
Variational Inference for
Switching Dynamics
Variierende Inferenz für wechselnde Dynamiken
Master thesis by Thomas Lautenschläger
Date of submission: August 31, 2020

1. Review: M.Sc. Hany Abdulsamad
2. Review: Prof. Jan Peters, Ph.D.
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Thomas Lautenschläger, die vorliegende Masterarbeit ohne Hilfe
Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle
Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 31. August 2020
Thomas Lautenschläger

Abstract

Learning and inferring the dynamics of a system ideally requires a model design that
expresses the system’s behavior, does not overfit to the training data and uses few compu-
tational resources. Bayesian probabilistic models have the powerful feature to express
models as simple as possible while maximizing the model’s information. Moreover, being
Bayesian makes the model’s uncertainty accessible. This quantity can be advantageous
by integrating a learned dynamics model into policy search for planning. In this thesis,
we provide a Bayesian extension for recurrent hidden Markov models and analyze their
performance capabilities by training them with data sampled from dynamical systems.
Since hidden Markov models capture switching regime behavior from data emitted by
dynamical systems, we introduce the policy extension Switching actor (SWAC), a policy
extension that incorporates the switching regime detection into policy search. This exten-
sion supplies additional structure to the policy. We present a performance comparison of
SWAC with the non SWAC equipped baselines. In addition, we give an outlook to future
work. The complete mathematical derivation is attached as supplementary material.

Zusammenfassung

Bayes’sche probabilistische Modelle haben die mächtige Eigenschaft, die Modelle so
simpel wie möglich zu Gestalten und gleichzeitig den Informationsgehalt der Modelle zu
maximieren. Außerdem bieten Bayes’sche probabilistische Modelle auf die Ungewissheit
des Modells zu quantifizieren und diese auch zugänglich zu machen. In dieser Thesis
definieren wir eine Bayes’sche Erweiterung für rekurrente verdeckte Markowmodelle und
analysieren deren Leistungsverhalten. Zuvor werden diese Modelle mit Daten trainiert, die
aus dynamischen Systemen stammen. Da verdeckte Markowmodelle die Eigenschaft haben,
ein wechselndes Schaltverhalten aus Daten, die aus einem dynamischen System emittiert
sind, festzustellen, integrieren wir diese Modelle für die Policysuche. Diese Methode
führen wir unter der Bezeichnung SWAC ein. Diese Erweiterung stattet eine Policy mit
zusätzlicher Struktur aus. Wir präsentieren einen Leistungsvergleich zwischen SWAC
und den nicht mit SWAC ausgestatteten Referenzmodellen. Die gesamte mathematische
Herleitung ist im Anhang beigefügt.

Contents

1. Introduction 2

2. Related work 4
2.1. Bayesian HMMs . 4
2.2. Model-based reinforcement learning . 4
2.3. Switching linear dynamical systems . 5
2.4. Pathwise gradient estimator . 5

3. Background 7
3.1. Hidden Markov models . 7

3.1.1. Overview of HMM types . 7
3.1.2. Structure of HMMs . 7
3.1.3. Baum-Welch algorithm - learning a HMM 9

3.1.3.1. E-step . 9
3.1.3.2. M-step . 11

3.1.4. Viterbi algorithm - maximum likely states 12
3.2. Variational inference . 12

3.2.1. The evidence lower bound . 13
3.2.2. Mean-field approximation . 13

3.3. Minimizing the gradient variance . 14

4. Bayesian hidden Markov models 16
4.1. Variational Bayes HMM . 16

4.1.1. Model priors . 16
4.1.2. Target distribution . 18
4.1.3. Mean-field approximation . 19
4.1.4. Variational E-step . 19
4.1.5. Variational M-step . 21
4.1.6. The lower bound . 26

4.2. Variational Bayes ARHMM . 27
4.2.1. Model priors . 27
4.2.2. Target distribution . 29
4.2.3. Mean-field approximation . 29
4.2.4. Variational E-step . 30
4.2.5. Variational M-step . 32
4.2.6. The evidence lower bound . 36

4.3. Variational Bayes rAR-HMM . 36
4.3.1. Model priors . 36
4.3.2. Target distribution . 38
4.3.3. Mean-field approximation . 38
4.3.4. Variational E-step . 39
4.3.5. Variational M-step . 39
4.3.6. The evidence lower bound . 40

5. Switching actor 41
5.1. Implementation . 41
5.2. Extending A2C with SWAC . 42
5.3. Extending SAC with SWAC . 43

6. Evaluation 44
6.1. Bayesian HMMs . 44

6.1.1. Viterbi state detection . 44
6.1.2. Model learning performance . 45

6.2. Learning control on rAR-HMM . 46
6.2.1. Policy evaluation on the pendulum task 47
6.2.2. Policy evaluation on the cart-pole task 48

6.3. SWAC-A2C . 49
6.4. SWAC-SAC . 50
6.5. Discussion . 51

7. Outlook 52

8. Conclusion 53

A. Summary VBEM steps 60
A.1. VBHMM EM steps . 60
A.2. VBAR-HMM EM steps . 61

A.3. VBrAR-HMM EM steps . 63

B. Derivation VBHMMs 65
B.1. Derivation VBHMM . 66
B.2. Derivation VBAR-HMM . 72

C. Distributions 79
C.1. Dirichlet distribution . 79
C.2. Uniform distibution . 80
C.3. Multivariate normal distribution . 81
C.4. Wishart distribution . 82

Figures

List of Figures

3.1. Three different types of Hidden Markov model (HMM)s. The models
expressiveness is ordered from left to right. 8

6.1. Randomly sampled trajectories on the pendulum (left) and cart-pole (right)
environment. Each color represents a detected latent state from the Varia-
tional Bayes recurrent autoregressive hidden Markov model (VBrAR-HMM)
using the Viterbi algorithm. The state transitions match the repeating
dynamic patterns. 45

6.2. Out-of-sample predictive performance of the Variational Bayes autoregres-
sive hidden Markov model (VBAR-HMM)s and VBrAR-HMMs to state-of-
the-art (SOTA) models. Evaluation on the pendulum (left) and cart-pole
(right) environment. 46

6.3. Policy evaluation on the rAR-HMMdynamics (left) and on the true dynamics
(right) of the pendulum environment. The policy training observations are
sampled from the rAR-HMM dynamics. 47

6.4. Policy evaluation on the rAR-HMM dynamics (left) and on true dynamics
(right)of the pendulum environment. The policy training observations are
sampled from the rAR-HMM dynamics. 48

6.5. Policy evaluation performance comparison of Advantage actor-critic (A2C),
SWAC-A2C and LAX on the pendulum (left) and on the cart-pole (right)
environment. 49

6.6. Policy evaluation performance comparison of SAC and SWAC-SAC on the
pendulum (left) and on the cart-pole (right) environment. 50

Abbreviations

List of Abbreviations

Notation Description

VBAR-HMM Variational Bayes autoregressive hidden Markov model

VBHMM Variational Bayes hidden Markov model

VBrAR-HMM Variational Bayes recurrent autoregressive hidden Markov model

A2C Advantage actor-critic

AR-HMM Autoregressive hidden Markov model

BNN Bayesian neural network

ELBO Evidence lower bound

EM Expectation maximization

FNN Feed-forward neural network

GMM Gaussian mixture model

GP Gaussian process

HMM Hidden Markov model

i.i.d. independently and identically distributed

LSTM Long short-term memory neural networks

MAP Maximum a posteriori probability

MBRL Model-based reinforcement learning

MDP Markov decision property

rAR-HMM Recurrent autoregressive hidden Markov model

RNN Recurrent neural network

SAC Soft actor-critic

SLDS switching linear-Gaussian dynamical systems

SOTA state-of-the-art

SWAC Switching actor

VAE Variational autoencoders

w.r.t. with respect to

1

1. Introduction

The optimal control for a plane to fly stable depends on specific target scenarios. The
plane is starting, being in target height or on landing approach. As the scenarios differ,
the control needs to be adapted for each scenario. This example motivates this thesis’s
goal to find a model that is able to detect the different scenarios and apply the optimal
control on each.

Policy optimization for control of complex dynamical systems requires a policy search
framework that is capable of capturing the system’s dynamics. Since the dynamical systems
can be broken into simpler units [1], the policy can be extended with additional structure
that makes use of the simpler system units. This is comparable to a car’s transmission
system where the gear is chosen according to the specific scenario (driving backwards,
accelerating, constant speed etc.).

This thesis proposes a Bayesian extension of HMM. These models are able to capture the
complex system dynamics into simpler units with switching latent states. Furthermore,
we combine these models with policy search to obtain a policy with additional structure.

In Chapter 2, we give an overview of the work related to ours.

In Chapter 3, we explain the basics of HMMs by showing the model structure, how to train
and do inference with them. Moreover, we outline the method of variational inference
and how this method can be applied by making use of mean-field approximation. Lastly,
we describe a recent method that is able to reduce variance for score-function estimator
gradient [2].

In Chapter 4, we derive the Bayesian HMMs. Starting the derivation from the classical
Variational Bayes hidden Markov model (VBHMM), extending this derivation for the
VBAR-HMM and finalizing it with the VBrAR-HMM.

In Chapter 5, we propose a policy search algorithm, called SWAC that requires a switching
state space model. SWAC is internally structured with multiple policies. The number of

2

policies corresponds to the number of the switching state spaces. Besides, we show how
to extend A2C and Soft actor-critic (SAC) with SWAC.

Chapter 6 gives a switching state detection and a prediction performance analysis of the
introduced Bayesian HMMs from Chapter 4. We compare their prediction performance to
SOTA models. In addition, we train Recurrent autoregressive hidden Markov model (rAR-
HMM)s from true environment observations. We perform policy search on the rAR-HMM
dynamics and evaluate the trained policies on the true dynamics. Lastly, we compare
the learning performance of A2C and SAC with the extension of SWAC and without this
extension. We use the pendulum and the cart-pole [3] environments for the evaluation.

Chapter 7 gives an outlook of future work and in Chapter 8 we conclude this thesis.

3

2. Related work

2.1. Bayesian HMMs

[4] derives a solution for Bayesian HMMs with discrete observations. He showed the
advantages of being Bayesian compared to non Bayesian HMMs. The HMM is Bayesian
in the sense that a prior distribution is put over the parameters and the Evidence lower
bound (ELBO) is maximized with respect to (w.r.t.) the assumed distribution parameters.
Beal shows the performance of automatically detecting the amount of hidden states that
are at least required to describe the data. He assumes a Dirichlet distribution over the
state transitions. Makes use of the property of the Dirichlet distribution that cancels out
the number of states that are not required to express the data without overfitting. In
addition, being Bayesian has the advantage to express the uncertainty of the learned
model and is thus is less prone to overfitting. The obtained uncertainty can be used for
exploration tasks.

2.2. Model-based reinforcement learning

The goal of reinforcement learning is to compute a policy that returns an optimal control
signal for an underlying dynamical model to achieve a defined task such as a stabilization
task.

Learning the dynamical model and integrating it into the policy search procedure is called
Model-based reinforcement learning (MBRL). Making use of the learned model can result
to a more sample efficient policy search.

[5] combines the learned dynamical model and uses a deterministic policy to obtain an
analytic gradient for the policy parameter update. They use Gaussian process (GP) to
capture the model dynamics. Moreover, they make use of the uncertainty of the GPs and

4

incorporate this quantity in a planning step. The planning step involves to use the learned
the dynamics model to predict the dynamics behavior with a control signal obtained from
the policy.

[6] formulate a general formulation for the combination of a deterministic policy and
learning the model dynamics. The long-term reward is Jθ =

∑︁T
t=1 γ

tr(xt) where xt+1 =
f(xt,ut). f(.) is the learned dynamical model, x are the observations and u is the control
signal from the deterministic policy. Applying the chain rule on Jθ w.r.t. to the policy
parameters θ gives:

∂Jθ
∂θ

=

T∑︂
t=1

γt
∂r(xt)

∂xt

(︃
∂xt

∂xt

∂xt

∂θ
+
∂xt

∂ut

∂ut

∂θ

)︃
(2.1)

where we can differentiate through the learned dynamics model and the deterministic
policy.

Recent research makes use of Variational autoencoders (VAE) [7, 8, 9] as a general model
that captures the model dynamics. VAEs enable the differentiation through the learned
dynamics model in a simple fashion that does not require specific model specification [10].

2.3. Switching linear dynamical systems

Learning time series data emitted from a dynamical system, requires a model design that
is capable of capturing the dynamical behavior over time. [1] introduce the extension of a
switching linear-Gaussian dynamical systems (SLDS)[11, 12, 13, 14, 15] with a recurrent
connection where the next latent discrete state depends on the current continuous latent
states. The recurrent connection is captured using logistic regression. This extension
results in a more interpretable model. The data generated with this model better expresses
the true dynamics.

2.4. Pathwise gradient estimator

Gradient estimation for parameter optimization of a distribution function can lead to
gradients with a large variance when using estimators such as the score function estimator
[2]. A less general solution are pathwise gradient estimators. They make use of the

5

structure of the problem and can thus lead to minimizing the variance of the estimated
gradient.
The idea is to push in the drawn sample from the target distribution into the cost function
and differentiate the cost function w.r.t. the distribution function parameters. The drawn
sample needs to be reparameterized such that the differentiation is possible. The sampling
process becomes:

x̂ ∼ p(x;θ) ≡ x̂ = g(ϵϵϵ̂,θ), ϵϵϵ̂ ∼ p(ϵϵϵ)

where g(.) is a differentiable function with parameters θ and p(ϵϵϵ) is independent of the
parameters θ.

[16] shows the reparameterization procedure for Gaussian distribution for continuous
data. [17] and [18] simultaneously introduced a relaxation of the uniform distribution
that made gradient passing possible for discrete data.

[19] and [20] make use of the pathwise gradient estimator to profit from the reduced
variance of this gradient estimator. In Section 3.3 we explain their approach in detail.

6

3. Background

3.1. Hidden Markov models

HMMs are probabilistic models that expresses the switching dynamics of time series data
under the Markov decision property (MDP) assumption. HMMs find their application such
as in a wide range of fields such as capturing robot dynamics, weather forecasting, speech
recognition, financial time series prediction.

This section provides the basics for HMMs. We present the basic parameters and show
how to apply HMMs for learning and inference on Gaussian independently and identically
distributed (i.i.d.) data.

3.1.1. Overview of HMM types

In this thesis we cover three types of HMMs. The classical HMM depicted in Figure 3.1a
where the observation xt are emitted from the discrete latent states zt. A linear dependence
from the current observation xt to the next observation xt+1 is the Autoregressive hidden
Markov model (AR-HMM) as represented in Figure 3.1b. Figure 3.1c shows the rAR-HMM
which extends the AR-HMM with a recurrent link of the current observation xt to the next
discrete latent state zt+1.

