA) and Independent Component Analysis (ICA) treat the
latent variables as random variables [4,6]. They assume an appropriate prior over the
variables and perform marginalization over them. Subsequently, the parameters collected
in C are optimized. First, marginalizing the latent variables and then optimizing the
parameters formulates the primal formalism for dimensionality reduction [44].

The dual formalism accordingly follows the opposite way. The parameters of themappingC
are considered random variables and are assigned a prior distribution p(C)N (cn | 0, λ−1

C I).
They are then marginalized, and the latent variables X are optimized [44, 45]. For
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simplicity, a linear mapping is assumed, and thus the function becomes f(xt, cn) = xT
t cn.

The marginal likelihood is represented in closed form by

p(Y | X, λY, λC) =

∫︂ T∏︂
t=0

p(yt | C,xt, λY)p(C) dC

=

∫︂
· · ·
∫︂ T∏︂

t=0

N∏︂
n=1

N (yn,t | xT
t cn, λYI)N (cn | 0, λ−1

C I) dc1 · · · dcN

=
N∏︂

n=1

∫︂
N (YT

n | XT cn, λYI)N (cn | 0, λ−1
C I) dcn

=

N∏︂
n=1

N
(︁
YT

n | 0, λ−1
Y I+ λ−1

C XTX
)︁

=
N∏︂

n=1

GP
(︁
YT

n | 0,KX,X(θ)
)︁
,

expressed by N independent Gaussian processes [44]. The vector Yn corresponds to
the nth row of the given observation matrix. The subsequent application of Maximum
Likelihood estimate results in the new objective

L(X,θ) = −NT

2
log(2π)− D

2
log|KX,X(θ)| − 1

2
Tr
(︁
KX,X(θ)−1YTY

)︁
,

and forms the Gaussian Process Latent Variable Models. For a linear kernel, eigendecom-
position results in a closed-form analytic optimal solution [44,45]. The Kernel Trick (see
Section 2.4) achieves a generalization to nonlinear mappings from the latent space to the
data space [44,45]. A suitable nonlinear kernel function replaces the linear kernel. This
generalization has the consequence that there is no closed-form solution available, and
thus nonlinear optimization techniques are applied [44].

The GP-LVMs seem to form a combination of the GPs and the LVMs frameworks. It
considers a regression problem with known outputs and unknown inputs. The optimal
inputs X∗ most likely responsible for the seen data Y are estimated using Maximum
Likelihood estimate (MLE) [44,45]. However, as discussed in the previous chapter, the
resulting latent variable estimate is only a point estimate [4]. Consequently, it does not
consider uncertainty and variability. The use of point estimates also carries the risk of
overfitting (see Section 2.1) if overly complex models are assumed [6]. In the GP-LVMs
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framework, overly complex models result when the latent variables exhibit a higher
dimension than the observations, i.e., M > N . The majority of problems considered
in the literature address dimensionality reductions, and thus such a situation does not
occur [44–47, 50]. Therefore, the application of GP-LVMs achieves satisfactory results.
The Gaussian Processes resulting from marginalization entail another drawback in the
GP-LVMs framework. The computational complexity of each evaluation of the optimization
problem increases cubically with the amount of given data, resulting in a complexity of
O(T 3) (see Section 2.4). In the following chapter, a method is presented that alleviates the
aforementioned problems based on Sparse Gaussian Process techniques (see Section 2.5).

2.7. Bayesian Gaussian Process Latent Variable Models

The GP-LVMs formalism entails the problem of a resulting point estimate of the latent
variables. If the dimensions of the latent space M is larger than the dimensions of the
observations space N , there is a risk of overfitting overfitting the estimate of the latent
variables X [50]. A suitable extension is to consider uncertainties and variabilities in the
latent variables’ estimates utilizing a prior distribution

p(X) =

T∏︂
t=0

N (xt | 0, I).

This consideration extends the GP-LVMs formalism. Optimization of the resulting objective
remains, obviously, a point estimate and results in the Maximum A Posteriori probability
estimate [4,6]. The better way is to treat the latent variables X as random variables and
marginalize them in the marginal log-likelihood. This consideration extends the GPLVM
framework to a Bayesian learning paradigm [50]. Simultaneously, the computational
complexity is to be reduced by sparse Gaussian process techniques [46,77]. As discussed
in Section 2.5, inducing variables ˜︁F are introduced with their corresponding inducing
inputs ˜︁X. On the one hand, these inducing pairs reduce the computational complexity to
O(TD2) [77]. On the other hand, the inducing variables are assumed to provide sufficient
statistics. Thus, the function values F are conditional independent given ˜︁F [77]. The
extension of the GP-LVMs is expressed by the following marginal likelihood

GP
(︁
YT

n | 0,KX,X

)︁
=

∫︂
N (Yn | Fn, λ

−1
Y I)GP(Fn | 0,KX,X) dFn

=

∫︂∫︂
N (Yn | Fn, λ

−1
Y I)N (Fn | µn,Σ)GP(˜︁Fn | 0,K˜︁X˜︁X) dFn d˜︁Fn,
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with the quantities µn = K
X˜︁XK−1˜︁X˜︁X˜︁Fn and Σ = KXX −K

X˜︁XK−1˜︁X˜︁XK˜︁XX
. To achieve the

fully Bayesian approach, the function values F and the inducing variables ˜︁F are considered
random variables. Using VI (see Section 2.3), an Evidence Lower Bound for the marginal
log-likelihood is formalized by

N∑︂
n=1

log p(Yn) =
N∑︂

n=1

log

∫︂∫︂∫︂
p(Yn,Fn, ˜︁Fn,X) dFn d˜︁Fn dX

≥
N∑︂

n=1

log

∫︂∫︂∫︂
q(X)p(Fn | ˜︁Fn)q(˜︁Fn)

p(Yn | Fn)p(˜︁Fn)p(X)

q(X)q(˜︁Fn)
dFn d˜︁Fn dX

def
= LELBO(q(X), q(˜︁F), ˜︁θ),

where the variational distribution is factorized accordingly

q(X, ˜︁F,F) = q(X)
N∏︂

n=1

N (Fn | µ,Σ)q(˜︁Fn),

based on a mean field assumption. For clarity, all hyperparameters and variational
parameters are represented by ˜︁θ. Few reformulation steps give the ELBO the following
form

LELBO(q(X), q(˜︁F), ˜︁θ) = N∑︂
n=1

(︃
−KL(q(X) ∥ p(X))−KL

(︂
q(˜︁Fn)

⃦⃦⃦
p(˜︁Fn)

)︂
⟨︁
logN (Yn | Fn, λ

−1
Y I)

⟩︁
q(X)q(˜︁Fn)

−
λY

2
Tr
(︂
⟨KXX⟩q(X) −K−1˜︁X˜︁X ⟨︁K˜︁XX

K
X˜︁X⟩︁q(X)

)︂)︃
,

where the operator ⟨·⟩q(·) defines the expected value w.r.t. the probability distribution
q(·) [50]. The hyperparameters and variational parameters are jointly optimized using
nonlinear optimization techniques [50]. As in Section 2.5, the trace’s quantity represents
the total variance between the true function values F and the inducing variables ˜︁F. Thus,
the maximization of the Evidence Lower Bound simultaneously minimizes the variance
between the true functions and the inducing variables [50].

In summary, the extension to a variational method provides a Bayesian learning formal-
ism that approximates the fully marginalized GP-LVMs [50]. If, on the one hand, the
hyperparameters and variational parameters are optimized, the result is an Empirical
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Bayesian approach. Keeping them fixed, on the other hand, results in a full Bayesian
formalism [6]. Furthermore, approximating the true posterior distribution of the latent
variables X with given data Y leads to an Automatic Relevance Detection (ARD) [50].
An ARD automatically determines the latent space’s dimensionality by giving low proba-
bilities to dimensions not relevant to the data [4]. Moreover, the Occam’s Razor effect
(see Section 2.3) in fully Bayesian learning mitigates the risk of overfitting [6]. This
mitigation is beneficial when the latent space’s dimensionality is higher relative to the
dimensionality of the observation space. The reduced computational complexity O(TD2)
increases linearly with the size of the observations Y and quadratically with the size of
the inducing pairs. Finally, the concept of taking induced variables as sufficient statistics
and achieving conditional independence is particularly emphasized. In the further process
of the work, this assumption is essential.
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3. Dynamic Mode Decomposition

The analysis and understanding of dynamics of highly complex systems have been a
central focus in research for decades [25,26]. Dynamical systems provide mathematical
frameworks to describe the evolution and behavior of quantities in a system over time [84].
Traditionally, highly complex dynamical systems are modeled analytically based on partial
or ordinary differential equations [25]. However, due to the deluge of data and Machine
Learning techniques, data-driven approaches increasingly gain attention [26]. These
approaches learn to understand, and eventually control and predict, the underlying
dynamics of an unknown complex system from data [25, 26]. The following sections
present a modern perspective of data-driven dynamical systems and form the basis for the
rest of the work.

The growing availability of measured data from complex systems enables the use of
data-driven frameworks. The data, however, originates from highly nonlinear dynamical
behaviors. In Section 3.1, Koopman Theory is introduced that considers a linear evolution
of measurement functions of the data instead of the nonlinear evolution of the data points
themselves [22–24]. In simple terms, this concept forms a latent variable model, where
the seen data are mapped into a latent space, where they evolve linearly.

Section 3.2 introduces a data-driven regression framework that performs global lineariza-
tion directly on the given observations. The framework employs spectral decomposition,
also known as eigenvalue decomposition, to decompose the dynamics into spatio-temporal
patterns [28,32,33]. Based on these spatio-temporal patterns, the dynamics are analyzed,
and predictions are made. This framework formalizes an approximation of the concept
discussed in Section 3.1, considering linear measurement functions [25,26].

However, the assumption of inferring linear dynamics directly from the given data is
restrictive since these data may arise from highly nonlinear behaviors. Section 3.3,
therefore, deals with techniques that generalize the procedure discussed in Section 3.2.
These techniques achieve generalization utilizing feature mappings or kernelized func-
tions [25,29–31].

26



Data-driven techniques, however, suffer from inaccuracies and uncertainties in the given
data [51]. The majority of the concepts in Sections 3.1 to 3.4 are based on deterministic
techniques. Thus, representing uncertainties in the given data is a challenge. Section 3.4
therefore adopts a probabilistic perspective to incorporate the advantage of a Bayesian
formalism into the data-driven formulation.

3.1. Koopman Theory

As a result of the vast amount of available data, data-driven modeling of dynamic systems
is becoming increasingly important in modern times. A variety of techniques such as
Machine Learning and Optimization are applied to understand the complexity of the given
data and analyze the behavior over time. Due to the discrete nature of the given data and
the digital aspects of modern-days technology, the consideration of discrete dynamical
systems seems appealing [25,26]. In this context, the objective is to analyze a discrete
dynamical system given by

yt+1 = f(yt),

where f describes an unknown mapping between the given observations collected in
Y = [y0, · · · ,yT ].

In Koopman Spectral Analysis, instead of considering the nonlinear evolution of a state
yt ∈ Rn, an alternative perspective is taken in the form of the evolution of measurement
functions h : Rn → R [22–26]. This alternative representation is visualized in Figure 3.1.
In this approach, the infinite number of possible measurement functions h form an infinite-
dimensional function spaceH known as Hilbert space. The measurements h evolve linearly
on this infinite-dimensional space, defined by an infinite-dimensional linear operator
K : H → H, called the Koopman operator. Thus, the nonlinear evolution of the states Y
in Rn are expressible by

Kh(xt) = h(f(xt)),

a linear evolution in the Hilbert space H. While the linear behavior is appealing, the
infinite dimensionality of the Hilbert space still poses a problem.

For this reason, specific key measurement functions are sought to provide a basis for the
Hilbert space. The linearity associated with the Koopman operator K provides Spectral
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y0 y1 y2 · · · yT

x0 x1 x2 · · · xT
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Figure 3.1.: This figure sketches an illustration of the perspective taken in Koopman The-
ory. Observations of the current nonlinear dynamical system y0, y1, · · · , yT

are given. Ameasurement functionhmaps these finite-dimensional observa-
tions into an infinite-dimensional function space. In this Hilbert space, these
infinite-dimensional measurements x0 = h(y0), x1 = h(y1), · · · , xT =
h(yT ) evolve linearly. Thus, Koopman Theory circumvents the analysis of
nonlinear finite-dimensional dynamical systems by analyzing linear infinite-
dimensional systems [25].

Analysis, and the spectral decomposition results in

Kϕk(y) = λkϕk(y),

where λk and ϕk correspond to the kth eigenvalue and eigenfunction, respectively. The
eigenfunctions ϕk are such central measurements spanning an inherent measurement
coordinate system and forming a basis of the Hilbert space H. Consequently, any vector h
of possible measurement functions is expressable by

h(y) =

⎡⎢⎢⎢⎣
h1(y)

...

hp(y)

⎤⎥⎥⎥⎦ =

∞∑︂
k=1

ϕk(y)vk,

where the vector vk represents the kth koopman mode. These modes correspond to
the superposition values of the eigenfunctions to obtain the measurement vector. The
decomposition from the Spectral Analysis provides a linear representation of the change

28



of the measurement function in the Hilbert space by

Kh(yt) = K
∞∑︂
k=1

ϕk(yt)vk

=

∞∑︂
k=1

λkϕk(yt)vk

=
∞∑︂
k=1

λt
kϕk(y0)vk.

The system behaves linearly in this space. Thus, the dynamics of the system are decom-
posed into a spatio-temporal coherent structures [24,26]. The eigenvalues represent the
temporal progress of the measurement functions, while the eigenfunctions in combina-
tion with the Koopman modes describe the coherent spatial characteristics. Temporal
changes in the coherent spatial characteristics are computed by multiplying them with
the Koopman eigenvalues. In this way, the behavior of the nonlinear dynamical system
is fully characterized by spectral decomposition. However, it is also infinite-dimensional.
As a result, infinitely many degrees of freedom are necessary to describe the space of all
possible measurement functions h of the state [25,26].

The handling of an infinite-dimensional measurement space is challenging in practice
[24–26]. For this reason, the invariant Koopman subspace has been proposed. A finite
number of measurement functions h1, h2, · · · , hp spans the base of the subspace ˜︁H ⊂ H.
In this way, arbitrary measurement function within the space ˜︁h ∈ ˜︁H are expressed by

˜︁h = α1h1 + α2h2 + · · ·+ αphp,

the superposition of the basis functions. The invariant subspace restricts the dynamical
behavior of measurement functions to evolve in the subspace ˜︁H. Hence, the application of
the Koopman operator results in measurement functions

˜︁h′
= Kh = β1h1 + β2h2 + · · ·+ βphp,

which are themselves in subspace ˜︁H. The finite number of p measurement functions
generate a finite-dimensional Koopman operator matrix K ∈ Rp×p. It acts on a vector
space Rp whose coordinates are given by the values of the measurement functions hi(y).
Therefore an invariant Koopman subspace induces a finite-dimensional linear system
[25, 26]. Any finite set of eigenfunctions establishes a basis for an invariant subspace.
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Therefore, a key task in Koopman Spectral Analysis is the search for or an appropriate
approximation of the eigenfunctions.

In summary, the Koopman representation circumvents the nonlinear, finite-dimensional
dynamics of the dynamical system by considering linear, infinite-dimensional dynamics
[22,24–26]. The advantage of this approach is the resulting linear differential equation
system, which is solvable with Spectral Theory [25]. Thereby, it is possible to decompose
the dynamics into spatio-temporal patterns [24]. Invariant subspaces are considered to
induce linear, finite-dimensional systems and deal with Koopman Theory in practice [26].
However, the correct choice of the bases of these subspaces is a major challenge in Koopman
Analysis.

3.2. Dynamic Mode Decomposition

From the perspective of Koopman Theory, a straightforward restriction to the invariant
subspace is the use of direct linear measurement functions x = h(y) = y. In this way,
we work directly with the given observations x0 = y0, · · · ,xT = yT ∈ RN , as shown
in Figure 3.2. The linear measurements span an invariant subspace, thereby inducing
a finite-dimensional Koopman operator K ∈ RN×N acting on a vector space RN . The
simple assumption of linear measurements and direct use of the observations leads to the
data-driven regression framework known as Dynamic Mode Decomposition (DMD) [32].
DMD has been introduced independently of Koopman Theory in fluid mechanics and has
attracted significant attention in numerous research areas [25,26,28,32–34]. Its increasing
success results from its simple formulation in terms of a linear regression problem and
its close connection to Koopman Theory. DMD is an equation-free, data-driven approach
capable of spatio-temporal decompositions of complex systems without requiring explicit
knowledge of the governing dynamics [25,26].

In the DMD community, the given observations are considered snapshots of an unknown
underlying dynamical system. The evolution of these snapshots describes the temporal
evolution of the underlying dynamical system. DMD aims at providing the best possible
representation of the temporal evolution through a linear dynamical system. First, the
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collected observations are arranged into two snapshot matrices

X0 =

⎡⎢⎢⎢⎣x1 x2 . . . xT−1

⎤⎥⎥⎥⎦ , X1 =

⎡⎢⎢⎢⎣x2 x3 . . . xT

⎤⎥⎥⎥⎦ .

Assuming uniform sampling in time, a minimization problem can be formulated as

A = argmin
K

⃓⃓⃓⃓
X1 −KX0

⃓⃓⃓⃓
F

= X1X0T
(︂
X0X0T

)︂−1

⏞ ⏟⏟ ⏞
X0+

,

where ||·||F is the Frobenius norm andX0+ denotes the pseudo-inverse of the first snapshot
matrix. The resulting linear operator A is closely related to the Koopman operator
[25,26,32]. Spatio-temporal coherent structures are possible to determine from the linear
operator A using spectral decomposition. Given the assumption of linear dynamics of
the data, these structures describe the underlying dynamics of the data entirely. The
eigenvectors represent coherent spatial modes that oscillate over time. The frequency
and/or the growth or decay rate of the oscillation is described by the eigenvalues [25,26].
The eigenvectors and eigenvalues resulting from the spectral decomposition of the linear
operator A are therefore an approximation to the Koopman modes and the Koopman
eigenvalues [32]. However, high-dimensional data, e.g., from fluid mechanics, lead to
high-dimensional snapshot matrices X0,X1 ∈ RN×T . The calculation of the pseudo-
inverse and the spectral decomposition of these matrices with a large number of rows
becomes intractable. However, many high-dimensional complex systems are based on
low-dimensional linear dynamics [28]. Therefore, instead of considering the whole system,
DMD focuses primarily on the dominant eigenvalues and eigenvectors of the matrix.

For this reason, DMD applies a dimensionality reduction to the first snapshot matrix
X0 ∝ ˜︁U˜︁Σ−1 ˜︁V∗

. Thus, the linear operator of the original space is represented as

A = X1X0+

∝ X1 ˜︁V˜︁Σ−1 ˜︁U∗
,

where ˜︁U ∈ RN×M , ˜︁Σ ∈ RN×M and ˜︁V ∈ RT×M result from the Singular Value Decom-
position (SVD). By appropriate choice of the dimension of the resulting latent space, a
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lower dimension results, i.e., M ≤ N . However, the application of Spectral Analysis on
the high-dimensional linear operator of interest A remains a challenge. For this reason,
the dynamics of the low-dimensional space induced by SVD are considered. The spectral
decomposition takes place on the linear operator projected into the low-dimensional space
given by

˜︁A = ˜︁U∗
A˜︁U

= ˜︁U∗
X1 ˜︁V˜︁Σ−1

.

Note that the reduced linear operator matrix ˜︁A has the same nonzero eigenvalues as the
full matrix A, which is a key property [26].

The application of dimensionality reduction in DMD shows parallels to Latent Variable
Models (see Sections 2.2 and 2.6). While LVM frameworks, such as PCA, only decompose
the spatially correlated structure in the given data and ignore temporal information, DMD
also considers temporal information due to the spectral decomposition [25, 26]. The
mapping to reconstruct the full state x from the lower dimensional state is done by

x = ˜︁U˜︁x.
The spectral decomposition of the linear operator results in

˜︁AW = WΛ,

where the entries of the diagonal matrix Λ correspond to the eigenvalues, and the column
vectors W correspond to the eigenvectors. The eigenvalues from the low-dimensional
space correspond to the eigenvalues of the original linear operator and represent the DMD
eigenvalues [28]. They describe the time behavior of the linear dynamics behind the given
data. On the other hand, the eigenvectors describe the modes and therefore the coherent
spatial structures of the low-dimensional space. One way to obtain the DMD modes of the
original linear operator A is to straightforwardly apply the left singular matrix

˜︁Φ = ˜︁UW,

where ˜︁Φ corresponds to the projected modes [32,33]. However, it is not guaranteed that
these modes correspond to exact eigenvectors of the original linear operator A and thus
to true DMD modes. Instead, one can reconstruct the eigenvectors exactly by

Φ = X1 ˜︁V˜︁Σ−1 ˜︁U∗
W,

32



y0 y1 y2 · · · yT

x0 x1 x2 · · · xT
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Figure 3.2.: In this figure, the Dynamic Mode Decomposition is represented from the
Koopman theory point of view. The observations y0, y1, · · · , yT is the
data of the current unknown dynamical system. The invariant subspace is
spanned by the use of linear measurement functions x = h(y) = y. The
coordinates of the measurement functions on which the Koopman operator
acts are the given measurement data itself. Thus, the Dynamic Mode De-
composition operates directly on the given data under the assumption of a
linear dynamic behavior and represents a straightforward global lineariza-
tion [25].

resulting in true DMD modes of the original data. It has been shown that these projected
eigenvectors in high-dimensional space are eigenvectors of the high-dimensional matrix
A [28]. Therefore, they represent true DMDmodes of the original high-dimensional system
and represent the coherent spatial structures. The resulting spatio-temporal coherent
structures depicted by Φ and Λ provide the means to represent the system state as a
data-driven spectral decomposition

xt =
M∑︂

m=1

ψmλt−1
m bm = ΨΛt−1b,

where ψm and bm refer to the mth DMD mode in Φ and a mode amplitude, respectively.
The vector b corresponding to all mode amplitudes is generally computed by a

b = Ψ+x0,

where Ψ+ represents the pseudo-inverse of the DMD modes. The decomposition enables
the reconstruction of the given observations, the prediction of future outcomes, and also
the control of the dynamical systems [25–27].
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The Dynamic Mode Decomposition framework provides a simple and effective data-driven
regression framework. It allows inferring spatio-temporal structures from given data
only, without any knowledge about governing equations or properties of the underlying
system [25, 26]. Many modern systems exhibit high-dimensional, nonlinear dynamic
behavior and thus require nonlinear methods for modeling. However, they are based on
a low-dimensional, linear dynamical behavior describing the spatio-temporal change of
the high-dimensional data [26,28]. The use of DMD provides an important feature to
analyize and understand these dynamical systems, attracting much attention in various
research fields.

