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Abstract

Learning truths behind real, relevant data is faced with uncertainty. A probabilistic view
on unsupervised learning considers this uncertainty in its learning objectives through
probability distributions and inference. The expressiveness of probability distributions is
further enhanced by mixture models, a linear combination of such distributions. This thesis
discusses the concept of variational inference in Bayesian Gaussian mixture models. We
present di�erent approaches to modeling the variational posterior of such mixtures with
Normalizing Flows and provide proof of concept experimental results. The approaches
have been devised as improvements and extensions to one another, ultimately leading to
collapsed variational inference, where the assignment variables of the Bayesian Gaussian
mixture model have been marginalized. We further derived a decomposable update
procedure formixtures of Normalizing Flows based onwork presented in density estimation
for Gaussian mixtures.



Zusammenfassung

Um Zusammenhänge in realen, relevanten Daten zu finden müssen Unsicherheiten in den
Daten berücksichtigt werden, was in unüberwachten Lernmethoden durch Wahrschein-
lichkeitsverteilungen und Inferenz gemacht wird. Diese Arbeit diskutiert das Konzept
der Variationsinferenz in Bayes’schen Gaußschen Mischungsmodellen, welche die Aus-
sagekraft der Gaußverteilung weiter verstärken. Es werden verschiedene Ansätze zur
Modellierung nötiger Variations-A-posteriori-Verteilungen solcher Mischungsmodelle mit
Normalizing Flows vorgestellt und experimentelle Ergebnisse als Konzeptnachweis prä-
sentiert. Die Ansätze sind Weiterentwicklungen voneinander und führen letztendlich zu
kollabierter Variationsinferenz, bei der die Zuweisungsvariablen des Bayes’schen Gauß-
schen Mischungsmodells marginalisiert wurden. Ein weiteres Ergebnis dieser Arbeit sind
separierbare Updates für Mischungsmodelle von Normalizing Flows, die auf Arbeiten in
der Dichteschätzung für Gaußsche Mischungen basieren.
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�. Introduction

With the rapidly increasing computational capabilities of our modern age, the amount of
data gathered on a daily basis is staggering [1,2]. Unsupervised learning is the study of
finding and extracting valuable information and patterns in such data [2,3]. The data,
however, may well be just a finite set of samples gathered from some unknown random
process [3]. Furthermore, we might only have some noisy observation of the true data [3].
Machine learning adopts a probabilistic view to quantify such uncertainty or possible
ambiguity in the data, which means involving probabilities [2–4]. A probability is a
measure of the likelihood of a certain outcome when sampling a random process, where
the outcome is defined as a specific value a random variable takes on. The function that
assigns a probability to such an observed value is a probability distribution [2]. A central
problem of unsupervised learning is finding the best probabilistic model to describe a
finite set of data [2]. Such models are also referred to as generative models for their ability
to generate new data [1,5]. However, suppose we assume a probabilistic model with a
specified functional form. How do we choose the parameters of this model to best describe
the observed data within the constraints of its functional form? This thesis evolves around
reasoning or inferring the parameters of such models.

Let X be a set of data we have observed. We will define a probabilistic model as a
probability distribution p (X |✓) whose parameters are denoted by ✓. This probability
distribution describes the likelihood of the observed data X under the parameters ✓ [5].
Maximizing the parameters as a point estimate such that

✓ML = argmax
✓

p (X |✓) ,

is known asmaximum likelihood (ML) estimation [2,3,5]. While appealing for its simplicity
the ML estimate carries the risk of overfitting the given data. Given e.g., an overly complex
model with an insu�cient amount of data, when learning the underlying truth of the data
we may find that we have learned to represent the noise overlaying the data instead [2,5].
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By incorporating additional prior information about the state of the parameters we alleviate
this problem [1–3]. This prior information may e.g., be some assumption or belief about
the parameters described by a probability distribution p (✓) known as the prior [2,3,5].
This concept is referred to as the Bayesian approach [3]. Given a likelihood p (X |✓) and
a prior p (✓) we infer a posterior distribution

p (✓ |X) =
p (X |✓) p (✓)

p (X)
=

p (X |✓) p (✓)R
p (X |✓) p (✓) d✓

,

where the relation of the posterior to likelihood and prior is known as Bayes Rule or Bayes
Theorem [2–5]. The denominator represents a normalization to ensure that the posterior
is a proper distribution with probabilities in [0, 1] [2,3]. Optimizing the posterior w.r.t. a
point estimate of the parameters