3.1.2. Structure of HMMs

A HMM has captures the transitions between the latent variables z. The observations x
are emissions from the latent variables. Figure 3.1a shows the dependencies of a HMM.

7

zt

xt

zt+1

xt+1

zT

xT

...

(a) HMM

zt

xt

zt+1

xt+1

zT

xT

...

...

(b) AR-HMM

zt

xt

zt+1

xt+1

zT

xT

...

...
...

(c) rAR-HMM

Figure 3.1.: Three different types of HMMs. The models expressiveness is ordered
from left to right.

In this thesis we focus on HMMs with Gaussian i.i.d. observations. The latent variables
z absorb the Gaussian parameters. This model is similar to a Gaussian mixture model
(GMM). The difference is the dependence to discrete time steps between of the data
points.

Joint-distribution

The joint-distribution of a HMM is [21]:

p(z1:T ,x1:T) = p(z1)

T∏︂
t=2

p(zt|zt−1)p(xt|zt)

where p(z1) is the initial state probability vector, p(zt|zt−1) is the transition probability
and p(xt|zt) are the observation probabilities.
The initial state density is:

p(z1) =
K∏︂
k=1

π
I(z1=k)
k

The density for Gaussian observation becomes:

p(xt|zt) =
K∏︂
k=1

N (xt|µk,Σk)
I(zt=k)

and the transition density becomes:

p(zt|zt−1) =
K∏︂
k=1

K∏︂
j=1

a
I(zt=j,zt−1=k)
kj , akj = p(zt = j|zt−1 = k)

8

where zt ∈ 1, ...,K. K is the maximum number of discrete latent states in the model
and A is the transition matrix with akj ∈ A. We abbreviate the model parameters with
θ = (π,µ,Σ,A)

3.1.3. Baum-Welch algorithm - learning a HMM

The Baum-Welch algorithm first introduced in [22] is the extension of the EM algorithm to
HMMs. The Baum-Welch algorithm iteratively learns estimates of the model probabilities
shown in the joint-distribution equation above.

3.1.3.1. E-step

Using the above defined model densities, we get the estimated log complete data likelihood
from:

log p(z1:T ,x1:T |θ) =
K∑︂
k=1

E [I(z1 = k)] log πk

+

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

E [I(zt−1 = k, zt = j)] log akj

+

T∑︂
t=1

K∑︂
k=1

E [I(zt = k)] log p(xt|µk,Σk)

(3.1)

We make use of dynamic programming to solve the estimates from Equation (3.1).
First, we compute the forward probabilities where we define the log posterior of the
hidden states as follows:

αt(k) = p(zt = k|x1:t) =
p(zt = k|x1:t−1)p(xt|zt = k)∑︁K
j=1 p(zt = j|x1:t−1)p(xt|zt = j)

where p(zt = k|x1:t−1) is the one-step ahead predictive from the start t = 1 until density
given by:

9

p(zt = k|x1:t−1) =
K∑︂
j=1

p(zt = k|zt−1 = j)p(zt−1 = j|x1:t−1)

=

K∑︂
j=1

p(zt = k|zt−1 = j)αt−1(j)

We set the prior α1(z1) = 1 and obtain the final forward pass solution:

αt(k) ∝ p(xt|zt = k)

K∑︂
j=1

p(zt = k|zt−1 = j)αt−1(j)

Similar to the forward message passing, we compute the backward messages from t =
T, ..., 1 which is the conditional likelihood of future evidence:

βt(k) = p(xt+1:T |zt)

=

K∑︂
j=1

p(zt = j,xt,xt+1:T |zt−1 = k)

=

K∑︂
j=1

p(xt+1:T |zt = j)p(zt = j,xt|zt−1 = k)

=
K∑︂
j=1

p(xt+1:T |zt = j)p(xt|zt = j)p(zt = j|zt−1 = k)

=

K∑︂
j=1

βt(j)p(xt|zt = j)p(zt = j|zt−1 = k)

where the end condition is βT (k) = 1.

We combine αt and βt and obtain the state marginal:

p(zt = k|x1:T) ∝ p(zt = k|x1:t)p(xt+1:T |zt = k)

= αt(k)βt(k)
(3.2)

and the pairwise state marginal:

p(zt−1 = k, zt = k′|x1:T) ∝ p(zt−1 = k|x1:t−1)p(xt|zt = k′)p(xt|zt = k′)p(xt+1:T |zt = k′)

= αt−1(k)p(zt = k′|zt = k)p(xt|zt = k′)βt(k
′)

(3.3)

10

Using the results from the forward-backward messages, we can solve the expectations
from equation (3.1). We rewrite the expectations:

γt(k) = E [I(zt = k)]

ξt−1,t(k, k
′) = E

[︁
I(zt−1 = k, zt = k′)

]︁
and solve using the results from Equations (3.2) and (3.3):

γt(k) =
αt(k)βt(k)∑︁K
j=1 αt(j)βt(j)

which is the posterior density of being in state k at time step t and

ξt−1,t(k, k
′) =

αt−1(k)akk′p(xt|zt = k′,µk′ ,Σk′)βt(k
′)∑︁K

j=1

∑︁K
j′ αt−1(j)ajj′p(xt|zt = j′,µj′ ,Σj′)βt(j′)

which is the state transition posterior density.

3.1.3.2. M-step

In the M-step we update the model parameters to a maximize the likelihood of the
observations. We use the expectation results from the E-step for the model parameter
updates. The M-step becomes:

π̂ : π̂k = γ1(k)

µ̂ : µ̂k =

∑︁T
t=1 γt(k)xt∑︁T
t=1 γt(k)

Σ̂ : Σ̂k =

∑︁T
t=1 γt(k)xtx

T
t −

∑︁T
t=1 γt(k)µ̂kµ̂

T
k∑︁T

t=1 γt(k)

Â : âkk′ =

∑︁T
t=2 ξt−1,t(k, k

′)∑︁T
t=2

∑︁K
k′=1 ξt−1,t(k, k′)

This EM routine converges to a local optimum regarding the model likelihood given the
observations.

11

3.1.4. Viterbi algorithm - maximum likely states

The Viterbi algorithm comes in hand if we require the maximum likely latent state sequence
given the observations and the trained HMM:

ẑ = argmax
z1:T

p(z1:T |x1:T)

where ẑ is the most likely path from the trained model.

3.2. Variational inference

Variational inference [23, 24, 25, 26, 27, 28] tackles the problem to find an approximate
density posterior model given an assumed prior model. We assume a probabilistic graphical
model with observations x that depend on parameterized distributions. The parameters
are absorbed in the latent variables z. If we are interested in the posterior p(z|x), we need
to apply Bayes’ rule and solve:

p(z|x) = p(x|z)p(z)∫︁
p(x|zi)p(zi) dzi

=
p(x|z)p(z)
p(x)

(3.4)

Marginalizing out z in the denominator can be intractable to compute, because the number
of the latent variables z can be infinitely large.

One way to obtain a posterior solution is to utilize Monte Carlo sampling methods.
This however can be slow to compute, because of the large amount of samples required to
approximate or converge to the exact posterior [29].

Variational inference comes at hand if the goal is to approximate a posterior solution in a
decent amount of time. To approximate the posterior, we need to introduce a variational
distribution q and seek to minimize the Kullback–Leibler divergence (KL divergence) of
p and q. This reformulates the integration problem of finding a posterior solution to an
optimization problem as follows:

12

q∗(z) = argmin
q(z)∈D

DKL(q(z)|| p(z|x))

where D is a set of approximate distributions.

In Addition, we assume the priors are conjugate to the posteriors which is the case for
distributions of the exponential families. Variational inference for non-conjugate models
is discussed in [30].

3.2.1. The evidence lower bound

The objective (3.4) is hard to compute since the KL divergence is:

DKL(q(z)|| p(z|x)) = Eq [log q(z)]− Eq [log p(z,x)] + log p(x) (3.5)

where we have the dependence on log p(x).

An equivalent formulation of the variational optimization problem instead of minimizing
(3.5) is to maximize the evidence lower bound (ELBO) defined as:

ELBO(q) = Eq [log p(z,x)]− Eq [log q(z)] (3.6)

A property of the ELBO is that it lower-bounds the log evidence log p(x) ≥ ELBO(q) which
explains the name.

As [27] shows, combining the equations (3.5) and (3.6) using Jensen’s inequality gives:

log p(x) = DKL(q(z)|| p(z|x)) + ELBO(q)

This makes it clear that maximizing the ELBO is equivalent to minimizing the KL divergence
of (3.5). We focus on the finding a solution w.r.t. maximizing the ELBO.

3.2.2. Mean-field approximation

We need to restrict the set of approximate distributions q(z) to obtain a tractable solution
for this optimization problem. Assuming that q(z) factorizes as follows:

q(z) =
M∏︂
i=1

qi(zi) (3.7)

13

where the elements of z are partitioned into disjoint groups.
Using this as the only assumption of q(z). Bishop [31] derives a general solution for the
variational optimization problem. The general solution is:

log qj(zj) = Ei ̸=j [log p(x, z)] + const. (3.8)

The intuition of the general solution (3.8) is that we fix the the disjoint variational solution
for log qj(zj) and average over all other disjoint groups. The non fixed disjoint groups are
called the free energy in this context as the word "free" describes the non fixed property.

3.3. Minimizing the gradient variance

We seek to compute the optimal control policy parameters θ of a policy πθ using gradient
based methods. This section gives an overview of the problems that arise applying gradient-
based methods on model-free policy search and how to overcome them.

Score-function gradient estimator (REINFORCE)

The score-function estimator [2] is a general applicable solution to obtain policy parameter
gradients:

∂J(πθ)

∂θ
=

T∑︂
t=1

∂ log πθ(at|st)
∂θ

T∑︂
t′=t

r(at′ , st′)

This is an unbiased estimator but it yields high variance because it does not use any
information of r(s) (reward function) to compute the gradient.

Variance reduction using control variates

Since r(s) can point in arbitrary directions and thus causes a high variate gradient, we
need to limit the arbitrariness of r(s).
Control variates tackle this problem. As [32] shows, the ideal control variate for this
variance problem correlates at the maximum with r(s). To obtain this result, we can use
the state value function, that we can train using additive path reward samples of r(s).

14

LAX surrogate gradient

To remove additional variance from the estimated gradient, [20] introduced a control
variate in form of a neural network with the objective to minimize the variance of the
estimated reinforce gradient. The extension of reinforce with LAX is as follows:

ĝLAX
θ =

T∑︂
t=1

∂ log πθ(at|st)
∂θ

[︄
T∑︂

t′=t

r(at′ , st′)− b(st′)− cφ(at′ , st′)

]︄
+
∂cφ(at′ , st′)

∂θ

As at is sampled from πθ, we need to make reparameterizable to obtain the gradient
of of cφ w.r.t. the parameters θ. This reparameterization yields the following form of
at = a(ϵt, st,θ) where ϵt ∼ p(ϵt) and ϵt does not depend on θ. The last term is forms a
pathwise derivative

We compute the gradient for the neural network control variate as follows:

ĝφ =
∂
(︁
ĝLAX
θ

)︁2
∂φ

This formulation of the gradient computation is implicitly defined to minimize the variance
of the reinforce gradient.

15

4. Bayesian hidden Markov models

A HMM from Section 3.1 is able to approximate the dynamics of a model. Since we
approximate the model dynamics, we do not know how uncertain the model behaves
comparing to the true dynamics. Knowing the model uncertainty would be useful when
we integrate the trained dynamics model into policy search e.g. for planning or explo-
ration [33, 34, 5, 6, 35].

Making the model Bayesian by putting prior distributions on the model parameters enables
to access uncertainty of the model.

In this chapter we derive Bayesian HMMs for all HMMs from Figure 3.1.

4.1. Variational Bayes HMM

In this section, we define a Variational Bayes HMM and derive the Expectation maximiza-
tion (EM) update steps. The model we derive in this section extends the HMM model from
section 3.1. We extend the model with priors on the model parameters. The complete
derivation is in the Appendix B.1.

4.1.1. Model priors

We extend the model from section 3.1 by putting priors over the parameters π, A, µ and
Σ.

A natural choice for the priors on π and on the rows of A are Dirichlet priors. In addition,
the Dirichlet prior has the effect to implicitly adjust the number of the latent states that
are required for the HMM to be express the data. The latent states that are not used

16

are virtually canceled out [4]. Details of the Dirichlet distribution can be found in the
appendix C.1. For p(π) giving:

p(π) = Dir(π|ω(π)
0) = C(ω

(π)
0)

K∏︂
k=1

π
ω
(π)
0 −1

k

and for p(A) we get:

p(A) =

K∏︂
k=1

Dir(ak1, ..., akK |ω
(A)
0) =

K∏︂
k=1

C(ω
(A)
0)

K∏︂
j=1

a
ω
(A)
0 −1

kj

where the parameters are ω(π)
0 and ω

(A)
0 . The normalization constant is defined by C(ω0).

A small value of ω0 affects the posterior rather by the data than by the prior and this
applies vice versa for large value of ω0.

Moreover, we assume a Gaussian-Wishart prior on the mean vector and precision matrix
for each Gaussian component, given by:

p(µ,Σ) = p(µ|Σ)p(Σ)

=

K∏︂
k=1

N
(︂
µk|m0, (β0Σk)

−1
)︂
W (Σk|W0, ν0)

Details of the Wishart Distribution are defined in C.4.

Finally, the graphical model is given by:

π ∼ Dir(ω(π)
0)

A ∼ Dir(ω(A)
0)

Σ ∼ W(W0, ν0)

µ ∼ N (m0, (β0,Σ)−1)

x ∼ N (µ,Σ−1)

Regarding the prior parameters of the graphical model, the posterior parameters with

17

dimensions are:

ω
(π)
k : 1

ω
(A)
k : K

Wk : D ×D
νk : 1

mk : D × 1

βk : 1

where k denotes the latent state of the VBAR-HMM, D the observation data dimension.

4.1.2. Target distribution

Using the above defined priors, the log target distribution of the VBHMM becomes:

log p(x1:T , z1:T ,π,A,µ,Σ) = log p(x1:T |z1:T ,µ,Σ)p(z1:T |π,A)

+ log p(A) + log p(π) + log p(µ|Σ)

+ log p(Σ)

∝
T∑︂
t=1

K∑︂
k=1

[zt = k] logN
(︁
xt|µk,Σ

−1
k

)︁
+

K∑︂
k=1

[z1 = k] log πk +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

[zt−1 = k] [zt = j] log akj

+ logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+ log

K∑︂
k=1

N
(︁
µk|m0, (β0Σk)

−1
)︁
+ log

K∑︂
k=1

W (Σk|W0, ν0)

With this assumption of the true model, we can define a variational distribution in the
next section.