3.3. Dynamic Mode Decomposition on Nonlinear Observables

Given a sufficient amount of data, the DMD, on the one hand, provides accurate character-
istics of the underlying dynamical system, even for some nonlinear systems [25,26]. On
the other hand, the assumption of linear measurement functions, and thus working directly
with the given data Y, is restrictive. In many cases, the data given are not rich enough to
properly characterize the underlying system dynamics [29]. In Machine Learning, feature
mapping is usually applied to transform given data into a higher dimensional space where
Linear Algebra techniques are applicable [4,6]. From the Koopman perspective, measure-
ment functions h(y) are indeed closely related to feature mappings. The measurement
functions can be seen as a mapping from the physical space in which the dynamical system
evolves nonlinearly to a linear feature space. The use of linear measurement functions in
DMD is therefore very restrictive, and the extension to more complex feature mappings
seems reasonable. A more extensive set of measurement functions, such as polynomials
or radial basis functions, results in an expansion of the invariant subspace and a better
approximation of the Koopman operator. The approximation of the operator gives a better
representation of the nonlinear characteristics of the underlying dynamical system [29]

The extended Dynamic Mode Decomposition (extended DMD) provides a regression frame-
work that incorporates a broader set of measurement functions and thus generalizes the
classical DMD [25,26,29]. A set of M measurement functions h : RN → R is selected to
achieve a finite-dimensional approximation of the Koopman operator K. These measure-
ment functions span an invariant subspace ˜︁HM ⊂ H in Hilbert Space (see Section 3.1).
The coordinates of the measurement functions in the inducedM -dimensional vector space
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are defined by

h(y) =

⎡⎢⎢⎢⎢⎢⎢⎣
h1(y)

h2(y)
...

hM (y)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the measurement functions take the form of polynomials, radial basis functions,
etc. [29]. The resulting snapshot matrices, given by

X0 =

⎡⎢⎢⎢⎣h(y0) h(y1) . . . h(yT−1)

⎤⎥⎥⎥⎦ , X1 =

⎡⎢⎢⎢⎣h(y1) h(y2) . . . h(yT )

⎤⎥⎥⎥⎦ ,

further emphasize the extension of the observations. Like classical DMD, extended DMD
aims at minimizing the residual error defined by

A = argmin
K

1

2

T∑︂
t=1

⃓⃓⃓⃓
h(yt)

T −Kh(yt−1)
T
⃓⃓⃓⃓

= X1X0T
(︂
X0X0T

)︂−1

= G1G
−1
0 ,

where G0,G1 ∈ RM×M . The resulting approximation of the Koopman operator is closely
related to DMD under the assumption of simple linear measurement functions. The
extended DMD represents a finite-dimensional approximation of the Koopman operator
K, which describes the linear mapping in the invariant subspace ˜︁HM . In this way, the
properties of the underlying nonlinear dynamical system are approximated, which is
described by the triple of Koopman eigenvalues, eigenvectors, and modes [29]. The
extended DMD offers two main advantages. The matrices G0 and G1 are embedded
in RM×M , and consequently, the computational cost is determined by the number of
features [25, 29]. It is particularly useful when a large amount of data Y and thus
snapshots of a dynamical system are given. Moreover, the computational cost of the
pseudo-inverse of sizeM ×M is also determined by the resulting dimension of the feature
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space. For dynamical systems with a large number of given data, extended DMD thus
provides, on the one hand, the possibility to reduce the computational effort and, on the
other hand, to extend the spanned invariant subspace by a suitable selection of the feature
mapping. Due to this selection, the approximation of the Koopman operator improves and
hence the determination of the spatio-temporal characteristics of the dynamical system of
interest [29].

However, in dynamical systems with large state dimensions, the approximation of the
Koopman operator is challenging [25,26,30,31]. The use of DMD and especially extended
DMD, which increases the state dimension by selecting the feature mapping, becomes
impractical for such systems. Both methods suffer accordingly from the curse of dimen-
sionality [25]. Like Machine Learning, kernel Dynamic Mode Decomposition (kernel DMD)
considers a dual representation that achieves a decomposition of data from dynamical
systems with high-dimensional state spaces [30,31]. The kernel DMD framework circum-
vents the dimensionality problem by defining a kernel function that implicitly computes
inner products in the high-dimensional space of given observations. Assuming that the
dimensions of the data are larger than the number of given data, i.e., T −1≪M , Singular
Value Decomposition can be used to decompose the initial snapshot into

X0 = UΣV∗,

where Σ,V ∈ R(T−1)×(T−1) and U ∈ RM×T−1. Given that T − 1 ≪ M the range of
X0 contains the range of A, and the eigenvalue problem takes place in a latent space.
The projection of the eigenvalues into the original space is given by w = U˜︁w. The dual
formulation is based on the reformulation of the eigenvalue problem, resulting in

0 = (A− λI)w

=
(︁
G1G

−1
0 − λI

)︁
U˜︁w

=
(︁
X1VΣ−1 − λIU

)︁ ˜︁w
=
(︂
X0X0TX1VΣ−1 − λIU

)︂ ˜︁w
=
(︂
UΣ−1V∗X0TX1VΣ−1 − λIU

)︂ ˜︁w
= U

⎛⎜⎝(︁Σ−1V∗)︁X0TX1
(︁
VΣ−1

)︁⏞ ⏟⏟ ⏞
=˜︁A

−λI

⎞⎟⎠ ˜︁w,
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where the approximation of the Koopman operator is now calculable by ˜︁A [25,30]. In
this way, the eigenvalue problem has been transformed into a low-dimensional latent
space. The computational cost is now defined by the number of the given data instead
of the feature space dimension [30]. The necessary quantities for the computation are˜︁G0 = X0TX0 ∈ RT−1,T−1 and ˜︁G1 = X0TX1 ∈ RT−1,T−1, with V and Σ obtainable from
a spectral decomposition of ˜︁G1 given by˜︁G1 = VΣ2V∗.

The main advantage of the method is the possibility to apply the kernel trick [4, 6]. A
closer look at the two outer product matrices, given by

˜︁G0 =

⎡⎢⎢⎢⎣
h(y0)

Th(y0) · · · h(y0)
Th(yT−1)

... . . . ...

h(yT−1)
Th(y0) · · · h(yT−1)

Th(yT−1)

⎤⎥⎥⎥⎦ ,

˜︁G1 =

⎡⎢⎢⎢⎣
h(y0)

Th(y1) · · · h(y1)
Th(yT )

... . . . ...

h(yT−1)
Th(y1) · · · h(yT−1)

Th(yT )

⎤⎥⎥⎥⎦ ,

reveals that each element in both matrices corresponds to an inner product in the feature
space. Consequently, using the kernel trick, each inner product is replaceable by any kernel
feature. In this way, the kernel DMD framework presents itself as a nonparametric method,
where the complexity of the model increases with the number of given data [30,31].

In summary, the search for suitable approximations of the Koopman operator and the
associated Koopman triples, which represent the spatio-temporal characteristics of given
dynamical systems, is a challenge in modern research [25–27, 85, 86]. DMD provided
a simple and efficient regression framework which was generalized by extended DMD.
An appropriate choice of feature mappings extends the invariant subspace and improves
the approximation [29]. However, these methods suffer from the curse of dimensionality,
which is an enormous disadvantage in fields such as fluid mechanics. Therefore, kernel
DMD provides a framework formulated in dual space and spans the invariant subspace
through kernel functions [30, 31]. The complexity of this function increases with the
number of given data and not with the dimensionality. The search for suitable kernel func-
tions and feature mappings is an essential part of the current research. Especially modern
computational capabilities combined with Deep Learning provide a variety of techniques
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and possibilities to develop satisfying expansions and thus improve the approximations of
the Koopman operator [85,86].

3.4. A Probabailistic Interpretation of DMD

In the previous sections, the discussed DMD frameworks are purely data-driven regression
techniques. They entirely rely on experimental and numerical data. However, there is
a risk that the data is affected by sensor noise and other stochastic disturbances. These
disturbances potentially lead to errors in the approximations of the Koopman operator
and thus result in incorrectly characterized spatio-temporal structures of the data. In
the literature, several approaches have been proposed to address noisy data [51,87–89].
However, the majority of these proposed frameworks are based on deterministic models.
A more appropriate way to incorporate uncertainty and stochastic processes is to adopt a
probabilistic view (See Chapter 2). A probabilistic model offers the advantage of treating
the data statistically and hence explicitly accounting for noisy observations [51].

Let the following snapshot matrices, defined by

X0 =

⎡⎢⎢⎢⎣h(y0) h(y1) . . . h(yT−1)

⎤⎥⎥⎥⎦ , X1 =

⎡⎢⎢⎢⎣h(y1) h(y2) . . . h(yT )

⎤⎥⎥⎥⎦ ,

be considered where, similar to Section 3.3, M selected measurement functions h : RN →
R induce an M -dimensional vector space through the coordinates, given by

h(y) =

⎡⎢⎢⎢⎢⎢⎢⎣
h1(y)

h2(y)
...

hM (y)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Any snapshot, e.g., h(yt) and h(yt), defined by

h(yt) =
∞∑︂
k=1

ϕk(yt)vk,

h(yt+1) = K
∞∑︂
k=1

ϕk(yt)vk

=
∞∑︂
k=1

λkϕk(yt)vk,

is representable by the Koopman triple (λk, ϕk(yt),vk) written [24]. The eigenmodes
vk and eigenfunctions ϕk denote the coherent spatial structures. The eigenvalues λk

characterize the evolution of a snapshot over time. A concatenation of the two snapshot
matrices

˜︁X =

⎡⎣X0

X1

⎤⎦ =

⎡⎢⎢⎢⎣˜︁x0 ˜︁x1 . . . ˜︁xT−1

⎤⎥⎥⎥⎦ ,

implies an extension of the vector space in R2M . Let K <∞ define the dimensionality of
a finite-dimensional invariant subspace in which all snapshots of ˜︁X are contained. In this
way, the following matrix product takes the form

˜︁X =

⎡⎣ V

VΛ

⎤⎦
⏞ ⏟⏟ ⏞

B

Φ(Y), (3.1)

where Λ = diag(λ1, · · · , λK) represents a diagonal matrix. V = [v1, · · · ,vK ] is a matrix
connecting all eigenmodes, and Φ(Y), given by,

Φ(Y) =

⎡⎢⎢⎢⎣
ϕ1(y0) · · · ϕ1(yT−1)

...
...

ϕK(y0) · · · ϕK(yT−1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ϕ(y0) ϕ(y1) . . . ϕ(yT−1)

⎤⎥⎥⎥⎦ ,
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consists of discrete-time snapshots of the eigenfunctions. Thus, the formulation of Equa-
tion (3.1) provides a way to represent the given snapshots of the extended snapshot matrix
by the Koopman eigenvalues, eigenmodes, and eigenfunctions [51].

Assuming that the reformulated Equation (3.1) is affected by independently and identically
distributed drawn additive noise ϵt ∼ N (0, σ2I), the deterministic framework becomes a
probabilistic one. The assumption of i.i.d.-drawn noise for a single snapshot is expressible
by

˜︁xt = Bϕ(yt) + ϵt.

In this way, a likelihood function is obtained

p(˜︁X) =

T−1∏︂
t=0

CN
(︁˜︁xt | Bϕ(yt), σ

2I
)︁
, (3.2)

which forms the basis for the Bayesian Dynamic Mode Decomposition (Bayesian DMD) [51].
This formulation provides a natural view of observational noise and thus explicitly accounts
for it. Since the Koopman eigenvalues and eigenfunctions can have complex values, a
complex normal distribution CN (·) is generally assumed. Based on the likelihood of
Equation (3.2) and an appropriate choice of prior distributions, Bayesian DMD formalizes
a Probability Density Model. This Probability Density model brings the advantages
of the Bayesian formulation to DMD [51]. In order to infer the best possible values,
Gibbs sampling is applied [51]. The Gibbs sampling results in satisfactory samples from
the true probability density model. For noisy data, the maximum likelihood solution
of the probabilistic model is equivalent to the solution from noise-aware deterministic
methods [51]. In the case of noiseless data and hence where σ2 → 0, the MLE solution
is equal to the optimal solution from classical DMD [51]. The probabilistic formulation
results in satisfactory approximations of the Koopman eigenvalues, eigenfunctions, and
eigenmodes, and thus achieves a good decomposition into coherent spatio-temporal
characteristics.

Although this approach seems appealing, it also has its drawbacks similar to extended
DMD. On the one hand, an appropriate set of measurement functions has to be selected.
The performance of the approximation is related to the choice of this set of measurement
functions. Like extended DMD, the probabilistic framework also suffers from the curse
of dimensionality. On the other hand, the method’s optimal solutions include complex
eigenvalues that do not necessarily have a complex conjugate couple. In linear dynamical
systems, however, complex eigenvalues always appear as a pair and thus are always
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conjugate complex. This issue is why in this work, the Koopman operator is approximated
and subsequently a spectral decomposition is performed. In this way, the resulting complex
eigenvalues are guaranteed to appear as complex conjugate pairs.
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4. Gaussian Process Dynamic Mode
Decomposition

In the following sections, two central components of this thesis Gaussian Process Dynamic
Mode Decompositions (GP-DMDs) and Bayesian Gaussian Process Dynamic Mode Decomposi-
tion (Bayesian GP-DMD) are presented. Koopman Theory, explained in chapter 3, aims to
decompose arbitrary dynamical systems into spatio-temporal coherent structures [24].
Methods such as DMD, extended DMD and kernel DMD approximate these spatiotem-
poral characteristics based on selected measurement or kernel functions [28–31]. The
underlying principles of these techniques show strong similarities to continuous Latent
Variable Models, e.g., Principle Component Analysis and Factor Analysis [25, 26]. The
contribution made in this chapter is the introduction of a probabilistic dual prespective to
the DMD family. The advantages of probabilistic methods are combined with those of
the kernelized methods. Similar to how Gaussian Process Latent Variable Models (see
Section 2.6) formalize a dual approach to various continuous LVMs, a dual perspective to
the DMD family is proposed.

Section 4.1 introduces State-Space Models (SSMs), which are continuous LVMs where a
Markov sequence is assumed in latent space [6]. These frameworks enable the modeling
of a variety of time series data and belong to Time Series Modeling, also known as
System Identification [6,52–54]. They enjoy great popularity and have been extensively
applied in many disciplines, from science and engineering to finance and economics and
beyond [53,54]. Special variants of this family are the Gaussian Process State-Space Models
(GP-SSMs). These models assume a Gaussian Process over the possible transition functions
and/or observation functions [54–60]. They provide the essential framework needed for
modeling the dual approach to the DMD family.

Based on the GP-SSM framework, the dual perspective on the DMD family is presented in
Section 4.2. Due to this combination of GP-SSM and DMD, the introduced algorithm is
referred to as Gaussian Process Dynamic Mode Decompositions (GP-DMDs). It aims at
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estimating a stationary linear Markov sequence in the latent space, while a GP describes
the relation to the given observations. On the one hand, it provides a probabilistic view
of the Koopman Theory while naturally accounting for uncertainties and noise. On the
other hand, the Gaussian Process formalization leads to a kernelized method and hence
to a nonparametric Bayesian method [4,6]. From the Koopman perspective, the approach
does not rely on mapping from the observations to the invariant subspace. Instead, the
GP describes the inverse mapping from the invariant subspace back to the observations.
Eventually, a Maximum A Posteriori probability estimate is proposed to estimate suitable
parameters for the Gaussian Process, the linear trajectories in the latent space, and the
corresponding linear operator. The estimated linear operator can be used to describe the
spatio-temporal properties in the latent space.

According to Koopman Theory, an invariant subspace, in which the system evolves linearly,
can have a higher dimensionality than the original space from which the observation
originates [24,25]. Unfortunately, as discussed in Section 2.2, continuous LVMs suffer
from the effect of overfitting [4, 6]. Section 4.3, therefore, extends the probabilistic
generative model using a fully Bayesian formalism introducing Bayesian Gaussian Process
Dynamic Mode Decomposition (Bayesian GP-DMD). The Bayesian GP-DMD formalization
aims at mitigating the effect of overfitting, thus tackling a central drawback of Gaussian
Process Dynamic Mode Decompositions (GP-DMDs). The formalization of an Evidence
Lower Bound allows the application of VI or VB. Therefore, using Probabilistic Inference
on the derived fully Bayesian model results in approximated posterior distributions over
the linear operator and the linear trajectories in the latent space.

4.1. Gaussian Process State Space Models

The family of State-Space Models (SSMs) from Time Series Modeling is an established
paradigm that provides model-based frameworks for analyzing and studying time series
data [4,6,52–54,56,57]. They are an extension of continuous LVMs (see Section 2.2),
assuming dynamic dependence in latent space. SSMs are closely related to the family of
Hidden Markov Models that assume a discrete latent space [4,6]. The Markov property is
a central assumption in this context, where the latent variables form a Markov sequence
or Markov Chain [4, 6, 53]. This property states that the prediction of a state xt+1 at
time t solely depends on the current state xt [2,4,6]. Therefore, it induces conditional
independence which embodies a form of memorylessness. The entire past and thus the
history up to x0 is irrelevant for predicting the next state xt+1 if xt is given [4,6,53].
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y0 y1 y2 · · · yT

x0 x1 x2 · · · xT
f f f f

g g g g

Figure 4.1.: The given graphical models shows a classical State-Space Models. SSMs
are primarily used to derive a recursive estimate of the underlying Markov
sequence. The blue shaded nodes represent the given time-series obser-
vations y0, · · · ,yT from a stochastic process. The white nodes represent
the unknown latent states of interest x0, · · · ,xT . The functions f(·) and g(·)
are defined as transition and observation functions, respectively, and show
the dependencies between the states through the edges. The figure illus-
trates the well-known Markov property from which the Markov sequence in
the latent space is formed. This property indicates that each latent variable
depends solely on the previous state and not on the entire history. [6]

The time sequence y0, · · · ,yT ∈ RN denotes some given observations, and x0, · · · ,xT ∈
RM are the corresponding latent states. The underlying generic model for SSMs formally
corresponds to

xt+1 = f (xt,ut, ϵt) ,

yt = g (xt,ut, δt) ,

where f(·) and g(·) are the predefined transition and observation models, respectively.
The observation model is occasionally referred to as the emission model [54,58–60]. To
achieve a probabilistic representation, the parameters ϵ and δ correspond to some system
and observation noise. Input values occurring during the process, e.g., representing control
signals, are accounted for by u0, · · · ,uT ∈ RN . However, the focus of this work does not
lie in controlling a system, but rather in learning an underlying stationary dynamical
system solely from observations, which makes these variables irrelevant for this work.
Therefore, they will be left out for convenience in the rest of this thesis.

Likewise, the generative Probabilistic Density Model of an SSM is formalized by

p(X,Y) = p(x0)p(y0 | x0)

T∏︂
t=1

p(xt | xt−1)p(yt | xt), (4.1)
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where the latent states and observations are summarized in X ∈ RM×T and YN×T ,
respectively. A graphical model of the Probability Density Model (see Equation (4.1)) is
represented in Figure 4.1. Such graphical models provide a straightforwardway to visualize
the underlying structures of probability models [2,4,6,69]. Hence, the Figure illustrates
the dependencies and relationships of the generative model in Equation (4.1). The blue
shaded nodes represent the given time series data Y, while the white ones represent
the latent states X. Edges represent the dependencies induced by the observation model
g(·) and the transition model f(·). A variety of techniques based on SSMs have been
proposed [2,4,6,52–54,56,90,91]. On the one hand, to primarily infer estimates of the
state sequence in the latent space. On the other hand, to also learn the observation and
the transition model.

The family of the Gaussian Process State-Space Models (GP-SSMs) is a subset of the SSMs
[54–60]. These models integrate the ideas of GPs (see Section 2.4) into the family of SSMs.
Instead of defining a parameterized transition or observation model, these techniques
utilize the concepts of GP and hence perform nonparametric modeling [54]. For this
reason, two Gaussian Process priors are adopted

f(x) ∼ GP(0,kf (x,x
′)),

g(x) ∼ GP(0,kg(x,x
′)),

either over the transition model or the observation model, or even both. For example, the
Gaussian Process Latent Variable Model discussed in Section 2.6 with a corresponding
Markov sequence in latent space belongs to the family of Gaussian Process State-Space
Models (GP-SSMs). The resulting probability density model considering GP priors over the
transition and observation models is

p(Y,G,X,F) = p(y0 | g0)p(f0 | x0)p(x0)p(G | X)

T∏︂
t=1

p(xt | f t)p(f t | xt−1,··· ,0)p(yt | gt),

where F = [f0, · · · , fT ] ∈ RM×T and G = [g0, · · · ,gT ] ∈ RN×T denote the function
outputs. For clarity, the expression xt−1,··· ,0 refers to the collection of xt−1, · · · ,x0. The
outputs of the observation model G depend on the entire latent state sequence due to
GP. In addition, the output of the transition model f t at time t depends on the entire past
xt−1,··· ,0. Thus, using GP with SSMs generally violates the Markov property [54].

Nevertheless, much research has been done addressing various types of GP-SSMs. On
one side, they have been focusing on the modeling of the observation models using GP.
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Here, the formulation of the transition function and thus the latent space differs. Markov
chains [55], linear Gaussian Processes [56,57,92], or time-dependent parametric models
are considered [47–49]. The latter methods simplify the modeling of the latent space
due to the dependence on time, however, with the consequence that stationary state
transitions cannot be modeled [54]. On the other hand, the interest of many methods is
the modeling of the transition function [54,58–60,90,91,93,94]. Those methods focus on
a GP prior over the transition function where the observation function is usually defined
as a parametric model.

4.2. Gaussian Process Dynamic Mode Decomposition

The Gaussian Process Dynamic Mode Decomposition (GP-DMD) is a mathematical framework
that adopts a dual perspective on Koopman Theory and the DMD family. It combines
the GP-SSM framework and the DMD. On the one hand, it enables an intuitive way to
incorporate noise and uncertainty due to the probabilistic formulation [4,6]. On the other
hand, it takes advantage of the kernelized formulation and the kernel trick, resulting
in a nonparametric Bayesian method [4, 6]. GP-DMD aims to estimate a stationary
linear dynamical system in a latent space represented by a Markov sequence. Instead of
considering a mapping from the given observations into a latent space as in Koopman
Theory, the inverse mapping from the latent space back to the observations is modeled.
Therefore, a Gaussian Process prior

g(x) ∼ GP(0,k(x,x′)),

over the observation model of the system is assumed. The transition model is formulated
as a stationary linear operator f(·) = A. The generative Probability Density Model is
accordingly formalized as

p(Y,G,X) = p(Y | G)p(G | X)⏞ ⏟⏟ ⏞
p(Y,G|X)

p(x0)
T∏︂
t=1

p(xt | xt−1,A), (4.2)

where G = [g0, · · · ,gT ] ∈ RN×T denotes the outputs of the GP. The observations are
collected in the matrix Y = [y0, · · · ,yT ] ∈ RN×T . Accounting for some noise, the
dependence between given observations and the outputs of the observation model is
described by a Gaussian likelihood function p(G,Y). The matrix A corresponds to the
linear operator in the latent space. This operator approximates the Koopman operator
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and thus the spatio-temporal characteristics in the latent space [24]. Figure 4.2 visualizes
this generative Probability Density Model. The blue shaded and the white nodes represent
the given time series data y0, · · · ,yT and all unknown latent variables, respectively. An
auto-regressive structure resulting from the Gaussian process is denoted as a thick black
line, implying that gt depends on g0, · · · ,gt−1 and x0, · · · ,xt. The small black nodes
correspond to the hyperparameters of the given Probability Density Model.