✓MAP = argmax
✓

p (✓ |X) = argmax
✓

p (X |✓) p (✓) ,

is known as the maximum a-posteriori (MAP) estimate [1–5]. For uniform priors, where all
values of the parameters are assigned the same probability, the MAP estimate converges
to the ML estimate [1,2]. The same behaviour occurs in the limit of infinite data as the
likelihood overwhelms the prior [2]. Even though the MAP estimate incorporates prior
information, by optimizing a point estimate we find the mean of a maximizing mode of
the posterior distribution.

The full Bayesian perspective further considers possible uncertainty or variability in
estimating the parameters [1,2,5]. Rather than just optimizing the parameter as a point
estimate, we marginalize over all possible values of the parameters ✓ such that

p (X) =

Z
p (X |✓) p (✓) d✓,

which is known as the marginal likelihood of a probabilistic model for a set of given
data [2, 3]. When we want to infer parameters such that a probabilistic model best
describes the data while facing uncertainty, the marginal likelihood is the key quantity
we need to consider [3, 5]. For most probabilistic models, however, this quantity is
intractable [5]. Instead, we simplify the problem by approximating the integral [2,3,5].
A traditional approach applicable to a wide range of di�erent probabilistic models are
sampling methods such as Markov Chain Monte-Carlo (MCMC) [6–8] [2,3,5]. Sampling
techniques, however, are computationally intensive in large scale problems [2,3]. For large
scale problems focus has shifted to more recent deterministic approximation methods
one of which is variational inference [9–13] [2, 3, 5]. Since optimizing the intractable
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marginal likelihood is impossible, variational inference formulates a lower bound on the
integral by introducing an approximate posterior to be optimized instead [2,3,5,9–13].
Even then, optimization might still not be possible directly without further simplifications
through, e.g., independencies between random variables of the posterior distribution
such as the Mean-Field assumption [9,14–16] [2,3,5]. However, in recent years a new
highly flexible and complex but easy to use family of parametric generative models has
emerged, known as Normalizing Flows [17–28]. These generative models allow tractable
posterior approximations in the lower bound without introducing independencies between
the posterior distribution’s random variables. This thesis discusses the application of
Normalizing Flows for variational inference where the probabilistic model p (X |✓) is a
linear combination of a set of probability distributions called mixture model.

The thesis is organized as follows. In Chapter 2 we will discuss some fundamental concepts
required for the rest of this thesis. The chapter introduces probability distributions and
their role in formulating the mixture model and its priors that we consider for this thesis.
Further, we will shortly discuss the Kullback-Leibler-Divergence (KL) [29] and its importance
when optimizing probability distributions. Chapter 3 will give an in-depth introduction to
variational methods and discuss related topics such as MCMC and Latent Variable Model
(LVM) [30]. We will describe the well known Expectation-Maximization (EM) algorithm
[31, 32] from a Bayesian perspective and its relation to variational inference. We will
derive Mean-Field inference, the importance of the independence assumptions required,
and how structures in probabilistic models have been exploited to relieve the independence
assumptions [15, 16, 33–35]. The concept of Normalizing Flows as generative models,
a short overview of a variety of involved transformations, its application in variational
inference will be discussed in Chapter 4. In Chapter 5, we will present the contribution
of this thesis to the scientific community and show proof of concept results on various
small datasets. In addition to results on variational inference with approximate posterior
distributions for mixture models, we will introduce decomposable update procedures for
mixtures of Normalizing Flows in density estimation with complementary results and
possible extensions to posterior estimation based on work in [36, 37]. The results are
further discussed in Chapter 6 including related works such as the Variational Auto-Encoder
(VAE) [38–40] and variational boosting [41–43]. Finally, in Chapter 7 we will describe
possible future extensions to this thesis.
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�. Preliminaries

Probability distributions and divergences are at the core of the probabilistic view to
unsupervised learning and the algorithms we discuss in this thesis. This chapter introduces
certain distributions from the exponential family and their function in mixture models
with prior information. We will further discuss the concept of the KL [29] required for the
rest of this thesis as a measure of similarity between probability distributions.

