
Benchmarking Reinforcement
Learning Algorithms on
Tetherball Games
Analyse von Reinforcement Learning Methoden für Tetherball
Bachelor-Thesis von Nourhan Khaled aus Ägypten
Tag der Einreichung:

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Hany Abdulsamad

Benchmarking Reinforcement Learning Algorithms on Tetherball Games
Analyse von Reinforcement Learning Methoden für Tetherball

Vorgelegte Bachelor-Thesis von Nourhan Khaled aus Ägypten

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Hany Abdulsamad

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind
als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungs-
behörde vorgelegen.

Darmstadt, den September 26, 2018

(Nourhan Khaled)

1

Abstract
Robotic applications in the real world are faced with the stochasticity and uncertainty of the environment, which renders
the approaches of having hand-tuned controllers impractical. Reinforcement learning offers a more flexible alternative
due to its ability to adapt to the ever-changing environment dynamics, as opposed to rigid engineered approaches, where
each scenario has to be accounted for separately. Policy search methods, a sub-field of reinforcement learning, provide
a potentially more flexible alternative that is scalable to robotic applications by optimizing the robot’s policy parameters
to the task at hand. In a real world scenario, the same task can have a multitude of settings or contexts, and instead of
engineering a solution for each context, contextual policy search methods generalize their knowledge of the task across
different contexts making the robot’s policy more versatile. This thesis reviews and benchmarks four contextual policy
search algorithms and empirically evaluates their sample efficiency, scalability and performance on multidimensional
benchmark functions and on a simulated robot tetherball task.

Zusammenfassung
Roboter sind einem großen Maß von Variabilität und Unsicherheit in der realen Welt ausgesetzt. Dies schränkt den Einsatz
von klassischen, fein abgestimmten Lösungen ein, da es unmöglich ist alle Szenarien zu berücksichtigen. Reinforcement
Learning bietet eine flexible Alternative, indem es Robotern die Fähigkeit verleiht aus Interaktionen zu lernen, und sich
an eine dynamische Umgebung anzupassen. Policy Search Methoden bilden eine Kategorie im Bereich von Reinforce-
ment Learning. Solche Methoden zeigen zurzeit großes Potential in der Robotik, indem sie einem Roboter ermöglichen
viele Variationen einer Aufgabe in verschiedenen Kontexten gleichzeitig zu lernen, und auf unbekannte Situationen zu
generalisieren. In dieser Thesis werden sogenannte Contextual Policy Search Methoden untersucht und im Hinblick auf
Effizienz, Skalierbarkeit und Optimalität empirisch ausgewertet. Dabei werden sowohl verschiedene hochdeminsionale
Testfunktionen als auch eine simulierte Tetherball-Aufgabe analysiert.

2

Acknowledgements
I would like to thank Svenja, Joni, Daniel and Doro for the ice-cream, Macadamia nuts, Nutella Pretzels, early breakfasts
and unplanned late dinners. Good food is central to successful projects.
I am genuinely grateful for having Hany as a supervisor. He has been patient with me and provided me with valuable
advice along the way. Thank you for pushing me to be more self reliant. And most of all, thank you for propagating the
importance and beauty of understanding how things work together, this will stay with me.
I am immensely thankful for my family’s support. The funny video calls kept me motivated.
Last and certainly not least, I would like to thank Jan for giving me this opportunity. I have gained so much more than
academic knowledge.

3

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Overview . 8

2 Background and Foundations 10
2.1 Reinforcement Learning . 10

2.1.1 Markov Decision Processes . 10
2.1.2 Robot Control as a RL Problem . 11

2.2 Policy Search . 12
2.3 Kullback-Leibler (KL) Divergence as a Distance Metric . 13
2.4 Dynamic Motor/Movement Primitives (DMPs) . 13

2.4.1 DMPs for Policy Representation . 13
2.4.2 Imitation Learning of DMPs . 15

3 Policy Search Algorithms 16
3.1 Relative Entropy Policy Search (REPS) . 16

3.1.1 Contextual REPS . 17
3.2 Model-based Relative Entropy (MORE) . 18

3.2.1 Contextual-MORE . 19
3.3 Covariance Matrix Adaptation Evolution Strategies (CMA-ES) . 20

3.3.1 Contextual CMA-ES . 22
3.4 Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation (CREPS-CMA) 23
3.5 Covariance Estimation with Controlled Entropy Reduction (CECER) . 24

4 Setup and Implementation 25
4.1 The Tetherball Task and Setup . 25
4.2 The Software . 25
4.3 Implementation Details . 26

5 Experiments 28
5.1 Benchmarking on Standard Optimization Test Functions . 28

5.1.1 Evaluating CREPS & CREPS-CMA on Number of Samples and Initial Variance 29
5.1.2 Evaluating CMORE with Minimum Entropy . 30
5.1.3 Evaluating CCMAES with Initial Variance and Step Size . 30
5.1.4 Benchmarking on Sample efficiency . 32
5.1.5 Benchmarking on Scalability . 32
5.1.6 Benchmarking on Optimum Performance . 33

5.2 Benchmarking on Tetherball . 34
5.2.1 Evaluating CREPS with KL, Number of DMP Basis Functions and Value Functions 34
5.2.2 Evaluating CCMAES with Initial Policy and Population Size . 36
5.2.3 Benchmarking on Optimum Performance . 37

6 Conclusion and Future Work 38

7 Appendix 39
7.1 Solving Constrained Optimization Problems . 39
7.2 Dual function derivation of REPS . 39
7.3 Closed form solution for MORE . 40
7.4 Weighted Maximum-Likelihood Updates . 42

Bibliography 43

4

List of Figures

1.1 Picture (left) shows a typical game of tetherball with a ball at the end of a rope attached to a pole. Players
try to hit the ball in the one way and a player scores if his/her opponent doesn’t hit the ball. Picture (right)
shows the robot tetherball setup used in [Parisi et al., 2015]. 8

2.1 The classic Reinforcement Learning interaction loop between the agent and environment. The agent takes
an action at at state st . The environment then responds with the corresponding reward rt+1 and the new
state st+1, which are fed back to the agent. Drawing recreated from [Sutton et al., 1998] 10

2.2 Plots of first and second-order linear dynamical systems, showing the evolution of the state y of the system
over time. It is evident that second order-linear dynamical sytems can represent more versatile trajectories,
however they still can’t represent various classes of movements. 14

2.3 Components of a DMP. 14

3.1 An illustration of how the shape of a 2-dimensional Gaussian distribution is determined by the covariance
matrix. Figure 3.1a, shows equal horizontal (along x-axis) and vertical (along y-axis) spreads of data
points and no correlation between the two variables x and y. Figure 3.1b captures a larger vertical spread,
hence the elongated shape. Figure 3.1c a symmetric correlation of between x and y, i.e., if the value of x
increases the value of y also increases. 20

3.2 An illustration of step-size control in effect. Left figure shows the scenario where the updates are uncor-
related. In that case the step size should be decreased as shown by the bold arrow. Right figure shows
updates all in the same direction i.e., correlated, in that case the step size should be increased. 21

4.1 Diagram of the pendulum setup with ball position in spherical coordinates. The initial values of ϕ, θ , dϕ
and dθ determine the context for the task, while l remains constant. Figure from [Abdulsamad et al., 2014]. 25

4.2 The Biorob robot in the simulation environment SL. 26
4.3 A figure depicting the general flow of the framework. The initial policy parameters µ0 and Σ0 are obtained

by imitation learning. They are then passed to the sampling distribution N(θ |µ,Σ) where the samples
θ are drawn. The samples are the DMP parameters, which are used to generate the desired trajectory
qdes. The desired trajectory qdes and the context s(independently sampled from a uniform distribution)
are sent to SL through the shared memory interface. The context specifies the initial state of the ball and
the desrired trajectory is specified by qdes. After the trajectory execution, the reward R for the episode is
sent by SL. Using the data set {θ , s , R}, the learning algorithm updates the policy parameters µ,Σ which
are fed back into the sampling distribution. This loop is repeated until satisfactory performance is reached. 27

5.1 Standard Test Functions. 28
5.2 Plots of experiment comparing the performance of CREPS and CREPS-CMA with a high and low number

of samples.The experiment is performed on a 15-dimensional sphere (left) and rosenbrock (right). It is
evident that CREPS-CMA outperforms standard CREPS with a lower number of samples and has almost
the exact performance otherwise. This is due to CREPS-CMA compensating the low number of samples by
incorporating information from the old covariance matrix to the sample covariance matrix. 29

5.3 Results showing performance of CREPS assessed on different initial variances of the distribution. The
experiment is performed on an 8-dimensional sphere(left) and rosenbrock(right) with a 4-dimensional
context. The plots show the significant increase in the performance of the algorithm when given a larger
initial variance. A larger initial variance indicates a larger initial distribution, which gives the algorithm
room for exploration, which could allow the algorithm to converge to a better optimum. 29

5.4 The results of different values of the minimum entropy H0 on the performance of CMORE. The experiment
is performed on an 8-dimensional sphere (right) and rosenbrock (left) with a 4-dimensional context. As
shown in the plots, a lower minimum entropy yields a better performance. 30

5.5 The effect of adding initial variance on the performance of CCMAES. It is clear that adding noise to
the initial covariance matrix in the context of these optimization problems only hinders the performance
of CCMAES. The inital policy might already be near the optimum parameters, so expanding the search
distribution would only slow down convergence. 31

5

5.6 The effect of the initial step-size σ0 on the performance of CCMAES on the 8-dimensional sphere (left) and
rosenbrock (right). Increasing the step-size deters the performance in the context of these optimization
problems. With a larger initial step-size the distribution may drift away from the optimum solution in the
early stages, which slows down the convergence. 31

5.7 Results showing performance of the algorithms assessed using 100, 200 and 500 number of samples.
CCMAES demonstrates the largest change in performace with different number of samples. CMORE is
least sensitive, with trivial improvement given more samples. CREPS-CMA out performs CREPS with a
lower number of samples and performs the same otherwise. For clarity, only the mean is plotted. 32

5.8 Results showing performance of algorithms assessed on the 2, 8 and 15-dimensional sphere (left) and
rosenbrock(right). The performance of all algorithms decreases as the dimensionality increases. CMORE
being the most stable followed by CCMAES then CREPS and CREPS-CMA. CREPS-CMA shows no signifi-
cant advantage over CREPS in this case. For clarity, only the mean is plotted. 33

5.9 The four policy search algorithms evaluated on an 8-dimensional sphere (left) and rosenbrock(right) with
a 4-dimensional context. The best performance is achieved by CCMAES, followed by CREPS and CREPS-
CMA that observe the same performance. CMORE achieves the least optimum performance. For clarity,
only the mean is plotted. 33

5.10 This experiment evaluates the performance of CREPS given different KL bounds ε. Lower values for ε
converge slower than higher values because the new distribution remains closer to the previous distribution
with lower ε. 34

5.11 Results of varying the number of DMP basis functions used to generate trajectories for the robot hitting
movement. The lowest performance is achieved by the lowest number of DMP basis functions. A better
average reward is achieved by increasing the number of DMPs a certain threshold is reached. The perfor-
mance using 8 DMP basis functions is lower than when using only 4 or 5, due to the redundant added
complexity. 35

5.12 Performance of CREPS using different features to estimate the value function is shown. Fourier features
and quadratic features perform equally, while performance using linear features collapses after 50 iterations. 35

5.13 The performance of CCMAES is evaluated against two policy initializations, one that is initialized randomly
with no prior knowledge and the other is initialized by imitation learning using 10 demonstrations. The
policy initialized from the demonstrations clearly outperforms the randomly initialized policy. The policy
with prior knowledge achieves faster convergence and convergence to a better optimum. 36

5.14 Evaluating the performance of CCMAES with various population sizes. Results show that CCMAES needs
a large number of samples to reach satisfactory performance. 36

5.15 An evaluation of the optimum performance achieved by all algorithms on the tetherball task.. Results show
the best performance achieved by CREPS and CREPS-CMA reaching a hit rate of 80% followed by CMORE
converging at 75% and finally CCMAES converging around 62%. 37

6

List of Algorithms

1 Generic Stochastic Policy Search Algorithms . 13
2 Imitation Learning of DMPs . 15

3 Contextual REPS . 18
4 Contextual MORE . 20
5 Contextual CMA-ES . 23
6 Contextual REPS-CMA . 24

7

1 Introduction

1.1 Motivation

From as far as the 8th century BC, when Homer wrote about mechanical waiters in Iliad [Lattimore et al., 1961], hu-
mans have aspired to create intelligent machines [Buchanan, 2005], now referred to as robots. In particular, robots with
complex motor skills that have the ability to cope in the real world environment and assist humans in their daily lives. De-
spite the extensive efforts, and even successes, that have gone in the direction of building hand-crafted robot controllers
[Yoshiike et al., 2017], [Sakagami et al., 2002], one can only go so far with hard-coded controllers in a real world envi-
ronment that is packed with unpredictability. The element of intelligence has been the missing piece that would enable
robots to adapt to the uncertainty of the real world. With the rise of reinforcement learning algorithms, especially Pol-
icy Search (PS) methods [Deisenroth et al., 2013] and the introduction of motor primtives [Ijspeert et al., 2003], having
autonomous robots equipped with complex motor skills is becoming more attainable. Robots are now more capable of
performing dynamic motor tasks that were once deemed unlikely such as bipedal locomotion [Xie et al., 2018], ball-in-a-
cup [Kober and Peters, 2009], table-tennis [Muelling et al., 2010] and even pancake-flipping [Kormushev et al., 2010],
and they do so solely by learning as opposed to being hard-coded for the task.

Key to versatile robots is their ability to generalize their experience across similar tasks. One example of such gener-
alization is learning tasks with variable settings. For instance, if the robot’s task is to throw a ball to a certain goal
position, instead of relearning the whole task for a different goal position or context, the robot should adapt its current
knowledge of the task to the new setting or context. This notion of task contextualization results in faster adaptive robots
and generally more efficient learning. The task of robot tetherball has been introduced as an application of contextual
robot learning [Parisi et al., 2015]. In a typical game of tetherball, the player should be able to react to the ball coming
from different positions with different velocities. Even more so, the player could intercept the ball at a range of positions.
These variables could all be incorporated into the context of the task to create a flexible robot player. Following the
work of [Parisi et al., 2015], [Abdulsamad et al., 2014], this thesis explores some state-of-the-art reinforcement learning
algorithms that can be applied to this task. From the multitude of policy search algorithms out there, a few are reviewed
in this thesis and four are selected for benchmarking on standard optimization test functions and on a simulated robot
tetherball task.