Learning from Demonstration

In order to infer estimates for the unknown random variables and compute optimal
hyperparameters, the inference problem of the Probability Density Model is transformed
into log-space and hence into an optimization problem. For this purpose, the observation
model represented by GP is marginalized

p(Y | X) =

∫︂ N∏︂
n=1

p(Yn,Gn | X) dGn

=

N∏︂
n=1

∫︂
p(Yn | Gn)GP(Gn | 0,KXX) dGn

=
N∏︂

n=1

∫︂
N (Yn | Gn, λ

−1
y I)N (Gn | 0,KXX) dGn

=
N∏︂

n=1

N (Yn | 0,KXX + λ−1
y I),

and leads to a direct dependence between the given observations Y and the latent states
X [56, 57, 92]. Due to its Gaussian nature, this marginalization is done analytically
in closed form [2, 4, 6]. N independent Gaussian processes represent the dependence
between Y and X. Each dimension n is considered independently, where Yn corresponds
to the nth row of the matrix Y. The marginalization achieves an optimization considering
the uncertainty and variability of the possible functions g(·) [6]. Hence, the probability
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g0 g1 · · · gT· · · · · ·

y0 y1 · · · yT

x0 x1 · · · xT

A

λAλ0

λy

λx

Figure 4.2.: The graphical model visualizes the Probability Density Model of the derived
Gaussian Process Dynamic Mode Decomposition. The blue shaded nodes
represent the given observations y0, · · · ,yT . White nodes correspond to the
unknown latent variables. The sequence of states of interest in the latent
space is given by x0, · · · ,xT . g0, · · · ,gT describe the outputs of the Gaus-
sian process function corresponding to the observation model. The linear
operator is given byA. The thick black line denotes an auto-regressive struc-
ture within the Gaussian process, implying that gt depends on g0, · · · ,gt−1

and x0, · · · ,xt. The small black nodes correspond to the hyperparameters
of the given Probability Density Model. In this case, they represent the preci-
sion values of the Gaussian distributions.
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density model changes to

p(Y,X,A) = p(Y | X)p(X,A)p(A)

=
N∏︂

n=1

N (Yn | 0,KXX + λ−1
y I)

M∏︂
m=1

N (am | 0, λ−1
a I)

N (x0 | 0, λ−1
0 I)

T∏︂
t=1

N (xt | ATxt−1, λ
−1
x I),

(4.3)

where λy, λ0, λx, λa ∈ R+ correspond to the precision values. A prior distribution p(A)
over each column of A is introduced to incorporate prior knowledge of the linear operator
into the system naturally. For conciseness, the parameters of interest are written as
Θ = {X,A, λy, λ0, λx, λa}. The Probability Density Model is then transformed into the
log-space

L(Θ,θ) = log p(Y,X,A | λy, λ0, λx, λa,θ)

= log p(Y | X, λy,θ)⏞ ⏟⏟ ⏞
=L1(Y,X,λy,θ)

+ log p(X | A, λ0, λx,θ)⏞ ⏟⏟ ⏞
=L2(X,A,λ0,λx,θ)

+ log p(A, λa,θ)⏞ ⏟⏟ ⏞
=L3(A,λa,θ)

,

where the resulting loss function L(Θ,θ) breaks down into three separate parts. The first
part on the r.h.s. L1(Y,X, λy,θ) describes the observation model and thus depends on
the observations seen Y, the latent state X, the corresponding precision value λy, and
the hyperparameters for the kernel matrix θ. It formalizes

L1(Y,X, λy,θ) = log p(Y | X,θ)

= log
N∏︂

n=1

N (Yn | 0,KXX(θ) + λ−1
y I)

= c− N

2
log
⃓⃓⃓ ˜︁KXX(θ)

⃓⃓⃓
− 1

2
Tr
(︂ ˜︁KXX(θ)−1YYT

)︂
,

where all values that do not depend on the parameters of interest are represented by a
constant value c. The sum of the kernel matrix and the inverse of the precision value form

49



˜︁KXX(θ) = KXX(θ) + λ−1
y I. Then the second part of the loss term resolves to

L2(X,A, λ0, λx,θ) = log p(X | A,θ)

= c− M

2
log
⃓⃓
λ−1
0

⃓⃓
− (T − 1)M

2
log
⃓⃓
λ−1
x

⃓⃓
− λ0

2
xT
0 x0

− λx

2
Tr
(︂
X1X1T − 2ATX0X1T +X0X0TAAT

)︂
,

where again, c corresponds to all constant terms. L2(X,A, λ0, λx,θ) represents the linear
dynamical system in latent space and depends on latent states X, the stationary linear
operator A, and the precision values λ0, λx. Similar to Chapter 3, X0 = [x0, · · · ,xT−1] ∈
RM×T−1 and X1 = [x1, · · · ,xT ] ∈ RM×T−1 denote the snapshot matrices. The last part
of the loss term corresponds to the

L3(A, λa,θ) = log p(A,θ)

= log
M∏︂

m=1

N (am | 0, λ−1
a I)

= c− M2

2
log
⃓⃓
λ−1
a

⃓⃓
− λa

2
Tr
(︁
AAT

)︁
,

induced by the prior distribution p(A). Thus, it depends solely on A and the precision
value λa. Eventually, the logarithm of the Probability Density Model transforms into

L(Θ,θ) = L1(Y,X, λy,θ) + L2(X,A, λ0, λx,θ) + L3(A, λa,θ)

= c− 1

2

[︃
−M log |λ0| − (T − 1)M log |λx| −M2 log |λa|

+N log
⃓⃓⃓ ˜︁KXX(θ)

⃓⃓⃓
+Tr

(︂ ˜︁KXX(θ)−1YYT
)︂

+ λxTr
(︂
X1X1T − 2ATX0X1T +X0X0TAAT

)︂
+ λ0x

T
0 x0 + λaTr

(︁
AAT

)︁]︃
,

(4.4)

which corresponds to an optimization problem. The constant c collects all terms not
depending on Θ and θ. Maximizing L(Θ,θ) is equivalent to maximizing the Probability
Density Model, as discussed in Equation (4.3) [2,4,6]. However, it is important to keep
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in mind that the GP-DMD framework only achieves point estimates of L(Θ,θ). The loss
function L(Θ,θ) enables the use of vanilla gradient descent methods to

Θ∗,θ∗ = argmax
Θ,θ

L(Θ,θ),

to achieve optimal estimates for Θ∗ and θ∗ [4, 6]. This optimization problem can be
grouped into two parts based on gradient calculations. On the one hand, in gradient
calculations, which are analytically and in closed-form calculable. On the other hand, in
gradient calculations, which need numerical differentiation frameworks since no closed-
form generally exists. Similar to the linear operator A, prior distributions in the form of
Gamma distributions Gam(·) (see Appendix A) for the precision values λy, λ0, λx and λa

are assumed. With the use of Gamma distributions, additional regularization parameters
are introduced. For example, a Gamma distribution prevents division by 0 and thus
stabilizes the optimization. In the following, the closed-form solution for the optimal
linear operatorA is derived first, followed by closed-form solutions for the precision values
λ0, λx and λa. In the end, the final loss function is given depending on the parameters
for which there is no closed-form solution. These parameters include the latent state
sequence X, the observation precision value λy and the kernel parameters θ provided.

Optimal Linear Operator A∗

In order to estimate the optimal linear operator A∗ corresponding to the stationary linear
dynamics of the trajectories X in the latent state, the gradient w.r.t. A is taken as

∂L
∂A

= −λxX
0X1T + λxX

0X0TA+ λaAAT

!
= 0.

The gradient is then used as a basis for the estimation of the optimal linear operator A∗.
By setting the gradient equal to zero and reformulating the given equation

A∗ =

(︃
X0X0T +

λa

λx

)︃−1

X0X1T , (4.5)

the closed-form solution is obtained, which corresponds to a ridge regression with the ridge
parameter λa/λx [4, 6]. The given solution in Equation (4.5) shows great similarities
to the classical DMD framework (see Section 3.2). However, the complementary prior
distribution p(A) leads to a MAP estimation and thus to an additional regularization
parameter expressed by the ridge parameter λa/λx.
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Optimal Precision Value λ∗
0

For optimizing the precision value λ0 associated with the noise of the initial latent state x0,
an additional Gam(λ0 | α0, β0) is applied with the hyperparameters α0 > 0 and β0 > 0.
The gradient of the loss function is taken w.r.t. λ0 to obtain the optimal precision value,
resulting in

∂L
∂λ0

= −M + 2α0 − 2

2λ0
+

1

2
xT
0 x0 + β0

!
= 0.

Setting the gradient equal to zero leads to the optimal solution

λ∗
0 =

M + 2α0 − 2

xT
0 x0 + 2β0

. (4.6)

The optimal solution, which depends on the number of samples M and the outer product
of the initial state x0. In addition, due to the prior distribution, it also depends on the
predefined hyperparameters α0 and β0.

Optimal Precision Value λ∗
x

To optimize the precision value λx, which describes the noise of the sequence in the latent
space X, a Gamma distribution Gam(λx | αx, βx) with the hyperparameters αx > 0 and
βx > 0 is additionally used. Taking the gradient of the loss function w.r.t. λx

∂L
∂λx

= − (T − 1)M + 2αx − 2

2λx
+ βx

+
1

2
Tr
(︂
X1X1T − 2ATX0X1T +X0X0TAAT

)︂
!
= 0,

provides the optimal precision value

λ∗
x =

(T − 1)M + 2αx − 2

Tr
(︂
X1X1T − 2ATX0X1T +X0X0TAAT

)︂
+ 2βx

. (4.7)

The parameter λ∗
x depends on the number of samples M , the linear operator A and

the two snapshot matrices X0 and X1. Moreover, due to the prior distribution, λ∗
x also

depends on the given hyperparameters αx and βx.
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Optimal Precision Value λ∗
a

The optimal precision value λ∗
a, which represents the variability and uncertainty in the

estimation of A, is also optimized using a Gamma distribution Gam(λa | αa, βa) with the
hyperparameters αa > 0 and βa > 0. Like λ∗

0 and λ∗
x, the gradient of the loss function is

taken w.r.t. λa

∂L
∂λa

= −M2 + 2αa − 2

2λa
+

1

2
Tr
(︁
AAT

)︁
+ βa

!
= 0,

to obtain the optimal precision value

λ∗
a =

M2 + 2αa − 2

Tr
(︁
AAT

)︁
+ 2βa

, (4.8)

depending on the number of samples N and the linear operator A. It also depends on the
given hyperparameters αa and βa.

Optimal Latent State X∗, Precision Value λ∗
y And Kernel Hyperparameter θ∗

For the optimal values of the sequence in the latent space X∗, the precision value λ∗
y

and the kernel hyperparameters θ∗, no closed-form solutions generally exists. Therefore,
the gradients are determined using numerical computational methods. The loss function
utilized, subject to all parameters of interest, is given by

L(X, λy,θ) = −
1

2

[︃
N log

⃓⃓⃓ ˜︁KXX(θ)
⃓⃓⃓
+Tr

(︂ ˜︁KXX(θ)−1YYT
)︂

+ λxTr
(︂
X1X1T − 2ATX0X1T +X0X0TAAT

)︂
+ λ0x

T
0 x0 − (αy − 1) log λy + βyλy

]︃
+ c,

(4.9)

with all irrelevant terms collected in c. Similar to λ∗
0, λ

∗
x and λ∗

a the loss function is
extended by an additional Gamma distribution Gam(λy | αy, βy) over the parameter λy.
On the one hand, the loss function aims to provide the optimal parameters for the given
observations. On the other hand, nonlinear dynamical behavior in the latent space is
penalized. The precision value λ∗

x can be seen as a regularization that adjusts the priority
of the linear dynamical behavior.
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Reproducing Demonstration

In order to reconstruct demonstrations in the observation space based on the optimized
parameters Θ∗ and θ, the trajectories in the latent space X∗ are considered first. The
estimation of the optimal linear operator A∗ is used to achieve a decomposition into
the spatio-temporal characteristics. Thus, the different trajectories in the latent space
can be analyzed and reproduced based on these characteristics. The decomposition is
similar to the classical DMD (see Section 3.2) using spectral decomposition and results in
corresponding eigenvectors, eigenvalues, and amplification factors. These characteristics
enable the modification and prediction of the resulting time-series data in the latent space
(see Section 3.2).

Eventually, to construct trajectories in the observation space based on the estimates in the
latent space, the predictive distribution is taken into account, as discussed in Section 2.4.
This distribution is given by

p(G∗ | X∗,X,Y) = N
(︂
KX∗X

˜︁K−1

X,XYT ,KX∗X∗ −KX∗X
˜︁K−1

X,XKXX∗

)︂
,

omitting the kernel hyperparameters θ. Thus, assuming some given observations Y at
certain time points and the corresponding states X in the latent space, trajectories G∗ in
the observation space are predictable for the given inputs states X∗. The calculation of
the natural parameters of the predictive distribution is done in Equations (2.6) and (2.7)
in Section 2.4.

4.3. Bayesian Gaussian Process Dynamic Mode Decomposition

According to Koopman Theory, an invariant subspace, in which the system evolves linearly,
can have a higher dimensionality than the original space from which the observation
originates [24,25]. Unfortunately, continuous LVMs and hence the derived Gaussian Pro-
cess Dynamic Mode Decomposition suffers from the effect of overfitting [4,6]. Therefore,
Bayesian Gaussian Process Dynamic Mode Decomposition (Bayesian GP-DMD) is introduced
to extend the Probabilistic Density Model using a fully Bayesian formalism. On the one
hand, the Bayesian GP-DMD framework aims at mitigating the effect of overfitting, thus
tackling one central drawback of Gaussian Process Dynamic Mode Decompositions (GP-
DMDs). On the other hand, the formalization enables the application of VI or VB, leading
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to approximations of the posterior distribution over the linear operator A, the trajectories
in the latent space X, etc.

One central problem of the Probability Density Model used for GP-DMD in Equation (4.3)
is the auto-regressive structure induced by the Gaussian Process. Under marginalization,
this structure leads to a dependence of the observations Y on the latent states X and
poses a problem in deriving a fully Bayesian approach [50,54,59]. Therefore, based on
the Bayesian formalism of GP-LVM discussed in Section 2.7, the literature has proposed
convenient ways to use sparse GP techniques to achieve an ELBO and hence approximate
a fully Bayesian formalism [43,46,50,54,59,77]. On the one hand, the use of inducing
pairs (U,Z) resolves the auto-regressive structure implied by the GP observation model.
On the other hand, it reduces the computational complexity, as discussed in Section
Section 2.7. The matrices U = [u, · · · ,u] ∈ RN×D and Z = [z, · · · , z] ∈ RM×D are the
inducing variables and the corresponding inducing inputs, respectively. The Probability
Density Model introduced in Equation (4.2) leads to

p(Y,Θ) = p(Y,X,G,U,A, λx, λ0, λy, λa)

= p(Y,G,U, λy | X)p(X,A, λx, λ0, λa)

= p(Y,G,U, λy | X)p(X, λx, λ0 | A)p(A, λa), (4.10)

where the inducing pairs are considered. As discussed in Section 2.7, the inducing inputs
form variational parameters. These variational parameters and the hyperparameters, e.g.,
from the kernel function, are omitted below for conciseness. The Probability Density
Model in Equation (4.10) also considers the precision values λx, λ0, λy and λa as random
variables. The first term of the loss function corresponds to the observational model and
is therefore extended by the inducing inputs. It forms

p(Y,G,U, λy | X) =

T∏︂
t=0

p(yt,gt,U | X, λy)p(λy)

=
T∏︂
t=0

p(yt | gt, λy)p(gt | U,X)p(U)p(λy)

=
T∏︂
t=0

N (yt | gt, λ
−1
y I)N (gt | CtU,Dt)

N∏︂
n=1

N (un | 0,KZZ)Gam(λy | αy, βy),
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where two operatores are given by Ct = KtZK
−1
ZZ and Dt = Ktt −KtZK

−1
ZZKZt. The

abbreviations for the kernels are KZZ = K(Z,Z), Ktt = K(xt,xt), KtZ = K(xt,Z), and
KZt = KT

tZ. Because of the inducing inputs and the associated conditional independence,
an output gt of the observational model depends on the inducing inputs U and solely on
the latent state xt at time t. The operator Dt represent the covariance matrix describing
the posterior variance between the output gt of the observation model and the inducing
variables U. The remaining terms on the r.h.s of the probability density model correspond,
on the one hand, to the linear dynamical system in the latent space,

p(X, λx, λ0 | A) = p(X | A, λx, λ0)p(λx, λ0)

= p(x0 | λ0)

T∏︂
t=1

p(xt | xt−1,A, λx)p(λx, λ0)

= N (x0 | 0, λ−1
0 I)

T∏︂
t=1

N (xt | ATxt−1, λ
−1
x I)

Gam(λ0 | α0, β0)Gam(λx | αx, βx),

and, on the other hand, to the prior distribution over the linear operator

p(A, λa) =
M∏︂

m=1

p(am | λa)p(λa)

=

M∏︂
m=1

N (am | 0, λ−1
a I)Gam(λa | αa, βa).

A graphical model visualizing the initial Probability Density Model of the derived Bayesian
Gaussian Process Dynamic Mode Decomposition without the inducing inputs is shown in
Figure 4.3. The blue shaded nodes corresponds to the given observationsY while the white
nodes represent the unknown latent variables of interest Θ. The thick black line denotes
the problematic auto-regressive structure, implying that gt depends on g0, · · · ,gt−1 and
x0, · · · ,xt. However, the use of the inducing pairs resolves this auto-regressive dependency,
as discussed previously. In the following, the learning procedure for the latent variables Θ
and the variational parameters and hyperparameter collected in θ is considered.
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g0 g1 · · · gT· · · · · ·

y0 y1 · · · yT
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A

λA
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λ0

(α0, β0)

λy

(αy, βy)

λx

(αx, βx)

Figure 4.3.: The graphical model visualizes the Probability Density Model of the de-
rived Bayesian Gaussian Process Dynamic Mode Decomposition. The blue
shadednodes represent the given observationsy0, · · · ,yT . White nodes cor-
respond to the unknown latent variables. The sequence of states of interest
in the latent space is given by x0, · · · ,xT . g0, · · · ,gT describe the outputs of
theGaussian process function corresponding to the observationmodel. The
linear operator is given byA. The precision values of the assumed Gaussian
distributions are depicted by λy, λ0, λx, λa. The thick black line denotes an
auto-regressive structure within the Gaussian process, implying that gt de-
pends on g0, · · · ,gt−1 and x0, · · · ,xt. The small black nodes correspond
to the hyperparameters of the given Probability Density Model. In this case,
they represent shape and rate parameters for Gamma distribution Gam(·)
and the degrees of freedom and the scale matrix for a Wishart distribution
W (·).
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Learning From Demonstration

The optimization of the fully Bayesian approach utilizes Variational Inference or Variational
Bayes techniques, and consequently, an Evidence Lower Bound is first formulated [50,54,
59]. In analogy to Section 2.3, the ELBO is given by

log p(Y | θ) ≥
∫︂

q(Θ) log
p(Y,Θ | θ)

q(Θ)
dΘ

=

⟨︃
log

p(Y,Θ | θ)
q(Θ)

⟩︃
q(Θ)

def
= LELBO(q(Θ),θ),

extending the marginal log-likelihood with a variational distribution q(Θ). The operator
⟨f(·)⟩ corresponds to the expected value w.r.t. this variational distribution. For the
variational distribution concerning the outputs of the observational model, the specific form
of the original GP from the Probability Density Model (see Equation (4.10)) is assumed.
As a result, the following factorization is obtained under the mean field assumption

q(Θ) =
∏︂

Θi∈Θ
q(Θi) =

T∏︂
t=0

p(gt | U,X)
∏︂

Θi∈Θ\{G}

q(Θi).

Hence, no specific functional forms are chosen for the remaining latent variables. Those
functional forms will arise naturally based on the chosen structure of the likelihood
functions and the corresponding conjugate priors during this section [4,6].

The ELBO leads to

LELBO(q(Θ),θ) = −KL(q(λy) ∥ p(λy))−KL(q(λ0) ∥ p(λ0))−KL(q(λx) ∥ p(λx))

−KL(q(U) ∥ p(U))−KL(q(A)q(λa) ∥ p(A | λa)p(λa))

−H(q(X)q(λ0) ∥ p(x0 | λ0)) + H(q(X) ∥ q(X))

+

⟨︄
log

T∏︂
t=0

p(yt | gt, λy)

⟩︄
q(G,U,X,λy)

+

⟨︄
log

T∏︂
t=1

p(xt | xt−1,A, λx)

⟩︄
q(X,A,λx)

,
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where KL(· ∥ ·) and H(· ∥ ·) describe Kullback–Leibler divergence and cross-entropy, re-
spectively (see Appendix B). A closer look at the expectation value over the log-likelihood
of the seen data⟨︄

log
T∏︂
t=0

p(yt | gt, λy)

⟩︄
q(G,U,X,λy)

=

⟨︄
T∑︂
t=0

⟨log p(yt | gt, λy)⟩p(gt|U,X)⏞ ⏟⏟ ⏞
=ζ1

⟩︄
q(U,X,λy)

,

w.r.t. the variational distribution q(G) results in an analytic closed-form solution due to
its Gaussian nature. This analytic calculation of

ζ1 = ⟨log p(yt | gt, λy)⟩p(gt|U,X)

=

∫︂
p(gt | U,X) log p(yt | gt, λy) dgt

=

∫︂
N (gt | CtU,Dt) logN (yt | gt, λ

−1
y I) dgt

= logN (yt | CtU, λ−1
y I)− Nλy

2
Tr(Dt),

leads to an additional penalty term −Nλy/2Tr(Dt) induced by the inducing pairs, similar
to Sections 2.5 and 2.7. This term corresponds to the posterior variance between the
inducing variables U and the given observations Y [54, 77, 80]. Eventually, the ELBO
results in

LELBO(q(Θ),θ) = −KL(q(λy) ∥ p(λy))−KL(q(λ0) ∥ p(λ0))−KL(q(λx) ∥ p(λx))

−KL(q(U) ∥ p(U))−KL(q(A)q(λa) ∥ p(A | λa)p(λa))

−H(q(X)q(λ0) ∥ p(x0 | λ0)) + H(q(X) ∥ q(X))

+

⟨︄
log

T∏︂
t=0

N (yt | CtU, λ−1
y I)

⟩︄
q(X,U,λy)

+

⟨︄
log

T∏︂
t=1

p(xt | xt−1,A, λx)

⟩︄
q(X,A,λx)

−
⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X,λy)

,

where D: = K:: − K:ZKZZKZ: generalizes the expression of Dt for all time steps.
The KL divergences provide regularization parameters ensuring that the variational dis-
tributions stay close to the pre-assumed prior distributions. The cross-entropy term
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H(q(X)q(λ0) ∥ p(x0 | λ0)) prioritizes initial states x0 in the latent space, which are very
likely according to the selected prior. The subsequent entropy term H(q(X) ∥ q(X)) penal-
izes too narrow variational distributions q(X) [54]. The latter two terms, not discussed
earlier, represent expectation values over two likelihood functions. On the one hand, the
former guarantees that observations Y are taken into account during optimization. On
the other hand, the second one ensures linear dynamical behavior in the latent space.
Consequently, the ELBO results in an optimization procedure

q∗(Θ) = argmax
q(Θ)

LELBO(q(Θ),θ),

θ∗ = argmax
θ

LELBO(q
∗(Θ),θ),

similar to Section 2.3. In the following, the optimal variational distributions are first
derived utilizing the Calculus of Variation and Euler Lagrange [3,4,6,54,59]. Then, the
optimization of the variational parameters and hyperparameters is discussed.

Optimal Variational Distribtuion q∗(λy)

In order to obtain an optimal estimate for q(λy), the derivative of LELBO(q(Θ),θ), is taken
w.r.t. q(λy) and set equal to zero, leading to

∂LELBO

∂q(λy)
= log

p(λy)

q(λy)
− 1−

⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X)

+

⟨︄
log

T∏︂
t=0

N (yt | CtU, λ−1
y I)

⟩︄
q(X,U)

= log
p(λy)

q(λy)
− 1−

⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X)

+
⟨︁
logN (Y | C:˜︁µU, λ−1

y I)
⟩︁
q(X)
− Nλy

2

⟨︂
Tr
(︂
CT

: C:
˜︁Λ−1

U

)︂⟩︂
q(X)

!
= 0,

where C: = K:ZK
−1
ZZ generalizes Ct over all time steps. The mean matrix ˜︁µU (see Equa-

tion (4.21)) and a precision matrix ˜︁ΛU (see Equation (4.22)) are the natural parameters
of the optimal variational distribution q∗(U). Considering the exponential space, the
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optimal variational distribution

q∗(λy) ∝ exp

(︄
logGam (λy | αy, βy)−

⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X)

+
⟨︁
logN (Y | C:˜︁µU, λ−1

y I)
⟩︁
q(X)
− Nλy

2

⟨︄∑︂
s=1

Tr
(︂
CT

: C:
˜︁Λ−1

U

)︂⟩︄
q(X)

)︄

∝ exp

(︄
2αy − 2

2
log|λy| −

2βyλy

2
−
⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X)

+
TN

2
log|λy| −

λy

2

⟨︂
(Y −C:˜︁µU) (Y −C:˜︁µU)T

⟩︂
q(X)

− Nλy

2

⟨︂
Tr
(︂
CT

: C:
˜︁Λ−1

U

)︂⟩︂
q(X)

)︄
,

takes on the form of a Gamma distribution

q∗(λy) ∝ Gam
(︂
λy | ˜︁αy, ˜︁βy)︂ ,

with natural parameters

˜︁αy =
TN + 2αy

2
, (4.11)

˜︁βy = 2βy +Tr
(︂
(Y −C:˜︁µU) (Y −C:˜︁µU)T +N

(︂
D: +C:

˜︁Λ−1

U CT
:

)︂)︂
, (4.12)

corresponding to the shape and the rate parameter, respectively. This resulting form of a
Gamma distribution confirms the conjugacy property [4,6].