18

4.1.3. Mean-field approximation

We consider a variational posterior that factorizes between the latent variables and the
model parameters, giving:

p(π,A,µ,Σ, z1:T |x1:T) ≈ q(π,A,µ,Σ)q(z1:T)

Using this factorization, we apply the general solution from (3.8) to derive a solution for
q(π,A,µ,Σ) and q(z1:T) in the next section.

4.1.4. Variational E-step

To compute the expectations of parameters that are required for the E-step updates, we
need to apply the general result from Equation (3.8) to solve q(z1:T) giving:

log q(z1:T) ∝ Eq(π,µ,Σ,A)[log p(x1:T , z1:T ,π,A,µ,Σ)]

= Eq(π)

[︄
K∑︂
k=1

I(z1 = k) logπk

]︄
+ Eq(A)

⎡⎣ T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j) log akj

⎤⎦
+ Eq(µ,Σ)

[︄
T∑︂
t=1

K∑︂
k=1

I(zt = k) logN
(︁
xt|µk,Σ

−1
k

)︁]︄

=
K∑︂
k=1

I(z1 = k)Eq(π) [logπk] +
T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(A) [log akj]

+

T∑︂
t=1

K∑︂
k=1

I(zt = k){︃
1

2
Eq(Σ) [log |Σk|]−

D

2
log (2π)− 1

2
Eq(µ,Σ)

[︂
(xt − µk)

T Σk (xt − µk)
]︂}︃

It is simple to solve the expectations Eq(π), Eq(A) and Eq(Σ) because we can look up the
expectations for the corresponding distributions that are written in C. This expectation

19

formulations yield:

log ˜︁πk ≡ Eq(π) [logπk] =

∫︂
Dir(πk|ω(π)) logπk dπk

= ψ(ω
(π)
k)− ψ(

K∑︂
k=1

ω
(π)
k),

K∑︂
k=1

˜︁πk ≤ 1

log ˜︁akj ≡ Eq(A) [log akj] =

∫︂
Dir(akj |ω(A)) log akj dakj

= ψ(ω
(A)
kj)− ψ(

K∑︂
j=1

ω
(A)
kj),

K∑︂
j=1

˜︁akj ≤ 1

log ˜︁Σk ≡ Eq(Σ) [log |Σk|] =
∫︂
W (Σk|Wk, νk) log |Σk|dΣk

=

D∑︂
i=1

ψ

(︃
νk + 1− i

2

)︃
+D log 2 + log |Wk|

We derive a solution Eq(µ,Σ) as follows:

Eq(µ,Σ)

[︁
(xt − µk)

TΣk(xt − µk)
]︁

=

∫︂
Eq(µ)

[︁
(µk − xt)

TΣk(µk − xt)
]︁
q(Σk) dΣk

Using the equation (380) from [36] to solve the inner expectation with respect to µ yields:

Eq(µ)

[︁
(µk − xt)

TΣk(µk)− xt

]︁
= (mk − xt)

TΣk(mk − xt) +Tr
(︁
Σk(β

−1
k Σk)

−1
)︁

= (mk − xt)
TΣk(mk − xt) +Dβ−1

k

Plugging this term back in the equation

Eq(µ,Σ)

[︁
(xt − µk)

TΣk(xt − µk)
]︁

=

∫︂ {︁
(mk − xt)

TΣk(mk − xt) +Dβ−1
k

}︁
q(Σk) dΣk

= Dβ−1
k + νk(mk − xt)

TWk(mk − xt)

We used the expectation of the Wishart distribution C.4 for the solution.

20

4.1.5. Variational M-step

For the M-step updates we need to solve log q(π,A,µ,Σ). Again make use of the the
general solution from equation (3.8) giving:

log q(π,A,µ,Σ) ∝ Eq(z1:T) [log p(x1:T , z1:T ,π,A,µ,Σ)]

= logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+

K∑︂
k=1

logN
(︁
µk|m0, (β0Σk)

−1
)︁
+

K∑︂
k=1

logW (Σk|W0, ν0)

+
T∑︂
t=1

K∑︂
k=1

Eq(z1:T) [I(zt = k)] logN
(︁
xt|µk,Σ

−1
k

)︁
+

K∑︂
k=1

{︁
Eq(z1) [I(z1 = k)] log πk

}︁
+

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

Eq(z1:T) [I(zt−1 = k, zt = j)] log akj

(4.1)

Since we have a HMM structure, we can solve the expectations from equation (B.1) using
message passing. We use solutions from the equations (??) and (??). We rewrite equation
(B.1):

log q(π,A,µ,Σ) ∝ logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+

K∑︂
k=1

logN
(︁
µk|m0, (β0Σk)

−1
)︁
+

K∑︂
k=1

logW (Σk|W0, ν0)

+
T∑︂
t=1

K∑︂
k=1

γt(k) logN
(︁
xt|µk,Σ

−1
k

)︁
+

K∑︂
k=1

γ1(k) log πk

+
T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) log akj

(4.2)

Onwards we directly plug in the densities from the message passing step when expectations
are of the above form.

21

We observe the right-hand side decomposes into a sum of terms only involving π together,
A together and µ and Σ together. This observation implies that the variational posterior
q(π,A,µ,Σ) factorizes to give q(π)q(A)q(µ,Σ)

q(π,A,µ,Σ) = q(π)q(A)

K∏︂
k=1

q(µk,Σk) (4.3)

Using this factorization and combine it with the results of the applied mean-field factor-
ization, we obtain the solutions for the VBM step.

Regarding the right-hand side of equation (4.2) that depend on π, we get

log q(π) ∝ (ω
(π)
0 − 1)

K∑︂
k=1

logπk +
K∑︂
k=1

γ1(k) logπk

=

K∑︂
k=1

logπk

{︂(︂
ω
(π)
0 − 1

)︂
+ γ1(k)

}︂
Taking the exponential of both sides, we obtain

q(π) = const. ·
K∏︂
k=1

π
ω
(π)
0 −1+γ1(k)

k

= const. ·
K∏︂
k=1

π
ω
(π)
k −1

k

= Dir(π|ω(π))

where const. is the normalization term of the Dirichlet distribution and ω(π) has compo-
nents ω(π)

k given by:
ω
(π)
k = ω

(π)
0 + γ1(k)

22

Applying the same principle on log q(A) we get

log q(A) ∝
K∑︂
k=1

K∑︂
j=1

(ω
(A)
0 − 1) log akj +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) log akj

=
K∑︂
k=1

K∑︂
j=1

log akj

{︄
(ω

(A)
0 − 1) +

T∑︂
t=2

ξt−1,t(k, j)

}︄

Taking the exponential on both sides gives

q(A) =
K∏︂
k=1

const. ·
K∏︂
j=1

a
ω
(A)
0 −1+

∑︁T
t=2 ξt−1,t(k,j)

kj

=

K∏︂
k=1

const. ·
K∏︂
j=1

a
ω
(A)
kj −1

kj

=

K∏︂
k=1

Dir(A|ω(A)
k)

where ω
(A)
k has components ω(A)

kj given by:

ω
(A)
kj = ω

(A)
0 +

T∑︂
t=2

ξt−1,t(k, j)

To obtain a solution for q(µk,Σk), we use the result from (4.2) and take only the terms
that depend on µk and Σk.

23

log q(µk,Σk) ∝ logN
(︁
µk|m0, (β0Σk)

−1
)︁
+ logW (Σk|W0, ν0)

+

T∑︂
t=1

γt(k) logN
(︁
xt|µk,Σ

−1
k

)︁
= −D

2
log(2π) +

1

2
log |Σk| −

β0
2
(µk −m0)

TΣk(µk −m0)

− 1

2
Tr
{︁
ΣkW

−1
0

}︁
+

(ν0 −D − 1)

2
log |Σk|

− 1

2

T∑︂
t=1

γt(k)(xt − µk)
TΣk(xt − µk)

+
1

2

(︄
T∑︂
t=1

γt(k)

)︄
log |Σk|

We make use of the product rule to obtain log q(µk,Σk) = log q(µk|Σk) + log q(Σk). First
we write log q(µk|Σk) by only making use of the terms that depend on µk. We separate
the dependencies in quadratic and linear terms.

log q(µk|Σk) = −
1

2

(︁
µT
k (β0Σk)µk

)︁
− 1

2

T∑︂
t=1

γt(k)µ
T
kΣµk⏞ ⏟⏟ ⏞

quadratic term

+µT
k (β0Σkm0) +

T∑︂
t=1

γt(k)µ
T
k (Σkxt)⏞ ⏟⏟ ⏞

linear term

= −1

2

{︄
µT
k

(︄
β0 +

T∑︂
t=1

γt(k)

)︄
Σkµk

}︄
⏞ ⏟⏟ ⏞

quadratic term

+µT
kΣk

(︄
β0m0 +

T∑︂
t=1

γt(k)xt

)︄
⏞ ⏟⏟ ⏞

linear term

The defined form of q(µk|Σk) is Gaussian, giving

q(µk|Σk) = N (µk|mk, βkΣk)

24

We separate this Gaussian in quadratic and linear terms and use this result to obtain
equations to compute βk and mk. Starting to equate the quadratic terms yields:

βk = β0 +

T∑︂
t=1

γt(k)

We repeat this procedure to obtain a solution for mk by equating the linear terms.

mk =
1

βk

(︄
β0m0 +

T∑︂
t=1

γt(k)xt

)︄

To obtain q(Σk) we subtract q(µk|Σk) from q(µk,Σk) focusing only on the terms that
depend on Σk

log q(Σk) = logW (Σk|Wk, νk)

= log q(µk,Σk)− log q(µk|Σk)

∝ 1

2
log |Σk| −

β0
2
(µk −m0)

TΣk(µk −m0)

− 1

2
Tr
{︁
ΣkW

−1
0

}︁
+

(ν0 −D − 1)

2
log |Σk|

− 1

2

T∑︂
t=1

γt(k)(xt − µk)
TΣk(xt − µk)

+
1

2

(︄
T∑︂
t=1

γt(k)

)︄
log |Σk|

+
βk
2
(µk −mk)

TΣk(µk −mk)−
1

2
log |Σk|

=
(νk −D − 1)

2
log |Σk| −

1

2
Tr
(︁
ΣkW

−1
k

)︁
where W−1

k is defined by:

W−1
k = W−1

0 NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)

T

25

where we defined:

Nk =

T∑︂
t=1

γt(k)

xk =
1

Nk

T∑︂
t=1

γt(k)xt

Sk =
1

Nk

T∑︂
t=1

γt(k)(xt − xk)(xt − xk)
T

We arrange the terms to obtain the form of a Wishart distribution. This rearrangement
gives the solution for νk:

νk = ν0 +

T∑︂
t=1

γt(k)

The EM updates for the VBHMM are summarized in the Appendix A.1.

4.1.6. The lower bound

The ELBO for the VBHMM is:

ELBOVBHMM =

∫︂ ∫︂ ∫︂ ∫︂
q (π,A,µ,Σ)

[︃
log

p(π,A,µ,Σ)

q(π,A,µ,Σ)

+
∑︂
z1:T

q(z1:T) log
p(x1:T , z1:T |π,A,µ,Σ)

q(z1:T)

]︄
dπ dA dµdΣ

= E [log p(x1:T |z1:T ,µ,Σ)] + E [log p(z1:T |π,A)] + E [log p(π)]

+ E [log p(A)] + E [log p(µ,Σ)]− E [log q(π)]− E [log q(A)]

− E [log q(µ,Σ)]− E [log q(z1:T)]

All expectations are w.r.t. q(z1:T ,π,A,µ,Σ). The solutions for the expectations are
derived in the variational E- and M-steps.

26

4.2. Variational Bayes ARHMM

The VBAR-HMM is an extension of the VBHMM.We add a linear dependency between each
observation and its successive observation as illustrated in Figure 3.1b. In addition, the
next observation becomes dependent on a control signal u. In this section we define and
derive a solution for the model extension. The complete derivation is in the Appendix B.2.

4.2.1. Model priors

Since the VBAR-HMM is an extension of the VBHMM, we can carry over the model priors
from Section 4.1.1. In addition, we assume a linear weight matrix U for every component
k s.t. xt = Ukx̂t−1 for zt = k where:

x̂t−1 = [xt−1 ut 1]T

We stack the previous observation xt−1, the successive control signal ut with the constant
value 1 to obtain a linear transition matrix U that contains all dependency information
for xt+1

We make use of this reformulation to implicitly learn the linear regression constant in U.
Moreover

A Matrix-Normal prior is a typical choice for linear weight matrix as [37] shows. We
choose a Matrix Normal prior with unknown row covariance matrix V giving:

p(U,V) = p(U|V)p(V)

=
K∏︂
k=1

MN
(︁
Uk|M0,V

−1
k ,K0

)︁
W (Vk|P0, η0)

where we assume a Wishart prior on V. The prior parameter choices of the P0 and η0
are equivalent to the choices for the Wishart prior parameters of Equation (4.1.1). For
symmetry, we naturally set M0 = 0. Small values for the column covariance matrix K0

affect the density rather by the data than by the prior.

27

The updated graphical model for the VBAR-HMM is now given by:

πk ∼ Dir(ω
(π)
0)

Ak ∼ Dir(ω
(A)
0)

Σk ∼ W(W0, ν0)

µk ∼ N (m0, (β0,Σk)
−1)

Vk ∼ W(P0, η0)

Uk ∼MN (M0,V
−1
k ,K0)

x1 ∼ N (µk,Σ
−1
k)

x2:T ∼ N (Ukx̂1:T−1,V
−1
k)

The resulting posterior parameters with dimensions for this graphical model are:

ω
(π)
k : 1

ω
(A)
k : K

Wk : D ×D
νk : 1

mk : D × 1

βk : 1

ηk : 1

Mk : D × (D + C + 1)

Kk : (D + C + 1)× (D + C + 1)

where k denotes the latent state of the VBAR-HMM, D the observation data dimension
and C the dimension of the control signal u.