Figure 1.1: Picture (left) shows a typical game of tetherball with a ball at the end of a rope attached to a pole. Players try
to hit the ball in the one way and a player scores if his/her opponent doesn’t hit the ball. Picture (right) shows
the robot tetherball setup used in [Parisi et al., 2015].

1.2 Overview

This section provides an overview of the structure of the thesis and gives a brief summary of the topics discussed in each
chapter. The thesis is structured as follows:

8

Chapter 2 discusses the foundations and fundamentals needed in the scope of this thesis. First reinforcement learn-
ing is introduced as an approach to solve robotic tasks. Then an overview of policy search methods, a class of approaches
to solve reinforcement learning problems, is given. The Kullback-Leibler divergence (KL), an information theoretic dis-
tance metric between probability distributions is breifly introduced to be later used in policy search methods. Finally,
Dynamic Movement Primitives (DMPs) are introduced as a parametrized policy representation, along with imitation
learning that allows us to bootstrap the learning of complex tasks.

Chapter 3 thoroughly discusses and derives the four selected algorithms for this thesis. For each algorithm, the standard
version is first derived, then the derivation is extended to the contextual version to allow for generalizing to different
task settings. The chosen algorithms are Relative Entropy Policy Search (REPS), Model-based Relative Entropy (MORE),
Covariance Matrix Adaptation Evolution Strategies (CMA-ES) and finally regularized versions of REPS.

Chapter 4 gives the details of the implementation starting with the dissection of the tetherball task, then introduc-
ing the software used and finally diving into the details of the implemented setup.

Chapter 5 evaluates the performance of the selected algorithms on standard benchmark functions. Some algorithm-
specific parameters are examined and more general metrics such as sample efficiency and scalability are evaluated. Then
results on the simulated task of robot tetherball are presented.

Chapter 6 concludes the thesis and discusses the challenges encountered throughout.

Appendix presents some thorough derivations of the selected algorithms.

9

2 Background and Foundations
This chapter presents the basic concepts used throughout this thesis. First, Markov Decision Processes (MDPs), the
classical framework for reinforcement learning will be introduced along with some basic principles of reinforcement
learning. Then, to harness the power of reinforcement learning into robotic applications, the robot control problem
will be formalized as a reinforcement learning problem. To solve the reinforcememt learning problem Policy Search
(PS) methods, a popular approach for robotic problems will be discussed. The Kullback-Leibler divergence (KL), an
information theoretic distance metric between probability distributions is briefly introduced. Finally, Dynamic Motor
Primitives (DMPs) will be presented for policy representation.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning, which unlike supervised learning, where the training data
is labeled with the right answer, the agent (ex: robot) has to learn how to behave in the environment and perform its task
without any prior knowledge. The agent does so by learning from its own experience; it performs some actions in the
environment and based on a reward function, the agent can identify how good, or not so good, the action was. The goal
of the agent is then to maximize the accumulation of rewards from the beginning till the end of its task, which is referred
to as the long-term reward in literature. The typical interaction loop between agent and environment is illustrated in
Figure 2.1.

Agent

Environment

action
at

reward
rt

state
st

rt+1

st+1

Figure 2.1: The classic Reinforcement Learning interaction loop between the agent and environment. The agent takes an
action at at state st . The environment then responds with the corresponding reward rt+1 and the new state
st+1, which are fed back to the agent. Drawing recreated from [Sutton et al., 1998]

A sub-field where reinforcement learning (or machine learning in general) and robotics are intersect is Robot Learning
[Connell and Mahadevan, 2012]. It aims to bridge the gap between programmed robots, where the controllers for the
robots are tuned and designed by engineers, and fully autonomous robots, where robots perform tasks, e.g., household
assistance, without explicit human control. Robot learning harnesses the power of machine learning techniques to extract
relevant information for solving a robotic task [Deisenroth et al., 2013].

2.1.1 Markov Decision Processes

The classic setting for RL are Markov Decision Processes (MDPs). MDPs [Bellman, 1957] are a mathematical framework
for decision making in deterministic and stochastic environments i.e., environments that have some degree of random-
ness. MDPs satisfy the Markov property [Markov, 1961], which states that "the future is independent of the past given
the present", meaning that the next state only depends on the current state, no previous states are required, which is
sometimes, and quite conveniently, referred to as memorylessness. A Markov Decision Process (MDP) can be formally
defined as a tuple (S,A, P, r):

• A set of states s ∈ S that describe the environment.

• A set of actions a ∈A that can be be performed by the agent in the environment.

10

• A transition function P(st+1|st , at) that gives the probability of a new state st+1 after an action at has been taken
in state st .

• A reward function r(st , at) that specifies the immediate reward after taking action at in state st .

The Markov property is expressed as

P(st+1|st , at , st−1, at−1, st−2, at−2...) = P(st+1|st , at) .

Typically, the objective in a reinforcement learning problem is to maximize the total discounted long-term reward

max J =
∞
∑

t=1

γt r(st , at) ,

where γ is the discount factor, which defines how much the agent values immediate rewards versus long-term rewards.
In some works [Arulkumaran et al., 2017], [Schulman et al., 2015], [Duan et al., 2016], γ is considered as a part of the
MDP.
In this setting, the agent observes the current state st and based on some criterion it takes an action at . This mapping
from state to action is called a policy. A deterministic policy denoted by π(s) = a, is one which returns one action for a
given state. It will always return the same action given the same state. A stochastic policy π(a|s) on the other hand, can
give different actions given the same state determined by a distribution over actions. There are two main approaches to
solving reinforcement learning problems, value-based methods and policy search methods. In value-based methods, a
value function returns a value V (s) i.e., the total expected reward, of being in a certain state and following the current
policy. The value computed by the value function is then used to select the best actions. There are various methods in
value function approaches such as Dynamic Programming based methods, Monte Carlo methods and Temporal Difference
methods. The alternative method to value-function learning is policy search (PS), where the parameters θ of a policy
π(θ) are optimized. This approach will be further elaborated in section 2.2.

One of the most fundamental dilemmas in reinforcement learning is the exploration-exploitation trade-off. It is the
choice between exploiting the safe actions that have been tried before and shown promising results and exploring new
actions that may or may not give better results. As it turns out, exploration is key in the success of reinforcement learning
algorithms as it gives the agent the opportunity to discover new, and possibly more rewarding, areas of the environment
as opposed to staying in a sub-optimal area. However, this should be taken into account when using reinforcement
learning in the context of robotics, because exploration is not always desirable. Now, to use reinforcement learning in
robotic applications, the robot control problem must first be formulated as a reinforcement learning problem.

2.1.2 Robot Control as a RL Problem

As proposed in [Deisenroth et al., 2013], robot control can be modeled as a reinforcement learning problem. The robots’
state space s comprises of the robot’s state (e.g., joint angles, joint velocities, position of end-effectors, etc) as well
as the state of the environment (e.g. location of targets for task). Based on a control policy π, the robot chooses
some action a, which, in the context of robotics, is a motor command. The state of the robot is changed by the motor
commands according to the probabilistic function p(st+1|st , at). A sequence of states and actions forms a trajectory
τ = (s0, a0, s1, a1, ...), sometimes referred to as a rollout or path. The quality of the robot’s trajectory is evaluated by a
numeric scoring system that returns an accumulated reward signal R(τ). A positive reward for example would indicate
that the robot performed the task, and a negative reward would penalize missing a target. Tasks in which rewards are
returned every time-step of the trajectory are called step-based tasks. Alternatively, in episodic tasks (e.g., stroke based
movements such as swinging racket or throwing dart), the rewards are accumulated and returned at the end of the
episode after T time steps. The accumulated reward for a trajectory τ is given as

R(τ) =
T
∑

t=0

rt(st , at) ,

where rt is the immediate reward given by the reward function. The goal of robotic task is choosing an optimal policy
π∗ that maximizes the expected return J . For finite horizon i.e., finite number of timesteps T , the expected return under
a certain policy π is given as the accumulated reward R(τ)

J(π) = E[
T
∑

t=0

rt |π] .

11

Alternatively, an infinite horizon can also be represented given a discount factor γ, as the discounted accumulated reward

J(π) = E[
∞
∑

t=0

γt rt |π] ,

where γ specifies the long-term/short-term rewards trade-off. The optimal policy is given by

π∗ = arg maxπ J(π) .

After setting up the reinforcement learning problem, the algorithm has to deal with high-dimensional state-action spaces,
real-time requirements and the non-trivial cost of the robot interacting with the environment. Furthermore, in classical
RL algorithms, exploration is essential to successful learning because it allows the agent to discover new and possibly
more rewarding states and trajectories. When it comes to robots however, unrestrained exploration is highly discouraged
due to hardware constraints; it might be dangerous for the robot and the environment. To solve a RL problem, value-
based methods try to estimate the expected long-term reward of a policy, which is also known as the value function. As
previously stated, the value function gives an indication of how good an action is for a given state and is hence used
for selecting actions and updating the policy. This approach however, doesn’t scale well to robot learning problems. As
mentioned above, a robotic task usually has a large state-action space, and even more so, continuous actions, making the
value functions not a feasible solution since they require filling up the state-space with data [Deisenroth et al., 2013].
Value-based methods are also faced with additional limitations such as discontinuous value-functions and the non-trivial
task of optimizing highly non-linear approximations of the value function. Proposed in the next section, policy search
methods alleviate some of the challenges encountered by value-based methods. Additionally PS methods have desirable
properties such as using parameterized policies that make the robot-learning problem simpler and make it easier to apply
RL, which makes it a popular approach in robotics.

2.2 Policy Search

As indicated by the name, policy search looks for the optimal policy. A policy π is a mapping from state s to action a.
If the state and action set are finite, there will be a finite number of policies in the policy space to optimize over i.e.,
searching for the optimal policy among all possible policies. On the other hand, if the state and action set are continuous,
which is typically the case for robot control, there will be infinitely many possible policies. In that case, the policy π is
parameterized with some parameter θ and and the search is performed in the parameter space Θ, θ ∈ Θ. So, as opposed
to value-based methods, policy search methods use parameterized policies π(θ) and work directly in the parameter space
Θ, θ ∈ Θ of the policy. This significant reduction of the search space allows for the scaling of the RL problem to meet the
high-dimensional continuous state and action space needs of a robotic task. Another advantage of using parameterized-
policies is that predefined task-appropriate policy representations can be used as will be shown in Section 2.4.
One categorization of policy search methods is the distinction between model-free policy search methods and model-
based methods. In model-free policy search methods, sampled trajectories τ[i] and immediate rewards r[i] for the
trajectories are obtained from interactions with the real robot. The parameters θ of the policy are then updated in such
a way to increase the likelihood of trajectories with higher rewards and thereby increasing the average return

J(θ) = E[R(τ)|θ] =
∫

R(τ)pθ (τ)dτ. (2.1)

In model-based policy search methods, a model of the robot’s and environment’s dynamics is first constructed using sam-
pled trajectories, then this model is used for improving the policy. Model-free approaches will be the main focus of this
thesis.
One very popular group of algorithms in policy search methods is stochastic search algorithms or black-box optimizers
[Hansen et al., 2003], [Sun et al., 2009], [Rückstieß et al., 2008]. Black-box optimization is a setup where an algo-
rithm optimizes an objective function without any underlying knowledge of its landscape i.e., the algorithm has no
knowledge of the shape or gradient of the objective function. This approach is particularly useful when the objec-
tive function is unknown or is too complex to model. Stochastic search algorithms maintain a search distribution
over the parameters θ that are to be optimized. This search distribution is then used to draw samples of parameter
vectors and then evaluated using some objective function. This data set of samples and evaluations is then used to up-
date the current search distribution using gradient-based updates [Sun et al., 2009], [Rückstieß et al., 2008], evolution
strategies[Hansen et al., 2003], cross entropy method [Mannor et al., 2003], path integrals [Stulp and Sigaud, 2012] or
information theoretic approaches [Peters et al., 2010]. The simplicity and ease of use of stochastic search algorithms
resulted in their popularity. Chapter 3 reviews a few algorithms based on this approach.

12

Algorithm 1 Generic Stochastic Policy Search Algorithms

1: while not converged do
2: for i=1 .. N do
3: Draw parameters θi ~N(µ,Σ)
4: Evaluate parameters θi and get returns R(θi)
5: end for
6: Update policy π(θ): ex: REPS, MORE, CMA-ES.
7: end while

2.3 Kullback-Leibler (KL) Divergence as a Distance Metric

An important factor to consider with policy updates on real robotic systems is that there should not be a large difference
between the old policy and the new updated policy. Intuitively, we don’t want the robot to drift far away from where it
starts and take large exploration steps; it might be dangerous for both the robot and the environment. This is achieved
by introducing a constraint on the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] between the current
and the updated policy distributions, which is also known as the relative entropy. The KL divergence quantifies the
distance or difference between two probability distributions in terms of the information encoded in each distribution.
More specifically, it measures the the shannon entropy [Shannon, 2001] of one distribution relative to the other, hence
the name relative-entropy. More formally, it measures how much one probability distribution diverges from another. The
KL divergence from q to p is defined as

KL(p||q) =
∫ ∞

−∞
p(θ) log

p(θ)
q(θ)

dθ ,

where p and q are continuous probability distributions. It can be seen as an expectation of the logarithmic difference
between p and q. As will be shown in the next chapter, this metric will prove to be quite useful in the policy updates
of the discussed algorithms, as it is usually used as a contraint in bounding two subsequent policy distributions in an
attempt to limit information loss between updates.

2.4 Dynamic Motor/Movement Primitives (DMPs)

As mentioned in Section 2.2, policy search methods enable us to work with parameterized policies. Therefore, we
can benefit from using policy representations that are relevant to a given task. To represent the parametric policy,
Dynamic Movement Primitives or Dynamic Motor Primitives (DMPs) [Ijspeert et al., 2003], [Ijspeert et al., 2013]; a time-
dependent policy representation that is commonly used in robotics, is used. Then, imitation learning, a method that
enables learning from demonstrations [Osa et al., 2018], is used to bootstrap the parameters of the DMPs.