�.�. Distributions And Mixtures

Probability distributions are functions that provide a probability measure of the likelihood
of a certain outcome when sampling a random process [2]. An outcome is defined as
a certain value a random variable takes on. The probability measure, thus, quantifies
uncertainty about random variables in random processes or observed data. While there is
a myriad of di�erent distributions designed for discrete or continuous, skalars, vectors or
matrices, this section focuses on a specific group of distributions relevant for this thesis.

�.�.�. Gaussian Distribution

The Gaussian distribution, denoted by N
�
µ,�

�1
�
, is the most important distribution in

probability theory due to its versatility [2]. Here µ is the mean of the distribution, and
� = 1/�2 denotes its precision and is the inverse of the variance �2. High precision
relates to a very narrow distribution around the mean [2]. Literature often refers to this
distribution as Normal distribution [2,3]. In the univariate case, the probability density
function is defined by

p (x) =

p
�p
2⇡

exp

✓
��
2
(x� µ)2

◆
,

�



where x 2 R ⇠ N
�
µ,�

�1
�
is a continuous random variable. The multivariate case is

defined similarly for a random variable x 2 RD with x ⇠ N
�
µ,⇤�1

�
and a probability

density function

p (x) =
|⇤|

1
2

(2⇡)
D
2

exp

✓
�1

2
(x� µ)T ⇤ (x� µ)

◆
,

where ⇤ 2 RD⇥D is the positive semi-definite precision matrix [2, 3]. Any given data
of a continuous random variable can be appropriately represented with a su�ciently
large linear combination of Gaussian distributions known as a mixture distribution (see
Section 2.1.3) [3]. This thesis is focused on the multivariate Gaussian distribution, and
we will, for the rest of this thesis, always refer to the multivariate Gaussian. Its functional
form places the Gaussian distribution into the exponential family of distributions, which
significantly simplifies some of the problems we discuss in this thesis, even allowing for
analytical solutions [2, 3]. These simplifications mainly evolve around the concept of
conjugate priors, which for the exponential family are themselves from the exponential
family. Conjugate priors are distributions for which the posterior takes on the same
functional form as the prior. For a single Gaussian, there are two such priors, one for
each parameter of the distribution. While the conjugate prior for the mean µ is again a
Gaussian, which is the case for both the univariate and multivariate definition, the prior
for the precision matrix ⇤ is a Wishart distribution [3].

�.�.�. Wishart Distribution

The Wishart distribution W (⌫,W ) is the multivariate extension of the Gamma distribution
whose probability density function is defined as

p (⇤) =
| ⇤ |

(⌫�D�1)
2 exp

�
�1

2tr
�
W�1⇤

��

2
⌫D
2 | ⇤ |

⌫
2 �

�
⌫
2

� ,

where ⌫ > D � 1 denotes the degrees of freedom and W 2 RD⇥D is a positive definite
scale matrix [44–46]. Further, tr (·) is the trace and � (·) is the gamma function. The
parameters ⌫ and W relate to the mean of the Wishart distribution as E [⇤] = ⌫W.
Literature often combines the priors of the Gaussian distribution as a Gaussian-Wishart
or Normal-Wishart denoted by NW (µ0,�, ⌫,W). This combined notation describes a
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factorized distribution of the form

p (µ,⇤) = p (µ |⇤) p (⇤) (2.1)

= N
⇣
µ
���µ0, (�⇤)�1

⌘
W (⇤ | ⌫,W) , (2.2)

where µ0 is the mean of the Gaussian prior on the mean and � is a scaling for the precision
matrix in the Gaussian prior [45]. The sampling process, therefore, is sequential and
described as follows

⇤ ⇠ W (⌫,W) ,

µ |⇤ ⇠ N
⇣
µ0, (�⇤)�1

⌘
,

with ⇤ being sampled first and µ being drawn conditioned on ⇤.