28

4.2.2. Target distribution

With the above the defined priors, the log target distribution of the VBAR-HMM becomes:

log p(x1:T , x̂2:T ,z1:T ,π,A,µ,Σ,U,V)

= log p(x1|z1,µ,Σ) + log p(x2:T |x̂2:T , z2:T ,U,V)

+ log p(z1:T |π,A) + log p(π) + log p(A)

+ log p(µ|Σ) + log p(Σ) + log p(U|V) + log p(V)

∝
K∑︂
k=1

[z1 = k] logN
(︁
x1|µk,Σ

−1
k

)︁
+

T∑︂
t=2

K∑︂
k=1

[zt = k] logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁
+

K∑︂
k=1

{I(z1 = k) log πk}+
T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j) log akj

+ logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+ log

K∑︂
k=1

N
(︁
µk|m0, (β0Σk)

−1
)︁
+ log

K∑︂
k=1

W (Σk|W0, ν0)

+
K∑︂
k=1

logMN
(︁
Uk|M0,V

−1
k ,K0

)︁
+

K∑︂
k=1

logW (Vk|P0, η0)

(4.4)

4.2.3. Mean-field approximation

We consider the same factorization assumption as in Section 4.1.3 giving:

p(π,A,µ,Σ,U,Vz1:T |x1:T) ≈ q(π,A,µ,Σ,U,V)q(z1:T)

Again, we apply the general result from Equation (3.8) to obtain solutions for the varia-
tional distributions.

29

4.2.4. Variational E-step

To compute the expectations of parameters that are required for the M-step updates, we
need to apply the general result from Equation (3.8) to solve q(z1:T) giving:

log q(z1:T) ∝ Eq(π,A,µ,Σ,U,V) [log p(x1:T ,x2:Tˆ , z1:T ,π,A,µ,Σ,U,V)]

= Eq(π)

[︄
K∑︂
k=1

I(z1 = k) log (πk)

]︄

+ Eq(A)

⎡⎣ T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j) log akj

⎤⎦
+ Eq(µ,Σ)

[︄
K∑︂
k=1

[z1 = k] logN (x1|µk,Σk)

]︄

+ Eq(U,V)

[︄
T∑︂
t=2

K∑︂
k=1

I(zt = k) logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁]︄

=

K∑︂
k=1

I(z1 = k)Eq(π) [logπk] +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(A) [log akj]

+
K∑︂
k=1

I(z1 = k){︃
1

2
Eq(Σ) [log |Σk|]−

D

2
log (2π)− 1

2
Eq(µ,Σ)

[︂
(x1 − µk)

T Σk (x1 − µk)
]︂}︃

+
T∑︂
t=2

K∑︂
k=1

I(zt = k){︃
1

2
Eq(V) [log |Vk|]−

D

2
log (2π)

−1

2
Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂}︃

30

We can simply take the expectation results from Section 4.1.4 that are:

log ˜︁πk ≡ Eq(π) [logπk] = ψ(ω
(π)
k)− ψ(

K∑︂
k=1

ω
(π)
k),

K∑︂
k=1

˜︁πk ≤ 1 (4.5)

log ˜︁akj ≡ Eq(A) [log akj] = ψ(ω
(A)
kj)− ψ(

K∑︂
j=1

ω
(A)
kj),

K∑︂
j=1

˜︁akj ≤ 1 (4.6)

log ˜︁Σk ≡ Eq(Σ) [log |Σk|] =
D∑︂
i=1

ψ

(︃
νk + 1− i

2

)︃
+D log 2 + log |Wk| (4.7)

Eq(µ,Σ)

[︁
(x1 − µk)

TΣk(x1 − µk)
]︁
= Dβ−1

k + νk(mk − x1)
TWk(mk − x1) (4.8)

Since we put a Wishart prior on Vk the solution is equivalent to Equation (4.7) giving:

log ˜︁Vk ≡ Eq(V) [log |Vk|] =
D∑︂
i=1

ψ

(︃
ηk + 1− i

2

)︃
+D log 2 + log |Pk|

We are left to solve the expectation for:

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂

We rewrite:

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (Ukx̂t−1)
]︂

=

∫︂
Eq(U)

[︁
(Ukx̂t−1 − xt)

TVk(Ukx̂t−1 − xt)
]︁
q(Vk) dVk

(4.9)

The inner expectation corresponds to a Matrix-Normal distribution. Thus, we make use of
transformations derived in [38] and get two expectations:

E [Uk] = Mk

E
[︁
UkQUT

k

]︁
= MkUMT

k +Tr
{︁
K−1

k Q
}︁
V−1

k

Applying this transformations on the inner expectation from Equation (B.2) gives:

Eq(U)

[︁
(Ukx̂t−1 − xt)

TVk(Ukx̂t−1 − xt

]︁
= (Mkx̂t−1 − xt)

TVk(Mkx̂t−1 − xt) +Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂

31

Substituting back yields the final solution:

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (Ukx̂t−1)
]︂

= ηk(Mkx̂t−1 − xt)
TPk(Mkx̂t−1 − xt) +Tr

{︂
K−1

k x̂t−1x̂
T
t−1

}︂

4.2.5. Variational M-step

For the M-step updates, we need to solve log q(π,A,µ,Σ,U,V). Applying the general
result from Equation (3.8) gives:

log q(π,A,µ,Σ,U,V) ∝ Eq(z1:T) [log p(x1:T ,u2:T , z1:T ,π,A,µ,Σ,U,V)]

= logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+
K∑︂
k=1

γ1(k) logN
(︁
x1|µk, (β0Σk)

−1
)︁

+
T∑︂
t=2

K∑︂
k=1

γt(k) logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁
+

K∑︂
k=1

{γ1(k) log πk}

+

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) log aij

+

K∑︂
k=1

logMN
(︁
Uk|M0,V

−1
k ,K0

)︁
+

K∑︂
k=1

logW (Vk|P0, η0)

(4.10)
We observe the right-hands side decomposes into a sum of terms only involving π together,
A together, µ and Σ together and U and V together. This observation implies that the
variational posterior q(π,A,µ,Σ,U,V) factorizes to:

q(π,A,µ,Σ,U,V) = q(π)q(A)
K∏︂
k=1

q(µk,Σk)
K∏︂
k=1

q(Uk,Vk) (4.11)

32

As we already derived solutions for q(π), q(A) and q(µk,Σk) in Section 4.1.4, we are left
to solve q(Uk,Vk).

Regarding the target distribution from Equation (4.3.2), we assume the model for q(U,V)
has the form:

q(U,V) =

K∏︂
k=1

q(Uk,Vk) =

K∏︂
k=1

q(Uk|Vk)q(Vk)

=

K∏︂
k=1

MN
(︁
Uk|Mk,V

−1
k ,Kk

)︁
W (Vk|Pk, ηk)

=
K∏︂
k=1

|Kk|d/2|Vk|m/2

(2π)m/2
exp

{︃
−1

2
Tr
{︁
(Uk −Mk)

TVk(Uk −Mk)Kk

}︁}︃
B(Pk, ηk)|Vk|(ηk−D−1)/2 exp

{︃
−1

2
Tr
{︁
P−1

k Vk

}︁}︃
where B(Pk, ηk) is defined in C.4.

Solving q(U,V) requires to make use of result from Equation (4.11) and take only the
terms from Equation (4.10) that depend on Uk and Vk giving:

log q(Uk,Vk) ∝ logMN
(︁
Uk|M0,V

−1
k ,K0

)︁
+ logW (Vk|P0, η0)

+

T∑︂
t=2

γt(k) logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁
= −1

2
Tr
{︁
(Uk −M0)

TVk(Uk −M0)K0

}︁
− m

2
log(|Vk|)

− 1

2
Tr
{︁
VkW

−1
0

}︁
+

(η0 −D − 1)

2
log |Vk|

− 1

2

T∑︂
t=2

γt(k)(xt −Ukx̂t−1)
TVk(xt −Ukx̂t−1)

+
1

2

(︄
T∑︂
t=2

γt(k)

)︄
log |Vk|

We make use of the product rule to obtain log q(Uk,Vk) = log q(Uk|Vk)+log q(Vk). First
we write log q(Uk|Vk) by only making use of the terms that depend on Uk. We gather all
terms in (4.2.5) that contain Uk giving:

33

log q(Uk|Vk) ∝ −
1

2
Tr
{︁
(Uk −M0)

TVk(Uk −M0)K0

}︁
− 1

2

T∑︂
t=2

γt(k)(xt −Ukx̂t)
TVk(xt −Ukx̂t)

= −1

2
Tr
{︁
Vk(UkK0U

T
k −UkK0M

T
0 −M0K0U

T
k +M0K0M

T
0)
}︁

− 1

2

T∑︂
t=2

γt(k)Tr
{︂
Vk(xtx

T
t − xtx̂

T
t U

T
k −Ukx̂tx

T
t +Ukx̂tx̂

T
t U

T
k)
}︂

We separate the dependencies in quadratic and linear terms which yields:

log q(Uk|Vk) = −
1

2
Tr

{︄
VkUk

[︄
T∑︂
t=2

γt(k)x̂tx̂
T
t +K0

]︄
UT

k

}︄
⏞ ⏟⏟ ⏞

quadratic term

−1

2
Tr

{︄
VkUk

[︄
−

T∑︂
t=2

γt(k)xtx̂
T
t−1 −M0K0

]︄}︄
⏞ ⏟⏟ ⏞

linear term

The defined form of q(Uk|Vk) is Matrix Normal giving:

MN
(︁
Uk|Mk,V

−1
k ,Kk

)︁
We obtain a solution for the posterior parameter updates using the defined form and
bringing Using this form, we obtain a solution for the posterior parameter updates.

Kk =

T∑︂
t=2

γt(k)x̂t−1x̂
T
t−1 +K0

We apply this procedure on the linear terms to obtain a solution for Mk

34

Mk =

[︄
T∑︂
t=2

γt(k)xtx̂
T
t−1 +M0K0

]︄
K−1

k

To obtain the parameters Pk and ηk of the Wishart distribution q(Vk), we subtract the
conditional distribution from the joint distribution giving:

log q(Vk) = logW (Uk|Pk, ηk)

= log q(Uk,Vk)− log q(Uk|Vk)

∝ (ηk −D − 1)

2
log |Vk| −

1

2
Tr
{︁
VkP

−1
k

}︁
where P−1

k is defined as:

P−1
k = P−1

0 +M0K0M
T
0 +

T∑︂
t=2

γt(k)xtx
T
t −MkKkM

T
k

We arange the terms to obtain a solution for ηk and Vk. For ηk we get:

ηk = η0 +

T∑︂
t=2

γt(k)

The EM updates for the VBAR-HMM are summarized in the Appendix A.2.

35

4.2.6. The evidence lower bound

The ELBO for the VBAR-HMM is:

ELBOVBAR-HMM =

∫︂ ∫︂ ∫︂ ∫︂ ∫︂ ∫︂
q (π,A,µ,Σ,U,V)

[︃
log

p(π,A,µ,Σ,U,V)

q(π,A,µ,Σ),U,V

+
∑︂
z1:T

q(z1:T) log
p(x1:T , z1:T |π,A,µ,Σ,U,V)

q(z1:T)

]︄
dπ dA dµdΣdU dV

= E [log p(x1|z1,µ,Σ)] + E [log p(x2:T |x̂1:T−1z2:T ,U,V)]

+ E [log p(z1:T |π,A)] + E [log p(π)] + E [log p(A)]

+ E [log p(µ,Σ)] + E [log p(U,V)]− E [log q(π)]− E [log q(A)]

− E [log q(µ,Σ)]− E [log q(U,V)]− E [log q(z1:T)]

All expectations are w.r.t. q(z1:T ,π,A,µ,Σ,U,V). The solutions for the expectations are
derived in the variational E- and M-steps.

4.3. Variational Bayes rAR-HMM

The VBrAR-HMM similar to the VBAR-HMM. The difference is the added dependency link
the observation xt to the next state zt+1 as Figure 3.1c illustrates. Since zt+1 now depends
on xt and zt, the latent state transition function has the property of being nonlinear.

4.3.1. Model priors

We introduce the function fφ(.) for the recurrent state transition which defines a Bayesian
neural network with parameters φ. We can take the model priors from Section 4.2.1 and
need to change the Dirichlet transition prior with a Gaussian prior we put on the neural

36

network weights φ giving the graphical model:

πk ∼ Dir(ω
(π)
0)

φ ∼ N (ζ0,Y0)

Σk ∼ W(W0, ν0)

µk ∼ N (m0, (β0,Σk)
−1)

Vk ∼ W(P0, η0)

Uk ∼MN (M0,V
−1
k ,K0)

x1 ∼ N (µk,Σ
−1
k)

x2:T ∼ N (Ukx̂1:T−1,V
−1
k)

The posterior parameters are equal to the posterior parameters from Subsection 4.2.1.
Except the Dirichlet posterior ω(A) is exchanged with the Bayesian neural network (BNN)
posteriors ζ and Y. The dimensions of the BNN parameter posteriors corresponds to the
number of hidden layers and parameters per layer.

37

4.3.2. Target distribution

With the above the defined priors, the log target distribution of the VBAR-HMM becomes:
log p(x1:T ,z1:T ,π,φ,µ,Σ,U,V)

= log p(x1|z1,µ,Σ) + log p(x2:T |x̂2:T , z2:T ,U,V)

+ log p(z1:T |π, x̂2:T ,φ) + log p(π) + log p(φ)

+ log p(µ|Σ) + log p(Σ) + log p(U|V) + log p(V)

∝
K∑︂
k=1

[z1 = k] logN
(︁
x1|µk,Σ

−1
k

)︁
+

T∑︂
t=2

K∑︂
k=1

[zt = k] logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁
+

K∑︂
k=1

{I(z1 = k) log πk}+
T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j) logψkj

+ logDir(π|ω(π)
0) +

K∑︂
k=1

logN (φ|ζ0,Y0)

+ log

K∑︂
k=1

N
(︁
µk|m0, (β0Σk)

−1
)︁
+ log

K∑︂
k=1

W (Σk|W0, ν0)

+
K∑︂
k=1

logMN
(︁
Uk|M0,V

−1
k ,K0

)︁
+

K∑︂
k=1

logW (Vk|P0, η0)

where ψk,j is defined as follows:

ψk,j =
exp(fφ(xt−1,ut)k,j)∑︁K

k′=1 exp(fφ(xt−1,ut)k,k′)
(4.12)

We sum over the columns for each row of the output matrix to obtain normalized transition
probabilities.

4.3.3. Mean-field approximation

The model of the rARHMM only changes w.r.t. the transition function. The rARHMM
model is equipped with a non-linear function. Thus, the factorization model remains

38

identical in all parts but the transition function. Applying the mean-field approximation
to the rARHMM we get the following result:

4.3.4. Variational E-step

log q(z1:T) ∝ Eq(π,φ,µ,Σ,U,V) [log p(x1:T , z1:T ,π,φ,µ,Σ,U,V)]

=

K∑︂
k=1

I(z1 = k)Eq(π) [logπk] +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(φ) [logψkj]

+
K∑︂
k=1

I(z1 = k){︃
1

2
Eq(Σ) [log |Σk|]−

D

2
log (2π)− 1

2
Eq(µ,Σ)

[︂
(x1 − µk)

T Σk (x1 − µk)
]︂}︃

+

T∑︂
t=2

K∑︂
k=1

I(zt = k){︃
1

2
Eq(V) [log |Vk|]−

D

2
log (2π)

−1

2
Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂}︃

Since the rAR-HMM changes w.r.t. the transition function, only the estimation of the
transition function differs from the AR-HMM model. We can not solve the estimation term
in closed form due to its non linearity property as equation (4.12) shows. We make use of
a non-linear function approximation framework to approximate the optimal solution. To
remain in the Bayesian fashion, we choose a BNN [39, 40, 41] for this task.