2.4.1 DMPs for Policy Representation

Formalized as second-order dynamic systems, DMPs are a mathematical framework that offers a compact representation
of basic movements, such as hitting and grasping. They are used as trajectory generators for the real system. DMPs are
essentially dynamical systems. A dynamical system is defined to be a system in which a function describes the evolution
of a point in a geometrical space over time. This makes it convenient to represent trajectories. A basic example of a
dynamical system could be a first order linear dynamical system

ẏ= α(c − y), (2.2)

with y describing the state of the system, c being the end state we would want the system to reach and α is a constant
that determines how quickly the system reaches the end state. To add more complexity to the trajectory it can be shown
in Figure 2.3 that a second order linear dynamical system

ÿ= α(β(c − y)− ẏ), (2.3)

has more versatility, where β acts as the gain. Second-order linear dynamical systems have well defined behaviours but
they still can’t encode various classes of movements. DMPs opt for the stability of second-order dynamical systems and

13

(a) First-order linear dynamical system.

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

beta=1.0
beta=0.2
beta=0.1

(b) Second-order linear dynamical system

Figure 2.2: Plots of first and second-order linear dynamical systems, showing the evolution of the state y of the system
over time. It is evident that second order-linear dynamical sytems can represent more versatile trajectories,
however they still can’t represent various classes of movements.

introduce further complexity to the trajectory by adding a non-linear forcing function f . This system behaves like a linear
spring-damper system with a non-linear forcing function modulating it.

ÿ= α(β(c − y)− ẏ) + f . (2.4)

After adding a temporal scaling factor τ, that determines the speed of the execution and a phase variable zt for time
modulation, the DMPs can be fully defined as

q̈ t = τ
2(α(β(g − q)−

q̇
τ
) + f (zt ,θ)) , (2.5)

żt = −ταzzt , (2.6)

where q, q̇, q̈ are joint positions, velocities and accelerations, g is the goal attractor i.e., the desired end position of the
trajectory and zt is a phase variable. α and β are constants that define the spring-damping. Equation (2.6) is referred to
as the canonical system because it models the generic behaviour of the system. Complexity of the desired movement is
encoded in the forcing function f (zt ,θ), which is defined as a function of the canonical system using a weighted sum of
N basis functions φi

f (z,θ) =

∑N
i=1φi(z)θi
∑N

i=1φi(z)
z, φi(z) =

exp(−hi(z − ci)2)
∑N

j=1 exp(−h j(z − c2
j))

, (2.7)

where φi defines a Gaussian centered at ci with variances/bandwidths defined by hi and the weighting of each Gaussian
is given by θi . The forcing function is linear in the weights θ but non-linear in the phase zt , i.e., f (z,θ) = Φ(z)Tθ . With
this representation we can easily generate trajectories and specify the desired movement of the robot.

(a) Basis functions (b) Forcing function (c) Trajectory

Figure 2.3: Components of a DMP.

14

2.4.2 Imitation Learning of DMPs

While it is possible for a robot to learn a control policy from scratch using reinforcement learning, in a real system, it is
often undesirable to have the robot explore its way to the region of feasible solutions. Usually, it is easier to have the
robot learn from demonstrations of the desired tasks shown by a teacher or an expert. That way, the initial search space of
the robot would shrink to the region around where it observed the expert demonstrations. This process of learning from
demonstrations is called behavioural cloning or imitation learning [Osa et al., 2018]. This method is used to bootstrap
i.e., initialize the parameters θ of the DMPs. In order to perform imitation learning, given is a demonstrated trajectory
and its derivatives qd , q̇d , q̈d , a goal g , the constant DMP parameters α, β , αz and a temporal scaling factor τ. By
simply rearranging terms from equation (2.5), we can compute the forcing function and learn the weights by linear ridge
regression

f (z,θ) =
q̈d

τ2
−α

�

β(g − qd)−
q̇d

τ

�

, (2.8)

θ =
�

ΦTΦ+σ2I
�−1
ΦT f . (2.9)

Algorithm 2 Imitation Learning of DMPs
Input:
Desired trajectory q , q̇, q̈
Goal attractor g
Parameters α,β ,αz ,τ

1: Compute forcing function for each timestep
2: f (z,θ) = q̈

τ2 −α
�

β(g − qd)−
q̇
τ

�

3: Compute shape parameters by linear ridge regression

4: θ =
�

ΦTΦ+σ2I
�−1
ΦT f

15

3 Policy Search Algorithms
In this chapter, three stochastic search episode based algorithms that all share the same objective (2.1) will be discussed.
First, Relative Entropy Policy Search (REPS), an algorithm that bounds the KL divergence between subsequent updates,
will be presented in Section 3.1. Section 3.2 will discuss a related algorithm, Model-based Relative Entropy (MORE),
which introduces an additional bound on the entropy loss. Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) an evolution strategy (ES) based approach will be presented in Section 3.3. Finally, Contextual Relative Entropy
with Covariance Matrix Update (CREPS-CMA) a hybrid algorithm is presented. Each algorithm will be extended to the
contextual version, that allows for more versatile learning.

3.1 Relative Entropy Policy Search (REPS)

REPS formulates the policy search problem as a constrained optimization problem [Boyd and Vandenberghe, 2004] and
uses the KL, introduced in Section 2.3, as a distance metric. The problem is formulated as follows:

max
π

∫

π(θ)R(θ) dθ ,

s.t. ε≥ KL(π(θ)||q(θ)),

1=

∫

π(θ) dθ ,

(3.1)

where the KL is given by
∫

π(θ) log(π(θ)/q(θ))dθ . Putting it into plain words, the aim is to find a new policy π
parameterized by θ that maximizes the objective function R(θ) while staying close to the old policy q and having the
policy as a proper distribution. The analytic solution for the policy update is derived using the method of Lagrangian
multipliers (see Appendix 7.2), which yields the new policy in closed form as

π(θ)∝ q(θ)exp
�R(θ)
η

�

, (3.2)

where η is the Lagrangian multiplier for the KL constraint, which is responsible for the exploration i.e., how far does the
new search distribution move away from the current one to search for the optimal policy parameters. The dual function
of the optimization problem (7.1)

g(η) = ηε+η log

∫

q(θ)exp
�R(θ)
η

�

dθ , (3.3)

is then minimized to get the parameter η. Usually samples are used to estimate the integral

g(η) = ηε+η log
∑

i

1
N

exp
�R(θ [i])

η

�

dθ . (3.4)

To estimate the new policy we need to fit a parametric distribution π(θ) to the samples θ [i] for which the rewards have
been computed R(θ [i]). This can be achieved using weighted maximum likelihood estimate on the samples, with weights
given by d[i] = exp(R(θ [i])/η). The distribution q(θ) is not included in the weighting because the samples were already
drawn from q. Since the search distribution is chosen to be a Gaussian, then the policy parameters to be updated are the
mean and covariance. The new mean and covariance are given by

µπ =

∑N
i d[i]θ [i]
∑N

i d[i]
Σπ =

∑N
i d[i](θ [i] −µπ)(θ [i] −µπ)T

Z
, (3.5)

where

Z =
(
∑N

i d[i])2 −
∑N

i (d
[i])2

∑N
i d[i]

, (3.6)

is used to compute an unbiased estimator for the covariance matrix. Refer to Appendix 7.4 for derivation of weighted
maximum likelihood estimate.

16

3.1.1 Contextual REPS

The problem formulation of REPS can be extended to multiple contexts [Kupcsik et al., 2013]. The variables that do not
change for a given task but vary from one task to another give the notion of the context. For example, for the task of
tetherball, the initial position of the ball and the starting position of the robot describe the context of one task but may
vary in another. It is desirable to have the policy generalize to different contexts without re-learning the whole task i.e.,
adapt the parameters to the context. To select the parameters based on some context s the problem statement becomes

max
π

∫

µ(s)

∫

π(θ |s) R(s ,θ) dθds ,

s.t. ε≥
∫

µ(s) KL(π(θ |s)||q(θ |s))ds ,

∀s : 1=

∫

π(θ |s) dθ ,

(3.7)

where µ(s) is the context distribution. This formulation however indicates that for each context s [i], we have many
parameter vector samples θ [i, j]. Contextual REPS alleviates this problem by optimizing over the the joint probabilities
p(s ,θ) = µ(s)π(θ |s) under the condition that the marginal distribution p(s) =

∫

p(s ,θ)dθ reproduces the context
distribution i.e., ∀s : p(s) = µ(s), so we can now use one sample per context [s [i],θ [i]] as opposed to many parameters
samples per context.
This formulation is still problematic however, because as a result of continuous spaces, we end up with an infinite amount
of constraints. So, instead of matching the context distribution exactly, only feature expectations are matched i.e., The
final formulation is given by

max
p

∫ ∫

p(s ,θ) R(s ,θ) dθds,

s.t. ε≥
∫ ∫

KL (p(s ,θ)||q(s ,θ))dθds ,

∀s : 1=

∫ ∫

p(s ,θ) dθds,

φ̂ =

∫ ∫

p(s ,θ)φ(s)dθds ,

(3.8)

where φ̂ is the observed average feature vector. Once again, using the method of Lagrangian multipliers, the new policy
is given by

p(s ,θ)∝ µ(s)q(θ |s)exp
�R(s ,θ)− V (s)

η

�

, (3.9)

where V (s) = φ(s)T vvv is the context-dependent baseline i.e., we subtract how good the reward is based on the context.
For example, given the tetherball task, a reward for hitting and a penalty for joint movement and a context describing the
initial position of the robot, if there were no baseline, a robot hitting the ball from a difficult initial position would get a
lower reward than a robot positioned in such a way that it doesn’t move a lot to reach the ball. It allows is to evaluate
the parameter θ independently from the context s . The dual function for the optimizaton problem is

g(η, vvv) = ηε+ vvv T φ̂ +η log

∫

q(θ)exp
�R(s ,θ)− vvv Tφ(s)

η

�

dθ . (3.10)

Similarly as in standard REPS, a new parametric distribution is obtained by performing a weighted maximum likelihood
(ML) estimate. Typically, a Gaussian policy with a linear mean is used to represent the policy N(θ |Kϕ(s),Σ) 1. The
weighted ML solution is given by

K = (ΦDΦ)−1ΦT DΘ , (3.11)

where Φ is the feature vector, D is the diagonal weighting matrix with weights given by d[i] = exp(R[i] − V (s [i])/η) and
the covariance matrix is the same as in equation (3.5).

1 Note that φ(s) is typically different from ϕ(s).

17

Algorithm 3 Contextual REPS

1: while not converged do
2: for i=1 .. N do
3: Observe context si ~µ(s)
4: Draw parameters θi ~N(θ |Kϕ(si),Σ)
5: Evaluate parameters and get R(si ,θi)
6: end for
7: Optimize dual function (3.10) to get η and vvv
8: Update policy π(θ |s) using Weighted Maximum Likelihood Estimate
9: end while

3.2 Model-based Relative Entropy (MORE)

In the previous section, REPS was introduced along with the idea of information loss bounding using the KL divergence.
Despite its simplicity and ease of use, REPS uses only the values of the objective function which tend to be very noisy, re-
quire an exhaustive amount of evaluations for the objective/ need many samples to approximate KL and suffers from pre-
mature convergence [Abdolmaleki et al., 2015a], [Stulp and Sigaud, 2012]. Proposed by [Abdolmaleki et al., 2015b],
MORE is also a black-box optimizer in which the objective function is locally approximated by a quadratic model and
that model is used to locally maximize objective function. On top of that it adds a lower bound constraint on the entropy
of the new distribution to avoid the problem of premature convergence caused by a collapsing variance. Similar to REPS
the problem is formulated as a constrained optimization problem with the addition of the entropy bound

max
π

∫

π(θ)R(θ) dθ ,

s.t. ε≥ KL(π(θ)||q(θ)),
β ≤ H(π),

1=

∫

π(θ) dθ ,

(3.12)

where H(π) = −
∫

π(θ) log(π(θ)) dθ is the entropy of π. The upper-bound for the KL ε is not changed during the
learning process, while β is updated every iteration as

β = γ(E[H(q)]−H(π0)) +H(π0) , (3.13)

where γ specifies the percentage of the relative difference between the old policy’s expected entropy and the minimal
entropy H(π0) set for the policy distribution. Given the above optimization problem, the new policy is given by

π(θ)∝ q(θ)
η
η+ω exp

� R(θ)
η+ω

�

, (3.14)

where η > 0 and ω> 0 are the Lagrangian multipliers for the KL and entropy constraint respectively. This would be the
same formulation for REPS if ω= 0. The dual function given by

g(η,ω) = ηε−ωβ + (η+ω) log

∫

q(θ)
η
η+ω exp

� R(θ)
η+ω

�

dθ , (3.15)

is minimized to get η and ω. For the quadratic model as

R(θ)≈ θ T Rθ + θ T r + r0, (3.16)

and a Gaussian search distribution q(θ) = N(θ |µ,Σ) we end up with a closed form solution for equation (3.15), (see full
derivation in Appendix 7.3)

g(η,ω) = ηε−ωβ +
1
2

�

f T F f −ηµTΣ−1µ−η log |2πΣ|+ (η+ω) log |2π(η+ω)F |
�

, (3.17)

where F = (ηΣ−1 − 2R)−1 and f = ηΣ−1µ+ r . The policy update is

πθ)=N(θ |F f , (η+ω)F) (3.18)

18

3.2.1 Contextual-MORE

For versatile task objectives, once again we would like to incorporate some context into the problem statement. The prob-
lem formulation remains the same, with the addition of a context distribution over the search distribution as described
in [Tangkaratt et al., 2017]

max
π

∫ ∫

µ(s)π(θ |s)R(θ , s) dθds ,

s.t. ε≥
∫

µ(s)KL(π(θ |s)||q(θ |s)) ds ,

β ≤ H(π),

1=

∫ ∫

µ(s)π(θ |s) dθds ,

(3.19)

where µ(s) is the distribution over the context and β is defined similarly as in standard MORE (3.13). Unlike the
contextual REPS formulation, where the optimization is done over the joint distribution p(θ , s), CMORE optimizes over
the conditional distribution π(θ |s), which implies that CMORE assumes if the search distribution does not change so
much in consecutive updates i.e., KL is bounded, then the context distribution also does not drastically change between
bounded updates.
The quadratic model in terms of θ and s is approximated by

R(θ , s)≈ θ T Rθθθ +φ(s)
T Rssφ(s)− 2θ T Rθ sφ(s) + θ

T r1 +φ(s)
T r2 + r0 (3.20)

where Rθθ , Rss, Rθ s, r1, r2 and r0 are the model parameters 2. The matricies Rθθ , Rss are symmetric, Rθθ is enforced to
be negative definite and φ(s) denotes the features of the context s . The policy distribution is a Gaussian with a linear
mean

q(θ |s) =N(θ |Kφ(s) + b,Σ). (3.21)

The dual function for (3.19) is expressed as

g(η,ω) = ηε−ωβ +
1
2

�

f T F f −ηbTΣ−1b+ (η+ω) log |2πF(η+ω)| −η log |2πΣ|
�

+

∫

µ(s)

�

φ(s)T m +
1
2
φ(s)T Mφ(s)

�

d s

(3.22)

where

f = ηΣ−1b+ r1,

F = (ηΣ−1 − 2R)−1,

m = LT FL−ηKΣ−1b,

M = LT FL−ηKΣ−1 K ,

L= ηΣ−1 K + 2Rθ s.