Optimal Variational Distribution q∗(λ0)

Next, the optimal variational distribution q∗(λ0) results from the derivative of the ELBO
LELBO(q(Θ),θ) w.r.t. to the distribution q(λ0) resulting in

∂LELBO

∂q(λ0)
= log

p(λ0)

q(λ0)
− 1 + ⟨log p(x0 | λ0)⟩q(X)

!
= 0,
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where the resulting gradient is set equal to zero. The exponential space leads to the
relation

q∗(λ0) ∝ exp

(︄
logGam (λ0 | α0, β0) +

⟨︁
logN (x0 | 0, λ−1

0 I)
⟩︁
q(X)

)︄

∝ exp

(︄
2α0 − 2

2
log|λ0| −

2β0λ0

2
+

M

2
log|λ0| −

λ0

2
Tr
(︂⟨︁

x0x
T
0

⟩︁
q(X)

)︂)︄
,

where q∗(λ0) takes the form of a Gamma distribution

q∗(λ0) ∝ Gam
(︂
λ0 | ˜︁α0, ˜︁β0)︂ ,

with the natural parameters

˜︁α0 =
M + 2α0

2
, (4.13)

˜︁β0 = 2β0 +Tr
(︂⟨︁

x0x
T
0

⟩︁
q(X)

)︂
, (4.14)

representing the shape and the rate parameter, respectively. Again, the resulting Gamma
distribution is a natural consequence of the conjugacy property [4,6].

Optimal Variational Distribution q∗(λx)

The gradient is taken w.r.t. q(λx) and set equal to zero to estimate the optimal distribution
q∗(λx)

∂LELBO

∂q(λx)
= log

p(λ0)

q(λ0)
− 1 +

⟨︄
log

T∏︂
t=1

p(xt | xt−1,A, λx)

⟩︄
q(X)q(A)

= log
p(λ0)

q(λ0)
− 1 +

⟨︄
log

T∏︂
t=1

M∏︂
m=1

p(xm,t | xt−1, ˜︁µam
, λx)

⟩︄
q(X)

−
T∑︂
t=1

λx

2

⟨︄
Tr

(︄
xT
t−1

(︄
M∑︂

m=1

˜︁Λ−1

am

)︄
xt−1

)︄⟩︄
q(X)

,

!
= 0,
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where ˜︁µam
(see Equation (4.19)) and ˜︁Λam for m = 1, · · · ,M (see Equation (4.20))

are natural parameters coming from the optimal variational distribution q∗(A). The
transformation to exponential space, given by

q∗(λx) ∝ exp

(︄
logGam (λx | αx, βx) +

⟨︄
log

T∏︂
t=1

M∏︂
m=1

N (xm,t | xT
t−1˜︁µam

, λ−1
x )

⟩︄
q(X)

−
T∑︂
t=1

λx

2

⟨︄
Tr

(︄
xT
t−1

(︄
M∑︂

m=1

˜︁Λ−1

am

)︄
xt−1

)︄⟩︄
q(X)

)︄

∝ exp

(︄
2αx − 2

2
log|λx| −

2˜︁βxλx

2
+

M(T − 1)

2
log|λx|

− λx

2
Tr

⟨︄(︃(︂
X1T −X0T ˜︁µa

)︂(︂
X1T −X0T ˜︁µa

)︂T⟩︃
q(X)

)︄

− λx

2

⟨︄
Tr

(︄
T∑︂
t=1

X0T

(︄
M∑︂

m=1

˜︁Λ−1

am

)︄
X0

)︄⟩︄
q(X)

)︄
,

leads to an optimal q∗(λx) that takes the form of a Gamma distribution

q∗(λx) ∝ Gam
(︂
λx | ˜︁αx, ˜︁βx)︂ .

The shape and rate are given by

˜︁αx =
M(T − 1) + 2αx

2
, (4.15)

˜︁βx = 2βx +Tr

(︄⟨︄
X0T

(︄
M∑︂

m=1

˜︁Λ−1

am

)︄
X0

⟩︄
q(X)

+

⟨︃(︂
X1T −X0T ˜︁µa

)︂(︂
X1T −X0T ˜︁µa

)︂T⟩︃
q(X)

)︄
,

(4.16)

corresponding to the natural parameters of q∗(λx).
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Optimal Variational Distribution q∗(λa)

The optimal variational distribution q∗(λa) for the last precision value λa is obtained
similarly. First, the derivative is performed

∂LELBO

∂q(λa)
=

⟨︃
log

p(A | λa)p(λa)

q(λa)

⟩︃
q(A)

− 1

!
= 0,

which should be equal to zero. In exponential space, it follows

q∗(λa) ∝ exp

(︄⟨︄
logN (

M∏︂
m=1

am | 0, λ−1
a I)

⟩︄
q(A)

+ logGam (λa | αa, βa)

)︄

∝ exp

(︄
−λa

2
Tr

(︃⟨︁
AAT

⟩︁
q(A)

)︃
− 2βa

2
λa +

M2

2
log|λa|+

2αa − 2)

2
log|λa|

)︄
,

where the resulting optimal distribution q∗(λa) adopts the form of the Gamma distribution

q∗(λa) ∝ Gam(λa | ˜︁αa, ˜︁βa),
with natural parameters

˜︁αa = 2αa +M2, (4.17)

˜︁βa = 2βa +Tr
(︂⟨︁

AAT
⟩︁
q(A)

)︂
= 2βa +Tr

(︄˜︁µa˜︁µT
a +

M∑︂
m=1

˜︁Λ−1

am

)︄
, (4.18)

corresponding to the shape and rate, respectively. The mean matrix ˜︁µa (see Equa-
tion (4.19)) and the precision matricies ˜︁Λam for m = 1, · · · ,M (see Equation (4.20)) are
the natural parameters of the optimal variational distribution q∗(A) corresponding to the
linear operator A.
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Optimal Variational Distribution q∗(A)

The estimation of the optimal variational distribution q∗(A) associated with the linear
operator A is based on the gradient of the ELBO LELBO(q(Θ),θ) w.r.t. q(A), resulting in

∂LELBO

∂q(A)
=

⟨︄
log

∏︁M
m=1 p(am | λa)p(λa)

q(A)q(λa)

⟩︄
q(λa)

− 1

+

⟨︄
log

T∏︂
t=1

p(xm,t | xt−1,am, λx)

⟩︄
q(X)q(λx)

!
= 0,

which is then set equal to zero. The transformation to the exponential space leads to

q∗(A) ∝
M∏︂

m=1

exp

(︄⟨︁
logN (am | 0, λ−1

a I)
⟩︁
q(λa)⟨︄

log

T∏︂
t=1

N (xm,t | xT
t−1am, λ−1

x I)

⟩︄
q(X)q(λx)

)︄

∝
M∏︂

m=1

exp

(︄
−1/2

(︃⟨︂
λxX

1
mX1T

m

⟩︂
q(λx)q(X)

− 2aTm

(︃⟨︂
λxX

0X1T

m

⟩︂
q(λx)q(X)

)︃
+ aTm

(︃⟨︂
λxX

0X0T
⟩︂
q(λx)q(X)

+ ⟨λa⟩q(λa)

)︃
am

)︃)︄
,

where completing the squares produces the factorization into M independent Gaussian
distributions

q∗(A) ∝
M∏︂

m=1

q∗(am)

=
M∏︂

m=1

N (am | ˜︁µam
, ˜︁Λ−1

a ),
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with natural parameters

˜︁µam
=

(︄⟨︃
λa

λx

⟩︃
q(λx)q(Λam )

+Ψ2

)︄−1

Ψ1m

=

(︄ ˜︁βx˜︁αa˜︁αx
˜︁βa +Ψ2

)︄−1

Ψ1m , (4.19)

˜︁Λa = ⟨λa⟩q(λa)
+ ⟨λx⟩q(λx)

Ψ2

=
˜︁αa˜︁βa +

˜︁αx˜︁βxΨ2. (4.20)

The two terms Ψ1m and Ψ2 correspond to sufficient statistics and are defined by

Ψ1m =
⟨︂
X0X1T

m

⟩︂
q(X)

, Ψ2 =
⟨︂
X0X0T

⟩︂
q(X)

.

Similar to the Maximum A Posteriori probability estimate of the linear operator A∗ in
Equation (4.5), the mean ˜︁µam

is an expression of a ridge regression. However, it now
depends on several expectations. On the one hand, the ridge coefficient is obtained from
the natural parameters of the optimal variational distributions q∗(λx) (see Equations (4.15)
and (4.16)) and q∗(λa) (see Equations (4.17) and (4.18)). On the other hand, the sufficient
statistics Ψ1m and Ψ2 correspond to estimates of expected values w.r.t. the variational
distribution q(X).

Optimal Variational Distribution q∗(U)

To achieve an optimal estimate for the variational distribution q∗(U) the derivative of the
ELBO LELBO(q(Θ),θ) w.r.t. q(U) is given

∂LELBO

∂q(U)
= log

p(U)

q(U)
− 1 +

⟨︄
log

T∏︂
t=0

N (yt | CtU, λ−1
y I)

⟩︄
q(X,λy)

!
= 0,
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and subsequently set equal to zero. In the exponential space

q∗(U) ∝
N∏︂

n=1

N (Un |, 0,KZZ)
⟨︁
logN (Yn | C:Un, λ

−1
y I)

⟩︁
q(X),q(λy)

∝
N∏︂

n=1

exp

(︄
−1/2

(︃
⟨λy⟩q(λy)

YT
nYn

− 2UT
nK

−1
ZZ ⟨λyKz:⟩q(X)q(λy)

Yn

+UT
n

(︂
K−1

ZZ +K−1
ZZ ⟨λyKz:K:z⟩q(X)q(λy)

K−1
ZZ

)︂
Un

)︃)︄
,

completing the squares results in an optimal q∗(U) which factorizes into N independent
Gaussian distributions

q∗(U) ∝
N∏︂

n=1

N
(︂
Un | ˜︁µUn

, ˜︁Λ−1

U

)︂
.

The natural parameters of this distribution are formalized

˜︁µUn
=

(︄
1

⟨λy⟩q(λy)

K−1
ZZ +K−1

ZZΨ4K
−1
ZZ

)︄−1

K−1
ZZΨ3n

=

(︄ ˜︁βy˜︁αy
K−1

ZZ +K−1
ZZΨ4K

−1
ZZ

)︄−1

K−1
ZZΨ3n , (4.21)

˜︁ΛU = K−1
ZZ + ⟨λy⟩q(λy)

K−1
ZZΨ4K

−1
ZZ

= K−1
ZZ +

˜︁αy˜︁βyK−1
ZZΨ4K

−1
ZZ, (4.22)

corresponding to themean vector ˜︁µUn
and precisionmatrix ˜︁ΛU, respectively. The sufficient

statistics Ψ3n and Ψ4 are given

Ψ3n = ⟨Kz:⟩q(X)Yn, Ψ4 = ⟨Kz:K:z⟩q(X) ,

depending on the variational distribution q(X) of the latent states X. The shape ˜︁αy

(see Equation (4.11)) and the rate ˜︁βy (see Equation (4.12)) parameter are the natural
parameters of optimal variational distribution q∗(λy).
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Optimal Variational Distribution q∗(X)

In order to estimate the optimal variation distribution q∗(X), the gradient w.r.t. q(X) is
considered and then set equal to zero

∂LELBO

∂q(X)
= − log q(X)− 1 + ⟨log p(x0 | λ0)⟩q(λ0)

+

⟨︄
log

T∏︂
t=0

N (yt | CtU, λ−1
y I)

⟩︄
q(U,λy)

+

⟨︄
log

T∏︂
t=1

p(xt | xt−1,A, λx)

⟩︄
q(A)q(λx)

−
⟨︃
Nλy

2
Tr(D:)

⟩︃
q(λy)

= − log q(X)− 1 + logN (x0 | 0,
˜︁β0˜︁α0

I)

+

T∑︂
t=0

(︄
logN (yt | Ct˜︁µU,

˜︁βy˜︁αy
I)− N ˜︁αy

2˜︁βy Tr(Dt +Ct
˜︁Λ−1

U CT
t )

)︄

+

T∑︂
t=1

(︄
logN (xt | xT

t−1˜︁µa,
˜︁βx˜︁αx

I)− ˜︁αx

2˜︁βxTr(xT
t−1

M∑︂
m=1

˜︁Λ−1

a xt−1)

)︄
!
= 0.

It depends on the natural parameters of the optimal variational distribution q∗(U), q∗(A),
q∗(λy), q∗(λ0) and q∗(λx) derived in the previous sections (see Equations (4.11) to (4.16)
and (4.19) to (4.22)). In exponential space, the optimal variational distribution q∗(X) is
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given by

q∗(X) ∝ N (x0 | 0,
˜︁β0˜︁α0

I)

T∏︂
t=0

N (yt | Ct˜︁µU,
˜︁βy˜︁αy

I) exp

(︄
−N ˜︁αy

2˜︁βy Tr
(︂
Dt +Ct

˜︁Λ−1

U CT
t

)︂)︄
⏞ ⏟⏟ ⏞˜︁p(yt|xt)

T∏︂
t=1

N (xt | ˜︁µT
axt−1,

˜︁βx˜︁αx
I) exp

(︄
− ˜︁αx

2˜︁βxTr(xT
t−1

M∑︂
m=1

˜︁Λ−1

am
xt−1)

)︄
⏞ ⏟⏟ ⏞˜︁p(xt|xt−1)

∝ p(x0)˜︁p (y0 | x0)

T∏︂
t=1

˜︁p (yt | xt) ˜︁p (xt | xt−1) , (4.23)

proportional to several Gaussian distributions and some exponential terms. Thus, the
resulting distribution represents a State-Space Model with additional penalty terms ex-
pressed by these exponential terms.

The optimal variational distribution q∗(X) expresses a smoothing distribution, which is
discussed in Appendix D [53,54,59]. Therefore, sampling can be achieved by Probabilistic
Inference techniques from Bayesian smoothing or the Sequential Monte Carlo family. While
transitions in latent space evolve linearly, the observational model expresses a nonlinear
function. Therefore, Probabilistic Inference techniques should be applied which are capable
of dealing with nonlinear transitions [52–54]. However, the penalty terms expressed by
the exponential functions carry the risk of leading to non-Gaussian distributions. Therefore,
techniques from Bayesian Inference based on Gaussian approximations, such as those
in Appendix D, lead to inappropriate approximations [53]. For such cases of nonlinear
non-Gaussian distributions, techniques from the family of Sequential Monte Carlo are
applicable [4,52,53].

In this work, however, we assume that the penalty terms represent only zero-mean
additive Gaussian noise, and thus the underlying distribution corresponds to a nonlinear
Gaussian distribution. Therefore, this nonlinear Gaussian distribution is approximated by
a particular functional form of the variational distribution

q∗(X) = N (x0 | 0,
˜︁β0˜︁α0

I)
T∏︂
t=0

N (yt | Ct˜︁µU,
˜︁βy˜︁αy

I)
T∏︂
t=1

N (xt | ˜︁µT
axt−1,

˜︁βx˜︁αx
I), (4.24)
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representing a nonlinear Gaussian State-Space Model. The sampling on this SSM is again
performed by techniques from the SMC family, e.g., Sequential Importance Resampling
(see Appendix D). In addition, however, Bayesian Inference techniques, such as Cubature
Kalman smoothing (see Appendix D), are now applicable.

Optimal Variational Parameters And Hyperparameters

The variational parameters corresponding to the inducing inputs and the hyperparameters
representing the kernel parameters are collected in θ. For optimization, both can be
jointly maximized using gradient descent techniques [50,54,59]. However, optimization
of these parameters results in an Empirical Bayesian learning framework, as discussed in
Section 2.3.

On the one hand, the ELBO, given by

LELBO(q(Θ),θ) = c−KL(q(U) ∥ p(U))−
⟨︃
Nλy

2
Tr(D:)

⟩︃
q(X,λy)

+

⟨︄
log

T∏︂
t=0

N (yt | CtU, λ−1
y I)

⟩︄
q(X,U,λy)

,

can be optimized directly using numerical calculation techniques. The constant c includes
all terms not depending on the parameters θ. On the other hand, it is possible to reverse the
applied Jensen inequality. Since in the VBE step (see Section 2.3), the optimal variational
distributions q∗(Θ) were found, the distance between the true marginal log-likelihood
and the ELBO was minimized. Under the assumption of a satisfying minimization, the
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Jensen inequality can then be reversed [50]. The reversion results in

LELBO(q(Θ),θ) = c−
⟨︃
Nλy

2
Tr(D:)

⟩︃
q∗(X,λy)

+
N∑︂

n=1

⟨︂
log p(Un) exp

(︂⟨︁
logN (Yn | C:Un, λ

−1
y I)

⟩︁
q∗(X,λy)

)︂⟩︂
q∗(Un)

= c+
N ˜︁αy

2˜︁βy ⟨Tr(D:)⟩q∗(X)

+

N∑︂
n=1

log

∫︂
p(Un) exp

(︂⟨︁
logN (Yn | C:Un, λ

−1
y I)

⟩︁
q∗(X,λy)

)︂
dUn⏞ ⏟⏟ ⏞

=ζ2

,

where the logarithm function is drawn out of the integral. Hence, the optimal variational
distribution q∗(U) has been eliminated. The inner part, represented by ζ2, corresponds to
a quadratic form and is thus analytically solvable

ζ2 =

∫︂
p(Un) exp

(︂⟨︁
logN (Yn | C:Un, λ

−1
y I)

⟩︁
q∗(X,λy)

)︂
dUn

=

∫︂
(2π)−

T
2 |KZZ|−

1
2 (2π)−

T
2

⟨︃
λ

T
2
y

⟩︃
q∗(λy)

exp

(︄
−1

2

(︃
UT

nKZZUn +
˜︁αy˜︁βyYT

nYn −
˜︁αy˜︁βyYT

nΨ5K
−1
ZZUn

− ˜︁αy˜︁βyUT
nK

−1
ZZΨ

T
5 Yn +

˜︁αy˜︁βyUT
nK

−1
ZZΨ6K

−1
ZZUn

)︃)︄
dUn,

where Ψ5 = ⟨K:Z⟩q∗(X) and Ψ6 = ⟨KZ:K:Z⟩q∗(X) correspond to two sufficient statistics
[50]. Due to the quadratic nature and the corresponding Gaussian integral, ζ2 equals

ζ2 =

⟨︃
λ

T
2
y

⟩︃
q∗(λy)

|KZZ|
1
2

(2π)−
T
2

⃓⃓⃓ ˜︁αy˜︁βy
Ψ6 +KZZ

⃓⃓⃓ 1
2

exp

(︄
−1

2
YT

nΛYn

)︄
,

where Λ =
˜︁αy˜︁βy

I− ˜︁α2
y˜︁β2
y

Ψ5

(︂ ˜︁αy˜︁βy
Ψ6 +KZZ

)︂−1
ΨT

5 [50]. Thus, an alternative loss function is
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eventually derived, given by

LELBO(q
∗(Θ),θ) = c− N ˜︁αy

2˜︁βy ⟨Tr(D:)⟩q∗(X) +
N

2
log|KZZ|

− N

2
log

⃓⃓⃓⃓
⃓ ˜︁αy˜︁βyΨ6 +KZZ

⃓⃓⃓⃓
⃓− 1

2
Tr
(︁
ΛYYT

)︁
.

(4.25)

This loss function still represents an ELBO. However, it now depends directly on the
variational parameters and hence on the inducing inputs Z no longer on the induced
variablesU. Similarly, as above, all terms not relevant for the optimization of the variational
parameters and the kernel hyperparameters are summarized in c. Numerical calculation
methods then obtain the gradients and gradient descent techniques are applied [50].

Reproducing Demonstration

For the reconstruction of the demonstration in the observation space, the latent space
is considered first. The linear state sequences X in the latent space are inferred based
on the assumed variational distribution q∗(X). q∗(X) represents a nonlinear Gaussian
SSM, which is defined by the natural parameters of the variational distribution q∗(U),
q∗(A), q∗(λy), q∗(λ0), q

∗(λx) and the variational parameters and hyperparameters θ. The
sequences X∗ ∼ q∗(X) are then sampled in latent space using Probabilistic Inference
techniques (see Appendix D). These samples and the remaining optimized parameters
are applied to reconstruct trajectories in the observation space. Similar to GP-DMD, the
predictive distribution (see Section 2.4) is considered

p(G∗ | X∗,X) = N
(︂
KX∗ZK

−1
Z,Z˜︁µU,KX∗X∗ −KX∗ZK

−1
Z,ZKZX∗

)︂
,

predicting new function values G∗ in the observation space for the corresponding inputs
X∗. Unlike GP-DMD, however, the prediction of Bayesian GP-DMD shows a dependence
on the induced pairs (U,Z) and thus not on the given observation Y [54, 59]. This
independence on the observations Y follows from the conditional independence implied
by the induced pairs (U,Z) [50,77]. As a result, no labels Y need to be collected in order
to reproduce the trajectories. Instead, by optimizing the inducing inputs Z and inferring
the mean ˜︁µU (see Equation (4.21)), these required labels are directly obtained for the
reconstruction.
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5. Probabailistic Dynamic Mode Primitives

GP-DMD and Bayesian GP-DMD, two central concepts of this thesis, were introduced in
the previous Chapter 4. These concepts take a dual perspective on Koopman Theory and
thus on the DMD family, utilizing Gaussian Process State-Space Models. On the one hand,
using an underlying GP-SSM structure provides a probabilistic perspective that naturally
accounts for uncertainty and variability. On the other hand, the use of GPs results in
a nonparametric Bayesian framework. In both frameworks, the observation model is
assumed to be represented by a GP, while a linear stationary operator expresses the
transition model. However, both approaches fail to learn from multiple data. Especially in
the field of movement primitives, this is a fundamental drawback since multiple trajectories
are commonly given [7–10,20]. This chapter, therefore, extends the GP-DMD and Bayesian
GP-DMD frameworks with a hierarchical structure that takes multiple trajectories into
account. These considerations eventually give rise to the Probabilistic Dynamic Mode
Primitive (Pro-DMP) and the Bayesian Dynamic Mode Primitive (Bayesian-DMP), two novel
movement primitives.

In Section 5.1, the Probabilistic Dynamic Mode Primitive is introduced, an extension
of the GP-DMD framework. In the field of movement primitives, the variability in the
movements is usually provided by multiple trajectories [7–10]. In the context of GP-
DMD, this variability can be incorporated either in the GP-based observational model
or as a distribution in latent space. The Pro-DMP framework adopts the latter option
since it aims at expressing the given variability in the data in the inferred trajectories
in the latent space. Therefore, based on Probabilistic Movement Primitives, a popular
movement primitive framework [10,14,15,18], a hierarchical structure is utilized and
incorporated into the existing GP-DMD framework. This structure eventually results in an
EM-like framework capable of handling multiple trajectories and representing a new type
of movement primitive.

Like GP-DMD, however, the approach carries the risk of overfitting in cases where the latent
space has a higher dimensionality than the observation space (see Sections 2.2 and 4.2).
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In Koopman Theory, the invariant subspace can exhibit much higher dimensionality,
providing an essential drawback of Probabilistic Dynamic Mode Primitives. For this reason,
Section 5.2 presents a possible combination of Pro-DMP and the fully Bayesian approach
Bayesian GP-DMD, leading to the Bayesian Dynamic Mode Primitive (Bayesian-DMP)
framework. This framework considers the hierarchical structure in a fully Bayesian manner.
Thus, it theoretically combines the advantages of Pro-DMP and Bayesian GP-DMD. On
the one hand, the handling of multiple trajectories. On the other hand, the mitigation of
overfitting and the provision of approximated posterior distributions.