We solve the estimation for Eq(φ) [logψij] by plugging in the observations xt−1 and ut into
the bayesian neural network fφ(.) and normalize the result to get proper probabilities.

4.3.5. Variational M-step

To optimize the parameters φ of the BNN, we make use of stochastic gradient function
approximations. For this task, we choose to maximize the part of the lower bound that

39

depends on the network output. We write the objective as follows:

max
φ

log p(z2:T |φ) = max
φ

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) logψkj (4.13)

This objective can be plugged in any gradient solver. Thus, a BNN is not mandatory for
this task. The EM updates for the VBrAR-HMM are summarized in the Appendix A.3.

4.3.6. The evidence lower bound

The ELBO for the VBAR-HMM is:

ELBOVBAR-HMM =

∫︂ ∫︂ ∫︂ ∫︂ ∫︂ ∫︂
q (π,phi,µ,Σ,U,V)

[︃
log

p(π,A,µ,Σ,U,V)

q(π,A,µ,Σ),U,V

+
∑︂
z1:T

q(z1:T) log
p(x1:T , z1:T |π,φ,µ,Σ,U,V)

q(z1:T)

]︄
dπ dφdµdΣdU dV

= E [log p(x1|z1,µ,Σ)] + E [log p(x2:T |x̂2:T z2:T ,U,V)]

+ E [log p(z1:T |π,φ)] + E [log p(π)] + E [log p(φ)]

+ E [log p(µ,Σ)] + E [log p(U,V)]− E [log q(π)]− E [log q(φ)]

− E [log q(µ,Σ)]− E [log q(U,V)]− E [log q(z1:T)]

The expectations have the same solutions as VBAR-HMM in Subsection 4.2.6. Only the
expectation of the BNN parameters changed. The solution is derived in the EM-steps.

40

5. Switching actor

The idea of SWAC is to train multiple policies with few parameters rather than training
one global policy with a large number of parameters. This procedure is inspired by the
option-critic architecture from [42]. Ideally, we can choose linear policies that capture
local linearities. Having such policies can be seen as a single global policy with extended
internal structure. To achieve this policy transformation, we make use of a trained HMM
that mimics the system dynamics. This adaption makes SWAC to a MBRL because of the
dynamics model we plug in this algorithm.

In this section, we show the implementation of SWAC and extend one of the recent
actor-critic algorithms with SWAC.

5.1. Implementation

The design of SWAC makes SWAC is generally applicable to all actor-critic frameworks
where we collect environment sample trajectories with a policy and maximize the reward
signal.

Algorithm 1 shows the implementation of SWAC. The training procedure of SWAC in 1
is similar to REINFORCE or any actor-critic framework. The main difference to typical
model free policy search frameworks is that we make use of a dynamics model and we
initialize multiple policies that are disjointly attached to the latent states of the dynamics
model.

To generate samples with the policies, we first compute a belief vector (normalized
probabilities for each state). Using the belief vector b we sample the policy that samples
the action for the current observation.

41

Input: step size: α, number of switching states: Z, max horizon: H
1 τslds ← collect randomly sampled trajectories from environment;
2 slds← train dynamics model with Z switching states from τslds;
3 π

(z)
θ ← initialize Z policies where z ∈ {1, ..., Z};

4 while not converged do
5 for max horizon not reached do
6 b← compute state belief vector with slds;
7 z ← randomly choose state from b;
8 τ ← collect samples with policy π(z)θ (at|st);
9 end

10 foreach latent state z do
11 ĝ

(z)
θ ←

∑︁T
t=1 I(zt = z)∇θ log π

(z)
θ (at|st)

[︂∑︁T
t′=t I(zt′ = z)r(st′ ,at′)

]︂
;

12 θ(z) ← θ(z) + αĝ
(z)
θ ;

13 end
14 end

Algorithm 1: SWAC: Switching actor

For the policy parameter update step, we only take the actions into account that are
sampled from the policies. The indicator functions ensure the mapping to the matching
policies.

In addition, we can exchange the reward with a discounted reward, add a baseline,
exchange the reward with an advantage function [43] etc. For the evaluation task, we test
SWAC on A2C [44] and on SAC [45]. Both extension use a single global value function.

5.2. Extending A2C with SWAC

The implementation of A2C with SWAC is similar to the proposed algorithm 1. We refer
to this extension as SWAC-A2C. A2C requires the computation of the advantage function.
Thus, we add a global value function network and initialize multiple policies. The gradient
computation becomes:

ĝ
(z)
θ ←

T∑︂
t=1

I(zt = z)∇θ log π
(z)
θ (at|st) [Q(st,at)− V (st)]

42

where Q(.) is the state-action value function obtained by computing the discounted
reward.

If the HMM detects a latent state less frequently, the policy linked to that state samples
only few samples which can lead to gradient distortion. To prevent from this behavior, we
attach each policy with a own learn rate. During each policy update step, we measure the
policy change by computing the KL divergence of the policy parameters before and after
the policy update. The KL divergence needs to remain within a fixed value which is set as
a hyper parameter. A too small KL divergence increases the learn rate and a too large KL
divergence increases the learn rate for the next iterations.

5.3. Extending SAC with SWAC

The extension of SAC with SWAC is similar to the SWAC extension of A2C. For this
implementation we choose a fixed learn rate since the policy gradient has naturally less
variance than A2C due to its architecture.

In addition, we need to adapt the computation of the policy log probabilities from the soft
value function stated in equation (6) in [45]. Our solution for this problem is to average
the log probability over all policies and thus relinquish to use exclusive policies for this
computation.

Using the exclusive policy log probabilities affected the accuracy of the soft value function
and lead to bad performance.

43

6. Evaluation

For the experiments, we show the switching state behavior of the VBrAR-HMMs and
compare their prediction performance to state of the art neural network architectures.

Moreover, we train policies to control previously trained SLDS and evaluate their perfor-
mance on the true dynamics.

Finally, we equip actor-critic architectures with SWAC, measure the learning performance
and compare it to the non SWAC equipped variants.

We evaluate the experiments on the pendulum and the cart-pole [46] environments. These
are classical benchmark systems from the control literature. The swing up task is set as
the objective for both environments. For the observation model we represent the angles
in the trigonometric space.

6.1. Bayesian HMMs

The experiments of this section exemplarily show the dynamic switching behavior of the
VBrAR-HMMs. Additionally, we compare the prediction performance of the VBAR-HMM
and VBrAR-HMM to state-of-the-art models.

6.1.1. Viterbi state detection

In this experiment, we evaluate the Viterbi algorithm on randomly sampled trajectories
using the likelihoods of previously trained VBrAR-HMMs. The VBrAR-HMMs are initialized
with seven latent states to capture the switching dynamics for each environment. From
the pendulum environment, the VBrAR-HMM is given 25 training rollouts with a horizon

44

0 25 50 75 100 125 150 175 200
1

0

1

co
s(

)

0 25 50 75 100 125 150 175 200
1

0

1

sin
(

)

0 25 50 75 100 125 150 175 200
5
0
5

0 25 50 75 100 125 150 175 200
steps

2

0

2

co
nt

ro
l

Figure 6.1.: Randomly sampled trajectories on the pendulum (left) and cart-pole
(right) environment. Each color represents a detected latent state from
the VBrAR-HMM using the Viterbi algorithm. The state transitions
match the repeating dynamic patterns.

of 200 each. The VBrAR-HMM imitating the cart-pole dynamics, is given 45 training
rollouts with a horizon of 250 each.

Figure 3.1.4 shows the Viterbi state detection of the VBrAR-HMMs. The horizon for the
pendulum trajectory is 200 and 500 for the cart-pole trajectory. Each color is disjointly
mapped to a latent state of the model. The VBrAR-HMM only uses 4 of its 7 states to
capture the switching dynamics of this trajectory. Similarly, the VBrAR-HMM requires 6 of
the total 7 states to express the cart-pole dynamics of the given trajectory.

We observe that the VBrAR-HMM learns a sensible assignment of the states, especially
regarding the repeating patterns of the pendulum trajectory.

6.1.2. Model learning performance

In this experiment, we compare the out-of-sample predictive performance of the VBAR-
HMM, VBrAR-HMM. Evaluating two types of the VBrAR-HMMs. One uses a BNN and the
other uses a classic Feed-forward neural network (FNN) for the latent state transition.
We compare the performance of our models with FNN, Recurrent neural network (RNN)
and Long short-term memory neural networks (LSTM)[47]. A prediction performance
overview of the non Bayesian HMMs can be found in [46].

45

1 5 10 15 20 25

0.1

0.2

0.3

h

N
M
SE

Pendulum100Hz

VBAR-HMM
VBrAR-HMM-NN
VBrAR-HMM-BNN
FNN
RNN
LSTM

1 5 10 15 20 25

0.2

0.4

0.6

0.8

1

h

N
M
SE

Cart-pole100Hz

VBAR-HMM
VBrAR-HMM-NN
VBrAR-HMM-BNN
FNN
RNN
LSTM

Figure 6.2.: Out-of-sample predictive performance of the VBAR-HMMs and
VBrAR-HMMs to SOTA models. Evaluation on the pendulum (left) and
cart-pole (right) environment.

Figure 6.2 shows the evaluation results for the out-of-sample prediction task on the
pendulum and cart-pole environment. The s, RNNs and LSTMs use a single hidden
layer with 64 neurons each. The VBrAR-HMMs use a single layer with 24 neurons
for the transition network. The predictive performance is evaluated on the horizons
h ∈ {1, 5, 10, 15, 20, 25}. Each model is trained with a 10 trajectories with 250 steps each.
The performance is averaged over 20 differently trainedmodels. For the pendulum task, the
other models perform better than ours. All three of our presented models perform equally
on this task. The logistic link of the VBrAR-HMM does not improve the models predictive
accuracy. However, for the cart-pole task, the logistic link improves the prediction accuracy
but only for the variant without using the BNN. Our models outperform the other models
on this task except the performs better.

6.2. Learning control on rAR-HMM

In this experiment, we perform model-free policy search on trained rAR-HMMs. We use
the non Bayesian rAR-HMMs from [46] because they are well tested on the pendulum
and cart-pole environment. We train the models with these environments. The goal is to
showcase a potential performance gain of SWAC by using a reliable SLDS model.

46

0 50 100 150 200 250 300 350 400

−1
0

1

co
s(
θ)

Pendulum100Hz - rAR-HMM dynamics

0 50 100 150 200 250 300 350 400

−1
0

1

si
n
(θ
)

0 50 100 150 200 250 300 350 400

−5
0
5

θ̇

0 50 100 150 200 250 300 350 400

−4
−2
0
2
4

steps

co
nt
ro
l

0 50 100 150 200 250 300 350 400

−1
0

1

co
s(
θ)

Pendulum100Hz - true dynamics

0 50 100 150 200 250 300 350 400

−1
0

1

si
n
(θ
)

0 50 100 150 200 250 300 350 400

−5
0
5

θ̇

0 50 100 150 200 250 300 350 400

−4
−2
0
2
4

steps

co
nt
ro
l

Figure 6.3.: Policy evaluation on the rAR-HMM dynamics (left) and on the true dy-
namics (right) of the pendulum environment. The policy training ob-
servations are sampled from the rAR-HMM dynamics.

We evaluate the performance of the trained policy on hybrid environments with rAR-HMM
dynamics and on the true dynamics models.

The approximation gaps of the trained models can lead to variance increasement of the
policy gradients. Thus, we use LAX [20] as the policy search framework for this task.

6.2.1. Policy evaluation on the pendulum task

For the pendulum environment, the rAR-HMM is trained with 25 trajectories each with a
horizon of 200. The policy is trained with 800 epochs, each with 5000 samples.

Figure 6.3 illustrates the pendulum policy evaluation on the rAR-HMM dynamics and on
the true dynamics. The latent state transitions are detected with the trained rAR-HMM
that is used as the hybrid dynamics model on the left. The model dynamics are nearly
identical for both systems. Thus, the policy manages to succeed to swing up and stabilize
the pendulum on both systems. The policy achieves an expected reward with -2310.73
± 1983.48 on the rAR-HMM dynamics and on the true dynamics the expected reward

47

0 50 100 150 200 250 300

−4
−20
2
4

x

Cart-pole100Hz - rAR-HMM dynamics

0 50 100 150 200 250 300

−1
0
1

co
s(
θ)

0 50 100 150 200 250 300

−1
0
1

si
n
(θ
)

0 50 100 150 200 250 300

−4
−20
2
4

ẋ

0 50 100 150 200 250 300

−10
0

10

θ̇

0 50 100 150 200 250 300
−5
0

5

steps

co
nt
ro
l

0 50 100 150 200 250 300

−4
−20
2
4

x

Cart-pole100Hz - true dynamics

0 50 100 150 200 250 300

−1
0
1

co
s(
θ)

0 50 100 150 200 250 300

−1
0
1

si
n
(θ
)

0 50 100 150 200 250 300

−4
−20
2
4

ẋ

0 50 100 150 200 250 300

−10
0

10

θ̇

0 50 100 150 200 250 300
−5
0

5

steps

co
nt
ro
l

Figure 6.4.: Policy evaluation on the rAR-HMM dynamics (left) and on true dynam-
ics (right)of the pendulum environment. The policy training observa-
tions are sampled from the rAR-HMM dynamics.

using the same policy is -2300.90 ± 2513.69. We averaged over 20 rollouts, each with a
horizon of 1000.

6.2.2. Policy evaluation on the cart-pole task

For the cart-pole environment, the rAR-HMM is trained with 45 trajectories each with a
horizon of 250. The policy is trained with 500 epochs, each with 5000 samples.

Figure 6.4 illustrates the cart-pole policy evaluation on the rAR-HMM dynamics and on
the true dynamics. The latent state transitions are detected with the trained rAR-HMM
that is used as the hybrid dynamics model on the left. Other than in the pendulum task,
a difference in the dynamics between the two models is observable. Owing to a more
difficult prediction of the cart-pole dynamics. However, the policy still manages to achieve
the swing up and stabilization task on both models. The policy achieves an expected

48

0 100 200 300 400 500

−6,000

−4,000

−2,000

Episode

Ex
pe

ct
ed

re
tu
rn

Pendulum100Hz

A2C
SWAC-A2C
LAX

0 200 400 600 800

−3

−2

−1

0
·104

Episode

Ex
pe

ct
ed

re
tu
rn

Cart-pole100Hz

A2C
SWAC-A2C
LAX

Figure 6.5.: Policy evaluation performance comparison of A2C, SWAC-A2C and
LAX on the pendulum (left) and on the cart-pole (right) environment.

reward with -2993.20 ± 1918.37 on the rAR-HMM dynamics and on the true dynamics
the expected reward using the same policy is -3389.59 ± 1785.15. We averaged over 20
rollouts, each with a horizon of 5000.