(3.23)

The expectation in Equation (3.22) is approximated by sample averages since the context distribution µ(s) is unknown.
The new policy is given by

π(θ |s) =N(θ |FLφ(s) + F f , F(η+ω)), (3.24)

with f , F and L given in (3.23).

2 When learning the model parameters using linear regression, after Rθθ is enforced to be negative definite, the remaining model parameters
need to be re-learned.

19

Algorithm 4 Contextual MORE

1: while not converged do
2: for i=1 .. N do
3: Observe context si ~µ(s)
4: Draw parameters θi ~N(θ |Kφ(si),Σ)
5: Evaluate parameters and get R(θi , si)
6: end for
7: Fit quadratic model (3.20)
8: Optimize dual function (3.22)
9: Update policy π(θ |s) (3.24)

10: end while

3.3 Covariance Matrix Adaptation Evolution Strategies (CMA-ES)

CMA-ES [Auger and Hansen, 2012] is yet another stochastic search algorithm that descends from a class of algorithms
called evolution strategies (ES) [Rechenberg, 1978]. Inspired by the principle of biological evolution, the main idea of
ES is to generate a population of candidate solutions, evaluate the candidates’ fitness, then perform selection; choose the
fittest individuals as parents for the next generation, mutate the current distribution and get the offspring of the next
generation from the selected parents. Like most stochastic search algorithms, CMA-ES aims to find the optimal policy
parameters that maximize the likelihood of favoured observations i.e., increase the probability of successful solutions.
Furthermore, CMA-ES exploits the correlation between consecutive steps captured by the evolution paths to adapt the
step-size and efficiently update the covariance matrix of the distribution.

The Covariance Matrix: Typically, stochastic search algorithms maintain a Gaussian distribution N(θ |m,Σ) 3 on individ-
uals where m denotes the mean and Σ denotes the covariance. The covariance matrix is responsible for the exploration
of the search distribution. It determines the shape of the distribution as demonstrated in Figure 3.1. The covariance
matrix is defined as

Σ=

σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n

...
...

. . .
...

σm1 σm2 . . . σmn

,

where the diagonals denote the variance of the corresponding random variables i.e., how far variables change from the
mean, and the off-diagonal entries capture the covariance between each pair of variables; i.e., how the variables are
correlated to each other.

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(a) Σ =
�

1 0
0 1

�

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(b) Σ =
�

1 0
0 5

�

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(c) Σ =
�

5 4
4 6

�

Figure 3.1: An illustration of how the shape of a 2-dimensional Gaussian distribution is determined by the covariance
matrix. Figure 3.1a, shows equal horizontal (along x-axis) and vertical (along y-axis) spreads of data points
and no correlation between the two variables x and y. Figure 3.1b captures a larger vertical spread, hence the
elongated shape. Figure 3.1c a symmetric correlation of between x and y, i.e., if the value of x increases the
value of y also increases.

3 The mean is denoted by m instead of µ to avoid confusion with the algorithm’s terminology.

20

The basic sampling equation from which new offspring (search points) is/are generated is

x (g+1)
k ~ m(g) +σ(g)N(0,Σ(g)) for k = 1, ...,λ , (3.25)

where g denotes the generation, m ∈ Rn denotes the mean, λ denotes the population size/ number of offspring, Σ ∈ Rnxn

denotes the covariance matrix of the multivariate search distribution and σ ∈ R+ is the step-size/standard deviation. The
number of selected individuals/parents is denoted by µ. The equation shows that the new search points are sampled as
normally distributed perturbations of m. There are two main strategies for selection, the plus/elitist selection (µ/µ+λ),
where µ parents are selected from λ + µ individuals, and comma/non-elistist selection (µ/µ,λ), where µ parents are
selected only from the offspring λ. The latter will be used for the remainder of this section.

Fitness Transformation: CMA-ES ranks the samples/offspring based on their fitness using a rank preserving trans-
formation of the fitness values. First the samples are sorted ascendingly 4based on their fitness values, such that
f (x1:λ)≤ ..≤ f (xλ:λ) and the weight of the j th best sample is set to

w j = ln(µ+
1
2
)− ln(j) , (3.26)

such that all weights sum to 1. This transformation makes the algorithm invariant under monotone transformations of
the fitness function [Hansen, 2016] rendering it quite robust.

To update the mean of the population, the solution to the weighted maximum likelihood estimate is used and the
new mean is given by

m(g+1) =
µ
∑

i=1

wi x i:λ,

w1 ≥ w2 ≥ ...≥ wµ > 0,
µ
∑

i=1

wi = 1 .

(3.27)

The step-size σ in CMA-ES is equivalent to the learning rate of the algorithm. There are various methods for step-size
control in ES, such as 1/5 success rule [Vent, 1975], which increases the step size if more than 20% of the new solutions
are successful and decrease it other, σ-self-adaptation [Schwefel, 1987] and path length control, also referred to as cu-
mulative step-size control or Cumulative Step-length Adaptation (CSA) [Hansen and Ostermeier, 2001], which is used
for this algorithm.

Figure 3.2: An illustration of step-size control in effect. Left figure shows the scenario where the updates are uncorrelated.
In that case the step size should be decreased as shown by the bold arrow. Right figure shows updates all in
the same direction i.e., correlated, in that case the step size should be increased.

Evolution Paths: The crux of this algorithm lies in the usage of evolution paths. Evolution paths store information about
consecutive update steps and allow the algorithm to exploit the correlation or decorrelation between update steps to
adapt its parameters. The idea is that if two consecutive update steps are towards the same direction i.e., they are corre-
lated, the updates add up. Likewise, if the two updates are in opposite directions, the updates cancel out. Exploiting this
correlation speeds up convergence time of the algorithm [Hansen, 2016].

4 In coherence with the referenced papers, a minimization objective is assumed for this algorithm.

21

Step-size control is used to exploit the correlation between consecutive updates in order to adapt the step-size. As
previously mentioned, if two consecutive updates are correlated, then the step size should increase. Similarly, if the two
updates are in opposite directions, the step-size should be decreased. This is depicted in Figure 3.2. In order to achieve
that, the step-size adaptation control of CMA-ES uses the evolution path pσ. The evolution path for step-size control is
given by

p(g+1)
σ = (1− cσ)p

(g)
σ +

Æ

cσ(2− cσ)µeff Σ
(g)− 1

2
m(g+1) −m(g)

σ(g)
,

µeff ≈
1

∑µ

i=1 w2
i

, cσ =
µeff + 2

n+µeff + 5
,

(3.28)

where cσ < 1 , the term (1− cσ) can be interpreted as a discount factor for the previous evolution path p(g)σ , µeff is the
number of effective samples 5. The step size is then given by

σ(g+1) = σ(g) exp

�

cσ
dσ

�

||p(g+1)
σ ||

E||N(0, I)||

��

, (3.29)

where dσ is a damping parameter that determines how much the step-size can vary and ||X || is the Euclidean norm of
the vector X n =

Ç

X 2
1 + X 2

2 + ..+ X 2
(n).

The covariance matrix update consists of two parts: the rank-µ update and the rank-one update. Rank-one update
considers the change of population mean over time as encoded in the evolution path pc i.e., it morphs the variance of the
distribution in the direction of previous successful steps. Rank-µ update incorporates information about the successful
steps in the previous generation (g). The evolution path pc used by the rank-one update is given by

p(g+1)
c = (1− cc)p

(g)
c +

Æ

cc(2− cc)µeff
m(g+1) −m(g)

σ(g)
. (3.30)

The full covariance matrix update is

Σ(g+1) = (1− c1 − cµ)Σ
(g) + c1pc p

T
c

︸ ︷︷ ︸

rank−one

+ cµ

µ
∑

i=1

wi
x i:λ −m(g)

σ(g)

� x i:λ −m(g)

σ(g)

�T

︸ ︷︷ ︸

rank−µ

,

c1 =
2

(n+ 1.3)2 +µeff
, cµ =min

�

1− c1,
2(µeff − 2+ 1/µeff)
(n+ 2)2 +µeff

�

,

(3.31)

where c1 is the learning rate for the rank-one update, cµ is the learning rate for the rank-µ update.

TR-CMA-ES: It has been noted that the update rules of CMA-ES are based on heuristics. In recent works
[Akimoto et al., 2012], [Ollivier et al., 2017], some theoretical foundation has been set to justify those rules. However, it
was not all set in a single mathematical framework. A new algorithm called Trust Regions for Covariance Matrix Adapta-
tion (TR-CMA-ES) [Abdolmaleki et al., 2017a] fully derives the update rules of CMA-ES in the Expectation-Maximization
framework, that optimizes a well defined objective i.e., maximizing the lower bound. By adding a trust region (KL
bound) to the optimization of the lower bound in EM, this approach reaches the same update rules for the mean and the
covariance matrix as CMA-ES, but reaches a different update rule for the step size, which yields more promising results.

3.3.1 Contextual CMA-ES

CMA-ES is a robust stochastic search algorithm with many favourable properties such as premature convergence
avoidance, multiple invariance properties and adaptive learning rates [Hansen, 2016]. It is regarded as one of the
most efficient evolutionary algorithms [Beyer, 2007]. Contextualizing this algorithm would allow us to inherit its
beneficial properties while gaining a more adaptive task learning algorithm. The contextual version of CMA-ES
[Abdolmaleki et al., 2017b] adopts a similar approach in contextualization as in contextual REPS i.e., using a linear
Gaussian policy for the search distribution and subtracting a context-dependent baseline from the rewards before assign-
ing weights to samples.

5 There are well established heuristics for setting parameters for CMA-ES, refer to [Hansen, 2016] for more details.

22

Just like the standard version, CCMAES ranks samples based on their fitness values. With the introduction of the
context however, the fitness values first need to be rectified in order to be able to rank the samples solely based on
their fitness independent of the quality of the context s . This is achieved by subtracting a context-dependent baseline
V (s) from the fitness R to obtain the advantage

Ak = Rk − V (sk). (3.32)

The baseline function V (s) can be interpreted as a value function that gives the expected return of the search distribution
for a given context. It can be obtain by linear ridge regression as

β =
�

φ(s)Tφ(s) +λI
�−1
φ(s)T R,

V (s) = β Tφ(s) ,
(3.33)

where φ(s) are the context features, λ is the regularization factor for the ridge regression and R are the fitness values
for the samples.

Algorithm 5 Contextual CMA-ES
Input: parameter dimensionality n, context dimensionality ns, number of offspring λ, number of parents µ

1: Initialize K ,σ(g=0), p(g=0)
σ , p(g=0)

c ,Σ(g=0)

2: while stopping criterion not met do 6

3: for k = 1, ... , λ do
4: Observe context sk
5: Compute mean m(sk) = Kϕ(sk)
6: Draw samples θk = m(sk) +σ N(0,Σ(g))
7: Evaluate fitness Rk = f (θk)
8: end for
9: Compute baseline V (s) for fitness Eq. (3.33)

10: Compute weights d[k] for { sk ,θk , Ak} Eq. (3.26)
11: Set hyperparameters µeff,c1, cµ, cc , cσ, dσ
12: Update mean function

K (g+1) = (ΦDΦ)−1ΦT DΘ
13: Update evolution paths

y =
K (g+1)ϕ̂ − K (g)

T
ϕ̂

σ(g)

p(g+1)
c = (1− cc)p(g)c + hσ

p

cc(2− cc)µeff y

p(g+1)
σ = (1− cσ)p(g)σ +

p

cσ(2− cσ)µeff Σ
(g)
−1
2 y

14: Update step size

σ(g+1) = σ(g) exp

�

cσ
dσ

�

||p(g+1)
σ ||

E||N(0, I)||

��

15: Update covariance matrix
S = 1

σ2

∑µ

i=1 dk(θk − K (g)ϕ(sk))(θk − K (g)ϕ(sk))T

Σ(g+1) = (1− c1 − cµ)Σ(g) + cµS
︸︷︷︸

rank−µ

+ c1p(g+1)
c pc(g + 1)T

︸ ︷︷ ︸

rank−one

16: end while

3.4 Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation (CREPS-CMA)

Some stochastic search algorithms (ex: REPS) use a weighted maximum likelihood estimate (WMLE), which can be an
unreliable estimator when the task at hand has a few number of samples and high dimensionality. This causes the WMLE
to overfit the covariance matrix making the entropy/variance collapse quickly, biasing the search distribution towards a
certain region. This loss of exploration causes the algorithm to converge prematurely. This issue of premature conver-
gence has been addressed by several works [Abdolmaleki et al., 2015a], [Stulp and Sigaud, 2012] that have proposed

6 Refer to [Hansen, 2016] for suggested stopping criteria.

23

various methods to alleviate this problem. Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation
is a hybrid algorithm proposed by [Abdolmaleki et al., 2016]. This algorithm combines the light weight advantages of
contextual REPS while addressing the problem of premature convergence by using a CMA-ES inspired update for the
covariance matrix.