5.1. Probabailistic Dynamic Mode Primitives

In the field of movement primitives, where multiple trajectories generally provide the
variability of a movement of interest [7–10], the use of the GP-DMD framework is lim-
ited. Therefore, this section presents Probabilistic Dynamic Mode Primitive (Pro-DMP),
a hierarchical extension of the GP-DMD. The hierarchical structure of the Probabilistic
Movement Primitives (ProMPs) inspires the proposed framework [10, 14, 15, 18]. In
contrast to Section 4.2, S-independent trajectories Y = [Y0, · · · ,YS ] are given, with
each observation sequence taking the form Ys ∈ RN×T . Thus, the following Probability
Density Model results in

p(Y,X,A) =
S∏︂

s=1

p(Ys,Xs,As),

assuming that the trajectories are independently observed. This independence results in
S-independent representations in the latent space X = [X0 ∈ RM×T , · · · ,XS ∈ RM×T ].
A distribution can be modeled over these resulting representations, hence, expressing
the variability of the linear dynamics in the latent space. Therefore, the distribution is
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transformed into a hierarchical structure

p(Y,X) =
S∏︂

s=1

∫︂
p(Ys,Xs,As) dAs

=

S∏︂
s=1

p(Ys | Xs)

M∏︂
m=1

∫︂
p(Xs | am)p(asm) dasm

=
S∏︂

s=1

(︃
N (Ys | 0, ˜︁KXsXs(θ))N (xs

1 | 0, λ−1
0 I)

M∏︂
m=1

∫︂
N (X1s

m | as
T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

) dasm

)︃
.

(5.1)

Here, the prior distributions of the respective linear operators A0, · · · ,AS are extended
by common mean vectors and precision matrices. These variables express the distribution
of the linear operator A and therefore the linear dynamics variability in the latent space.
The marginalization expresses the variability of all possible linear operator and hence
achieves a hierarchical structure. The graphical model in fig. 5.1 visualizes the probability
density model of Equation (5.1). The blue shaded nodes and the white nodes represent
the given trajectories Y and all unknown latent variables, respectively. In the larger box
outlined in blue, the independent consideration of the individual trajectories is shown,
where a hierarchical structure is provided due to the common natural parameters in the
smaller box outlined in blue.

Learning From Demonstration

Like GP-DMDs (see Section 4.1), estimating the optimal parameters of interest is considered
an optimization procedure in logarithmic space. Therefore, the Probability Density Model
formalizes from Equation (5.1) to

L(Θ,θ) =
S∑︂

s=1

log
(︂
N (Ys | 0, ˜︁KXsXs(θ))N (xs

1 | 0, λ−1
0 I)

)︂
+

S∑︂
s=1

M∑︂
m=1

log

∫︂
N (X1s

m | as
T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

) dasm⏞ ⏟⏟ ⏞
= ˜︁L(X,θ)

,
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Figure 5.1.: The graphical model visualizes the Probability Density Model of the derived
Probabilistic Dynamic Mode Primitive. The hierarchical structure for S given
trajectories is represented by the larger blue outlined box. The blue shaded
nodes represent the given observations ys

0, · · · ,ys
T for each trajectory. The

white nodes correspond to the unknown latent variables. By xs
0, · · · ,xs

T , the
sequence of states of interest in the latent space is given. gs

0, · · · ,gs
T de-

scribe the outputs of the Gaussian process function. The linear operator cor-
responding to each trajectory is given byAs. The thick black line denotes an
auto-regressive structure within the Gaussian process, which means that gs

t

depends on gs
0, · · · ,gs

t−1 and xs
0, · · · ,xs

t . The small black nodes correspond
to the hyperparameters of the given Probability Density Model. In this case,
they represent the precision values λ0, λx and λy, the mean vectors µam

,
and precision matrices Λam for m = 1, · · · ,M .
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where Θ = [X, λ0, λx, λy,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM ]. The former part merely repre-
sents S-independent observation models in analogy to GP-DMD. However, the second part
results in a logarithm over an integral due to dependencies arising from the hierarchical
structure [2–4, 6]. Considering a variational distribution q(A) and applying Jensens’
inequality to ˜︁L(X,θ) leads to

˜︁L(Θ,θ) =
S∑︂

s=1

M∑︂
m=1

log

∫︂
N (X1s

m | as
T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

) dasm

≥
S∑︂

s=1

M∑︂
m=1

∫︂
q(A) log

N (X1s
m | as

T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

)

q(A)
dasm,

and an Evidence Lower Bound

L(Θ,θ) ≥
S∑︂

s=1

(︃
log
(︂
N (Ys | 0, ˜︁KXsXs(θ))N (xs

1 | 0, λ−1
0 I)

)︂
+

M∑︂
m=1

∫︂
q(A) log

N (X1s
m | as

T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

)

q(A)
dasm

)︃
def
= LELBO(q(A),Θ,θ). (5.2)

As mentioned in Section 2.2, the distance between the ELBO and the marginal log-
likelihood becomes minimal or equal to zero when the KL divergence between the true
posterior p(A | X,θ) and the variational distribution q(A) becomesminimal. Subsequently,
the parameters of interest Θ and θ are optimized using gradient based methods. Hence,
the optimization procedure of the Pro-DMP framework takes the form of an EM algorithm
and is expressed as

q∗(A) = argmax
q(A)

LELBO(q(A),Θ,θ),

Θ∗,θ∗ = argmax
Θ,θ

LELBO(q
∗(A),Θ,θ),

where the first and second steps correspond to an expectation step and maximization step,
respectively [36,37]. These two steps are performed alternately.
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Expectation Step

The expectation step finds an estimate for the optimal variational distribution q∗(A) in
analogy to Section 4.3. First, the derivative of the ELBO of Equation (5.2) is derived w.r.t.
q(A) and set equal to zero. Subsequently, the transformation into exponential space leads
to

q∗(A) ∝
S∏︂

s=1

M∏︂
m=1

N (X1s

m | as
T

m X0s , λ−1
x I)N (asm | µam

,Λ−1
am

)

∝
S∏︂

s=1

M∏︂
m=1

exp

(︄
−1

2

(︄
2
[︂
as

T

m X1s
m

]︂⎡⎣−Λamµam

0

⎤⎦
+
[︂
as

T

m X1s
m

]︂⎡⎣λxX
0sX0s

T

+Λam −X0sIλx

−λxIX
0s

T

λxI

⎤⎦⎡⎣ asm

X1s
T

m

⎤⎦)︄)︄,
where completing the squares leads to an optimal distribution in terms of S × M -
independent Gaussian distributions. It factorizes accordingly

q∗(A) =

S∏︂
s=1

M∏︂
m=1

q∗(asm) ∝
S∏︂

s=1

M∏︂
m=1

N
(︂
asm | ˜︁µas

m
, ˜︁Λ−1

as
m

)︂
,

where the natural parameters are given by

˜︁µas
m
=

(︃
Λam + λxX

0sX0s
T
)︃−1(︃

λxX
0sX1s

T

m +Λamµam

)︃
, (5.3)

˜︁Λas
m
= Λam + λxX

0sX0s
T

. (5.4)

The resulting form of the SN -independent Gaussian distribution arises naturally from the
conjugacy property [4, 6]. The natural parameters for each Gaussian distribution also
depend on the current estimate of the mean vector µam

and the precision matrix Λam .
The expectation step hence provides an estimate of the current natural parameters most
likely responsible for the current sequences X in the latent space, based on the prior of
µam

and Λam .
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Maximization Step

Considering the optimal posterior distribution q∗(A) resulting from the E step, the ELBO
of Equation (5.2) results in

LELBO(q
∗(A),Θ,θ) = c− 1

2

S∑︂
s=1

[︄
−M log |λ0| − (T − 1)M log |λx|+ λ0x

sT

0 xs
0

+N log
⃓⃓⃓ ˜︁KXsXs(θ)

⃓⃓⃓
+Tr

(︂ ˜︁KXsXs(θ)−1YsYsT
)︂

+

M∑︂
m=1

(︄
Tr

(︃
Λam

(︂
⟨asm⟩q∗(as

m) − µam

)︂(︂
⟨asm⟩q∗(as

m) − µam

)︂T)︃
+ λxTr

(︃(︂
X1s

m − ⟨asm⟩q∗(as
m)X

0s
)︂(︂

X1s

m − ⟨asm⟩q∗(as
m)X

0s
)︂T)︃

− log|Λam |
)︄]︄

,

where c summarizes all terms not depending on Θ and θ. This ELBO thus extends the
loss function of GP-DMD from Equation (4.4) regarding multiple trajectories. In the
following, the gradients with respect to Θ and θ are considered. In analogy to GP-DMD
(see Section 4.2), the optimal parameters are first determined, which provide a closed-
form analytical solution. Subsequently, the loss function for the remaining parameters of
interest is given, for which numerical gradient-based methods are needed.

For m = 1, · · · ,M , the optimal mean vector µ∗
am

is given by

µ∗
am

=
1

S

S∑︂
s=1

˜︁µas
m
, (5.5)

resulting from the derivative of LELBO(q
∗(A),Θ,θ) w.r.t. to µam

. It expresses the mean
value over all current mean estimates ˜︁µas

m
for each movement Xs. The corresponding

optimal precision matrix Λ∗
am

is

Λ∗
am

=

(︃ S∑︂
s=1

(︃(︂˜︁µas
m
− µam

)︂(︂˜︁µas
m
− µam

)︂T
+ ˜︁Λ−1

as
m

)︃
+W−1

m

)︃−1(︃
S + νm −M − 1

)︃
.

(5.6)
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The parameters ν0m ≥M + 1 and Wm are the degrees of freedom and the scale matrix,
respectively, resulting from an assumed Wishart distribution W (Λam |Wm, νm) (see
Appendix A). The optimal precision parameters λ∗

x and λ∗
0 are calculated in a similar way

as in Section 4.2. The gradient of the ELBO w.r.t. λx and λ0, respectively, leads to the
closed-form solutions

λ∗
0 =

SM + 2α0 − 2∑︁S
s=1 x

sT
0 xs

0 + 2β0
, (5.7)

λ∗
x =

S(T − 1)M + 2αx − 2∑︁S
s=1

∑︁M
m=1Tr

(︂
X1s

mX1sT

m − 2˜︁µT
aX

0sX1sT

m +X0sX0sT
(︂˜︁µa˜︁µT

a + ˜︁Λ−1

a

)︂)︂
+ 2βx

,

(5.8)

assuming two additional Gamma distributions Gam(λ0 | α0, β0) and Gam(λx | αx, βx)
as prior distributions for the precision values.

In order to optimize the remaining parametersX, λy and θ, where no closed-form solution
generally exists, the corresponding loss function is given by

LELBO(X, λy,θ) = c− 1

2

S∑︂
s=1

[︄
λ∗
0x

sT

0 xs
0 + (αy − 1) log λy + βyλy

+

M∑︂
m=1

[︃
X0sX0s

T ˜︁Λ−1

a + λ∗
xTr

(︂(︁
X1s

m − ˜︁µaX
0s
)︁ (︁

X1s

m − ˜︁µaX
0s
)︁T)︂]︃

+N log
⃓⃓⃓ ˜︁KXsXs(θ)

⃓⃓⃓
+Tr

(︂˜︁KXsXs(θ)−1YsYsT
)︂]︄

,

(5.9)

where ˜︁KXsXs(θ) = KXsXs(θ) + λ−1
y I. The gradients are determined using numerical

computational methods. Hence, this loss function in Equation (5.9) extends the one of
GP-DMD from Equation (4.9) concerning multiple trajectories.

Reproducing Demonstration

The trajectories in the latent space are first considered to reconstruct demonstrations in
the observation space subsequently based on the optimized parameters Θ∗ and θ∗. As
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in ProMPs [10,14,15,18], an optimal demonstration X∗ ∈ RM×T in the latent space is
sampled from

p(X∗) = p(x∗
0)

M∏︂
m=1

p (X∗
m)

= p(x∗
0)

M∏︂
m=1

∫︂
p
(︁
X1∗

m | X0∗
T

a∗m, λ−1
x I
)︁
p
(︁
a∗m | µam

,Λ−1
am

)︁
dam

= p(x∗
0)

M∏︂
m=1

p
(︁
X1∗

m | X0∗
T

µam
, λ−1

x I+X0TΛ−1
am

X0
)︁
,

= p(x∗
0)

M∏︂
m=1

T∏︂
t=1

p
(︁
x∗
m,t | x∗T

t−1µam
, λ−1

x I+ xT
0,··· ,t−1Λ

−1
am

x0,··· ,t−1

)︁
,

where x∗
m,t corresponds to the mth element of x∗

t vector. This distribution accounts for
learned variability in the linear operator A and hence in the resulting state sequences
X∗. Like GP-DMD (see Section 4.2), the predictive distribution is utilized to reconstruct
demonstrations in the observation space based on drawn state sequences.

5.2. Bayesian Gaussian Process Dynamic Mode Decomposition

The introduced Pro-DMP framework, like GP-DMD, suffers from the problem of overfit-
ting. Therefore, this section proposes a combination of Pro-DMPs and the fully Bayesian
approach Bayesian GP-DMDs, resulting in Bayesian Dynamic Mode Primitives (Bayesian-
DMPs). Bayesian-DMPs combine the advantages of both frameworks. First, the handling
of multiple trajectories and hence the extension of Bayesian GP-DMDs to a framework
applicable in the domain of movement primitives. Second, the mitigation of overfitting
and the provision of approximated posterior distributions. Like GP-DMD, sparse-GP tech-
niques are applied to circumvent the auto-regressive structure induced by the Gaussian
Process observation model. As a result of the multiple given demonstrations, S-inducing
pairs are considered {(Us,Z)}Ss=1, where all inducing variables have the same induc-
ing input Z. The corresponding outputs of the observational model are represented by
G = [G1 ∈ RN×T , · · · ,GS ∈ RN×T ]. The Probability Density Model considered in the
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Bayesian-DMP factorizes accordingly

p(Y,Θ) = p(Y,X,G,U,As,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM , λx, λ0, λy)

= p(Y,G,U, λy | X)p(X,A,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM , λx, λ0)

= p(Y,G,U, λy | X)p(X, λx, λ0 | A)p(A,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM ),
(5.10)

with Θ = (X,G,U,A,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM , λx, λ0, λy) collecting all latent vari-
ables of interest. The variational parameters and hyperparameters are dropped in the
following for conciseness. A graphical model is shown in Figure 5.2 to visualize the
structure of the Probability Density Model and underlying dependencies. Here, the blue
shaded nodes describe the given observations, and the white ones describe the unknown
latent variables of interest.

Similar to Bayesian GP-DMDs, the Probability Density Model from Equation (5.10) breaks
down into three parts. The right part describes the observation model and is represented
by

p(Y,G,U, λy | X) =
S∏︂

s=1

T∏︂
t=0

p(ys
t ,g

s
t ,U

s | Xs, λy)p(λy)

=

S∏︂
s=1

T∏︂
t=0

p(ys
t | gs

t , λy)p(g
s
t | Us,Xs)p(Us)p(λy)

=
S∏︂

s=1

T∏︂
t=0

N (ys
t | gs

t , λ
−1
y I)N (gs

t | Cs
tU

s,Ds
t )

N∏︂
n=1

N (un | 0,Kzz)Gam(λy | αy, βy),

where Cs
t = Ks

tZK
−1
ZZ and Ds

t = Ks
tt −Ks

tZK
−1
ZZK

s
Zt describe operators. Ks

ZZ = K(Z,Z),
Ks

tt = K(xs
t ,x

s
t ), Ks

tZ = K(xs
t ,Z), and Ks

Zt = KsT

tZ correspond to abbreviations for the
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required kernels. The middle part denotes the linear dynamics in the latent space

p(X, λx, λ0 | A) =

S∏︂
s=1

p(Xs | As, λx, λ0)p(λx, λ0)

=
S∏︂

s=1

p(xs
0 | λ0)

T∏︂
t=1

p(xs
t | xs

t−1,A
s, λx)p(λx, λ0)

=
S∏︂

s=1

N (xs
0 | 0, λ−1

0 I)
T∏︂
t=1

N (xs
t | ATxs

t−1, λ
−1
x I)

Gam(λ0 | α0, β0)Gam(λx | αx, βx).

In the remaining term, the hierarchical structure of the linear operator is modeled

p(A,µa1
, · · · ,µaM

,Λa1 , · · · ,ΛaM ) =

S∏︂
s=1

M∏︂
m=1

p(asm | µam
,Λam)p(µam

,Λam)

=
S∏︂

s=1

M∏︂
m=1

N (asm | µam
,Λ−1

am
)N (µam

| 0, λ−1
µA

I)

W(Λam |Wm, νm).

It assumes M Wishart distributions W(Λam |Wm, νm) (see Appendix A) as conjugate
priors for the precision matrices Λam . For the mean vectors µam

, multivariate Gaussian
distributions N (µam

| 0, λ−1
µA

I) are used analogously. As in Section 4.3 regarding the
Bayesian GP-DMDs, the learning procedure for Bayesian-DMPs is presented in the following.
For this purpose, first, an ELBO is derived, and then the optimal variational distributions
are given. Finally, similar to Section 4.3, the Jensen inequality is reversed, and a loss
function independent of the induced variables U1, · · · ,US is obtained. The development
of procedures for Bayesian-DMPs to reproduce demonstrations has not been addressed in
this thesis and thus represents an open topic for future research.

Learning from Demonstration

Probabilistic Inference on the Bayesian-DMP framework is performed using Variational
Inference or Variational Bayes techniques, similar to Bayesian GP-DMDs (see Section 4.3).
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Figure 5.2.: The graphical model visualizes the Probability Density Model of the derived
Bayesian Dynamic Mode Primitive. The hierarchical structure for S given
trajectories is represented by the larger blue outlined box. The blue shaded
nodes represent the given observations ys

0, · · · ,ys
T for each trajectory. The

white nodes correspond to the unknown latent variables. By xs
0, · · · ,xs

T , the
sequence of states of interest in the latent space is given. gs

0, · · · ,gs
T de-

scribe the outputs of the Gaussian process function. The linear operator
corresponding to each trajectory is given byAs. The precision values of the
assumed Gaussian distributions are depicted by λy, λ0, λx. µam

and Λam

are the mean vectors and precision matrices representing the hierarchical
structure. The thick black line denotes an auto-regressive structure within
the Gaussian process, which means that gs

t depends on gs
0, · · · ,gs

t−1 and
xs
0, · · · ,xs

t . The small black nodes correspond to the hyperparameters of
the given Probability Density Model.
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For this reason, the marginal log-likelihood is extended with a variational distribution
q(Θ). Then, using Jensen’s inequality results in an ELBO of the following form

log p(Y | θ) ≥
∫︂

q(Θ) log
p(Y,Θ | θ)

q(Θ)
dΘ

=

⟨︃
log

p(Y,Θ | θ)
q(Θ)

⟩︃
q(Θ)

def
= LELBO(q(Θ),θ).

In this case, the operator ⟨f(·)⟩ corresponds again to the expected value w.r.t. q(Θ). Similar
to Bayesian GP-DMDs, a specific form is assumed exclusively for the variational distribution,
which describes the outputs of the observation model. Thus, q(Θ) is factorized as follows
under the mean field assumption

q(Θ) =
S∏︂

s=1

T∏︂
t=0

p(gs
t | Us,Xs)

∏︂
Θi∈Θ\{G}

q(Θi).

The specific functional forms of the remaining variational distributions arise naturally based
on the assumed structures of the likelihood functions and the corresponding conjugate
prior distributions [3, 4, 6]. The incorporation of the variational distribution q(Θ) and
several mathematical reformulations, analogous to Section 4.3, expresses the ELBO as
follows

LELBO(q(Θ),θ) = −KL(q(λy) ∥ p(λy))−KL(q(λ0) ∥ p(λ0))−KL(q(λx) ∥ p(λx))

−KL
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⃦

S∏︂
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+
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log
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t | Cs
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y I)
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+
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2
Tr(Ds
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q(X,λy)

,
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with Ds
: = Ks

:: − Ks
:ZK

−1
ZZK

s
Z:. This ELBO extends the Bayesian GP-DMD framework

regarding multiple trajectories and leads to the following optimization procedure

q∗(Θ) = argmax
q(Θ)

LELBO(q(Θ),θ),

θ∗ = argmax
θ

LELBO(q
∗(Θ),θ).

In the next sections, the optimal variational distributions q∗(Θ) are first derived using
Calculus of Variations and Euler Lagrange [3,4,6,54,59]. Then an alternative ELBO is
defined, similar to Section 4.3, which results from the reversion of Jensen’s Inequality.

Optimal Variational Distribution q∗(λy)

Taking the derivative w.r.t. q(λy) and then setting it equal to zero gives

∂LELBO

∂q(λy)
= log

p(λy)

q(λy)
− 1− Nλy

2

S∑︂
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:
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Us

)︂⟩︄
q(X)

!
= 0,

where ˜︁µUs and ˜︁ΛUs correspond to the natural parameters from the variational distribution
q∗(U). In exponential space, the optimal distribution q∗(λy) is proportional to

q∗(λy) ∝ exp

(︄
logGam (λy | αy, βy)−

Nλy

2

S∑︂
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Tr
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q(X)

)︄
,
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leading to a Gamma distribution

q∗(λy) ∝ Gam
(︂
λy | ˜︁αy, ˜︁βy)︂ .

The natural parameters are given by

˜︁αy =
STN + 2αy

2
, (5.11)

˜︁βy = 2βy +

S∑︂
s=1

Tr

(︃
(Ys −Cs

: ˜︁µUs) (Ys −Cs
: ˜︁µUs)T

+N
(︂
Ds

: +Cs
:
˜︁Λ−1

UsCsT

:

)︂)︃
,

(5.12)

where the former corresponds to the shape and the latter to the rate parameter. These
natural parameters have strong similarities to the former ones of Bayesian GP-DMD (see
Equations (4.11) and (4.12)) with the extension in terms of multiple trajectories.

Optimal Variational Distribution q∗(λ0)

Subsequently, the derivative w.r.t. q(λ0) is considered

∂LELBO

∂q(λ0)
= log

p(λ0)

q(λ0)
+

⟨︄
log

S∏︂
s=1

p(xs
0 | λ0)

⟩︄
q(X)

!
= 0,

and set equal to zero. The optimal distribution q∗(λ0) shows the following proportionality
in exponential space

q∗(λ0) ∝ exp

(︄
logGam (λ0 | α0, β0) +

⟨︄
log

S∏︂
s=1

N (xs
0 | 0, λ−1

0 I)

⟩︄
q(X)

)︄
,

which corresponds to a Gamma distribution

q∗(λ0) ∝ Gam
(︂
λ0 | ˜︁α0, ˜︁β0)︂ .
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The shape and rate parameters of the Gamma distribution are given by

˜︁α0 =
SM + 2α0

2
, (5.13)

˜︁β0 = 2β0 +Tr

(︄
S∑︂

s=1

⟨︂
xs
0x

sT

0

⟩︂
q(X)

)︄
, (5.14)

which also show strong similarities to the parameters of Bayesian GP-DMD in Equa-
tions (4.13) and (4.14) with the extension to multiple trajectories.

Optimal Variational Distribution q∗(λx)

Next, setting the derivative w.r.t. q(λx) equal to zero, given by

∂LELBO

∂q(λx)
= log

p(λ0)

q(λ0)
+

⟨︄
log

S∏︂
s=1

T∏︂
t=1

p(xs
t | xs

t−1,A
s, λx)

⟩︄
q(X)q(A)

!
= 0,

results in the following relation in exponential space

q∗(λx) ∝ exp

(︄
2αx − 2

2
log|λx| −

2˜︁βxλx

2
+

SM(T − 1)

2
log|λx|

− λx

2

⟨︄
Tr

(︄
S∑︂

s=1

(︃
X1s

T

−X0s
T ˜︁µs

a

)︃(︃
X1s

T

−X0s
T ˜︁µs

a

)︃T
)︄⟩︄

q(X)

− λx

2

⟨︄
Tr

(︄
S∑︂

s=1

X
0sT

M∑︂
m=1

˜︁Λ−1

as
m
X0s

)︄⟩︄
q(X)

)︄

The optimal variational distribution q∗(λx) hence corresponds to a Gamma distribution

q∗(λx) ∝ Gam
(︂
λx | ˜︁αx, ˜︁βx)︂ ,
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with the natural parameters

˜︁αx =
SM(T − 1) + 2αx

2
, (5.15)

˜︁βx = 2βx +Tr

(︄
S∑︂

s=1

(︄⟨︄
X0s

T
M∑︂

m=1

˜︁Λ−1

as
m
X0s

⟩︄
q(X)

+

⟨︄(︃
X1s

T

−X0s
T ˜︁µs

a

)︃(︃
X1s

T

−X0s
T ˜︁µs

a

)︃T
⟩︄

q(X)

)︄)︄
.