6.3. SWAC-A2C

In this experiment, we compare the learning performance of SWAC-A2C, A2C and LAX.
The performance is evaluated on 20 different seeds for each algorithm on each envi-
ronment. The underlying rAR-HMMs of each environment for SWAC-A2C are trained
with the same settings as in Section 6.2. For a fair comparison, we have added the learn
rate regularization of the KL divergence between the old policy and the updated policy
parameters to A2C and (LAX). to A2C.

Figure 6.5 shows the learning performance on both environments with a confidence
interval at 95%. Since rAR-HMMs are trained with 7 states, SWAC-A2C is equipped with 7
policies each with a single hidden layer and 14 neurons. A2C and LAX use policies with 2
hidden layers and 64 neurons for each layer. The value function neural network is the same
for all three algorithms. 2 hidden layers each with 64 neurons. For each training episode
5000 training samples are generated. The target KL divergence for the policy parameter

49

0 2 4 6 8 10

−8,000

−6,000

−4,000

−2,000

Episode

Ex
pe

ct
ed

re
tu
rn

Pendulum100Hz

SWAC-SAC
SAC

0 5 10 15 20

−2

−1.5

−1

−0.5

0
·105

Episode

Ex
pe

ct
ed

re
tu
rn

Cart-pole100Hz

SWAC-SAC
SAC

Figure 6.6.: Policy evaluation performance comparison of SAC and SWAC-SAC on
the pendulum (left) and on the cart-pole (right) environment.

updates is set to 0.02 for all algorithms. SWAC-A2C clearly outperforms the baseline
algorithms on the pendulum swing up task. Whereas, on the cart-pole environment
SWAC-A2C shows a worse performance at the beginning of the training but performs
better in the long run compared to the baseline. LAX shows the same performance as A2C
on both environments.

6.4. SWAC-SAC

In this experiment, we compare the learning performance of SWAC-SAC and SAC. The
performance is evaluated on 20 different seeds for each algorithm on each environment.
The underlying rAR-HMMs of each environment for SWAC-SAC are trained with the same
settings as in Section 6.2.

Figure 6.6 shows the learning performance on both environments with a confidence
interval at 95%. As in experiment of subsection 5.2 the rAR-HMMs are trained with 7
states, SWAC-SAC is equipped with 7 policies each with a single hidden layer and 14
neurons. SAC uses a policy network with 2 hidden layers and 64 neurons for each layer.
The value function neural network is the same for all three algorithms. 2 hidden layers
each with 64 neurons. 5,000 training samples are generated for the pendulum and 10,000

50

training samples are generated for the cart-pole task for each training episode. SWAC-SAC
and SAC perform identically on the pendulum task. For the cart-pole task SWAC-SAC
outperforms SAC. SWAC-SAC succeeds in approximately 4 training episodes to achieve
the task and remains stable for the further training episodes. SAC on the other hand
approximately requires 10 training episodes to achieve the cart-pole task.

6.5. Discussion

The results show that the variational Bayes variants of the HMMs are capable of capturing
the system dynamics of a given model. The weaker performance of the VBrAR-HMM-BNN
compared to the VBAR-HMM and VBrAR-HMM-FNN can be due to the difficulties of
hyper-parameter tuning for the BNNs [48]. However, using the BNN we can access the
uncertainty of the network which could be interesting for further work. Moreover, we have
shown that SLDS can be successfully incorporated into policy search problems which is
evidenced by our results. The actor-critic frameworks extended with SWAC show a similar
or better performance but no worse performance compared to the non SWAC extended
actor-critic frameworks. A weakness of the SWAC extension is the computation overhead
that occurs during the gradient propagation for each policy. This computation can be
parallelized but still requires additional computation resources. Interestingly, LAX shows
the same performance as A2C on our selected control environments. In the published paper
of LAX [20] the authors used more complex environments to evaluate LAX. Observing
this behavior, we conclude that LAX plays its strength for gradient variance reduction on
more complex environments.

51

7. Outlook

The Bayesian HMMs have the property make the access to the models uncertainty possible.
For future work it would be interesting to incorporate this quantity into a policy search
framework such that exploration can be enhanced. Moreover, further investigation of
these models for the planning step in a MBRL setup can improve the learning performance
as [5] have done with GPs. A requirement to achieve this task, is to make differentiating
through the whole model possible.

For future work of SWAC, it would be interesting to find a way to get SWAC work by only
using multiple linear policies. A problem of SWAC is that when a latent state is rarely
detected by the switching model, the policy mapped to that latent state produces not
enough samples for training. This behavior can be avoided by using as few latent states as
possible.

52

8. Conclusion

In this thesis, we have tackled the problem of equipping a policy with additional inter-
nal structure. Initially, we have formulated a Bayesian HMM that makes the model’s
uncertainty accessible. This uncertainty can be used as an additional quantity for policy
search problems. To succeed this thesis’s goal, we have successfully integrated a non
Bayesian rAR-HMMs to a policy framework that we have defined in this work. This policy
framework profits from the switching behavior of the rAR-HMMs and shows superior
performance compared to the variants that are not equipped with switching structure of
the rAR-HMMs.
In Chapter 4, we have proposed a Bayesian formulation of HMMs, AR-HMMs and rAR-
HMMs by making use of variational inference and the mean-field approximation. We have
defined the priors of the model parameters and have derived all required steps to make
an implementation of these models straightforward using the Baum-Welch algorithm.
In Chapter 5, we have introduced SWAC, an extension for policy search algorithms that
brings additional structure to the policy by integrating a switching state space model, in
our case rAR-HMMs, into the policy search procedure.
In Chapter 6, we have illustrated the switching behavior of the VBrAR-HMMs.
Moreover, we have compared the predictive performance of the VBAR-HMM and the
VBrAR-HMM. On the simpler pendulum environment, the reference models performed
better than our proposed models. Whereas, on the more complex cart-pole environment,
our models outperformed the reference models except the LSTM.
To show the advantage of minimizing sample complexity by using a learned dynamics
model, we have performed policy search on a trained rAR-HMM. The obtained policy is
evaluated on the true and on the rAR-HMM dynamics. The policy performed minimally
better on the rAR-HMM dynamics.
As a proof of concept for SWAC, we have measured the learning performance of the SWAC
to the non SWAC equipped counterparts. For a fair comparison, we have used the same
hyper-parameters for both variants. The results of SWAC have shown a better or an equal
performance compared to the non SWAC variant.

53

Finally, we have reviewed a policy search approach that benefits from the Bayesian HMMs
by using the model for planning and accessing the model’s uncertainty for exploration.
Regarding SWAC, we have pointed on the possibility to make it run by using linear policies
only.

54

Bibliography

[1] S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski, “Bayesian
Learning and Inference in Recurrent Switching Linear Dynamical Systems,” in
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
(A. Singh and J. Zhu, eds.), vol. 54 of Proceedings of Machine Learning Research, (Fort
Lauderdale, FL, USA), pp. 914–922, PMLR, 20–22 Apr 2017.

[2] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-13, no. 5, pp. 834–846, 1983.

[4] M. J. Beal, “Variational algorithms for approximate bayesian inference,” tech. rep.,
2003.

[5] M. Deisenroth and C. Rasmussen, “Pilco: A model-based and data-efficient approach
to policy search,” in Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, pp. 465–472, Omnipress, 2011.

[6] M. P. Deisenroth∗, G. Neumann∗, and J. Peters, “A survey on policy search for
robotics,” Foundations and Trends in Robotics, pp. 388–403, 2013.

[7] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” CoRR,
vol. abs/1906.02691, 2019.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2014.

[9] C. Doersch, “Tutorial on variational autoencoders,” 2016. cite arxiv:1606.05908.

55

[10] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt, “Learning to fly via deep
model-based reinforcement learning,” 2020.

[11] G. Ackerson and K. Fu, “On state estimation in switching environments,” IEEE
Transactions on Automatic Control, vol. 15, no. 1, pp. 10–17, 1970.

[12] C. B. Chang and M. Athans, “State estimation for discrete systems with switching
parameters,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-14,
no. 3, pp. 418–425, 1978.

[13] J. D. Hamilton, “Analysis of time series subject to changes in regime,” 1990.

[14] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Nonparametric bayesian
learning of switching linear dynamical systems,” in Advances in Neural Information
Processing Systems 21 (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.),
pp. 457–464, Curran Associates, Inc.

[15] Z. Ghahramani and G. E. Hinton, “Switching state-space models,” tech. rep., King’s
College Road, Toronto M5S 3H5, 1996.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. cite
arxiv:1312.6114.

[17] E. Jang, S. Gu, and B. Poole, “Categorical reparametrization with gumbel-softmax,”
in Proceedings International Conference on Learning Representations 2017, OpenRe-
views.net, Apr. 2017.

[18] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous
relaxation of discrete random variables,” 2016. cite arxiv:1611.00712.

[19] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein, “Rebar: Low-
variance, unbiased gradient estimates for discrete latent variable models,” in Ad-
vances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 2627–2636, Cur-
ran Associates, Inc., 2017.

[20] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, “Backpropagation
through the void: Optimizing control variates for black-box gradient estimation,”
2017. cite arxiv:1711.00123Comment: Published at ICLR 2018.

[21] K. P. Murphy, Machine learning : a probabilistic perspective. Cambridge, Mass. [u.a.]:
MIT Press, 2013.

56

[22] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite
state markov chains,” Ann. Math. Statist., vol. 37, pp. 1554–1563, 12 1966.

[23] V. Smídl and A. Quinn, The Variational Bayes Method in Signal Processing (Signals
and Communication Technology). Berlin, Heidelberg: Springer-Verlag, 2005.

[24] T. S. Jaakkola and M. I. Jordan, “Bayesian parameter estimation via variational
methods,” Statistics and Computing, vol. 10, no. 1, pp. 25–37, 2000.

[25] T. S. Jaakkola and M. I. Jordan, “Computing upper and lower bounds on likelihoods
in intractable networks,” pp. 340–348, Morgan Kaufmann, 1996.

[26] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and
variational inference,” Found. Trends Mach. Learn., vol. 1, p. 1–305, Jan. 2008.

[27] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for
statisticians,” 2018.

[28] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Mach. Learn., vol. 37, p. 183–233, Nov.
1999.

[29] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation
in machine learning,” 2019. cite arxiv:1906.10652Comment: 59 pages, under
review.

[30] C. Wang and D. M. Blei, “Variational inference in nonconjugate models,” J. Mach.
Learn. Res., vol. 14, p. 1005–1031, Apr. 2013.

[31] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[32] S. M. Ross, Simulation, Fourth Edition. USA: Academic Press, Inc., 2006.

[33] R. Dearden, N. Friedman, and D. Andre, “Model-based bayesian exploration,” CoRR,
vol. abs/1301.6690, 2013.

[34] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models in reinforcement
learning,” in Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, (New York, NY, USA), p. 1–8, Association for Computing Machinery, 2006.

[35] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochastic systems
with discrete-time measurements,” IEEE Transactions on Automatic Control, vol. 43,
no. 9, pp. 1198–1210, 1998.

57

[36] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Oct. 2008. Version
20081110.

[37] T. P. Minka, “Bayesian linear regression,” tech. rep., 3594 Security Ticket Control,
1999.

[38] D. V. rosen, “Moments for matrix normal variables,” Statistics, vol. 19, no. 4,
pp. 575–583, 1988.

[39] D. J. MacKay, “Bayesian neural networks and density networks,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 354, no. 1, pp. 73 – 80, 1995. Proceedings of the Third
Workshop on Neutron Scattering Data Analysis.

[40] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty
in neural network,” in Proceedings of the 32nd International Conference on Machine
Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning
Research, (Lille, France), pp. 1613–1622, PMLR, 07–09 Jul 2015.

[41] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local
reparameterization trick,” in Advances in Neural Information Processing Systems
28 (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.),
pp. 2575–2583, Curran Associates, Inc.

[42] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, p. 1726–1734,
AAAI Press, 2017.

[43] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[44] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR,
vol. abs/1602.01783, 2016.

[45] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in Proceedings of the
35th International Conference on Machine Learning (J. Dy and A. Krause, eds.),
vol. 80 of Proceedings of Machine Learning Research, (Stockholmsmässan, Stockholm
Sweden), pp. 1861–1870, PMLR, 10–15 Jul 2018.

58

[46] H. Abdulsamad and J. Peters, “Hierarchical decomposition of nonlinear dynamics
and control for system identification and policy distillation,” in Proceedings of the
2nd Conference on Learning for Dynamics and Control (A. M. Bayen, A. Jadbabaie,
G. Pappas, P. A. Parrilo, B. Recht, C. Tomlin, and M. Zeilinger, eds.), vol. 120 of
Proceedings of Machine Learning Research, (The Cloud), pp. 904–914, PMLR, 10–11
Jun 2020.

[47] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget: Continual
prediction with lstm,” Neural Comput., vol. 12, p. 2451–2471, Oct. 2000.

[48] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” in Advances in Neural Information
Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), pp. 6402–6413, Curran Associates, Inc.,
2017.