Inspired by CMA-ES, the old covariance matrix is combined with the sample covariance matrix from Equation (3.5)
such that

Σ= (1−λ)Σq +λS, (3.34)

where λ ∈ [0, 1] and it balances the old covariance matrix Σq and the sample covariance matrix S. It is set as

λ=min
�

1,
φeff

p2

�

, φeff =
1

∑N
i=1(d[i])2

, (3.35)

where p is the dimensionality of parameters and d[i] are the weights computed for each sample as in Section 3.1.1. This
update reduces the entropy of the distribution by a certain amount and scales it by the number of effective samples φeff.
The intuition is, in the early stages of the search distribution, there is a low number of effective samples i.e., ones with
high weights, so information retained in the old covariance matrix is needed, therefore it is combined with the sample
covariance matrix. On the other hand, when the search distribution is close to convergence, the number of effective
samples increases so it is sufficient to use only the sample covariance matrix by setting λ to 1.

Algorithm 6 Contextual REPS-CMA
Given data set D of parameters θ , context s and rewards R

1: Compute weights d[i] for data set D
2: Optimize dual function to get optimum η and vvv

g(η, vvv) = ηε+ vvv T φ̂ +η log
∫

q(θ)exp
�R(s ,θ)− vvv Tφ(s)

η

�

3: Normalize weights
∑N

i=1 d[i] = 1
4: Compute mean

K = (ΦDΦ)−1ΦT DΘ
µ= K Tφ(s)

5: Compute sample covariance S
S =

∑N
i=1 d[i](θ [i] −µ)(θ [i] −µ)T/Z

6: Compute parameters λ and φeff for covariance matrix update Eq. (3.35)
7: Compute new covariance matrix

Σ= (1−λ)Σq +λS

3.5 Covariance Estimation with Controlled Entropy Reduction (CECER)

Similar to the previous algorithm, CECER [Abdolmaleki et al., 2015a] offers another way to regularize the covariance
matrix update in REPS that also linearly interpolates the old covariance Σq matrix with the sample covariance matrix S

Σ= λΣq + (1−λ)S, (3.36)

where λ ∈ [0,1] is an interpolation factor that is chosen to reduce the entropy by a controlled amount ∆H. The entropy
reduction is scaled by the number of effective samples as follows

φeff =
1

∑N
i=1(d[i])2

, ∆H = αφeff, (3.37)

where d[i] defines the sample weights of REPS, and α is a constant that determines the amount of entropy reduction.
The idea is the more number of effective samples there is, the more the entropy can be reduced, i.e., we can rely more
on the sample covariance matrix S. The choice of λ is done to satisfy the following equality

H(Σq)−H(λΣq + (1−λ)S) =∆H. (3.38)

In order to find λ, direct search is used.

24

4 Setup and Implementation
In this chapter, the full details of the setup will be introduced. First, the task objective and model will be discussed. The
components of the software framework will be then presented. Then the modules of the software framework will be
throughly explained.

4.1 The Tetherball Task and Setup

Using a game-based task is convenient for benchmarking, since the performance i.e., game score, provides a simple
success measure for comparison. In a typical two-player tetherball game, two players stand facing each other and a
pole is centered between them. A ball is attached to the top of the pole using a rope. A player scores if he/she hits the
ball without the opponent unwinding it. This is the full setup that was presented in [Parisi et al., 2015] to compare a
programmed player to a learned opponent. The task setup in this thesis follows a slightly simpler setup. First of all, a
single-player setup is chosen, so a single BioRob is used in simulation. In the single-player setup, the robot scores a point
for every time it hits the ball. Additionally, only four degrees of freedom of the robot out of the six are controlled. The
remaining two joints almost nearly do not move in this task, so they are ignored for the sake of shrinking the parameter
space of the policy. A simpler model is used for the ball; a pendulum setup is used as opposed to pole setup (see Figure
4.1) , where there is an additional height parameter (distance of rope wind around the pole). To have a non-trivial task,
the ball starts at a random position and velocity determined by ϕ, θ , dϕ and dθ in the spherical coordinate system.
These would be our context variables in the state. The state for the MDP of the task is x = {q , b, ḃ}, where q ∈ R4

denotes the joint positions and b, ḃ ∈ R4 are the ball positions and velocities respectively. The control actions u ∈ R4 are
the torques generated by the controller given the desired joint positions.

l

θ

ϕ

Figure 4.1: Diagram of the pendulum setup with ball position in spherical coordinates. The initial values of ϕ, θ , dϕ and
dθ determine the context for the task, while l remains constant. Figure from [Abdulsamad et al., 2014].

4.2 The Software

The Simulator: The most essential component of the software is SL the simulator. Simulation Lab (SL) is an OpenGL
based physical simulation environment for robotics, originally developed by Stefan Schaal and colleagues at USC
[Schaal, 2009]. SL is particularly useful in simulation mode, to simulate tasks on the robot before implementing
them on the real system, thereby preventing any harm to the real robot. It provides a rigid-body physics simulation
environment that accurately models the real system. It is implemented using the C programming language.

Robcom: Robcom is an API that communicates with SL in a variety of languages/frameworks such as Matlab, C++,
Python and ROS. For the scope of this project, the Python API is used. It eases the implementation of some functionalities

25

such as recording demonstrations from the simulator and trajectory execution as will be shown in the next section.

The Shared Memory Interface: Offered by SL, the shared memory interface provides another way for SL to com-
municate with Matlab and Python. Similar to Robcom, it is also used to send trajectories to SL. On top of that, it can
receive replies specific to each task. It is also easier to send and receive arbitrary data using its predefined set of buffers.

Figure 4.2: The Biorob robot in the simulation environment SL.

4.3 Implementation Details

Demonstrations Recording: Demonstration data is essential for policy initialization, which will be discussed shortly.
The aim is to save trajectory data starting with the ball being released, the robot moving in attempt to hit the ball and
finally the robot going back to its starting position. The initial position and velocity of the ball are also recorded and
saved because they define the context of the task, which is needed for imitation learning. To obtain these trajectories, the
simulation of the programmed player from [Parisi et al., 2015] is used. For some initial position and velocity of the ball,
it estimates the ball’s trajectory using ordinary differential equations (ODEs). The robot player then uses this prediction
of the ball’s trajectory to find a hitting point. With the desired hitting point, a low-level controller solves a constrained
inverse kinematics problem and generates the desired trajectory. Fifth order polynomials are used to represent the tra-
jectory, which is then followed using a PD controller with gravity compensation. SL’s utility functions, such as invKin and
ias_calculate_min_jerk_next_step_single_joint, are used to attain a robust programmed player. Robcom is used to record
the demonstrations.

Imitation Learning and Policy Initialization: To speed up the learning process, it is often useful to narrow down
the initial search space by initializing it around where the optimal parameters are, i.e., not have the robot start very far
off from the optimal solution. In order to achieve that, imitation learning, discussed in 2.4.2, is used. The data saved
from the recorded demonstrations stores the joint positions q, velocities q̇ and accelerations q̈, which are needed for
imitation learning of the DMP parameters. The goal g is set to the initial position of the trajectory and the number of
steps of the complete trajectory is 1200 steps. To learn the weights of the DMPs’ forcing function, Equation (2.8) is
used. In addition to the joints’ data, the initial position and velocity of the ball are also retrieved from the recorded
demonstrations. Together, they define the context of the task s = {b, ḃ}. The ball data is saved in cartesian space, so
before performing calculations, it is first transformed into spherical coordinates. Since sample parameters are drawn
from Gaussian policies with a linear mean θ ~N(θ |Kϕ(s),Σ), where ϕ(s) denotes features of the context s, the policy
parameters K can be estimated from demonstrations by ridge regression as

K = (ΦTΦ+λI)−1ΦΘ,

where ΦT = [ϕ(s1), ..,ϕ(sN)] is the context (feature) vector collected from demonstrations, Θ = [θ1, ..,θN] are the sam-
ples obtained by imitation learning and λ is the ridge factor that specifies the strength of regularization.

26

Sampling DMP Shared Memory
Interface Policy Update

θ

SL

s, qdes

 qdes

R

Imitation
Learning

{θ, s,R} μ,Σ

,μ0 Σ0

Figure 4.3: A figure depicting the general flow of the framework. The initial policy parameters µ0 and Σ0 are obtained
by imitation learning. They are then passed to the sampling distribution N(θ |µ,Σ) where the samples θ are
drawn. The samples are the DMP parameters, which are used to generate the desired trajectory qdes. The
desired trajectory qdes and the context s(independently sampled from a uniform distribution) are sent to
SL through the shared memory interface. The context specifies the initial state of the ball and the desrired
trajectory is specified by qdes. After the trajectory execution, the reward R for the episode is sent by SL. Using
the data set {θ , s , R}, the learning algorithm updates the policy parameters µ,Σ which are fed back into the
sampling distribution. This loop is repeated until satisfactory performance is reached.

Trajectory Generation: To generate trajectories Equation (2.5) is used. The weights θ of the forcing function (2.7)
are obtained by sampling from a Gaussian distribution with the policy parameters. For each step of the trajectory, first
the forcing function is computed using Equation (2.7), then the desired joint acceleration q̈ t+1 is obtained using Equation
(2.5). In order to obtain the joint positions qt+1 and velocities q̇ t+1, Euler’s method/integration scheme is used

q̇ t+1 = q̇ t + q̈ t+1dt,

q t+1 = qt + q̇t+1dt,

ż t+1 = −ταzz t ,

z t+1 = z t + ż t+1dt .

(4.1)

Sampling: To sample from a Gaussian distribution, the mean µ and covariance Σ of the distribution are needed, and
since the mean is dependent on the context, its value is computed for each context with the current policy parameters,
i.e., µi = Kϕ(si). First a random context is drawn from a uniform distribution. Using this context, the mean µi is
computed, then samples are drawn from the current search distribution.

Trajectory Execution: The samples drawn from the search distrbution, as previously mentioned are the weights of
the forcing function of the DMPs. They are then sent to the trajectory generator (reference trajectory generation point
somehow), which returns the desired joint positions of the robot. In order to execute this trajectory, first the current
context, which specifies the initial position and velocity of the ball is sent along with the initial state/home position of
the robot which is arbitratily as the home position using the shared memory interface. Next, the whole desired trajectory
is sent for execution via shared memory. An execution loop awaits commands and moves the robot every timestep to the
corresponding trajectory step.

Reward Computation: The reward used for the tetherball task is computed in SL. It is computed as p1 + p2 + p3
where

p1 = 100(1− exp(d2)) ,

p2 = −J ,

p3 = 500c c ∈ {0,1} ,

in which d denotes the minimum distance between the ball and the racket during the whole episode/trajectory, J is the
average of the load torque of the robot during the episode and c is the contact flag indicating whether the robot hit the
ball or not.

27

5 Experiments
This chapter presents the experimental evaluations performed on the selected algorithms and discusses the results. The
algorithms are first assessed on standard optimization test functions, then they are evaluated on the tetherball task from
the previous chapter. The experimental setup on the standard optimization functions is provided followed by the results
and likewise for the tetherball task.

5.1 Benchmarking on Standard Optimization Test Functions

Test functions provide artificial landscapes to evaluate the performance of optimization algorithms. They are used to assess
robustness, convergence speed and general performance of the algorithms. The two classical benchmarking functions
chosen are the Sphere and Rosenbrock functions [Molga and Smutnicki, 2005].
The Sphere function is a unimodel convex function denoted by

f (x) =
N
∑

i=1

x 2
i . (5.1)

The Rosenbrock function, sometimes referred to as the banana function, is a classic optimization problem, which is also
unimodal and convex. It has one global optimum which is inside a parabolic shaped flat valley. It is usually easy to find
the valley, however finding the global optimum is particularly difficult, which makes this function popular with testing
algorithms’ performance. It is defined as

f (x) =
N−1
∑

i=1

[100(x i+1 − x 2
i)

2 + (1− x i)
2]. (5.2)

The objective is usually to minimize the functions above, however it is easy to obtain a maximization objective by simply
inverting the sign of the function. In order to incorporate the context s into the optimization functions, the samples θ
are linearly transformed with the context x = θ +Gs , where G is a constant matrix sampled from a normal distribution.
Both functions have their global optima at zero. The context is drawn from a uniform distribution 1 ≤ si ≤ 2. In all
algorithms, quadratic features are used for φ(s). The samples are drawn from a linear Gaussian policy N(θ |Kϕ(s),Σ),
where ϕ(s) is just a linear transformation of the context i.e., adds a bias term, except for CMORE where ϕ(s) = φ(s).
For each experiment, the average cost over 5 trials is plotted.

4 2 0 2 4 4
2

0
2

4

10

20

30

40

50

(a) 2D Sphere

4 2 0 2 4 4
2

0
2

4

20000

40000

60000

80000

(b) 2D Rosenbrock

Figure 5.1: Standard Test Functions.

28

5.1.1 Evaluating CREPS & CREPS-CMA on Number of Samples and Initial Variance

In this experiment, CREPS is compared against its closely related counterpart CREPS-CMA. The performance of the
algorithms is examined under different number of samples. The experiment is performed on the 15-dimensional sphere
and rosenbrock functions with a 1-dimensional context. The initial distributon is initialized as N(θ |0, 1000I). The KL is
set to 0.5.

0 50 100 150 200 250 300
iterations

10 8

10 6

10 4

10 2

100

102

104

Co
st

15D Sphere
CREPS 1000 samples
CREPS 50 samples
CREPS-CMA 1000 samples
CREPS-CMA 50 samples

0 50 100 150 200 250 300
iterations

102

104

106

108

1010

Co
st

15D Rosenbrock
CREPS 1000 samples
CREPS 50 samples
CREPS-CMA 1000 samples
CREPS-CMA 50 samples

Figure 5.2: Plots of experiment comparing the performance of CREPS and CREPS-CMA with a high and low number of
samples.The experiment is performed on a 15-dimensional sphere (left) and rosenbrock (right). It is evident
that CREPS-CMA outperforms standard CREPS with a lower number of samples and has almost the exact
performance otherwise. This is due to CREPS-CMA compensating the low number of samples by incorporating
information from the old covariance matrix to the sample covariance matrix.