(5.16)

These parameters are very similar to the shape and rate parameters of Bayesian GP-DMD
from eEquations (4.15) and (4.16) extended to multiple trajectories.

Optimal Variational Distribution q∗(µam
)

The optimal distribution q∗(µam
) regarding the mth mean vector of the linear operator A

is derived in the following. First, similar to the previous derivations, the derivative w.r.t.
q(µam

) is taken and set equal to zero

∂LELBO

∂q(µam
)
=

⟨︄
log

∏︁S
s=1 p(a

s
m | µam

,Λam)p(µam
)

q(A)
∏︁M

m=1 q(µam
)q(Λam)

⟩︄
q(A)q(Λam )

− 1

!
= 0.

In exponential space, the following relationship is obtained

q∗(µam
) ∝ exp

(︄⟨︄
log

S∏︂
s=1

N (asm | µam
,Λ−1

am
)N (µam

| 0, λ−1
µA

I)

⟩︄
q(A)q(Λam )

)︄
,

which corresponds to a Gaussian distribution

q∗(µam
) ∝ N (µam

| ˜︁µam
, ˜︁Λ−1

am
).

Thus, the natural parameters are defined by

˜︁µam
=
(︂
S˜︁νm˜︂Wm + λµA

I
)︂−1 ˜︁νm˜︂Wm

S∑︂
s=1

˜︁µas
m
, (5.17)

˜︁Λam = S˜︁νm˜︂Wm + λµA
I, (5.18)
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where ˜︁µam
and ˜︁Λam are the mean vector and the precision matrix, respectively. When

the predefined precision value λµA
is set to zero, the resulting expectation value ˜︁µam

is
equal to the point estimate of Pro-DMP in Equation (5.5). Thus, the extension to a fully
Bayesian approach leads to a MAP estimate and hence to a ridge regression with the ridge
coefficient λµA

for the parameter ˜︁µam
[4,6].

Optimal Variational Distribution q∗(Λam)

The optimal distribution q∗(Λam) for the corresponding precision matrix Λam follows.
Setting the derivative w.r.t. q(Λam) equal to zero results in

∂LELBO

∂q(Λam)
=

⟨︄
log

∏︁S
s=1 p(a

s
m | µam

,Λam)p(Λam)

q(A)
∏︁M

m=1 q(µam
)q(Λam)

⟩︄
q(A)q(Λam )

− 1

!
= 0.

In the exponential space, the optimal distribution q∗(Λam) has the following relation

q∗(Λam) ∝ exp

(︄⟨︄
log

S∏︂
s=1

N (asm | µam
,Λ−1

am
)

⟩︄
q(A)q(µam

)

+ logW (Λam |Wm, νm)

)︄
,

leading to a Wishart distribution

q∗(Λam) ∝ W(Λam | ˜︂Wm, ˜︁νm).

The corresponding scale matrix and degrees of freedom parameter are

˜︂W−1

m = W−1
m +

S∑︂
s=1

(︃(︂˜︁µas
m
− ˜︁µam

)︂(︂˜︁µas
m
− ˜︁µam

)︂T
+ ˜︁Λ−1

as
m

)︃
, (5.19)

˜︁νm = S + νm. (5.20)

The expectation value of this Wishart distribution ˜︁νm˜︂W exhibits similarities to the resulting
point (see Equation (5.6)) estimate of Pro-DMP.
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Optimal Variational Distribution q∗(A)

Then, taking the derivative w.r.t. q(A) and setting it equal to zero gives

∂LELBO

∂q(A)
=

⟨︄
log

∏︁M
m=1

∏︁S
s=1 p(a

s
m | µam

,Λam)p(Λam)
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+
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q(X)q(λx)

!
= 0,

where a transformation to exponential space returns the following relation

q∗(A) ∝
M∏︂

m=1

exp

(︄⟨︄
log

S∏︂
s=1

N (asm | µam
,Λ−1

am
)

⟩︄
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)q(Λam )⟨︄
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T∏︂
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N (xs
m,t | xsT

t−1a
s
m, λ−1

x I)

⟩︄
q(X)q(λx)

)︄
.

Accordingly, the optimal variational distribution q∗(A) factorizes into SM -independent
Gaussian distributions

q∗(A) ∝
S∏︂

s=1

M∏︂
m=1

q∗(asm) =
S∏︂

s=1

M∏︂
m=1

N (asm | ˜︁µas
m
, ˜︁Λ−1

as
m
),

where the natural parameters of each distribution are given by

˜︁µas
m
=

(︃˜︁νm˜︂Wm +
˜︁αx˜︁βxΨs

2

)︃−1(︃˜︁αx˜︁βxΨs
1m + ˜︁νm˜︂Wm˜︁µam

)︃
, (5.21)

˜︁Λas
m
= ˜︁νm˜︂Wm +

˜︁αx˜︁βxΨs
2. (5.22)

The corresponding sufficient statistics Ψs
1m and Ψs

2 are defined by

Ψs
1m =

⟨︃
X0sX1s

T

m

⟩︃
q(X)

, Ψs
2 =

⟨︃
X0sX0s

T
⟩︃

q(X)

,
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depending on the variational distribution q(X). These estimates thus extend the point
estimates from the expectation step of Pro-DMPs (see Equations (5.3) and (5.4)). The nat-
ural parameters ˜︁νm,˜︂Wm, ˜︁αx, ˜︁βx, and ˜︁µam

belong to the optimal variational distributions
q∗(Λam), q

∗(λx) and q∗(X), respectively.

Optimal Variational Distribution q∗(U)

Next, the derivative to q(U) is taken and set equal to zero

∂LELBO

∂q(U)
= log

∏︁S
s=1 p(U

s)

q(U)
− 1 +
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tU
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⟩︄
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!
= 0.

The transformation into exponential space gives

q∗(U) ∝
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.

The optimal variational distribution q∗(U) thus factorizes into SN -independent Gaussian
distributions

q∗(U) ∝
S∏︂

s=1

N∏︂
n=1

N
(︂
Us

n | ˜︁µUs
n
, ˜︁Λ−1

Us

)︂
,

with the natural parameters of each distribution

˜︁µUs
n
=

(︄ ˜︁βy˜︁αy
K−1

zz +K−1
zz Ψ

s
4K

−1
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zz Ψ

s
3n , (5.23)

˜︁ΛUs = K−1
zz +

˜︁αy˜︁βyK−1
zz Ψ

s
4K

−1
zz . (5.24)
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In this case, the sufficient statistics Ψs
3n and Ψs

4 are given by

Ψs
3n = ⟨Kz:⟩q(X)Y

s
n, Ψs

4 = ⟨Kz:K:z⟩q(X) ,

depending on the variational distribution q(X). These natural parameters expand the
mean vector and precision matrix from Equations (4.21) and (4.22) of Bayesian GP-DMD.
The natural parameters ˜︁αy and ˜︁βy correspond to the optimal variational distributions
q∗(λy).

Optimal Variational Distribution q∗(X)

The derivative w.r.t. q(X) results in

∂LELBO

∂q(X)
= − log q(X)− 1 +
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with ˜︁µas = [˜︁µas
1
, · · · , ˜︁µas

M
] and ˜︁µUs = [˜︁µUs

1
, · · · , ˜︁µUs

N
]. In exponential space, this deriva-

tive leads to the following relation
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taking the form of a Markovian nonlinear SSM that is potentially non-Gaussian, similar
to Equation (4.23) of Bayesian GP-DMD. The risk of a non-Gaussian distribution comes
from the additional exponential terms. Like Bayesian GP-DMD, the exponential terms
are assumed to correspond to additive Gaussian noise with zero-mean, and hence an
approximation is made by the following specific functional form

q(X)∗ ∝
S∏︂

s=1

N (xs
0 | 0,

˜︁β0˜︁α0
I)

T∏︂
t=0

N (ys
t | Cs

t ˜︁µUs ,
˜︁βy˜︁αy

I)

T∏︂
t=1

N (xs
t | ˜︁µT

asxs
t−1,

˜︁βx˜︁αx
I).

This approximation corresponds to a Markovian nonlinear Gaussian State-Space Model.
Therefore, Probabilistic Inference techniques, as described in the Appendix D, are applica-
ble [4,52,53].
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Optimal Variational Parameters And Hyperparameters

In the following, similar to Bayesian GP-DMD in Section 4.3, an alternative formulation of
an ELBO is given

LELBO(q
∗(Θ),θ) = c− N ˜︁αy

2˜︁βy
S∑︂

s=1

⟨Tr(Ds
: )⟩q∗(X) +

SN

2
log|Kzz|

−
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s=1

N

2
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⃓⃓⃓⃓
⃓ ˜︁αy˜︁βyΨs

6 +Kzz

⃓⃓⃓⃓
⃓− 1

2
Tr

(︄
S∑︂

s=1

ΛsYsYsT

)︄
,

whereΛs =
˜︁αy˜︁βy

I− ˜︁α2
y˜︁β2
y

Ψs
5

(︂ ˜︁αy˜︁βy
Ψs

6 +Kzz

)︂−1
ΨsT

5 . The variational parameters corresponding
to the inducing inputs and the hyperparameters representing the kernel parameters are
collected in θ. The corresponding sufficient statistics are defined as

Ψs
5 = ⟨Ks

:z⟩q∗(X) ,

Ψs
6 = ⟨Ks

z:K
s
:z⟩q∗(X) .

This alternative ELBO follows from the reversion of Jensen’s inequality [50]. It depends
directly on the variational parameters and hence on the inducing inputs Z and no longer
on the induced variables U. All terms not relevant for the optimization of the variational
parameters and the kernel hyperparameters are summarized in c. Numerical calculation
methods then obtain the gradients and gradient descent techniques are applied [50].
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6. Experiments and Results

Chapter 4 introduced the GP-DMD and the Bayesian GP-DMD. The former framework
is a Maximum A Posteriori probability estimate that combines the GP-SSM family with
Koopman Theory and the DMD family. The latter framework formulates GP-DMD as a
fully Bayesian approach. This formulation leads to a mitigation of overfitting and learning
approximations of the posterior distributions. However, both frameworks, the GP-DMD and
the Bayesian GP-DMD are unable to address multiple given demonstrations. Therefore, the
Pro-DMP and the Bayesian-DMP were introduced in Chapter 5. The former extends the GP-
DMD utilizing a hierarchical structure to achieve valid movement primitives able to handle
multiple demonstrations. The second framework is inspired by Bayesian GP-DMD and
formulates a fully Bayesian formalism of Pro-DMP. However, the final development of this
framework is ongoing and forms an open research topic. Therefore, Bayesian-DMP is not
discussed throughout this chapter. The results obtained from testing and validating the GP-
DMD, the Bayesian GP-DMD, and the Pro-DMP on three different datasets are presented in
the following. The primary goal here is to determine whether the frameworks are capable
of learning and reproducing given demonstrations. In the case of GP-DMD and Bayesian
GP-DMD, only one demonstration is considered. For Pro-DMP, five demonstrations are
given.

All the given demonstrations considered throughout this chapter are preprocessed by the
application of PCA [4]. Subsequently, uncorrelated, Gaussian-distributed data with zero
mean and unit variance along with each dimension result [4,6]. The implementation of the
numerical differentiation algorithms relies on the JAX library, which provides automatic
differentiation and just-in-time compilation either on CPU or GPU [95]. As a result of the
work with Probabilistic Inference techniques, the NumPyro library is used, which provides
a probabilistic programming library [96]. Algorithms sketching the learning procedure of
the GP-DMD, the Bayesian GP-DMD, and the Pro-DMP are presented in the appendix. In the
case of the parameters which exhibit a closed-form solution, vanilla gradient descent with
learning rate 1.0 is applied. For the remaining parameters where a closed-form solution
does not exist, the automatic differentiation provided by JAX is applied in combination
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with Adam, a first-order gradient-based optimization method [97]. Adam has been chosen
due to its computational efficiency and low memory requirements [97]. Detailed lists of
the parameter settings are provided in Appendix F.

The Root Mean Square Error (RMSE) metric is taken to measure the performance of the
reconstructed movements [6]. A list summarizing the performance is shown in Table 6.1.
The RMSE is taken between the predicted mean of the trained model and the given
demonstration. In the case of Pro-DMPs, where multiple demonstrations are given, the
average is considered. In order to obtain a measure of variability in the results, the
standard deviation is used w.r.t. the estimated RMSE. For this purpose, one hundred
samples are taken from each framework. Then, the RMSE between those samples and the
corresponding given demonstration is calculated. Based on these RMSE results from the
samples, a standard deviation of the RMSE means is estimated. Thus, the former value in
each cell represents the RMSEmean, and the latter value represents the standard deviation.
The thick values indicate the best RMSE mean performance on the corresponding data
set.

6.1. The Circle-Shape Dataset

The Circle-Shape Dataset (CSD) provides rhythm-based trajectories that follow circular
motions in a three-dimensional space. The left side of Figure 6.1 displays three benchmarks
of the GP-DMD, the Bayesian GP-DMD, and the Pro-DMP on this dataset. The red dashed
lines show the respective demonstrations. In the top two left plots, the GP-DMD and
the Bayesian GP-DMD are represented, and consequently, only one demonstration is
considered. For the benchmark with the Pro-DMP, five demonstrations are given in
the remaining left plot. The thick blue line depicts the mean estimate of each trained
framework. Samples drawn from these trained frameworks are shown as thin blue lines.

The GP-DMD and the Bayesian GP-DMD both achieve satisfactory results in estimating
the mean for the respective demonstration. Both,Figure 6.1 and Table 6.1, show that the
Bayesian GP-DMD has a lower variance than the GP-DMD. However, one reason for this
issue is that the Bayesian GP-DMD takes 25 inducing variables while the GP-DMD only takes
four labels from the given demonstration. On the one hand, a major advantage of the GP-
DMD in comparison to the Bayesian GP-DMD is the computational efficiency. Even though
the inducing pairs used in the Bayesian GP-DMD reduce the computational complexity of
the kernel inversion compared to the GP-DMD, the Probabilistic Inference Techniques (see
Appendix D) required to infer the variational distribution over the latent states drastically
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slow down the Bayesian GP-DMD framework. On the other hand, a major disadvantage of
the GP-DMD is keeping several labels to reproduce the given demonstration. Based on
the choice of these labels, the performance of the resulting demonstration varies. The
Bayesian GP-DMD circumvents this problem by utilizing the inducing variables. These
variables directly infer knowledge about the given demonstrations to provide labels to
reproduce the given demonstration indirectly. However, the use of inducing pairs entails
the drawback of adjusting additional parameters for the optimization. The number and
initial values of inducing pairs affect the performance of the Bayesian GP-DMD significantly.
The Pro-DMP in the lower right plot in Figure 6.1 achieves satisfactory results based on
the given demonstrations. Like the GP-DMD, the Pro-DMP requires a fixed number of
labels in the observation space to reproduce the demonstrations. In the scope of this
experiment, only the mean estimates in the latent space were considered. Therefore,
it is interesting for future research to take samples in the latent space and reproduce
the corresponding demonstration in the observation space. In this way, analysis can be
performed whether Pro-DMP is able to learn variability in the circular movement from
the given demonstrations.

6.2. The Eight-Shape Dataset

The three benchmarks of the GP-DMD, the Bayesian GP-DMD, and the Pro-DMP on the
Eight-Shape Dataset (ESD) are displayed on the right side of Figure 6.1. The ESD gives
rhythm-based trajectories that follow eight-shape motions in a three-dimensional space.
The red dashed lines show the respective demonstrations. In the top two right plots,
the GP-DMD and the Bayesian GP-DMD are represented, and consequently, only one
demonstration is considered. For the benchmark with the Pro-DMP, five demonstrations
are given in the remaining right plot. The thick blue line depicts the mean estimate of
each trained framework. Samples drawn from these trained frameworks are shown as
thin blue lines.

The GP-DMD and the Bayesian GP-DMD both achieve satisfactory results in estimating the
mean for the respective demonstration. Unlike in Section 6.1, Figure 6.1 and Table 6.1
display that the GP-DMD has a lower variance than the Bayesian GP-DMD. This issue is
interesting since the Bayesian GP-DMD takes 25 inducing variables while the GP-DMD only
takes four labels from the given demonstration. In comparison to the CSD (see Section 6.1),
both frameworks exhibit higher variance in the samples. The major advantages and
disadvantage of both frameworks are previously mentioned in Section 6.1. The Pro-DMP
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Figure 6.1.: This figure shows three benchmarks of the derived GP-DMDs, Bayesian GP-
DMDs and Pro-DMPs on the Circle-Shape Dataset (CSD) and Eight-Shape
Dataset (ESD). The plots on the left correspond to the CSD and those plots
on the right to the ESD. The red dashed lines represent the given demonstra-
tions. While only one demonstration is given in each of the top four plots, the
last two plots exhibit five demonstrations each. The thick blue line presents
the predicted mean estimate, while the thin blue lines represent samples of
demonstrations. All frameworks achieve satisfactory results in reproducing
the demonstrations on all plots.
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in the lower right plot in Figure 6.1 achieves satisfactory results in reproducing an eight-
shape based on the given demonstrations. Like the GP-DMD, the Pro-DMP requires a fixed
number of labels in the observation space to reproduce the demonstrations. However,
unlike for the CSD (see Section 6.1), the Pro-DMP does not match the given demonstrations’
mean and hence exhibits a higher RMSE. As for CSD, this experiment considers only the
mean estimates in the latent space.

6.3. The Minimum-Jerk Dataset

Figures 6.2, 6.3 and 6.4 show the benchmarks of the GP-DMD, the Bayesian GP-DMD,
and the Pro-DMP on the Minimum-Jerk Dataset (MJD). The MJD provides six-dimensional
minimum jerk movements obtained from two joints. Indeed, it presents the most difficult
benchmark for the three frameworks. The red dashed lines show the respective demon-
strations. In the top plots, the temporal changes in the positions are shown. The change
in the velocity over time is given in the middle plots. The lower plots correspond to the
temporal change in the acceleration. Figures 6.2 and 6.3 only consider one demonstration,
while in the last Figure 6.4, five demonstrations are taken into account. The thick blue
lines represent the mean estimate of each trained framework. Samples drawn from these
trained frameworks are shown as thin blue lines.

Figure 6.2 shows the results of the the GP-DMD benchmark on the MJD. The mean
estimates achieve decent results in matching the given demonstrations. However, the
variance in the samples increases significantly in the positions and the velocities compared
to the accelerations. Results of the Bayesian GP-DMD are shown in Figure 6.3. For the
acceleration trajectories, decent results are obtained. However, the estimated velocity
trajectories deviate slightly from the given data at the edges. Regarding the temporal
changes of the positions in the upper two plots, a significant deviation between the
estimated mean trajectories and the given data is observed. Similarly to the GP-DMD,
the position and velocity trajectories exhibit a higher variance than the acceleration
trajectories. Although the Bayesian GP-DMD achieves a lower RMSE (see Table 6.1),
Figure 6.3 indicates that the Bayesian GP-DMD performs worse than the GP-DMD. Finally,
the performance of the the Pro-DMP is given in Figure 6.4. As for the GP-DMD and
the Bayesian GP-DMD, satisfactory mean estimates of the acceleration trajectories are
obtained. However, the position and velocity trajectories deviate severely from the given
data and show high variance. A major drawback of the GP-DMD, the Bayesian GP-DMD,
and Pro-DMP is that the resulting estimates do not exhibit consistent relationships between
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Figure 6.2.: This figure shows a benchmark of the derived GP-DMDs on the Minimum-
Jerk Dataset (MJD). The MJD corresponds to the movement of two joints
with their respective position, velocity, and acceleration. The movement of
the first and second joint are shown on the left and right side, respectively.
The red dashed lines represent the given demonstrations. The thick blue line
presents the predicted mean estimate, while the thin blue lines represent
samples of demonstrations. The predicted mean of the GP-DMDs achieves
satisfactory results in reproducing the demonstrations on all plots. However,
the GP-DMD does not guarantee that the drawn samples exhibit consistent
ratios between position, velocity, and acceleration.
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Figure 6.3.: This figure shows a benchmark of the derived Bayesian GP-DMDs on the
Minimum-Jerk Dataset (MJD). The MJD corresponds to the movement of
two joints with their respective position, velocity, and acceleration. The
movement of the first and second joint are shown on the left and right side,
respectively. The red dashed lines represent the given demonstrations. The
thick blue line presents the predicted mean estimate, while the thin blue
lines represent samples of demonstrations. The predicted mean value of
Bayesian GP-DMDs achieves satisfactory results only for the demonstra-
tions of the velocities and the accelerations shown in the lower four plots. In
the upper two plots, strong deviations from the given positions occur. Also,
the GP-DMD does not guarantee that the drawn samples exhibit consistent
ratios between position, velocity, and acceleration.
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Figure 6.4.: This figure shows a benchmark of the derived Pro-DMPs on the Minimum-
Jerk Dataset (MJD). The MJD corresponds to the movement of two joints
with their respective position, velocity, and acceleration. The movement
of the first and second joint are shown on the left and right side, respec-
tively. The red dashed lines represent the given demonstrations. During this
benchmark, five demonstrations are considered. The thick blue line presents
the predicted mean estimate, while the thin blue lines represent samples of
demonstrations. The predicted mean value of Bayesian GP-DMDs achieves
satisfactory results only for the demonstrations of the accelerations shown
in the lower two plots. In the upper four plots, strong deviations from the
given positions and velocities occur. Also, the GP-DMD does not guarantee
that the drawn samples exhibit consistent ratios between position, velocity,
and acceleration.

103



Root Mean Square Error on Datasets

Name of Dataset CSD ESD MJD

GP-DMD 1.98e−5 ± 4.16e−3 3.16e−3 ± 1.6e−2 9.13e−3 ± 2.06e−2

Bayesian GP-DMD 7.59e−5 ± 1.38e−3 4.59e−4 ± 3.49e−2 4.35e−3 ± 3.79e−2

Pro-DMP 7.93e−3 ± 1.21e−2 3.69e−2 ± 8.71e−3 3.95e−2 ± 6.37e−2

Table 6.1.: This list summarizes the performance of Gaussian Process Dynamic Mode
Decomposition (GP-DMD), Bayesian Gaussian Process Dynamic Mode De-
composition (Bayesian GP-DMD) and Probabilistic Dynamic Mode Primitive
(Pro-DMP) benchmarked on the Circle-Shape Dataset (CSD), the Eight-Shape
Dataset (ESD), and the Minimum-Jerk Dataset (MJD). Performance is mea-
sured by the Root Mean Square Error (RMSE) between the predicted mean
and the given demonstration. In the latter case of Pro-DMPs, the predicted
mean is compared to the average of the five given demonstrations. In order
to obtain ameasure of variability in the results, the standard deviation is used
w.r.t. the estimated RMSE error. For this purpose, one hundred samples are
taken from each framework. Then, the RMSE between those samples and the
corresponding given demonstration is calculated. Thus, the former value in
each cell represents the RMSEmean, and the latter value represents the stan-
dard deviation. The thick values indicate the best RMSE mean performance
on the corresponding data set.

the positions, the velocities, and the acceleration. For instance, the true first and second
derivatives of a sampled position trajectory differ from the corresponding sampled velocity
and acceleration trajectories.
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7. Discussion and Outlook

Machine Learning techniques are attracting increasing attention to analyze and understand
the intrinsic nature of given data from highly complex systems as data deluge and the
technologies’ ever-increasing computational power continues to grow [2,4,6,25,26,69].
Movement primitives, a subdomain of imitation learning in robotics, leverage Machine
Learning to learn movement sequences from demonstrations. [7–21]. These concepts allow
the reconstruction of given demonstrations solely from data and enable the modification
of those movements afterwards. Unfortunately, many of the proposed frameworks lack the
extraction of comprehensible and interpretable physical information within the learned
latent space. In this thesis, we focus on the Koopman Theory, which addresses highly
complex dynamical systems [22–27]. This theory considers a linear evolution of selected
measurement functions of the data in an infinite-dimensional Hilbert space instead of
the nonlinear evolution of the collected data points themselves. The Koopman Theory
and hence the DMD family provide a decomposition into spatio-temporal characteristics
of the given dynamical system and consequently into interpretable physical information
[24–26,28–31].