59

A. Summary VBEM steps

A.1. VBHMM EM steps

E-step updates

log ˜︁πk ≡ Eq(π) [logπk] = ψ(ω
(π)
k)− ψ(

K∑︂
k=1

ω
(π)
k),

K∑︂
k=1

˜︁πk ≤ 1

log ˜︁akj ≡ Eq(A) [log akj] = ψ(ω
(A)
kj)− ψ(

K∑︂
j=1

ω
(A)
kj),

K∑︂
j=1

˜︁akj ≤ 1

log ˜︁Σk ≡ Eq(Σ) [log |Σk|] =
D∑︂
i=1

ψ

(︃
νk + 1− i

2

)︃
+D log 2 + log |Wk|

Eq(µ,Σ)

[︁
(xt − µk)

TΣk(xt − µk)
]︁
= Dβ−1

k + νk(mk − xt)
TWk(mk − xt)

M-step updates

ω
(π)
k = ω

(π)
0 + γ1(k)

ω
(A)
kj = ω

(A)
0 +

T∑︂
t=2

ξt−1,t(k, j)

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxt)

W−1
k = W−1

0 NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)

T

νk = ν0 +Nk

60

A.2. VBAR-HMM EM steps

E-step updates

log ˜︁πk ≡ Eq(π) [logπk] = ψ(ω
(π)
k)− ψ(

K∑︂
k=1

ω
(π)
k),

K∑︂
k=1

˜︁πk ≤ 1

log ˜︁akj ≡ Eq(A) [log akj] = ψ(ω
(A)
kj)− ψ(

K∑︂
j=1

ω
(A)
kj),

K∑︂
j=1

˜︁akj ≤ 1

log ˜︁Σk ≡ Eq(Σ) [log |Σk|] =
D∑︂
i=1

ψ

(︃
νk + 1− i

2

)︃
+D log 2 + log |Wk|

Eq(µ,Σ)

[︁
(x1 − µk)

TΣk(x1 − µk)
]︁
= Dβ−1

k + νk(mk − x1)
TWk(mk − x1)

log ˜︁Vk ≡ Eq(V) [log |Vk|] =
D∑︂
i=1

ψ

(︃
ηk + 1− i

2

)︃
+D log 2 + log |Pk|

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂
= ηk(Mkx̂t−1 − xt)

TPk(Mkx̂t−1 − xt)

+Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂

61

M-step updates

ω
(π)
k = ω

(π)
0 + γ1(k)

ω
(A)
kj = ω

(A)
0 +

T∑︂
t=2

ξt−1,t(k, j)

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxt)

W−1
k = W−1

0 NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)

T

νk = ν0 +Nk

Kk =

T∑︂
t=2

γt(k)x̂t−1x̂
T
t−1 +K0

Mk =

[︄
T∑︂
t=2

γt(k)xtx̂
T
t−1 +M0K0

]︄
K−1

k

P−1
k = P−1

0 +M0K0M
T
0 +

T∑︂
t=2

γt(k)xtx
T
t −MkKkM

T
k

ηk = η0 +

T∑︂
t=2

γt(k)

62

A.3. VBrAR-HMM EM steps

E-step updates

log ˜︁πk ≡ Eq(π) [logπk] = ψ(ω
(π)
k)− ψ(

K∑︂
k=1

ω
(π)
k),

K∑︂
k=1

˜︁πk ≤ 1

Eq(φ) [logψij] = fφ(x,u)

log ˜︁Σk ≡ Eq(Σ) [log |Σk|] =
D∑︂
i=1

ψ

(︃
νk + 1− i

2

)︃
+D log 2 + log |Wk|

Eq(µ,Σ)

[︁
(x1 − µk)

TΣk(x1 − µk)
]︁
= Dβ−1

k + νk(mk − x1)
TWk(mk − x1)

log ˜︁Vk ≡ Eq(V) [log |Vk|] =
D∑︂
i=1

ψ

(︃
ηk + 1− i

2

)︃
+D log 2 + log |Pk|

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂
= ηk(Mkx̂t−1 − xt)

TPk(Mkx̂t−1 − xt)

+Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂

63

M-step updates

ω
(π)
k = ω

(π)
0 + γ1(k)

max
φ

log p(z2:T |φ) = max
φ

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) logψkj

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxt)

W−1
k = W−1

0 NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)

T

νk = ν0 +Nk

Kk =
T∑︂
t=2

γt(k)x̂t−1x̂
T
t−1 +K0

Mk =

[︄
T∑︂
t=2

γt(k)xtx̂
T
t−1 +M0K0

]︄
K−1

k

P−1
k = P−1

0 +M0K0M
T
0 +

T∑︂
t=2

γt(k)xtx
T
t −MkKkM

T
k

ηk = η0 +
T∑︂
t=2

γt(k)

64

B. Derivation VBHMMs

65

B.1. Derivation VBHMM

Variational E-step full derivation Solving q(z1:T) with mean-field approximation:

log q(z1:T) ∝ Eq(π,µ,Σ,A)[log p(x1:T , z1:T ,π,A,µ,Σ)]

= Eq(π,µ,Σ,A)[p(x1:T |z1:T ,µ,Σ)p(z1:T |π,A)p(A)p(π)p(µ|Σ)p(Σ)]

= Eq(π,µ,Σ,A)[log p(z1:T |π,A)p(x1:T |z1:T ,µ,Σ)]

= Eq(π,A)[log p(z1:T |π,A)] + Eq(µ,Σ)[log p(x1:T |z1:T ,µ,Σ)]

= Eq(π,A) [log p(z1|π)p(z2:T |z1,A)] + Eq(µ,Σ)[log p(x1:T |z1:T ,µ,Σ)]

= Eq(π,A)

⎡⎣log K∏︂
k=1

(︂
π
I(z1=k)
k

)︂ T∏︂
t=2

K∏︂
k=1

K∏︂
j=1

a
I(zt−1=k,zt=j)
kj

⎤⎦
+ Eq(µ,Σ)

[︄
log

T∏︂
t=1

K∏︂
k=1

N
(︁
xt|µk,Σ

−1
k

)︁I(zt=k)

]︄

= Eq(π)

[︄
log

K∏︂
k=1

(︂
π
I(z1=k)
k

)︂]︄
+ Eq(A)

⎡⎣log T∏︂
t=2

K∏︂
k=1

K∏︂
j=1

a
I(zt−1=k,zt=j)
kj

⎤⎦
+ Eq(µ,Σ)

[︄
log

T∏︂
t=1

K∏︂
k=1

N
(︁
xt|µk,Σ

−1
k

)︁I(zt=k)

]︄

= Eq(π)

[︄
K∑︂
k=1

I(z1 = k) logπk

]︄

+ Eq(A)

⎡⎣ T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j) log akj

⎤⎦
+ Eq(µ,Σ)

[︄
T∑︂
t=1

K∑︂
k=1

I(zt = k) logN
(︁
xt|µk,Σ

−1
k

)︁]︄

66

Continuation of the derivation for log q(z1:T):

log q(z1:T) ∝
K∑︂
k=1

I(z1 = k)

Eq(π) [logπk] +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(A) [log akj]

+
T∑︂
t=1

K∑︂
k=1

I(zt = k)

Eq(µ,Σ)

[︃
1

2
log |Σk| −

D

2
log 2π − 1

2
(xt − µk)

T Σk (xt − µk)

]︃
=

K∑︂
k=1

I(z1 = k)

Eq(π) [logπk] +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(A) [log akj]

+

T∑︂
t=1

K∑︂
k=1

I(zt = k){︃
1

2
Eq(Σ) [log |Σk|]−

D

2
log (2π)− 1

2
Eq(µ,Σ)

[︂
(xt − µk)

T Σk (xt − µk)
]︂}︃

Derving Eq(µ,Σ):

Eq(µ,Σ)

[︁
(xt − µk)

TΣk(xt − µk)
]︁

=

∫︂ ∫︂ (︁
(xt − µk)

TΣk(xt − µk)
)︁
q(µk,Σk) dµk dΣk

=

∫︂ {︃∫︂
(xt − µk)

TΣk(xt − µk)q(µk|Σk) dµk

}︃
q(Σk) dΣk

=

∫︂
Eq(µ)

[︁
(µk − xt)

TΣk(µk − xt)
]︁
q(Σk) dΣk

Using the equation (380) from [36] to solve the inner expectation with respect to µ yields:

Eq(µ)

[︁
(µk − xt)

TΣk(µk)− xt

]︁
= (mk − xt)

TΣk(mk − xt) +Tr
(︁
Σk(β

−1
k Σk)

−1
)︁

= (mk − xt)
TΣk(mk − xt) +Dβ−1

k

67

Plugging this term back in the equation

Eq(µ,Σ)

[︁
(xt − µk)

TΣk(xt − µk)
]︁

=

∫︂ {︁
(mk − xt)

TΣk(mk − xt) +Dβ−1
k

}︁
q(Σk) dΣk

= Dβ−1
k + Eq(Σ)

[︁
(mk − xt)

TΣk(mk − xt)
]︁

= Dβ−1
k + Eq(Σ)

[︁
Tr
{︁
Σk(mk − xt)(mk − xt)

T
}︁]︁

= Dβ−1
k +Tr

{︁
Eq(Σ) [Σk] (mk − xt)(mk − xt)

T
}︁

= Dβ−1
k +Tr

{︁
νkWk(mk − xt)(mk − xt)

T
}︁

= Dβ−1
k + νk(mk − xt)

TWk(mk − xt)

Variational M-step full derivation Solving log q(π,A,µ,Σ) with mean-field approxima-
tion:

68

log q(π,A,µ,Σ) ∝ Eq(z1:T) [log p(x1:T , z1:T ,π,A,µ,Σ)]

= Eq(z1:T) [log p(x1:T |z1:T ,µ,Σ)p(z1:T |π,A)p(π)p(A)p(µ|Σ)p(Σ)]

= log p(π) + log p(A) +

K∑︂
k=1

log p(µk|Σk)p(Σk)

+ Eq(z1:T) [log p(x1:T |z1:T ,µ,Σ)] + Eq(z1:T) [log p(z1:T |π,A)]

= log p(π) + log p(A) +

K∑︂
k=1

log p(µk|Σk)p(Σk)

+ Eq(z1:T) [log p(x1:T |z1:T ,µ,Σ)]

+ Eq(z1:T) [log p(z1|π)p(z2:T |z1,A)]

= logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+
K∑︂
k=1

logN
(︁
µk|m0, (β0Σk)

−1
)︁
+

K∑︂
k=1

logW (Σk|W0, ν0)

+

T∑︂
t=1

K∑︂
k=1

Eq(z1:T) [I(zt = k)] logN
(︁
xt|µk,Σ

−1
k

)︁
+

K∑︂
k=1

{︁
Eq(z1) [I(z1 = k)] log πk

}︁
+

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

Eq(z1:T) [I(zt−1 = k, zt = j)] log akj

= logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+

K∑︂
k=1

logN
(︁
µk|m0, (β0Σk)

−1
)︁
+

K∑︂
k=1

logW (Σk|W0, ν0)

+

T∑︂
t=1

K∑︂
k=1

γt(k) logN
(︁
xt|µk,Σ

−1
k

)︁
+

K∑︂
k=1

γ1(k) log πk

+
T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

ξt−1,t(k, j) log akj

69

log q(A) ∝
K∑︂
k=1

K∑︂
j=1

(ω
(A)
0 − 1) log akj

+

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

Eq(z1:T) [I(zt−1 = k, zt = j)] log akj

=

K∑︂
k=1

K∑︂
j=1

log akj

{︄
(ω

(A)
0 − 1) +

T∑︂
t=2

Eq(z1:T) [I(zt−1 = k, zt = j)]

}︄

−1

2

(︁
µT
k (βkΣk)µk

)︁
= −1

2

{︄
µT
k

(︄
β0 +

T∑︂
t=1

γt(k)

)︄
Σkµk

}︄

βk = β0 +

T∑︂
t=1

γt(k)

µT
kΣkβkmk = µT

kΣk

(︄
β0m0 +

T∑︂
t=1

γt(k)xt

)︄

mk =
1

βk

(︄
β0m0 +

T∑︂
t=1

γt(k)xt

)︄

Deriving νk by rearanging the term to obtain the form of the Wishart distribution:

(νk −D − 1)

2
log |Σk| =

(ν0 −D − 1)

2
log |Σk|+

1

2
(

T∑︂
t=1

γt(k)) log |Σk|

νk = ν0 +
T∑︂
t=1

γt(k)

70

71

B.2. Derivation VBAR-HMM

Variational E-step full derivation
log q(z1:T) ∝ Eq(π,A,µ,Σ,U,V) [log p(x1:T , x̂2:T , z1:T ,π,A,µ,Σ,U,V)]

= Eq(π,A,µ,Σ,U,V) [log(p(x1:T |x̂2:T , z1:T ,µ,ΣU,V)p(z1:T |π,A)p(A)p(π)

p(µ|Σ)p(Σ))p(U|V)p(V))]

= Eq(π,A) [log p(z1|π)p(z2:T |z1,A)] + Eq(µ,Σ)[log p(x1|z1,µ,Σ)]

+ Eq(U,V) [log p(x1:T |x̂2:T , z1:T ,U,V)]

= Eq(π,A)

⎡⎣log K∏︂
k=1

(︂
π
I(z1=k)
k

)︂ T∏︂
t=2

K∏︂
i=1

K∏︂
j=1

a
I(zt=j,zt−1=i)
ij

⎤⎦
+ Eq(µ,Σ)

[︄
log

K∏︂
k=1

N
(︁
x1|µk,Σ

−1
k

)︁I(z1=k)

]︄

+ Eq(U,V)

[︄
log

T∏︂
t=2

K∏︂
k=1

N
(︁
xt|Ukx̂t−1,V

−1
k

)︁I(zt=k)

]︄

= Eq(π)

[︄
log

K∏︂
k=1

(︂
π
I(z1=k)
k

)︂]︄
+ Eq(A)

⎡⎣log T∏︂
t=2

K∏︂
i=1

K∏︂
j=1

a
I(zt=j,zt−1=i)
ij

⎤⎦
+ +Eq(µ,Σ)

[︄
log

K∏︂
k=1

N
(︁
x1|µk,Σ

−1
k

)︁I(z1=k)

]︄

+ Eq(U,V)

[︄
log

T∏︂
t=1

K∏︂
k=1

N
(︁
xt|Ukx̂t−1,V

−1
k

)︁I(zt=k)

]︄

= Eq(π)

[︄
K∑︂
k=1

I(z1 = k) log (πk)

]︄

+ Eq(µ,Σ)

[︄
K∑︂
k=1

I(z1 = k) logN
(︁
x1|µk,Σ

−1
k

)︁]︄

+ Eq(A)

⎡⎣ T∑︂
t=2

K∑︂
i=1

K∑︂
j=1

I(zt = j, zt−1 = i) log aij

⎤⎦
+ Eq(U,V)

[︄
T∑︂
t=2

K∑︂
k=1

I(zt = k) logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁]︄
72

Continuation of the derivation for log q(z1:T)

log q(z1:T) ∝ Eq(π)

[︄
K∑︂
k=1

I(z1 = k) log (πk)

]︄

+ Eq(A)

⎡⎣ T∑︂
t=2

K∑︂
i=1

K∑︂
j=1

I(zt = j, zt−1 = i) log aij

⎤⎦
+

K∑︂
k=1

I(z1 = k)

Eq(µ,Σ)

[︃
1

2
log |Σk| −

D

2
log 2π − 1

2
(x1 − µk)

T Σk (x1 − µk)

]︃
+

T∑︂
t=2

K∑︂
k=1

I(zt = k)

Eq(U,V)

[︃
1

2
log |Vk| −

D

2
log 2π − 1

2
(xt −Ukx̂t−1)

T Vk (Ukx̂t−1)