Figure 5.2 shows that CREPS is outperformed by CREPS-CMA when given a lower number of samples. This is due
to CREPS-CMA incorporating information from the old covariance matrix when the number of effective samples is low.
However, when both algorithms are given sufficiently many samples, the achieve the same performance.

The next experiment examines the effect of the initial variance in the search distribution on the performance of CREPS.
This experiment is run on an 8-dimensional sphere and rosenbrock with a 4-dimensional context. 200 samples are gen-
erated every iteration, the KL is set to 0.5 and the mean function K is initialized to 0. The two initializations under
evaluation are N(θ |0, 1000I) and N(θ |0, I).

0 50 100 150 200 250 300
iterations

10 8

10 6

10 4

10 2

100

102

104

Co
st

8D Sphere - CREPS
initial variance = 1000
initial variance = 1

0 50 100 150 200 250 300
iterations

101

102

103

104

105

106

107

108

109

Co
st

8D Rosenbrock - CREPS
initial variance = 1000
initial variance = 1

Figure 5.3: Results showing performance of CREPS assessed on different initial variances of the distribution. The experi-
ment is performed on an 8-dimensional sphere(left) and rosenbrock(right) with a 4-dimensional context. The
plots show the significant increase in the performance of the algorithm when given a larger initial variance.
A larger initial variance indicates a larger initial distribution, which gives the algorithm room for exploration,
which could allow the algorithm to converge to a better optimum.

29

Results in Figure 5.3 clearly show that algorithm with higher initial variance significantly outperforms the other. This
highlights the importance of the initial variance for some algorithms. A larger initial search distribution might sometimes
benefit a search algorithm by providing it with some exploration, which is often needed at the beginning of the search.
Unlike CMORE, CREPS has no lower bound on the entropy of the distribution, so the entropy is prone to drastically
dropping, so having a larger initial variance delays possible premature convergence.

5.1.2 Evaluating CMORE with Minimum Entropy

This experiment examines the outcome of different values of the minimum entropy H0 on the performance of CMORE.
H0 is used in setting the lower bound on the entropy in CMORE as β = γ(E[H(q)] − H(π0)) + H(π0). CMORE was
evaluated on the 8-dimensional sphere and rosenbrock with a 4-dimensional context. The KL is set to 0.5, γ is set to 0.80
and 1500 samples are generated each iteration. To fit the quadratic model (3.20), linear ridge regression is used.

0 100 200 300 400 500
iterations

10 2

10 1

100

101

102

Co
st

CMORE 8D Sphere
H0 = 5
H0 = -5
H0 = -150
Ho = -500

0 100 200 300 400 500
iterations

101

102

103

104

105

106
Co

st
CMORE 8D Rosenbrock

H0 = 5
H0 = -5
H0 = -150
H0 = -500

Figure 5.4: The results of different values of the minimum entropy H0 on the performance of CMORE. The experiment is
performed on an 8-dimensional sphere (right) and rosenbrock (left) with a 4-dimensional context. As shown
in the plots, a lower minimum entropy yields a better performance.

Results in Figure 5.4 show that a lower minumum entropy yields better performance. Intuitively, the more entropy
there is in the distribution, the harder it is to narrow the distibution around the optimum parameters. Additionally,
having less entropy in the distribution result in safer update steps towards the optimum parameters.

Experiments were also run to examine the effect of the initial variance and initial mean of the distribution on the
performance of CMORE, but due to no effect on the performance, the plots are not included. Also, varying γ between
0.99 and 0.10 did not affect the performance with H0 = -150.

5.1.3 Evaluating CCMAES with Initial Variance and Step Size

The following experiment demonstrates the effect of varying the initial variance on the performance of CCMAES. 200
samples are drawn every iteration and the initial step-size σ0 is 1. The experiment is performed on the 8-dimensional
sphere and rosenbrock with a 4-dimensional context. For the mean given by m(s) = As + b, the matrix A is initialized to
0 and the bias b is drawn from a normal distribution. The initial covariance matrices in comparison are I and 10I .

30

0 50 100 150 200 250 300
iterations

10 16

10 13

10 10

10 7

10 4

10 1

102

Co
st

8D Sphere - CCMAES
init variance = 1
init variance = 10

0 50 100 150 200 250 300
iterations

10 13

10 10

10 7

10 4

10 1

102

105

108

Co
st

8D Rosenbrock - CCMAES
init variance = 1
init variance = 10

Figure 5.5: The effect of adding initial variance on the performance of CCMAES. It is clear that adding noise to the initial
covariance matrix in the context of these optimization problems only hinders the performance of CCMAES.
The inital policy might already be near the optimum parameters, so expanding the search distribution would
only slow down convergence.

Results in Figure 5.5 show that no performance gain is achieved with a larger initial variance. On contrary, it deters the
performance for this problem. This might be due to the search distribution already starting near the optimal parameters,
so increasing the search space would only slow down convergence.1

This experiment has the same settings as the previous ones, except the initial covariance matrix is initialized to the
identity matrix I and the initial step-size σ0 is varied.

0 50 100 150 200 250 300
iterations

10 16

10 13

10 10

10 7

10 4

10 1

102

Co
st

8D Sphere - CCMAES
0 = 1
0 = 10

0 50 100 150 200 250 300
iterations

10 14

10 10

10 6

10 2

102

106

1010

Co
st

8D Rosenbrock - CCMAES
0 = 1
0 = 10

Figure 5.6: The effect of the initial step-size σ0 on the performance of CCMAES on the 8-dimensional sphere (left) and
rosenbrock (right). Increasing the step-size deters the performance in the context of these optimization prob-
lems. With a larger initial step-size the distribution may drift away from the optimum solution in the early
stages, which slows down the convergence.

Results in Figure 5.6 are consistent with the previous experiment, since both experiments scale the variance of the
distribution. This can be seen by referring to the sampling equation for CCMAES 3.25. A larger initial step-size σ0
does not achieve performance gain as, in this scenario, the initial search distribution is initialized near the optimum
parameters, increasing the initial step-size causes the distribution to drift away and therefore take longer to converge.

1 The blip at the end of the curves might be due to numerical errors.

31

5.1.4 Benchmarking on Sample efficiency

In this experiment, the sample efficiency of each algorithm is assessed. For all algorithms, the covariance matrix is
initialized to I . The KL for CREPS and CREPS-CMA is set to 0.5. For CMORE, the minimum entropy H0 is set to -150
and γ = 0.80. CCMAES starts with step size σ = 1, the mean functions are initialized to 0 and the bias b for CCMAES is
drawn from a normal distribution. The average cost at convergence is assessed against the number of samples generated.

100 200 500
Number of samples

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

102

Fi
na

l a
ve

ra
ge

 c
os

t

8D Sphere

CREPS
CREPS-CMA
CMORE
CCMAES

100 200 500
Number of samples

10 11

10 9

10 7

10 5

10 3

10 1

101

103

105

Fi
na

l a
ve

ra
ge

 c
os

t

8D Rosenbrock

CREPS
CREPS-CMA
CMORE
CCMAES

Figure 5.7: Results showing performance of the algorithms assessed using 100, 200 and 500 number of samples. CC-
MAES demonstrates the largest change in performace with different number of samples. CMORE is least
sensitive, with trivial improvement given more samples. CREPS-CMA out performs CREPS with a lower number
of samples and performs the same otherwise. For clarity, only the mean is plotted.

Figure 5.7 shows the the results of the sample efficiency experiment. CCMAES shows a significant increase in perfor-
mance with higher number of samples, so it appears to be the most sensitive. CMORE on the other hand is the least
affected by the number of samples. It should be noted however, that for higher dimensional problems the performance of
CMORE can be strongly affected because it requires a sufficient number of samples to learn the quadratic model (3.20).
CREPS-CMA slightly out performs CREPS with a lower number of samples, consistent with the results presented in 5.2.
However, given 200 samples, the minimization (3.35) that chooses the interpolation factor is 1, which only utilizes the
sample covariance matrix as in REPS, so both algorithms achieve the same performace.

5.1.5 Benchmarking on Scalability

This experiment compares the scalability of the algorithms. The evaluations are carried on the 2, 8 and 15-dimensional
sphere and rosenbrock with 2, 4 and 7 dimensional contexts respectively. 500 samples where generated each iteration.
The covariance matrix is intialized to I . The settings from the previous experiment are maintained.

32

2 8 15
Dimensionality

10 16

10 13

10 10

10 7

10 4

10 1

102

Fi
na

l a
ve

ra
ge

 c
os

t

Sphere

CREPS
CREPS-CMA
CMORE
CCMAES

2 8 15
Number of samples

10 14

10 11

10 8

10 5

10 2

101

104

Fi
na

l a
ve

ra
ge

 c
os

t

Rosenbrock

CREPS
CREPS-CMA
CMORE
CCMAES

Figure 5.8: Results showing performance of algorithms assessed on the 2, 8 and 15-dimensional sphere (left) and rosen-
brock(right). The performance of all algorithms decreases as the dimensionality increases. CMORE being the
most stable followed by CCMAES then CREPS and CREPS-CMA. CREPS-CMA shows no significant advantage
over CREPS in this case. For clarity, only the mean is plotted.

As one might expect, increasing the dimensionality of the problem makes it tougher to solve. CMORE observes the
least change in performance followed by CCMAES then CREPS and CREPS-CMA. One can see a trivial outperfomance of
CREPS-CMA over CREPS at 15 dimensions. This is due to the division over the square of the dimensionality in Equation
(3.35) that determines the interpolation factor.

5.1.6 Benchmarking on Optimum Performance

In this experiment all parameters are tuned to achieve the optimum performance by each algorithm. 200 samples are
drawn per iteration. The KL for CREPS, CREPS-CMA and CMORE is set to 0.5. For CMORE the minimum entropy H0
is set to -150 and γ = 0.80. The initial covariance matrix for CREPS and CREPS-CMA is 1000I and I for CMORE and
CCMAES. The initial step-size for CCMAES σ0 = 1.

0 25 50 75 100 125 150 175 200
iterations

10 16

10 13

10 10

10 7

10 4

10 1

102

105

Co
st

8D Sphere
CREPS
CREPS-CMA
CCMAES
CMORE

0 25 50 75 100 125 150 175 200
iterations

10 9

10 6

10 3

100

103

106

109

Co
st

8D rosenbrock
CREPS
CREPS-CMA
CCMAES
CMORE

Figure 5.9: The four policy search algorithms evaluated on an 8-dimensional sphere (left) and rosenbrock(right) with a 4-
dimensional context. The best performance is achieved by CCMAES, followed by CREPS and CREPS-CMA that
observe the same performance. CMORE achieves the least optimum performance. For clarity, only the mean
is plotted.

Figure 5.9 shows the best performance achieved by CCMAES, followed by CREPS-CMA and CREPS and finally CMORE.
One possible cause to justify CMORE’s performance is the method of model-fitting. In [Tangkaratt et al., 2017], acceler-

33

ated proximal gradient is used to learn the model, whearas in this experiment ridge regression is used. This is consistent
with the evaluations in [Tangkaratt et al., 2017], which show that ridge regression does not achieve a satisfying results.

5.2 Benchmarking on Tetherball

For the task of tetherball, 5 DMP basis functions are used to generate the trajectories for all algorithms except CMORE.
In CMORE, the feature matrix used to estimate the parameters of the quadratic model (3.20) is very high-dimensional,
as it includes quadratic features of the parameters of the task, quadratic features of the context features, linear features
of the parameters and the context features and cross features. In an attempt to reduce the dimensionality of the problem
of CMORE only 4 DMP basis were used, which reduces the parameter space of the task. With 4 joints and the DMP
parameters for each joint, the task has a 20-dimensional parameter space and 16-dimensional for CMORE. The DMP
parameters are set as follows: the goal g is set as an arbitrary starting position of the robot [0.5236,−0.6,1.2, 0.5] rad, α
and β are constants set to 25 and α/4 respectively, τ= 1 and αz = 0.5. The canonical system/ initial state of the system
zt is initially set to be 1. The number of steps for the trajectory is set to T = 1200 with step size dt= 0.002, which is the
time period for the simulator. The context is drawn from a uniform distribution as

θ~U
�−π

20
,
π

20

�

+
π

10
,

ϕ~U
�

0,
π

6

�

+
π

2
,

dθ~U(−0.1,0.1),

dϕ~U(−0.15,0.15) + 0.7,

which gives a range of 18◦, 30◦, 0.2 rad/s, 0.3 rad/s for θ , ϕ, dθ and dϕ respectively. For all the upcoming experiments,
CREPS and CREPS-CMA reuse old samples in a sample pool of 250 and CMORE uses a sample pool of 4500 samples.
Results of all experiments are averaged over 3 trials. Plots of the average reward and the hit rate (the percentage of
hitting the ball during the iteration) are used to assess the performance.

5.2.1 Evaluating CREPS with KL, Number of DMP Basis Functions and Value Functions

In the following experiment, the effect of different values for the KL bound ε on CREPS is presented. The distribu-
tion is initialized using imitation learning. 50 fourier features are used for the value function φ(s). 25 samples are
generated every iteration and a sample pool of 250 samples is maintained. The different values for the KL used are
ε= {0.1, 0.3, 0.5, 0.7}.

0 20 40 60 80 100 120
Iterations

100

0

100

200

300

400

M
ea

n
Re

wa
rd

s

= 0.1
= 0.3
= 0.5
= 0.7

0 20 40 60 80 100 120
Iterations

0

20

40

60

80

100

Hi
t R

at
e

%

= 0.1
= 0.3
= 0.5
= 0.7

Figure 5.10: This experiment evaluates the performance of CREPS given different KL bounds ε. Lower values for ε con-
verge slower than higher values because the new distribution remains closer to the previous distribution with
lower ε.

The KL determines how far the updated policy distribution moves from the previous policy distribution. In a way it
can be thought of as a step-size. Results in Figure 5.10 show how the magnitude of ε affects convergence speed. A high

34

ε may cause unsafe update steps or cause the search to overshoot an optimum solution. This can be seen with ε = 0.7,
where the average reward drops after the 60th iteration.