Motivated by the strong similarity of the DMD family to continuous LVMs, such as PCA and
FA, this thesis firstly proposes the GP-DMD, providing a probabilistic dual perspective based
on the GP-SSM family. The GP-DMD framework embodies a MAP estimate aiming to infer
a stationary linear Markov sequence in latent space, while a Gaussian Process describes
the relationship to the given observations. The probabilistic formulation accounts for
uncertainties and noise naturally and leads to a nonparametric Bayesian formalism due to
the Gaussian Process. However, since the latent space can exhibit a higher dimensionality
than the observations space, the GP-DMD framework carries a risk of overfitting. Therefore,
the Bayesian GP-DMD, a fully Bayesian formalism of the GP-DMD, has been subsequently
introduced in this thesis. This formalization leads to a Variational Inference procedure,
which mitigates overfitting and approximates a posterior distribution over the linear
operator and the linear trajectories in the latent space.
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Movement primitives focus not solely on learning the underlying movement but also on
learning the variability within the given demonstrations [7–10]. Both GP-DMD and the
Bayesian GP-DMD fail to cope with multiple demonstrations. For this reason, the thesis
proposes the Pro-DMP as a third framework. The Pro-DMP targets to express the given
variability within the given demonstrations in the inferred trajectories in the latent space.
Based on Probabilistic Movement Primitives, a popular movement primitive framework
[10, 14, 15, 18], a hierarchical structure has been integrated into the existing GP-DMD
framework. As a result, the Pro-DMP is an EM-like procedure capable of handling multiple
trajectories and representing a new class of movement primitives. In order to mitigate the
risk of overfitting, the Bayesian-DMP framework was introduced, which is a fully Bayesian
formalization of the Pro-DMP. Similar to Bayesian GP-DMD, it expresses a Variational
Inference procedure and hence provides approximations of the posterior distributions
over the linear operator and the linear trajectories in the latent space. However, the
development of this framework is ongoing and forms an open research topic.

The GP-DMD, the Bayesian GP-DMD, and the Pro-DMP were benchmarked on the CSD, the
ESD, and the MJD. Here, the primary objective was to determine whether the frameworks
are capable of learning and reproducing the given demonstrations. The GP-DMD showed
the significant advantage of computational efficiency in comparison to the Bayesian
GP-DMD. Even though the inducing pairs utilized in the Bayesian GP-DMD reduce the com-
putational complexity of the kernel inversion compared to the GP-DMD, the Probabilistic
Inference techniques required to infer the variational distribution over the latent states
significantly slow down the Bayesian GP-DMD. However, a major drawback of the GP-DMD
is the necessity of multiple labels to reproduce the given demonstration. The performance
of the resulting demonstrations, however, is strongly dependent on the choice of these
labels. The Bayesian GP-DMD circumvents this issue by using the inducing variables.
These variables directly infer knowledge about the given demonstrations to provide labels
to reproduce them indirectly. Like the GP-DMD, the Pro-DMP also requires a fixed number
of labels in the observation space to reproduce the demonstrations. In this experiment,
only the mean estimates in the latent space were considered. Therefore, it is interest-
ing for future research to sample in the latent space and reproduce the corresponding
demonstration in the observation space. In this way, the ability of Pro-DMP to learn the
variability of the circular motion from the given demonstrations can be analyzed.

In the future development of these proposed frameworks, it is interesting to evaluate their
performance onmore comprehensive robotic benchmarks. The variation in potential values,
e.g., the choice of kernel functions, plays a significant role in the resulting performance.
In the case of fully Bayesian methods, such as Bayesian GP-DMD and Bayesian-DMP, the
assumption of the specific functional form of the variational distribution over the latent
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states and the choice of the Probabilistic Inference technique employed for this purpose is
essential. When satisfactory performance in complex experiments is achieved, comparison
with other movement primitives is an important part of future research. Also, the analysis
of the underlying learned latent space constitutes an important part.

A significant challenge in the proposed frameworks arises from the bi-level optimization
procedure. On the one hand, the framework aims to learn a linear transition model in the
latent space. On the other hand, the linear operator is optimized based on these estimates.
Here, the corresponding optimization procedure relies on first-order coordinate gradient
descent methods. For parameters that have a closed-form solution, a learning rate of 1.0
is used. A vanilla gradient descent is performed on the remaining parameters for which
no closed-form solution exists. Based on the stochastic VI [70,73], the future focus lies
on extending the proposed frameworks. Advantages of the natural gradient are to be
used, and as such, information of the resulting Hessian matrix is to be included [70,98].
These extended frameworks result in more natural optimization procedures considering
second-order information.

The assumed prior distribution over the linear operator, expressed as a stationary matrix,is
considered separately for each column in the proposed frameworks. In other words, the
columns of the linear operator are independent of each other. From the perspective of Oc-
cam’s Razor, this assumption is reasonable since it simplifies the optimization problem and
provides decent approximations. However, it still has severe limitations since dependen-
cies between columns are neglected. An interesting extension is the utilization of matrix
priors [99]. These priors result in a richer expression that considers the entire matrix
without independence assumptions. However, this consideration induces correlations and
therefore entails the risk of leading to more complex optimization procedures. Similarly,
future research studies can consider extending the Gaussian processes to the Student-t
process [100,101]. This consideration has the potential to result in significantly better
performances of the derived frameworks. However, similar to the use of matrix priors, the
induced correlations lead to more complex optimization procedures due to marginalization
over precision values. Thus, from Occam’s Razor perspective, these considerations are not
the primary goals of future research, but they do provide interesting food for thought.

A major focus of future research is developing the Bayesian-DMP. However, the VI pro-
cedures are based on the optimization of a lower bound and, consequently, on applying
the mean field assumption. On the one hand, the assumed independence between the
random variables naturally results in specific functional forms of the variational distribu-
tion [4, 6]. On the other hand, however, this independence potentially induces flawed
approximated posterior distribution [54]. These flawed approximations potentially lead
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to a bias between the true marginal log-likelihood and the ELBO, resulting in unsatis-
factory solutions. Therefore, an interesting way to circumvent the problem is to derive a
sampling-based Probabilistic Inference technique for the Bayesian-DMP framework based
on Particle MCMC [54,58]. Such a technique suffers from the curse of dimensionality and
becomes less suitable as the dimensionality in the demonstrations increases. However, it
have the advantage that no mean field assumption has to be made.

108



Bibliography

[1] J. Friedman, T. Hastie, R. Tibshirani, et al., The elements of statistical learning.
Springer series in statistics New York, 2001.

[2] D. J. MacKay and D. J. Mac Kay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[3] M. J. Beal, Variational algorithms for approximate Bayesian inference. PhD thesis,
UCL (University College London), 2003.

[4] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[5] D. Barber, Bayesian reasoning and machine learning. Cambridge University Press,
2012.

[6] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical
movement primitives: learning attractor models for motor behaviors,” Neural
computation, 2013.

[8] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Robot Programming by Demon-
stration. Springer Berlin Heidelberg, 2008.

[9] S. Calinon, “A tutorial on task-parameterized movement learning and retrieval,”
Intelligent service robotics, 2016.

[10] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using probabilistic movement
primitives in robotics,” Autonomous Robots, 2018.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning
motor primitives,” tech. rep., 2002.

109



[12] S. Schaal, “Dynamic movement primitives-a framework for motor control in humans
and humanoid robotics,” in Adaptive motion of animals and machines, Springer,
2006.

[13] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing
a task in a humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 2007.

[14] A. Paraschos, C. Daniel, J. Peters, G. Neumann, et al., “Probabilistic movement
primitives,” Advances in neural information processing systems, 2013.

[15] A. Paraschos, G. Neumann, and J. Peters, “A probabilistic approach to robot tra-
jectory generation,” in 2013 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), IEEE, 2013.

[16] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard, “Learning
and reproduction of gestures by imitation,” IEEE Robotics & Automation Magazine,
2010.

[17] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems
with gaussian mixture models,” IEEE Transactions on Robotics, 2011.

[18] M. Ewerton, G. Maeda, J. Peters, and G. Neumann, “Learning motor skills from
partially observed movements executed at different speeds,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015.

[19] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized movement primitives,”
The International Journal of Robotics Research, 2019.

[20] J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflow: Learning deep stable
stochastic dynamic systems by normalizing flows,” arXiv preprint arXiv:2010.13129,
2020.

[21] T. Kulak, J. Silvério, and S. Calinon, “Fourier movement primitives: an approach
for learning rhythmic robot skills from demonstrations,” in Robotics: Science and
Systems (RSS), 2020.

[22] B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Pro-
ceedings of the national academy of sciences of the united states of america, 1931.

[23] B. Koopman and J. v. Neumann, “Dynamical systems of continuous spectra,” Pro-
ceedings of the National Academy of Sciences of the United States of America, 1932.

110



[24] I. Mezić, “Spectral properties of dynamical systems, model reduction and decompo-
sitions,” Nonlinear Dynamics, 2005.

[25] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic mode decompo-
sition: data-driven modeling of complex systems. SIAM, 2016.

[26] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press, 2019.

[27] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for
control,” PloS one, 2016.

[28] J. H. Tu, C.W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On dynamic
mode decomposition: Theory and applications,” arXiv preprint arXiv:1312.0041,
2013.

[29] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition,” Journal of
Nonlinear Science, 2015.

[30] I. Kevrekidis, C. W. Rowley, and M. Williams, “A kernel-based method for data-
driven koopman spectral analysis,” Journal of Computational Dynamics, 2015.

[31] Y. Kawahara, “Dynamic mode decomposition with reproducing kernels for koopman
spectral analysis,” Advances in neural information processing systems, 2016.

[32] C. W. Rowley, I. MEZIC, S. Bagheri, P. Schlatter, D. Henningson, et al., “Spectral
analysis of nonlinear flows,” Journal of fluid mechanics, 2009.

[33] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,”
Journal of fluid mechanics, 2010.

[34] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, “Applications of the dynamic mode
decomposition,” Theoretical and Computational Fluid Dynamics, 2011.

[35] C. M. Bishop, “Latent variable models,” in Learning in graphical models, Springer,
1998.

[36] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains,” The annals of
mathematical statistics, 1970.

111



[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B
(Methodological), 1977.

[38] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer school on
machine learning, Springer, 2003.

[39] C. E. Rasmussen and C. KI Williams, Gaussian Processes for Machine Learning. MIT
Press, 2006.

[40] A. J. Smola and P. L. Bartlett, “Sparse greedy gaussian process regression,” in
Advances in neural information processing systems, 2001.

[41] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation,
2002.

[42] M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection to speed up sparse
gaussian process regression,” tech. rep., 2003.

[43] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate
gaussian process regression,” The Journal of Machine Learning Research, 2005.

[44] N. D. Lawrence, “Gaussian process latent variable models for visualisation of high
dimensional data.,” in Nips, Citeseer, 2003.

[45] N. Lawrence and A. Hyvärinen, “Probabilistic non-linear principal component
analysis with gaussian process latent variable models.,” Journal of machine learning
research, 2005.

[46] N. D. Lawrence, “Learning for larger datasets with the gaussian process latent
variable model,” in Artificial intelligence and statistics, PMLR, 2007.

[47] N. D. Lawrence and A. J. Moore, “Hierarchical gaussian process latent variable
models,” in Proceedings of the 24th international conference on Machine learning,
pp. 481–488, 2007.

[48] A. C. Damianou, M. K. Titsias, and N. D. Lawrence, “Variational gaussian process
dynamical systems,” arXiv preprint arXiv:1107.4985, 2011.

[49] A. Damianou and N. D. Lawrence, “Deep gaussian processes,” in Artificial intelligence
and statistics, PMLR, 2013.

112



[50] M. Titsias and N. D. Lawrence, “Bayesian gaussian process latent variable model,”
in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, JMLR Workshop and Conference Proceedings, 2010.

[51] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi, “Bayesian dynamic mode decompo-
sition.,” in IJCAI, 2017.

[52] R. H. Shumway, D. S. Stoffer, and D. S. Stoffer, Time series analysis and its applications.
Springer, 2000.

[53] S. Särkkä, Bayesian filtering and smoothing. Cambridge University Press, 2013.

[54] R. Frigola, Bayesian time series learning with Gaussian processes. PhD thesis, Uni-
versity of Cambridge, 2015.

[55] B. Ferris, D. Fox, and N. D. Lawrence, “Wifi-slam using gaussian process latent
variable models.,” in IJCAI, 2007.

[56] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models,”
in NIPS, Citeseer, 2005.

[57] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models
for human motion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2008.

[58] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian inference and
learning in gaussian process state-space models with particle mcmc,” arXiv preprint
arXiv:1306.2861, 2013.

[59] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational gaussian process state-space
models,” arXiv preprint arXiv:1406.4905, 2014.

[60] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Identification of gaus-
sian process state-space models with particle stochastic approximation em,” IFAC
Proceedings Volumes, 2014.

[61] S. Marsland, Machine learning: an algorithmic perspective. CRC press, 2015.

[62] J. L. W. V. Jensen et al., “Sur les fonctions convexes et les inégalités entre les valeurs
moyennes,” Acta mathematica, 1906.

[63] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Machine learning, 1999.

113



[64] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation for
bayesian inference,” IEEE Signal Processing Magazine, 2008.

[65] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Introducing markov chain
monte carlo,” Markov chain Monte Carlo in practice, 1995.

[66] I. Yildirim, “Bayesian inference: Gibbs sampling,” Technical Note, University of
Rochester, 2012.

[67] D. Van Ravenzwaaij, P. Cassey, and S. D. Brown, “A simple introduction to markov
chain monte–carlo sampling,” Psychonomic bulletin & review, 2018.

[68] Z. Ghahramani and M. J. Beal, “Propagation algorithms for variational bayesian
learning,” Advances in neural information processing systems, pp. 507–513, 2001.

[69] M. J. Wainwright and M. I. Jordan, Graphical models, exponential families, and
variational inference. Now Publishers Inc, 2008.

[70] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,”
Journal of Machine Learning Research, 2013.

[71] R. Ranganath, S. Gerrish, and D. Blei, “Black box variational inference,” in Artificial
intelligence and statistics, PMLR, 2014.

[72] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for
statisticians,” Journal of the American statistical Association, 2017.

[73] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational
inference,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[74] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[75] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big data,” arXiv
preprint arXiv:1309.6835, 2013.

[76] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,”
Advances in neural information processing systems, 2005.

[77] M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,”
in Artificial intelligence and statistics, PMLR, 2009.

[78] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable variational gaussian
process classification,” in Artificial Intelligence and Statistics, PMLR, 2015.

114



[79] A. Wilson and H. Nickisch, “Kernel interpolation for scalable structured gaussian
processes (kiss-gp),” in International Conference on Machine Learning, PMLR, 2015.

[80] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When gaussian process meets big data: A
review of scalable gps,” IEEE transactions on neural networks and learning systems,
2020.

[81] C. Williams and M. Seeger, “Using the nyström method to speed up kernel ma-
chines,” in Proceedings of the 14th annual conference on neural information processing
systems, 2001.

[82] A. Gittens and M. Mahoney, “Revisiting the nystrom method for improved large-
scale machine learning,” in International Conference on Machine Learning, PMLR,
2013.

[83] C. K. Williams, C. E. Rasmussen, A. Scwaighofer, and V. Tresp, “Observations on
the nyström method for gaussian process prediction,” 2002.

[84] G. D. Birkhoff, Dynamical systems. American Mathematical Soc., 1927.

[85] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning koopman invariant subspaces for
dynamic mode decomposition,” arXiv preprint arXiv:1710.04340, 2017.

[86] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embed-
dings of nonlinear dynamics,” Nature communications, 2018.

[87] S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, “Characterizing
and correcting for the effect of sensor noise in the dynamic mode decomposition,”
Experiments in Fluids, 2016.

[88] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “De-biasing the dy-
namic mode decomposition for applied koopman spectral analysis of noisy datasets,”
Theoretical and Computational Fluid Dynamics, 2017.

[89] D. Matsumoto and T. Indinger, “On-the-fly algorithm for dynamic mode decom-
position using incremental singular value decomposition and total least squares,”
arXiv preprint arXiv:1703.11004, 2017.

[90] J. Ko and D. Fox, “Gp-bayesfilters: Bayesian filtering using gaussian process predic-
tion and observation models,” Autonomous Robots, 2009.

[91] M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen,
“Robust filtering and smoothing with gaussian processes,” IEEE Transactions on
Automatic Control, 2011.

115



[92] R. Urtasun, D. J. Fleet, and P. Fua, “3d people tracking with gaussian process
dynamical models,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), IEEE, 2006.

[93] T. Beckers and S. Hirche, “Stability of gaussian process state space models,” in
2016 European Control Conference (ECC), IEEE, 2016.

[94] S. Eleftheriadis, T. Nicholson, M. P. Deisenroth, and J. Hensman, “Identification of
gaussian process state space models,” in NIPS, 2017.

[95] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable
transformations of Python+NumPy programs,” 2018.

[96] D. Phan, N. Pradhan, and M. Jankowiak, “Composable effects for flexible and accel-
erated probabilistic programming in numpyro,” arXiv preprint arXiv:1912.11554,
2019.

[97] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[98] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural computation,
1998.

[99] A. K. Gupta and D. K. Nagar, Matrix variate distributions. CRC Press, 2018.

[100] A. Shah, A. Wilson, and Z. Ghahramani, “Student-t processes as alternatives to
gaussian processes,” in Artificial intelligence and statistics, PMLR, 2014.

[101] B. D. Tracey and D. Wolpert, “Upgrading from gaussian processes to student’st
processes,” in 2018 AIAA Non-Deterministic Approaches Conference, 2018.

116



A. Probability Distributions

The following appendix provides the probability distributions relevant to this work. The
definitions and formalizations are taken from [4,6].

A.1. Normal Distribution

The normal distribution, also known as Gaussian distribution, is the most commonly used
distribution in statistics and Machine Learning [6]. In the univariate case, where the
corresponding random variables are one-dimensional x ∈ R, the probability density
function is defined by

N (x | µ, σ) = 1

(2πσ2)
1
2

exp

(︃
− 1

2σ2
(x− µ)2

)︃
.

The natural parameters µ ∈ R and σ2 > 0 denote the mean and variance of the univariate
normal distribution, respectively. The variance σ2 > 0 is the squared standard deviation.
In many cases, including this work, the precision value of the normal distribution λ = 1/σ2

is used, which is simply the inverse of the variance. The first and second moments of the
univariate normal distribution are denoted by

Mean : E (x) = µ,

Variance : var (x) = σ2.

The conjugate prior of the mean µ is again a univariate normal distribution, while for σ2

an inverse Gamma distribution is assumed. If the precision value λ is used, the conjugate
prior is formalized by an Gamma distribution.
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In the multivariate case, where a normal distribution over a D-dimensional random
variable x ∈ RD is considered, the probability density function equals

N (x | µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

(︃
−1

2
(x− µ)T Σ−1 (x− µ)

)︃
.

The natural parameters of the distribution are the mean vector µ ∈ RD and the positive
semidefinite covariance matrix Σ ∈ RD×D. As in the univariate case, the precision matrix
Λ = Σ−1 is simply expressed as the inverse of the covariance matrix. Moreover, in the
multivariate case, the first and second moments correspond to

Mean : E (x) = µ,

Variance : Cov (x) = Σ.

Like in the univariate case, the conjugate prior associated to the mean vector µ is again a
multivariate normal distribution. For the covariance and precision matrices, the conjugate
prior is denoted as inverse Wishart distribution and Wishart distribution, respectively.

A.2. Gamma Distribution

The Gamma distribution is a flexible distribution over positive real-valued random variables
x ∈ (0,∞). The probability density function is given by

Gam(x | α, β) = βα

Γ(α)
xα−1 exp (−βx) ,

where the natural parameters α > 0 and β > 0 denote the shape and rate of the given
distribution. It is normalized by a gamma function defined by

Γ(α)
def
=

∫︂ ∞

0
uα−1 exp−u du,

which ensures that the probability integrates to one. The mean and variance, or the first
and second moments, are expressed by

E(x) =
α

β

var(x) =
α

β2
.

The Gamma distribution represents the conjugate prior for the precision value λ of a
normal distribution.
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A.3. Wishart Distribution

In the multivariate case, the generalization of the Gamma distribution is represented by
the Wishart distribution. This distribution models the uncertainty of positive semidefinite
matrices Λ ∈ RD×D by

W (Λ |W, ν) = B(W, ν)|Λ| ν−D−1
2 exp

(︃
−1

2
Tr
(︁
W−1Λ

)︁)︃
,

where the natural parameters ν and W correspond to the degrees of freedom and the scale
matrix, respectively. The normalization constant is computable by the function B(W, ν)
given as

B(W, ν) = |W|− ν
2

(︄
2

νD
2 π

D(D−1)
4

D∏︂
d=1

Γ

(︃
ν + 1− i

2

)︃)︄−1

.

Note that this normalization factor exists only when ν > D− 1 holds. The expected value
and hence the first moment is formed by

E (Λ) = νW.

The Wishart distribution acts as a conjugate prior for the precision matrix Λ.
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B. Information Theory

This appendix presents significant concepts from the field of Information Theory that have
proven to be useful tools for Machine Learning and other related research areas. The
definitions and formalizations are based on [4,6].

B.1. Shannon Entropy

The entropy or Shannon entropy represents a measure of the uncertainty of a probability
density function p(·) over a random variable x. In other words, it provides a value that
determines the information content of an event. This information content is also called
degree of surprise. The value indicates the information content of an event under the
assumption of a given distribution. Assuming the random variable has a high probability
value, the event is very likely to occur and therefore has a low informative content. On the
other hand, a very unlikely event has much informational content. The entropy is defined
by

H(p(x) ∥ p(x)) = −
∫︂

p(x) log p(x) dx.

For discrete random variables and the resulting probability mass function; a sum replaces
the integral. From an information-theoretic perspective, the Shannon entropy corresponds
to the expected number of bits needed to encode the data from the source distribution p.
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B.2. Cross Entropy

The cross entropy is determined by

H(p(x) ∥ q(x)) = −
∫︂

p(x) log q(x) dx.

In the case of a probability mass function, a sum replaces the integral. It quantifies the
information content necessary to represent data from a true distribution p(·) by a modeled
distribution q(·). For the case where the true and given distributions coincide, this becomes
the Shannon entropy.

B.3. Kullback–Leibler Divergence

A combination of the previously proposed concepts provides a measure of dissimilarity
between two probability distributions p(·) and q(·). This measure function is known as
Kullback–Leibler divergence (KL) or relative entropy. It is defined as follows

KL(p(x) ∥ q(x)) = −H(p(x) ∥ p(x)) + H(p(x) ∥ q(x)),

=

∫︂
p(x) log

q(x)

p(x)
dx,

where the integral is replaceable by the sum when probability mass functions are consid-
ered. It represents the difference between cross entropy and entropy. The KL-divergence
thus quantifies the additional information content needed to express the data coming
from p(·) with the distribution q(·). In this context, it should be noted that the Kull-
back–Leibler divergence is not a distance measure mathematically, since the symmetry
property KL(p(·) ∥ q(·)) ̸= KL(q(·) ∥ p(·)) is violated.
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C. Kernel Functions

The kernel functions listed in this appendix closely follow the definitions of [6]. In general,
a kernel matrix, also known as Gram matrix, defined by

KX,Y(θ) =

⎡⎢⎢⎢⎣
k(x0,y0,θ) · · · k(x0,yT ,θ)

... . . . ...

k(xT ,y0,θ) · · · k(xT ,yT ,θ)

⎤⎥⎥⎥⎦ ,

describes the similarity between given objects without explicitly requiring the computation
of the feature vector format. In each element of the kernel matrix, a kernel function
k(·, ·) ≥ 0 is applied. Given two objects xi,yj ∈ M of an abstract spaceM, the kernel
function k(xi,yj) provides a value associated with the similarity of the two objects.
Typically, the resulting kernel matrix K is a symmetric positive semidefinite matrix [6].