]︃
=

K∑︂
k=1

I(z1 = k)Eq(π) [logπk] +

T∑︂
t=2

K∑︂
k=1

K∑︂
j=1

I(zt−1 = k, zt = j)Eq(A) [log akj]

+

K∑︂
k=1

I(z1 = k){︃
1

2
Eq(Σ) [log |Σk|]−

D

2
log (2π)− 1

2
Eq(µ,Σ)

[︂
(x1 − µk)

T Σk (x1 − µk)
]︂}︃

+

T∑︂
t=2

K∑︂
k=1

I(zt = k){︃
1

2
Eq(V) [log |Vk|]−

D

2
log (2π)

−1

2
Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (xt −Ukx̂t−1)
]︂}︃

73

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (Ukx̂t−1)
]︂

=

∫︂ ∫︂ (︁
(xt −Ukx̂t−1)

TVk(xt −Ukx̂t−1)
)︁
q(Uk,Vk) dUk dVk

=

∫︂ {︃∫︂
(xt −Ukx̂t−1)

TVk(xt −Ukx̂t−1)q(Uk|Vk) dUk

}︃
q(Vk) dVk

=

∫︂
Eq(U)

[︁
(Ukx̂t−1 − xt)

TVk(Ukx̂t−1 − xt)
]︁
q(Vk) dVk

The inner expectation corresponds to a Matrix-Normal distribution. Thus, we make use of
transformations derived in [38] and get two expectations:

E [Uk] = Mk

E
[︁
UkQUT

k

]︁
= MkUMT

k +Tr
{︁
K−1

k Q
}︁
V−1

k

Applying this transformations on the inner expectation from Equation (B.2) gives:

Eq(U)

[︁
(Ukx̂t−1 − xt)

TVk(Ukx̂t−1 − xt

]︁
= Eq(U)

[︁
Tr
{︁
Vk(Ukx̂t−1 − xt)(Ukx̂t−1 − xt)

T
}︁]︁

= Tr
{︂
Vk(Eq(U)

[︂
Ukx̂t−1x̂

T
t−1U

T
k

]︂
−Eq(U) [Uk] x̂t−1x

T
t − xtx̂

T
t−1Eq(U)

[︁
UT

k

]︁
+ xtx

T
t)
}︂

= Tr
{︂
Vk(Mkx̂t−1x̂

T
t−1M

T
k + (Tr

{︂
K−1

k x̂t−1x̂
T
t−1

}︂
V−1

k)

−Mkx̂t−1x
T
t − xtx̂

T
t−1M

T
k + xtx

T
t)
}︂

= Tr
{︂
Vk

(︂
(Mkx̂t−1 − xt)(Mkx̂t−1 − xt)

T + (Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂
V−1

k)
)︂}︂

= (Mkx̂t−1 − xt)
TVk(Mkx̂t−1 − xt) +Tr

{︂
K−1

k x̂t−1x̂
T
t−1

}︂

74

Eq(U,V)

[︂
(xt −Ukx̂t−1)

T Vk (Ukx̂t−1)
]︂

=

∫︂ [︂
(Mkx̂t−1 − xt)

TVk(Mkx̂t−1 − xt) +Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂]︂
q(Vk) dVk

= Eq(V)

[︂
(Mkx̂t−1 − xt)

TVk(Mkx̂t−1 − xt) +Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂]︂
= Tr

{︁
Eq(V) [Vk] (Mkx̂t−1 − xt)(Mkx̂t−1 − xt)

T
}︁
+Tr

{︂
K−1

k x̂t−1x̂
T
t−1

}︂
= Tr

{︁
ηkPk(Mkx̂t−1 − xt)(Mkx̂t−1 − xt)

T
}︁
+Tr

{︂
K−1

k x̂t−1x̂
T
t−1

}︂
= ηk(Mkx̂t−1 − xt)

TPk(Mkx̂t−1 − xt) +Tr
{︂
K−1

k x̂t−1x̂
T
t−1

}︂

Variational M-step full derivation

log q(π,A,µ,Σ,U,V) ∝ Eq(z1:T) [log p(x1:T , x̂2:T , z1:T ,π,A,µ,Σ,U,V)]

= Eq(z1:T) [log(p(x1:T |x̂2:T , z1:T ,µ,Σ,U,V)

p(z1:T |π,A)p(π)p(A)p(U|µ)p(Σ)p(U|V)p(V))]

= log p(π) + log p(A)

+ Eq(z1:T) [log p(x1:T |x̂1:T , z1:T ,µ,Σ,U,V)]

+ Eq(z1:T) [log p(z1:T |π,A)] +

K∑︂
k=1

log p(µk|Σk)p(Σk)

+
K∑︂
k=1

log p(Uk|Vk)p(Vk)

= log p(π) + log p(A)

+ Eq(z1:T) [log p(x1|z1:T ,µ,Σ)]

+ Eq(z1:T) [log p(x2:T |x̂2:T , z2:T ,U,V)]

+ Eq(z1:T) [log p(z1|π)p(z2:T |z1,A)]

+

K∑︂
k=1

log p(µk|Σk)p(Σk) +

K∑︂
k=1

log p(Uk|Vk)p(Vk)

75

Continuation of deriving log q(π,A,µ,Σ,U,V)

log q(π,A,U,V) ∝ logDir(π|ω(π)
0) +

K∑︂
k=1

logDir(A|ω(A)
0k)

+
K∑︂
k=1

Eq(z1) [I(z1 = k)] logN
(︁
x1|µk,Σ

−1
k

)︁
+

T∑︂
t=2

K∑︂
k=1

Eq(z2:T) [I(zt = k)] logN
(︁
xt|Ukx̂t−1,V

−1
k

)︁
+

K∑︂
k=1

{︁
Eq(z1) [I(z1 = k)] log πk

}︁
+

T∑︂
t=2

K∑︂
i=1

K∑︂
j=1

Eq(z1:T) [I(zt = j, zt−1 = i)] log aij

+

K∑︂
k=1

logN
(︁
µk|m0, (β0Σk)

−1
)︁
+

K∑︂
k=1

logW (Σk|W0, ν0)

+

K∑︂
k=1

logMN
(︁
Uk|M0,V

−1
k ,K0

)︁
+

K∑︂
k=1

logW (Vk|P0, η0)

log q(Uk|Vk) ∝ −
1

2
Tr
{︁
(Uk −M0)

TVk(Uk −M0)K0

}︁
− 1

2

T∑︂
t=2

γt(k)(xt −Ukx̂t−1)
TVk(xt −Ukx̂t−1)

= −1

2
Tr
{︁
Vk(Uk −M0)K0(Uk −M0)

T
}︁

− 1

2

T∑︂
t=2

γt(k)Tr
{︁
Vk(xt −Ukx̂t−1)(xt −Ukx̂t−1)

T
}︁

= −1

2
Tr
{︁
Vk(UkK0U

T
k −UkK0M

T
0 −M0K0U

T
k +M0K0M

T
0)
}︁

− 1

2

T∑︂
t=2

γt(k)Tr
{︂
Vk(xtx

T
t − xtx̂

T
t−1U

T
k −Ukx̂t−1x

T
t +Ukx̂t−1x̂

T
t−1U

T
k)
}︂

76

−1

2
Tr
{︁
VkUkKkU

T
k

}︁
= −1

2
Tr

{︄
VkUk

[︄
T∑︂
t=2

Eq [I(zt = k)] x̂t−1x̂
T
t−1 +K0

]︄
UT

k

}︄

VkUkKkU
T
k = VkUk

[︄
T∑︂
t=2

Eq [I(zt = k)] x̂t−1x̂
T
t−1 +K0

]︄
UT

k

Kk =
T∑︂
t=2

Eq [I(zt = k)] x̂t−1x̂
T
t−1 +K0

−1

2
Tr {VkUkMkKk} = −

1

2
Tr

{︄
VkUk

[︄
−

T∑︂
t=2

Eq [I(zt = k)]xtx̂
T
t−1 −M0K0

]︄}︄

VkUkMkKk = VkUk

[︄
T∑︂
t=2

Eq [I(zt = k)]xtx̂
T
t−1 +M0K0

]︄

MkKk =

[︄
T∑︂
t=2

Eq [I(zt = k)]xtx̂
T
t−1 +M0K0

]︄

Mk =

[︄
T∑︂
t=2

Eq [I(zt = k)]xtx̂
T
t−1 +M0K0

]︄
K−1

k

77

log q(Vk) = logW (Uk|Pk, ηk)

= log q(Uk,Vk)− log q(Uk|Vk)

= −1

2
Tr
{︁
(Uk −M0)

TVk(Uk −M0)K0

}︁
− m

2
log(|Vk|)

− 1

2
Tr
{︁
VkW

−1
0

}︁
+

(η0 −D − 1)

2
log |Vk|

− 1

2

T∑︂
t=2

Eq(z2:T) [I(zt = k)] (xt −Ukx̂t−1)
TVk(xt −Ukx̂t−1)

+
1

2

(︄
T∑︂
t=2

Eq(z2:T) [I(zt = k)]

)︄
log |Vk|

+
m

2
log |Vk|+

1

2
Tr
{︁
(Uk −Mk)

TVk(Uk −Mk)Kk

}︁
∝ (ηk −D − 1)

2
log |Vk| −

1

2
Tr
{︁
VkP

−1
k

}︁

P−1
k =

T∑︂
t=2

Eq(z1:T) [I(zt = k)] (xt −Ukx̂t−1)(xt −Ukx̂t−1)
T

+ (Uk −M0)K0(Uk −M0)
T +P−1

0 − (Uk −Mk)Kk(Uk −Mk)
T

= P−1
0 +M0K0M

T
0 +

T∑︂
t=2

γt(k)xtx
T
t −MkKkM

T
k

(ηk −D − 1)

2
log |Vk| =

(η0 −D − 1)

2
log |Vk|+

1

2

(︄
T∑︂
t=1

Eq(z1:T) [I(zt = k)]

)︄
log |Vk|

ηk = η0 +
T∑︂
t=1

Eq(z1:T) [I(zt = k)]

78

C. Distributions

C.1. Dirichlet distribution

Notation and parameters

π ∼ Dir(α)

α = {α1, ..., αk}

αj > 0; α0 =

K∑︂
j=1

αj

Density function

p(π|α) = C(α)πα1−1
1 ...παk−1

k

π1, ..., πk ≥ 0;
K∑︂
j=1

πj = 1

C(α) =
Γ(α0)

Γ(α1)...Γ(αk)

Expectations

E [π] = α/α0

logE [πj] = ψ(αj)− ψ(α0)

79

KL-divergence

DKL (α̃||α) = ln
Γ(α̃0)

Γ(α0)
−

K∑︂
j=1

[︃
ln

Γ(α̃j)

Γ(αj)
− (α̃j − αj)(ψ(α̃j)− ψ(α̃0))

]︃

Entropy

H [π] = −
K∑︂
k=1

(αk − 1)(ψ(αk)− ψ(α0))− lnC(α)

C.2. Uniform distibution

Notation and parameters

x ∼ U(a, b)

boundaries a, b
with b > a

Density function

p(x|a, b) = 1

b− a
, x ∈ [a, b]

Expectations

E [x] =
a+ b

2

80

Entropy

H [x] = ln(b− a)

C.3. Multivariate normal distribution

Notation and parameters

x ∼ N (µ,Σ)

µ mean vector
Σ covariance matrix

Σ−1 precision matrix

Density function

p(x|µ,Σ) = (2π)−D/2|Σ|−1/2 exp

{︃
−1

2
Σ−1(x− µ)TΣ−1(x− µ))

}︃

Expectations

E [x] = µ

E
[︁
xxT

]︁
= Σ

KL-divergence

DKL

(︂
µ̃, Σ̃||µ,Σ

)︂
= −1

2

(︂
ln |Σ̃Σ−1|+Tr

{︂
I −

[︂
Σ̃+ (µ̃− µ)(µ̃− µ)T

]︂
Σ−1

}︂
ln e
)︂

81

Entropy

H [x] =
1

2
ln |Σ|+ D

2
(1 + ln(2π))

C.4. Wishart distribution

Notation and parameters

Σ ∼ W(W, ν)

W precision matrix
ν degree of freedom

Density function

p(Σ|W, ν) = B(W, ν)|Σ|(ν−D−1)/2 exp

(︃
−1

2
Tr
{︁
W−1Σ

}︁)︃

B(W, ν) = |W|−ν/2

(︄
2νD/2πD(D−1)/4

D∏︂
i=1

Γ

(︃
ν + 1− i

2

)︃)︄−1

Expectations

E [Σ] = Wν

E [ln |Σ|] =
D∑︂
i=1

ψ

(︃
ν + 1− i

2

)︃
+D ln 2 + ln |W|

82

KL-divergence

DKL

(︂
W̃, ν̃||W, ν

)︂
= ln

B(W, ν)

W̃, ν̃
+
ν̃ − ν
2

E [ln |Σ|] + 1

2
ν̃Tr

{︂
W−1W̃ − I

}︂

Entropy

H [Σ] = − lnB(W, ν)− ν −D − 1

2
E [|Σ|] + νD

2

83

	Introduction
	Related work
	Bayesian HMMs
	Model-based reinforcement learning
	Switching linear dynamical systems
	Pathwise gradient estimator

	Background
	Hidden Markov models
	Overview of HMM types
	Structure of HMMs
	Baum-Welch algorithm - learning a HMM
	E-step
	M-step

	Viterbi algorithm - maximum likely states

	Variational inference
	The evidence lower bound
	Mean-field approximation

	Minimizing the gradient variance

	Bayesian hidden Markov models
	Variational Bayes HMM
	Model priors
	Target distribution
	Mean-field approximation
	Variational E-step
	Variational M-step
	The lower bound

	Variational Bayes ARHMM
	Model priors
	Target distribution
	Mean-field approximation
	Variational E-step
	Variational M-step
	The evidence lower bound

	Variational Bayes rAR-HMM
	Model priors
	Target distribution
	Mean-field approximation
	Variational E-step
	Variational M-step
	The evidence lower bound

	Switching actor
	Implementation
	Extending A2C with SWAC
	Extending SAC with SWAC

	Evaluation
	Bayesian HMMs
	Viterbi state detection
	Model learning performance

	Learning control on rAR-HMM
	Policy evaluation on the pendulum task
	Policy evaluation on the cart-pole task

	SWAC-A2C
	SWAC-SAC
	Discussion

	Outlook
	Conclusion
	Summary VBEM steps
	VBHMM EM steps
	VBAR-HMM EM steps
	VBrAR-HMM EM steps

	Derivation VBHMMs
	Derivation VBHMM
	Derivation VBAR-HMM

	Distributions
	Dirichlet distribution
	Uniform distibution
	Multivariate normal distribution
	Wishart distribution