The following experiment was used to choose the best number of basis functions for trajectory generation using DMPs.
The same settings from the previous experiment are maintained and the KL is set to 0.5. The experiment evaluates the
performance using 3, 4, 5 and 8 DMP basis functions.

0 20 40 60 80 100 120
Iterations

100

0

100

200

300

400

M
ea

n
Re

wa
rd

s

3 Basis functions
4 Basis functions
5 Basis functions
8 Basis functions

0 20 40 60 80 100 120
Iterations

0

20

40

60

80

100

Hi
t R

at
e

%

3 Basis functions
4 Basis functions
5 Basis functions
8 Basis functions

Figure 5.11: Results of varying the number of DMP basis functions used to generate trajectories for the robot hitting
movement. The lowest performance is achieved by the lowest number of DMP basis functions. A better av-
erage reward is achieved by increasing the number of DMPs a certain threshold is reached. The performance
using 8 DMP basis functions is lower than when using only 4 or 5, due to the redundant added complexity.

Results in Figure 5.11 show how the performance is affected with a varying number of DMP basis functions. As de-
picted in the results, while increasing the number of basis functions could enable generating more complex trajectories,
this is also a tuned parameter because it is prone to overfitting. At some threshold, adding more basis functions adds
more complexity where it is not needed, increasing the parameter space of the problem rendering it harder without
achieving any performance gain.

The next experiment evaluates the performance of different features to represent the value function or the context-
dependent baseline (3.9). The settings from the previous experiment are maintained and 5 DMP basis functions are
used. To represent the value function, quadratic features, linear features and fourier features are examined.

0 20 40 60 80 100 120
Iterations

100

0

100

200

300

400

M
ea

n
Re

wa
rd

s

 linear features
 squared features
 fourier features

0 20 40 60 80 100 120
Iterations

20

40

60

80

100

Hi
t R

at
e

%

 linear features
 squared features
 fourier features

Figure 5.12: Performance of CREPS using different features to estimate the value function is shown. Fourier features and
quadratic features perform equally, while performance using linear features collapses after 50 iterations.

35

The choice of the features of value functions is considered a tunable parameter in the context of the given task. On
one hand complex features are powerful and can give a good approximation to the value function and on the other
hand, complexity may increase the dimensionality and hardness of the problem. Figure 5.12 shows the performance
of CREPS using different features to estimate the value function. Fourier features and quadratic features demonstrate
similar performace, while linear features seem to lack the complexity to estimate the value function.

5.2.2 Evaluating CCMAES with Initial Policy and Population Size

The following experiment examines the effect of providing a policy initialized using prior knowledge of the task i.e.,
using imitation learning, and a policy initialized randomly.

0 25 50 75 100 125 150 175 200
Iterations

0

50

100

150

200

250

300

350

400

M
ea

n
Re

wa
rd

s

0 demos initial policy
10 demos initial policy

0 25 50 75 100 125 150 175 200
Iterations

0

10

20

30

40

50

60

70

80

Hi
t R

at
e

%

0 demos initial policy
10 demos initial policy

Figure 5.13: The performance of CCMAES is evaluated against two policy initializations, one that is initialized randomly
with no prior knowledge and the other is initialized by imitation learning using 10 demonstrations. The policy
initialized from the demonstrations clearly outperforms the randomly initialized policy. The policy with prior
knowledge achieves faster convergence and convergence to a better optimum.

Results in Figure 5.13 emphasize the importance of a good initial policy for robotic tasks. Evidently, the more prior
knowledge the algorithm has about the task, the more likely it is to converge faster and to a possibly better solution.

The following experiment examines the effect of the population size on the performance of CCMAES. The initial step-size
σ0 is 1 and the covariance matrix is initialized to 100I .

0 25 50 75 100 125 150 175 200
Iterations

150

200

250

300

350

400

M
ea

n
Re

wa
rd

s

population size = 100
population size = 300
population size = 600

0 25 50 75 100 125 150 175 200
Iterations

40

50

60

70

80

Hi
t R

at
e

%

population size = 100
population size = 300
population size = 600

Figure 5.14: Evaluating the performance of CCMAES with various population sizes. Results show that CCMAES needs a
large number of samples to reach satisfactory performance.

36

Congruent to the results on the standard functions. CCMAES’s performance is highly affected by the population size
or number of samples. The best performance is achieved with the highest number of samples. In comparison to CREPS,
CCMAES needs more samples to reach a satisfactory solution. While not presented, experimental evaluations on CREPS
that vary the number of samples drawn each iteration have been carried out. Results showed that, unlike CCMAES,
CREPS usually converges to the same solution at different speeds depending on the number of samples.

5.2.3 Benchmarking on Optimum Performance

The settings for the final experiment are as follows. The KL for CREPS, CREPS-CMA and CMORE is set to 0.5. For
CMORE, the minimum entropy H0 = -75 and γ = 0.99. The initial mean function K of the distribution N(θ |Kϕ(s),Σ)
is initialized by imitation learning using 10 demonstrations for all algorithms. The initial covariance matrices Σ for
CREPS and CREPS-CMA are also initialized by imitation learning. However, that was not well suited for CMORE due to
numerical instabilities, so it is instead initialized as Σ0 = 10I . For CCMAES, the algorithm already has a precise way of
constructing the covariance matrix, so only extra variance was added and Σ0 = 100I . 2. For the context features φ(s),
CREPS and CREPS-CMA use 50 fourier features. CMORE uses 60 fourier features and CCMAES uses quadratic features.3

For CREPS, CREPS-CMA and CCMAES ϕ(s) is a linear transformation of the context, i.e., only a bias term is added. In
CMORE ϕ(s) = φ(s). 250 samples are generated each iteration.

0 20 40 60 80 100 120 140 160
Iterations

100

0

100

200

300

400

M
ea

n
Re

wa
rd

s

CMORE
CCMAES
CREPS
CREPS-CMA

0 20 40 60 80 100 120 140 160
Iterations

20

40

60

80

100
Hi

t R
at

e
%

CMORE
CCMAES
CREPS
CREPS-CMA

Figure 5.15: An evaluation of the optimum performance achieved by all algorithms on the tetherball task.. Results show
the best performance achieved by CREPS and CREPS-CMA reaching a hit rate of 80% followed by CMORE
converging at 75% and finally CCMAES converging around 62%.

While all algorithms reach a satisfactory performance i.e., all manage to achieve a hit rate above 60%, some outperform
others. Results in Figure 5.15 show the best performance achieved by CREPS and CREPS-CMA followed by CMORE and
finally CCMAES. Better results might be achieve by CMORE if a different model-fitting approach is used instead of ridge
regression. Additionally, tuning the features of the value function and initial policy parameters might achieve better
performance, however due to the lengthiness of the evaluation process, it was not possible to try out many different
parameter settings. The same argument can be extended for CCMAES. Another factor that might lead to a higher
performance from CMORE and CCMAES is the initialization of the covariance matrix. While CREPS and CREPS-CMA use
the initial covariance matrix initialized by imitation learning, CMORE and CCMAES start with a scaled identity matrix.

2 Some experiments were run to choose Σ0. The algorithm did not learn with Σ0 = I nor with Σ0 = 1000I .
3 Several experiments were run to obtain the value function that achieved a good performance for each algorithm. radial basis functions, fourier

features, quadratic features and linear features were examined. For CCMAES, fourier features performed equally as quadratic features.

37

6 Conclusion and Future Work
In this thesis, a group of policy search methods were reviewed as a possible solution to complex robotic tasks. The
main focus was on contextual policy search methods, which offer an additional level of generalization that gives us
more versatile learning. The selected algorithms were first derived as from the literature, then benchmarked on stan-
dard test optimization functions and on a simulated robot tetherball task. First, the background needed to implement
these tasks was presented. The fundementals of reinforcement learning were introduced along with Markov Decision
Processes (MDPs), the classical mathematical framework for reinforcement learning. Then, the robot control problem
was formulated as a reinforcement learning problem to enable us to harness the power of RL techniques and apply it
to robotic tasks. To solve the reinforcement learning problem, a class of approaches called policy search (PS) meth-
ods was presented. Then the KL-divergence, a metric that is exhaustively used in policy search methods was breifly
introduced. The discussion of the background is then concluded with the introduction of Dynamic Movement Primitives
(DMPs) which act as trajectory generators. In the scope of this thesis, they are used as a parametric policy representa-
tion. Finally, to bootstrap the parameters of the DMPs, imitation learning is used, which is often favourable in robotic
applications since they are too challenging to initialize. Folowing the background, a group of policy search algorithms
were thoroughly discussed. The standard version of each algorithm was first introduced followed by its contextual ver-
sion. The algorithms presented were: Relative Entropy Policy Search (REPS) that bounds the KL between subsequent
policy distributions, Model-based Relative Entropy (MORE), which adds and additional lower bound on the entropy and
fits a quadratic model for the objective function, Covariance Matrix Adaptation Evolution Strategies (CMA-ES), another
black box optimizer that exploits evolution paths to update its parameters, and finally, a couple of regularized versions
of REPS that linearly interpolate the old covariance matrix with the sample covariance matrix. Then, after elaborating
the experimental setup for the tetherball task and the standard functions, results of the experimental evaluations on the
standard functions were first presented. The algorithms were assessed on metrics such as sample efficiency, scalability
and optimum performance. The performance of the algorithms was also examined with various settings of algorithm-
specific hyperparameters. This was followed by benchmarking on the simulated task of robot tetherball.

After noticing the significant difference between the results of the experimental evaluations on the standard bench-
mark functions and the simulated robot tetherball task, one can easily reach the conclusion that using reinforcement
learning to find solutions to robotic tasks proves to be a challenging task met with several limitations. One challege
that was encountered in this thesis is reward shaping. Crafting a good reward function is quite difficult and not often
intuitive, however it determines the success of the learning. Additionally, parameter sensitivity of reinforcement learning
algorithms render some problems more tedious as it is not always practical to try out all possible parameter settings.

A simulated robotic task was used in this thesis. In addition, it would be interesting to evaluate these algorithms on
a real robot setup, because simulators often under-model the real-world system. Moreover, this thesis explored only
a limimited class of algorithms i.e., black box optimizers. Having a comparison with other other classes of algorithms
such as natural gradient approaches would provide a broader outlook and a richer comparison. Furthermore, to add an
additional layer of versatility and generalizability to the robot’s policy, it would also be intersting to investigate hierarchal
approaches on top of contextual approaches.

38

7 Appendix

7.1 Solving Constrained Optimization Problems

A constrained optimization problem is the problem of optimizing some function J under some constraints. It is generally
denoted as

max
θ

J(θ),

s.t f (θ) = a,

g(θ)≤ b,

where f and g are the constraints. The formulation above is usually referred to as the primal problem. The method of
Lagrangian multipliers [insert citation] is a technique that finds the optima of a mutivariable function that is subject to
some constraints. The Lagrangian function L for the problem above is formulated as

L(θ ,λ,η) = J(θ) +λ(f (θ)− a) +η(g(θ)− b),

where λ and η the lagrangian multipliers, which are constants that penalize violating the constraints. For the example
above, to penalize the violation the Lagrangian L is minimized by setting the derivative of L w.r.t. J(θ) to 0.

g(λ,η) =min
θ

L(θ ,λ,η).

The function g is called the dual function, which is usually easier to optimize than the primal. Additionally, if the primal
problem is maximized then the dual is minimized and vice versa.

7.2 Dual function derivation of REPS

The following constrained optimization problem fro REPS given by

max
π

∫

π(θ)R(θ) dθ ,

s.t. ε≥ KL(π(θ)||q(θ)),

1=

∫

π(θ) dθ ,

(7.1)

is solved using the method of Lagrangian multipliers. First the Langrangian is formulated as

L =

∫

R(θ)π(θ)dθ +λ
�

1−
∫

π(θ) dθ
�

+η
�

−
∫

π(θ) log
π(θ)
q(θ)

dθ + ε
�

. (7.2)

Rearranging terms

L =

∫

π(θ)
�

R(θ)−λ−η log
π(θ)
q(θ)

�

dθ +λ+ηε . (7.3)

To get the optimum policy, L is minimized; taking the derivative w.r.t. π(θ) and setting it to zero.

L′ = R(θ)−λ−η−η log
π(θ)
q(θ)

= 0 .

π(θ) = q(θ)exp
�Rθ −λ−η

η

�

,

π(θ) = q(θ)exp
�R(θ)
η

�

exp
�−λ−η

η

�

.

(7.4)

39

From the last constraint in Equation (7.1) and (7.4) λ can be obtained as

λ= η log

∫

q(θ)exp
�R(θ)
η

�

dθ −η . (7.5)

Substituting the last constraint in Equation (7.1) and λ from above in L, the dual is

g(η,λ) = η+ηε+λ ,

g(η) = ηε+η log

∫

q(θ)exp
�R(θ)
η

�

dθ .
(7.6)

7.3 Closed form solution for MORE

The constrained optimization problem for MORE is given by

max
π

∫

π(θ)R(θ) dθ ,

s.t. ε≥ KL(π(θ)||q(θ)),
β ≤ H(π),

1=

∫

π(θ) dθ .

(7.7)

The dual function for MORE is derived similarly as Section 7.2. Given the dual function and the quadratic model

g(η,ω) = ηε−ωβ + (η+ω) log

∫

q(θ)
η
η+ω exp

� R(θ)
η+ω

�

dθ ,

R(θ)≈ θ T Rθ + θ T r + r0,

and knowing that the policy distribution is a Gaussian q(θ) = N(θ |µ,Σ), we substitute R(θ) with the quadratic model
and rearrange terms to get

g(η,ω) = ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
�−0.5η
η+ω

(θ −µ)TΣ−1(θ −µ)
�

exp
�θ T Rθ + θ T r + r0

η+ω

��

dθ

�

,

= ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
� η

η+ω
(−0.5θ TΣ−1θ +µTΣ−1θ − 0.5µTΣ−1µ)

�

exp
�−0.5(θ T Rθ + θ T r)

η+ω

�

dθ

�

,

= ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
� 1
η+ω

�

− 0.5θ TηΣ−1θ +µηΣ−1θ − 0.5ηµTΣ−1µ+ θ T Rθ + θ T r
��

dθ

�

,

= ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
� 1
η+ω

�

− 0.5θ T (ηΣ−1 − 2R)θ + (ηΣ−1µ+ r)θ − 0.5ηµTΣ−1µ
��

dθ

�

,

= ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
� 1
η+ω

�

− 0.5θ T F−1θ + f θ − 0.5ηµTΣ−1µ
��

dθ

�

.