C.1. Linear Kernel

The linear kernel represents a straightforward choice of possible kernel functions where
each element of the gram matrix is expressed by an inner product

k(x,y) = θxTy,

with θ denoting a scaling parameter. Consider the case of θ = 1 and x,y ∈ R2, the linear
kernel simply resolves into a linear combination

k(x,y) = xTy

= x1y1 + x2y2,

of the elements of the two objects x and y.
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C.2. Polynomial Kernel

The polynomial kernel is a generalization of the linear kernel, which represents the inner
product of two objects x,y ∈ M preprocessed by polynomial feature mappings. It is
defined by

k(x,y) =
(︁
θxTy + r

)︁M
,

where r > 0 and M denote the bias and the degree of the corresponding polynomial,
respectively. For example, consider the following case of a polynomial kernel of the form

k(x,y) =
(︁
xTy + 1

)︁2
,

= (1 + x1y1 + x2y2)
2 ,

= 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x21y
2
1 + x22y

2
2,

where x,y ∈ R2, M = 2, θ = 1, and r = 1. Hence, it expresses a polynomial of degree
M = 2.

C.3. Family of RBF Kernels

The well-known radial basis function kernel is a special case of the generalized squared
exponential kernel or Gaussian kernel defined by

k(x,y) = θ exp

(︃
−1

2
(x− y)T Σ−1 (x− y)

)︃
,

where θ is the scaling parameter and the positive semidefinite matrix Σ provides a
correlation parameter. In the case of a D-dimensional diagonal matrix Σ, the squared
exponential kernel resolves to

k(xi,xj) = θ exp

(︄
−1

2

D∑︂
d=1

1

σ2
d

(xi − xj)
2

)︄
,

which is known as Automatic Relevance Detection (ARD) kernel. The parameters σ2 of
the diagonal of Σ characterize the length or width scales of the individual dimensions,
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respectively. If σ2 → ∞, the corresponding dimension has no relevance and is thus
automatically ignored. Furthermore, if Σ is a spherical matrix, i.e. σ2 = σ2

1 = · · · = σ2
D,

and a parameter γ = 1/σ2 is defined, an isotropic kernel

k(xi,xj) = θ exp
(︂
−γ

2
||xi − xj ||2

)︂
, (C.1)

is obtained, referring to a radial basis function kernel. The bandwidth is represented by γ.
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D. Inference

This appendix discusses Probabilistic Inference techniques applied to State-Space Mod-
els (SSMs) (see Section 4.1). These techniques infer the probability of latent states
x0, · · · ,xT ∈ RM from given observed data y0, · · · ,yT ∈ RN . The latent and observed
states are summarized in X ∈ RM×T and Y ∈ RN×T , respectively. The posterior distribu-
tion is defined by

p(X | Y) =
p(Y | X)p(X)

p(Y)
.

The SSM frameworks assume a probabilistic Markov sequence in the latent space describing
the dynamics and a measurement function representing the dependence of the observation
yt on the current state xt [6,53]. Thus, the posterior reformulates to

p(X | Y) =
p(x0)p(y0 | x0)

∏︁T
t=1 p(yt | xt)p(xt | xt−1)

p(Y)
.

In the following, Cubature Smoothing and Sequential Monte Carlo present two established
paradigms performing inference on the posterior. The definitions and formulations are
based on [53].

D.1. Spherical Cubature Smoothing

The Cubature Smoothing, also known as Cubature Rauch-Tung-Striebel smoother, belongs
to the family of Bayesian smoothing techniques. It combines the spherical Cubature
approximation to classical additive Gaussian Rauch-Tung-Stribel smoother [53]. In general,
smoothing methods compute the marginal distributions of a state xt considering all
measurementsY. However, it is necessary to perform a forward procedure in advance. The
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forward procedure, also called filtering, infers over a filter distribution. Filter distributions
represent the marginal distributions of the current state xt, given by

p(xt | y0, · · · ,yt,x0, · · · ,xt−1) = p(xt | yt,xt−1), (D.1)

depending on the past states x0, · · · ,xt−1 and the current and previous measurements
y0, · · · ,yt. One appealing filtering algorithm is the well-known additive Gaussian Cubature
Kalman filter, which is separable into a prediction step and an update step. The former
predicts an estimate of the current state xt based on the estimates of the meanmt−1 ∈ RM

and the covariance matrix Pk−1 ∈ RN×N of the previous state xt−1. There are 2M sigma
points defined as follows

X (i)
t−1 = mt−1 +

√︁
Pk−1ξ

(i), i = 1, · · · , 2M,

where the unit sigma points are given by

ξ(i) =

{︄√
Mei, i = 1, · · · ,M,

−
√
Mei−M , i = M + 1, · · · , 2M,

(D.2)

The sigma points can be considered as deterministically selected samples representing a
large amount of information of the underlying normal distribution. Then, these sigma
points are propagated through the dynamical model

˜︁X (i)
t = f

(︂
X (i)
t−1

)︂
, i = 1, · · · , 2M,

where f(·) denotes the known linear or nonlinear dynamics of the underlying Markov
sequence. Based on the resulting outcomes, the predicted mean m−

t ∈ RM and the
predicted covariance matrix P−

t ∈ RM×M are estimated by

m−
t =

1

2M

2M∑︂
i=1

˜︁X (i)
t ,

P−
t =

1

2M

2M∑︂
i=1

(︂ ˜︁X (i)
t −m−

t

)︂(︂ ˜︁X (i)
t −m−

t

)︂T
+Qt−1,

where Qt−1 ∈ RM×M corresponds to the covariance matrix of the process noise.

After the prediction step, the natural parameters of the normal distribution of the current
state xt are estimated. To incorporate the knowledge of the seen observation yt, the
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update step is then performed. For this purpose, the sigma points based on the current
natural parameters are written as

X−(i)
t = m−

t +

√︂
P−

t ξ
(i), i = 1, · · · , 2M,

with the vectors ξ(i) corresponding to the unit sigma points (see Equation (D.2)). Similar
to the prediction step, they are propagated through the measurement model

˜︁Y(i)
t = h

(︂
X−(i)
t

)︂
, i = 1, · · · , 2M,

where h(·) describes the predefined measurement function of the SSM. Based on ˜︁Y(i)
t ,

the mean µt and the covariance St are used to estimate the natural parameters of the
likelihood p(yt | xt) using

µt =
1

2M

2M∑︂
i=1

˜︁Y(i)
t ,

St =
1

2M

2M∑︂
i=1

(︂ ˜︁Y(i)
t − µt

)︂(︂ ˜︁Y(i)
t − µt

)︂T
+Rt,

where Rt ∈ RN×N represents the covariance matrix of the measurement noise. Moreover,
the cross covariance of the state xt and the observed state yt is determined by the following
equation

Ct =
1

2M

2M∑︂
i=1

(︂ ˜︁X (i)
t −m−

t

)︂(︂ ˜︁Y(i)
t − µt

)︂T
.

Thus, the natural parameters of the filter distribution (see Equation (D.1)) are represented
by

mt = m−
t +Kt (yt − µt) ,

Pt = P−
t −KtStK

T
t ,

where Kt = CtS
−1
t ∈ RM×N corresponds to the well-known Kalman gain or filter gain.

Eventually, the combination of both steps over each state x0, · · · ,xT provides the forward
procedure. However, to obtain an estimate of the true posterior, Bayesian smoothing
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techniques are utilized, resulting in a backward path. Similar to the Cubature Kalman
filter, a set of 2M sigma points is formed

X (i)
t = mt +

√︁
Pkξ

(i), i = 1, · · · , 2M,

where ξ(i) represent the unit sigma points (see Equation (D.2)). During the filtering
process, the natural parameters meanmt and covariancePk were estimated. Subsequently,
the sigma points are propagated through the dynamics of the SSM using K

˜︁X (i)
t+1 = f

(︂
X (i)
t

)︂
, i = 1, · · · , 2M.

Based on the resulting points ˜︁X (i)
t+1, the predicted mean m−

t+1, the predicted covariance
P−

t+1, and the cross-covariance D−
t+1 are calculated as follows

m−
t+1 =

1

2M

2M∑︂
i=1

˜︁X (i)
t+1,

P−
t+1 =

1

2M

2M∑︂
i=1

(︂ ˜︁X (i)
t+1 −m−

t+1

)︂(︂ ˜︁X (i)
t+1 −m−

t+1

)︂T
+Qt,

D−
t+1 =

1

2M

2M∑︂
i=1

(︂
X (i)
t −mt

)︂(︂ ˜︁X (i)
t+1 −m−

t+1

)︂T
,

where Qt ∈ RM×M corresponds to the process noise of SSM. The estimation of the mean
and covariance of the resulting distribution is

ms
t = mt +Gt

(︁
ms

t+1 −m−
t+1

)︁
,

Ps
t = Pt −Gt

(︁
Ps

t+1 −P−
t+1

)︁
GT

t ,

where Gt = D−
t+1P

−−1

t+1 ∈ RM×M refers to the Kalman gain. Thus, performing the
backward procedure of T, · · · , 0 gives mean and covariance estimates of the posterior
distribution.

Bayesian Inference techniques based on Gaussian approximations, like the Cubature
Kalman filter or the Cubature Rauch-Tung-Striebel smoother, achieve satisfactory results
for many SSMs [53]. However, in cases where the distributions of interest, e.g., the filtering
or smoothing distributions, are multimodal Gaussian or non-Gaussian, respectively, these
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techniques produce inappropriate approximations [53]. Also, applying these Bayesian
Inference techniques is not possible if some random variables are discontinuous [53].
Therefore, in the next section, Monte Carlo sampling-based approximations are considered,
found in the family of sequential Monte Carlo techniques.

D.2. Sequential Monte Carlo Techniques

For State-Space Models in which the distributions of interest correspond to a multimodal
Gaussian distribution or a non-Gaussian distribution, or discrete random variables are
encountered, Sequential Monte Carlo (SMC) techniques are applied. In general, these
techniques directly approximate the distribution of interest using Monte Carlo (particle)-
based techniques combined with Importance Sampling. In the case of SSMs, the interest
is to track the evolution of a set of S particles

{︂(︂
w

(i)
t ,x

(i)
t

)︂
: i = 1, · · · , S

}︂
over time

t = 0, · · · , T and derive the associated probabilities. Given the Markov property assumed
in the SSMs, the posterior decomposes into the following form

p(X | Y) ∝ p(yt | xt)p(xt | xt−1)p(x0, · · · ,xt−1 | y0, · · · ,yt−1).

Subsequently, an importance distribution is introduced

x
(i)
0 , · · · ,x(i)

t ∼ π(x
(i)
0 , · · · ,x(i)

t | y0, · · · ,yt),

enabling sampling for the current state. Indeed, this distribution is necessary since
sampling from the true underlying distribution is either complicated or not possible at all.
The corresponding importance weights are calculable by

w
(i)
t ∝

p(yt | x(i)
t )p(x

(i)
t | x

(i)
t−1)p(x

(i)
0 , · · · ,x(i)

t−1 | y0, · · · ,yt−1)

π(x
(i)
0 , · · · ,x(i)

t | y0, · · · ,yt)
.

Commonly, as well as throughout this thesis, the importance distribution is defined as
Markovian. The calculation of the importance weights hence reformulates to

w
(i)
t ∝

p(yt | x(i)
t )p(x

(i)
t | x

(i)
t−1)

π(x
(i)
t | x

(i)
t−1,y0, · · · ,yt)

p(x
(i)
0 , · · · ,x(i)

t−1 | y0, · · · ,yt−1)

π(x
(i)
0 , · · · ,x(i)

t−1 | y0, · · · ,yt−1)⏞ ⏟⏟ ⏞
w

(i)
t−1

.
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This reformulation leads to a recursive expression under the assumption that the samples
x
(i)
0 , · · · ,x(i)

t−1 from the previous steps are known.

The well-known Sequential Importance Sampling (SIS) framework is derived from the
assumptions mentioned above. A set of S samples is first drawn from the initial prior
distribution by

x
(s)
0 ∼ p(x0), i = 1, · · · , S

w
(i)
0 = 1/S, i = 1, · · · , S

with equal initialized importance weights. Normalization of the importance weights
ensures a correct probability distribution. Then, the recursive procedure of SIS is applied
by drawing S new samples from the importance distribution

x
(i)
t ∼ π(x

(i)
t | x

(i)
t−1,y0, · · · ,yt), i = 1, · · · , S.

Subsequently, the associated new importance weights are given by

w
(i)
t ∝ w

(i)
t−1

p(yt | x(i)
t )p(x

(i)
t | x

(i)
t−1)

π(x
(i)
t | x

(i)
t−1,y0, · · · ,yt)

.

In the case of a bootstrap procedure, where the importance distribution corresponds to the
dynamic model π(x(i)

t | x
(i)
t−1,y0, · · · ,yt) = p(x

(i)
t | x

(i)
t−1), the calculation simplifies to

w
(i)
t ∝ w

(i)
t−1p(yt | x(i)

t ).

The resulting importance weights are normalized again to ensure a correct probability
distribution.

However, the SIS framework suffers from the degeneracy problem [53]. The degeneracy
problem describes the situation where almost all particles have importance weights that
are very low or equal to zero. One way to mitigate this problem is the use of resampling
techniques [4,53]. These techniques are performed after the normalization of the recalcu-
lated importance weights. The principle is to remove unlikely particles whose importance
weights are consequently very small. Instead, the more likely particles with larger impor-
tance weights are duplicated. The resulting Sequential Importance Resampling (SIR), also
called particle filter, is a popular algorithm from the Sequential Monte Carlo (SMC) family.
However, like all sampling-based techniques, the proposed frameworks suffer from the
curse of dimensionality [4,6,53]. For high-dimensional state spaces, the application of
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the proposed frameworks is intractable. Moreover, although SIR mitigates the effect of the
degeneracy problem, it does not resolve it at all [53]. As a result, many extensions have
been proposed to improve the sampling-based SMC family available in [52,53]. However,
in the context of this work, the SIR framework provided decent results.
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E. Algorithms

This appendix lists the pseudocodes of the training procedures for the three implemented
algorithms Gaussian Process Dynamic Mode Decomposition (GP-DMD), Bayesian Gaussian
Process Dynamic Mode Decomposition (Bayesian GP-DMD), and Probabilistic Dynamic
Mode Primitive (Pro-DMP).

Algorithm E.1: Training Procedure of Gaussian Process Dynamic Mode Decomposition
Input: Observations Y = [y0, . . . , yT ], initial latent variables X = [x0, . . . , xT ],

kernel parameters θ, linear operator A, hyperparameter values
αy, βy, . . . , αa, βa, learning rates δθ, . . . , δa and number of iterations I.

begin
λy ← E(Gam(αy, βy)) = αy/βy
λ0 ← E(Gam(α0, β0)) = α0/β0
λx ← E(Gam(αx, βx)) = αx/βx
λa ← E(Gam(αa, βa)) = αa/βa
repeat

A∗, λ∗
0, λ

∗
x, λa∗ ← Get Calculated Closed-Form Solutions (see Equations (4.5)

to (4.8))
∇θL,∇XL,∇λyL ← Get Calculated Gradients (see Equation (4.9))

θ, X, λy ← θ + δθ∇θL, X+ δX∇XL, λy + δλy∇λyL
A← A+ δA (A∗ −A)
λ0 ← λ0 + δλ0 (λ

∗
0 − λ0)

λx ← λx + δλx (λ
∗
x − λx)

λa ← λa + δλa (λa∗ − λa)
until I iterations are done;

end
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Algorithm E.2: Training Procedure of Bayesian Gaussian Process Dynamic Mode
Decomposition
Input: Observations Y = [y0, . . . , yT ], initial latent variables X = [x0, . . . , xT ],

kernel parameters θ, linear operator A, hyperparameter values
αy, βy, . . . , αa, βa, learning rates δθ, . . . , δ˜︁µU

, number of iterations I,
inducing inputs z0, . . . , zD and the index for the corresponding inducing
variables idxz.

begin˜︁αy, ˜︁βy ← αy, βy˜︁α0, ˜︁β0 ← α0, β0˜︁αx, ˜︁βx ← αx, βx˜︁αa, ˜︁βa ← αa, βa˜︁µa, ˜︁Λa ← 0, I˜︁µU, ˜︁ΛU ← Y[:, idxz], I
repeat

X← Sample Optimal Latent Trajectories (see Equation (4.24))˜︁α∗
y,
˜︁β∗
y, . . . , ˜︁µ∗

U, ˜︁Λ∗
U ← Get Calculated Closed-Form Solutions (see

Equations (4.11) to (4.22))
∇θL,∇ZL ← Get Calculated Gradients (see Equation (4.25))

θ,Z← θ + δθ∇θL,Z+ δZ∇ZL˜︁αy, ˜︁βy ← ˜︁αy + δαy(˜︁α∗
y − ˜︁αy), βy + δβy(

˜︁β∗
y − ˜︁βy)˜︁α0, ˜︁β0 ← ˜︁α0 + δα0(˜︁α∗

0 − ˜︁α0), β0 + δβ0(
˜︁β∗
0 − ˜︁β0)˜︁αx, ˜︁βx ← ˜︁αx + δαx(˜︁α∗

x − ˜︁αx), βx + δβ0(
˜︁β∗
x − ˜︁βx)˜︁αa, ˜︁βa ← ˜︁αa + δαa(˜︁α∗

a − ˜︁αa), βa + δβa(
˜︁β∗
a − ˜︁βa)˜︁µa, ˜︁Λa ← ˜︁µa + δ˜︁µa

(˜︁µ∗
a − ˜︁µa), ˜︁Λa + δ˜︁Λa

(˜︁Λ∗
a − ˜︁Λa)˜︁µU, ˜︁ΛU ← ˜︁µU + δ˜︁µU

(˜︁µ∗
U − ˜︁µU), ˜︁ΛU + δ˜︁ΛU

(˜︁Λ∗
U − ˜︁ΛU)

until I iterations are done or the ELBO converges;
end
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Algorithm E.3: Training Procedure of Probabilistic Dynamic Mode Primitive
Input: S Observations Batches Ys = [ys

0, . . . , y
s
T ], initial S batches of latent

variables Xs = [x0, . . . , xT ]
s, kernel parameters θ, hyperparameter values

αy, βy, . . . , αa, βa, learning rates δθ, . . . , δa and number of iterations I.
begin

λy ← E(Gam(αy, βy)) = αy/βy
λ0 ← E(Gam(α0, β0)) = α0/β0
λx ← E(Gam(αx, βx)) = αx/βx
νa, Wa ← αa, βaI
µam

, Λam ← 0,0
for all s in S do˜︁µas

m
, ˜︁Λas

m
← 0,0

end
repeat

λ∗
0, λ

∗
x, . . . ,µ

∗
am

,Λ∗
am
← Get Calculated Closed-Form Solutions (see

Equations (5.3) to (5.8))
∇θL,∇XL,∇λyL ← Get Calculated Gradients (see Equation (5.9))

θ ← θ + δθ∇θL
X← X+ δX∇XL
λy ← λy + δλy∇λyL
µam

, Λam ← µam
+ δµam

(︁
µ∗
am
− µam

)︁
, Λam + δΛam

(︁
Λ∗

am
−Λam

)︁
for all s in S do˜︁µas

m
, ˜︁Λas

m
← ˜︁µas

m
+ δ˜︁µasm

(︂˜︁µ∗
as
m
− ˜︁µas

m

)︂
, ˜︁Λas

m
+ δ˜︁Λasm

(︂˜︁Λ∗
as
m
− ˜︁Λas

m

)︂
end
λ0 ← λ0 + δλ0 (λ

∗
0 − λ0)

λx ← λx + δλx (λ
∗
x − λx)

λa ← λa + δλa (λa∗ − λa)
until I iterations are done;

end
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F. Parameter Settings

In this appendix we list the parameter settings fot the three implemented algorithms
Gaussian Process Dynamic Mode Decomposition (GP-DMD), Bayesian Gaussian Process
Dynamic Mode Decomposition (Bayesian GP-DMD), and Probabilistic Dynamic Mode
Primitive (Pro-DMP) tested on Circle-Shape Dataset (CSD), Eight-Shape Dataset (ESD)
and Minimum-Jerk Dataset (MJD).

Parameter Settings of GP-DMD on Datasets

Name of Dataset Circle-Shape Eight-Shape Minimum-Jerk

Seed 11 11 11

Iterations 50000 50000 50000

Learning Rate 1e−2 1e−3 1e−3

Latent Dim. 3 5 5

Number Of Labels 4 4 4

RBF Kernel: θ, γ 1/32, 1 1/32, 1 1/32, 1

Prior: αy, βy 1, 1e−3 1, 1e−3 1, 1e−3

Prior: α0, β0 1, 1e−3 1, 1e−3 1, 1e−3

Prior: αx, βx 1, 1e−3 1, 1e−3 1, 1e−3

Prior: αa, βa 1, 1e−3 1, 1e−3 1, 1e−3

Table F.1.: This list summarizes the parameter setting used to train Gaussian Process
Dynamic Mode Decomposition (GP-DMD) on the Circle-Shape Dataset (CSD),
the Eight-Shape Dataset (ESD), and Minimum-Jerk Dataset (MJD).
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Parameter Settings of Bayesian GP-DMD on Datasets

Name of Dataset Circle-Shape Eight-Shape Minimum-Jerk

Seed 11 11 11

Iterations 5000 5000 5000

Learning Rate 1e−3 1e−3 1e−3

Latent Dim. 3 5 5

Number Of Induc-
ing Variables

25 25 25

RBF Kernel: θ, γ 1/32, 1 1/32, 1 1/32, 1

Prior: αy, βy 1e3, 1 1, 1e−5 1, 1e−6

Prior: α0, β0 1e5, 1 1e5, 1 1e5, 1

Prior: αx, βx 1e5, 1 1e5, 1 1e5, 1

Prior: αa, βa 1e−3, 1 1e−3, 1 1e−3, 1

Table F.2.: This list summarizes the parameter setting used to train Bayesian Gaussian
Process Dynamic Mode Decomposition (Bayesian GP-DMD) on the Circle-
Shape Dataset (CSD), the Eight-Shape Dataset (ESD), and Minimum-Jerk
Dataset (MJD).
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Parameter Settings of Pro-DMP on Datasets

Name of Dataset Circle-Shape Eight-Shape Minimum-Jerk

Seed 11 11 11

Iterations 50000 50000 50000

Batch Size S 5 5 5

Learning Rate 1e−3 1e−3 1e−3

Latent Dim. 3 5 5

Number Of Labels 4 4 4

RBF Kernel: θ, γ 1/16, 1 1/16, 1 1/16, 1

Prior: αy, βy 1, 1e−3 1, 1e−3 1, 1e−3

Prior: α0, β0 1e3, 1 1e3, 1 1e3, 1

Prior: αx, βx 1e3, 1 1e3, 1 1e3, 1

Prior: αa, βa 6e−6, 1e6 6e−6, 1e6 6e−6, 1e6

Table F.3.: This list summarizes the parameter setting used to train Probabilistic Dy-
namic Mode Primitive (Pro-DMP) on the Circle-Shape Dataset (CSD), the
Eight-Shape Dataset (ESD), and Minimum-Jerk Dataset (MJD).
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G. Learning Curves

In this appendix, the learning curves of GP-DMD, Bayesian GP-DMD, and Pro-DMP on the
data sets CSD, ESD and MJD are given.
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Figure G.1.: This figure shows the learning curves from the training procedures of the
Bayesian GP-DMDs on the Circle-Shape Dataset (CSD), the Eight-Shape
Dataset (ESD), and the Minimum-Jerk Dataset (MJD). The learning phase
covers 5000 iterations. The learning curve starts at decent values due to a
PCA initialization. As a result of numerical issues, these curves show strong
fluctuations. However, all three plots exhibit convergence of the learning
curves to the end.
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Figure G.2.: This figure shows the learning curves from the training procedures of theGP-
DMDs on the Circle-Shape Dataset (CSD), the Eight-Shape Dataset (ESD),
and the Minimum-Jerk Dataset (MJD). The learning phase covers 50000
iterations. On the left side, the entire learning curves are given, while on the
right side, central parts are shown enlarged. All plots exhibit convergence
of the learning curves to the end.
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Figure G.3.: This figure shows the learning curves from the training procedures of
the Pro-DMPs on the Circle-Shape Dataset (CSD), the Eight-Shape Dataset
(ESD), and the Minimum-Jerk Dataset (MJD). The learning phase covers
50000 iterations. On the left side, the entire learning curves are given, while
on the right side, central parts are shown enlarged. All plots exhibit conver-
gence of the learning curves to the end.
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