Completing the square

g(η,ω) = ηε−ωβ + (η+ω) log

�∫

Cη/η+ωπ exp
�

− 0.5(θ − F f)T F−1(θ − F f) + 0.5 f T F f − 0.5ηµTΣ−1µ
�

dθ

�

.

40

Then plugging in the integration of a Gaussian and expanding Cπ

g(η,ω) = ηε−ωβ + (η+ω) log

�

exp
� 1
η+ω

�

0.5(f T F f −ηµTΣ−1µ)
��

�

(2π)−k/2|Σ|−0.5
�η/η+ω

(2π)−k/2|(η+ω)F |−0.5

�

.

Explanding the log

g(η,ω) = ηε−ωβ + (η+ω)
�

1
η+ω

�

0.5(f T F f −ηµTΣ−1µ)
�

+
η

η+ω
log

�

(2π)−k/2|Σ|−0.5
�

− log
�

(2π)−k/2|(η+ω)F |−0.5
�

�

,

= ηε−ωβ +
�

0.5(f T F f −ηµTΣ−1µ) +η log
�

(2π)−k/2|Σ|−0.5
�

− (η+ω) log
�

(2π)−k/2|(η+ω)F |−0.5
�

�

,

= ηε−ωβ +
�

0.5(f T F f −ηµTΣ−1µ)− 0.5η log |2πΣ|+ 0.5(η+ω) log |2π(η+ω)F |
�

,

= ηε−ωβ +
1
2

�

f T F f −ηµTΣ−1µ−η log |2πΣ|+ (η+ω) log |2π(η+ω)F |
�

,

with F = (ηΣ−1 − 2R)−1 and f = ηΣ−1µ+ r . The new policy is given as π(θ) =N(θ |F f , F(η+ω)).

41

7.4 Weighted Maximum-Likelihood Updates

Maximum-likelihood estimation (MLE) is a probability density estimation method that estiamates the unknown parame-
ters θ of a parametric distribution given observations X1, X2, ..Xn. Intuitively speaking, it tries to get a good estimate of
θ that maximizes the probability or likelihood of reproducing the observed data. The likelihood function is denoted by L
and is given as

L(θ) = P(X1 = x1, X2 = x2, ..Xn = xn).

With i.i.d data points we can expand this into

P(X1 = x1).P(X2 = x2)..P(Xn = xn) = f (x1;θ). f (x2;θ).. f (xn;θ) = Πn
i=1 f (x i;θ).

where f is the probability density function and f (x i;θ) is read as the probability of getting x i given parameters θ . Now
we do the well-known ‘log trick’ to make maximizing L easier. 1 Maximize the log-likelihood

max
θ

log L(θ) =
n
∑

i=1

f (x i;θ).

The probability density function of a multivariate Gaussian distribution is defined as

N(x |µ,Σ) =
1

p

(2π)n|Σ|
exp

�

−
1
2
(x −µ)TΣ−1(x −µ)

�

,

where n denotes the dimensionality of parameters of the distribution. And addition of a diagonal weighting matrix D is
added to obtain the weighted version of the distribution. The aim is to estimate the parameters of the distribution µ, Σ
using the MLE. The log-likelihood function for the Gaussian is

log L(θ = µ,Σ) = logN(x |µ,Σ),

=
N
∑

i=1

log
� 1
p

(2π)n|Σ|
exp

�

−
1
2
(x i −µ)T diΣ

−1(x i −µ)
�

,

=
N
∑

i=1

log

�

1
p

(2π)n|Σ|

�

+
N
∑

i=1

−
1
2
(x i −µ)T diΣ

−1(x i −µ),

= −
N
2

log |Σ|+
N
∑

i=1

−
1
2
(x i −µ)T diΣ

−1(x i −µ) + const.

To obtain the solution for the constant mean µ, maximize the log-likelihood function w.r.t µ

∂ log L
∂ µ

=
N
∑

i=1

di(x i −µ)TΣ−1,

and setting to zero the result is

µ̂=

∑N
i=1 di x i
∑N

i=1 di

,

For the covariance Σ, using the ‘trace trick’ ∂
∂ A tr(AB) = ∂

∂ A tr(BA) = BT

log L(θ) = −
N
2

log |Σ|+
N
∑

i=1

−
1
2
(x i −µ)T diΣ

−1(x i −µ),

∝−
N
2

log |Σ| −
1
2

N
∑

i=1

tr
�

(x i −µ)T diΣ
−1(x i −µ)

�

,

= −
N
2

log |Σ| −
1
2

N
∑

i=1

tr
�

Σ−1(x i −µ)T di(x i −µ)
�

,

= −
N
2

log |Σ| −
1
2

tr
�

Σ−1
N
∑

i=1

(x i −µ)T di(x i −µ)
�

.

Finally, using ∂
∂ A log |A|= A−T

Σ̂=

∑N
i=1 di(x i − µ̂)(x i − µ̂)T

∑N
i=1 di

.

1 We are able to do this because we are maximizing, and log is a monotonously increasing function which doesn’t change the outcome of the
maximization.

42

Bibliography
[Abdolmaleki et al., 2015a] Abdolmaleki, A., Lau, N., Reis, L. P., Neumann, G., et al. (2015a). Regularized covariance es-

timation for weighted maximum likelihood policy search methods. In IEEE-RAS International Conference on Humanoid
Robots, volume 2015, pages 154–159.

[Abdolmaleki et al., 2015b] Abdolmaleki, A., Lioutikov, R., Peters, J. R., Lau, N., Reis, L. P., and Neumann, G. (2015b).
Model-based relative entropy stochastic search. In Advances in Neural Information Processing Systems, pages 3537–
3545.

[Abdolmaleki et al., 2017a] Abdolmaleki, A., Price, B., Lau, N., Reis, L. P., and Neumann, G. (2017a). Deriving and
improving cma-es with information geometric trust regions. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 657–664. ACM.

[Abdolmaleki et al., 2017b] Abdolmaleki, A., Price, B., Lau, N., Reis, P., Neumann, G., et al. (2017b). Contextual cma-es.

[Abdolmaleki et al., 2016] Abdolmaleki, A., Simões, D., Lau, N., Reis, L. P., and Neumann, G. (2016). Contextual relative
entropy policy search with covariance matrix adaptation. In Autonomous Robot Systems and Competitions (ICARSC),
2016 International Conference on, pages 94–99. IEEE.

[Abdulsamad et al., 2014] Abdulsamad, H., Buchholz, T., Croon, T., and Khoury, M. E. (2014). Playing tetherball with
compliant robots.

[Akimoto et al., 2012] Akimoto, Y., Nagata, Y., Ono, I., and Kobayashi, S. (2012). Theoretical foundation for cma-es
from information geometry perspective. Algorithmica, 64(4):698–716.

[Arulkumaran et al., 2017] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey
of deep reinforcement learning. arXiv preprint arXiv:1708.05866.

[Auger and Hansen, 2012] Auger, A. and Hansen, N. (2012). Tutorial cma-es: evolution strategies and covariance matrix
adaptation. In GECCO (Companion), pages 827–848.

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechanics, pages
679–684.

[Beyer, 2007] Beyer, H.-G. (2007). Evolution strategies. Scholarpedia, 2(8):1965.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

[Buchanan, 2005] Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. Ai Magazine, 26(4):53.

[Connell and Mahadevan, 2012] Connell, J. H. and Mahadevan, S. (2012). Robot learning, volume 233. Springer Science
& Business Media.

[Deisenroth et al., 2013] Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013). A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142.

[Duan et al., 2016] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep rein-
forcement learning for continuous control. In International Conference on Machine Learning, pages 1329–1338.

[Hansen, 2016] Hansen, N. (2016). The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772.

[Hansen et al., 2003] Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation, 11(1):1–18.

[Hansen and Ostermeier, 2001] Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation, 9(2):159–195.

43

[Ijspeert et al., 2013] Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–373.

[Ijspeert et al., 2003] Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2003). Learning attractor landscapes for learning
motor primitives. In Advances in neural information processing systems, pages 1547–1554.

[Kober and Peters, 2009] Kober, J. and Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances
in neural information processing systems, pages 849–856.

[Kormushev et al., 2010] Kormushev, P., Calinon, S., and Caldwell, D. G. (2010). Robot motor skill coordination with
em-based reinforcement learning. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 3232–3237. IEEE.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86.

[Kupcsik et al., 2013] Kupcsik, A. G., Deisenroth, M. P., Peters, J., Neumann, G., et al. (2013). Data-efficient generaliza-
tion of robot skills with contextual policy search. In Proceedings of the 27th AAAI Conference on Artificial Intelligence,
AAAI 2013, pages 1401–1407.

[Lattimore et al., 1961] Lattimore, R., Baskin, L., et al. (1961). The Iliad of Homer. University of Chicago Press.

[Mannor et al., 2003] Mannor, S., Rubinstein, R. Y., and Gat, Y. (2003). The cross entropy method for fast policy search.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 512–519.

[Markov, 1961] Markov, A. (1961). Theory of algorithms (academy of sciences of the ussr, moscow, 1954). English
translation by the Israel Program for Scientific Translations.

[Molga and Smutnicki, 2005] Molga, M. and Smutnicki, C. (2005). Test functions for optimization needs. Test functions
for optimization needs, 101.

[Muelling et al., 2010] Muelling, K., Kober, J., and Peters, J. (2010). Learning table tennis with a mixture of motor
primitives. In Humanoids Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages 411–416.
IEEE.

[Ollivier et al., 2017] Ollivier, Y., Arnold, L., Auger, A., and Hansen, N. (2017). Information-geometric optimization
algorithms: A unifying picture via inivariance principles. Journal of Machine Learning Research, 18(18):1–65.

[Osa et al., 2018] Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al. (2018). An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179.

[Parisi et al., 2015] Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., and Peters, J. (2015). Reinforcement learning vs
human programming in tetherball robot games. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 6428–6434. IEEE.

[Peters et al., 2010] Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In AAAI, pages 1607–
1612. Atlanta.

[Rechenberg, 1978] Rechenberg, I. (1978). Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie,
pages 83–114. Springer.

[Rückstieß et al., 2008] Rückstieß, T., Felder, M., and Schmidhuber, J. (2008). State-dependent exploration for policy
gradient methods. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages
234–249. Springer.

[Sakagami et al., 2002] Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., and Fujimura, K. (2002).
The intelligent asimo: System overview and integration. In Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, volume 3, pages 2478–2483. IEEE.

[Schaal, 2009] Schaal, S. (2009). The sl simulation and real-time control software package. University of Southern
California.

[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International Conference on Machine Learning, pages 1889–1897.

44

[Schwefel, 1987] Schwefel, H.-P. (1987). Collective phenomena in evolutionary systems.

[Shannon, 2001] Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile computing
and communications review, 5(1):3–55.

[Stulp and Sigaud, 2012] Stulp, F. and Sigaud, O. (2012). Path integral policy improvement with covariance matrix
adaptation. arXiv preprint arXiv:1206.4621.

[Sun et al., 2009] Sun, Y., Wierstra, D., Schaul, T., and Schmidhuber, J. (2009). Efficient natural evolution strategies. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 539–546. ACM.

[Sutton et al., 1998] Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An introduction. MIT press.

[Tangkaratt et al., 2017] Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., Sugiyama, M., et al. (2017).
Policy search with high-dimensional context variables. In AAAI, pages 2632–2638.

[Vent, 1975] Vent, W. (1975). Rechenberg, ingo, evolution strategy optimization of technical systems according to prin-
ciples of biological evolution. 170 p. with 36 illustrations by frommann-holzboog-verlag. stuttgart 1973. paperback.
Feddes Repertory, 86(5):337–337.

[Xie et al., 2018] Xie, Z., Berseth, G., Clary, P., Hurst, J., and van de Panne, M. (2018). Feedback control for cassie with
deep reinforcement learning. arXiv preprint arXiv:1803.05580.

[Yoshiike et al., 2017] Yoshiike, T., Kuroda, M., Ujino, R., Kaneko, H., Higuchi, H., Iwasaki, S., Kanemoto, Y., Asatani,
M., and Koshiishi, T. (2017). Development of experimental legged robot for inspection and disaster response in plants.
In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages 4869–4876. IEEE.

45

	Introduction
	Motivation
	Overview

	Background and Foundations
	Reinforcement Learning
	Markov Decision Processes
	Robot Control as a RL Problem

	Policy Search
	Kullback-Leibler (KL) Divergence as a Distance Metric
	Dynamic Motor/Movement Primitives (DMPs)
	DMPs for Policy Representation
	Imitation Learning of DMPs

	Policy Search Algorithms
	Relative Entropy Policy Search (REPS)
	Contextual REPS

	Model-based Relative Entropy (MORE)
	Contextual-MORE

	Covariance Matrix Adaptation Evolution Strategies (CMA-ES)
	Contextual CMA-ES

	Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation (CREPS-CMA)
	Covariance Estimation with Controlled Entropy Reduction (CECER)

	Setup and Implementation
	The Tetherball Task and Setup
	The Software
	Implementation Details

	Experiments
	Benchmarking on Standard Optimization Test Functions
	Evaluating CREPS & CREPS-CMA on Number of Samples and Initial Variance
	Evaluating CMORE with Minimum Entropy
	Evaluating CCMAES with Initial Variance and Step Size
	Benchmarking on Sample efficiency
	Benchmarking on Scalability
	Benchmarking on Optimum Performance

	Benchmarking on Tetherball
	Evaluating CREPS with KL, Number of DMP Basis Functions and Value Functions
	Evaluating CCMAES with Initial Policy and Population Size
	Benchmarking on Optimum Performance

	Conclusion and Future Work
	Appendix
	Solving Constrained Optimization Problems
	Dual function derivation of REPS
	Closed form solution for MORE
	Weighted Maximum-Likelihood Updates

	Bibliography