Given a Gaussian distribution with a Gaussian-Wishart prior, one can obtain a predictive
density p (x |µ0,�, ⌫,W) by marginalizing over the parameters µ and ⇤ of the Gaussian
distribution

p (x |µ0,�, ⌫,W) =

Z Z
p
�
x
��µ,⇤�1

�
p

⇣
µ
���µ0, (�⇤)�1

⌘
p (⌫,W) dµd⇤

which corresponds to a Student-t distribution, whose probability density function can be
described in terms of the parameters of the priors as

p (x) =
�
�
⌫t+D

2

�
| ⇤t |

1
2

(⌫t⇡)
D
2 �

�
⌫t
2

�
✓
1 +

1

⌫t
(x� µt)

T ⇤t (x� µt)

◆� ⌫t+D
2

,

where ⌫t = ⌫ �D + 1, µt = µ0 and ⇤t = ((� + 1) / (�⌫t))W
�1. The same relation holds

for the parameters of the posterior as it has the same functional form. Therefore, given a
set of independently and identically distributed (i.i.d.) observationsX = {x1, ...,xN}, which
we assume are distributed according to a Gaussian distribution with Gaussian-Wishart
prior, we can compute a Bayesian update for the parameters of the posterior in closed
form as

⌫new = ⌫ +N, (2.3)
�new = � +N, (2.4)

µnew =
�µ0 +N x̄

� +N
, (2.5)

Wnew =

✓
W�1 + S+

N�

� +N
(x̄� µ0) (x̄� µ0)

T
◆�1

, (2.6)
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where x̄ is the mean and

S =
NX

i=1

(xi � x̄) (xi � x̄)T ,

is the scatter matrix of the observations. The predictive density p (x |X) for a new data
point x is then defined as a Student-t distribution in relation to the updated parameters
[44–46].

�.�.�. Gaussian Mixture Models

In the context of this thesis, we will consider data that is highly multi-modal. Matching
such data with a single Gaussian distribution is insu�cient as the Gaussian is a uni-
modal distribution. Instead, we need to consider mixture distributions, which are a linear
combination of some basic distribution such as the Gaussian for which the mixture is
defined as

p (x) =
KX

k=1

⇡kN (x |µk,⇤k) ,

where ⇡k 2 R is the mixing coe�cient of the k
th component [3]. The mixing coe�cients

can be seen as a prior probability on the components with the basic properties of a
distribution, namely

KX

k=1

⇡k = 1, 0  ⇡k  1 8 k = 1, ...,K.

On this basis, the mixture is redefined as

p (x) =
KX

k=1

p (z = k) p (x |µk,⇤k) ,

where p (z = k) = ⇡k with z being a discrete random variable. The distribution over z
represents a Categorical distribution whose parameters are ⇡ = {⇡1, ...,⇡K} such that
z ⇠ Cat (⇡).

The full set of parameters of the Gaussian mixture distribution are ✓ = {⇡,µ,⇤}, where
µ = {µ1, ...,µK} and ⇤ = {⇤1, ...,⇤K} are sets over the parameters of each component.
As each component of the mixture distribution is a basic Gaussian distribution, the con-
jugate prior over each of the parameters in µ and ⇤ are still of the Gaussian-Wishart
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zn

xn

⇤k

µk

⇡

N K

Figure �.�.: Shown is the graphical model of a Bayesian Gaussian mixture model
with K components. It is assumed that xn is the n

th observation of a
set of N observations. For each observation n there is an assignment
to a mixture component denoted by zn 2 ZK as a one-hot vector. The
mixture is parameterized by the mixing coefficients ⇡ = {⇡1, ...,⇡K},
the component means µ = {µ1, ...,µK} and the components’ precision
matrices ⇤ = {⇤1, ...,⇤K}.

type. However, for a full Bayesian view on this model an additional prior over ⇡ is to be
considered for which the conjugate takes on the form of a Dirichlet distribution [3]. The
Dirichlet distribution, denoted by Dir (↵) with ↵ 2 RK , is a multivariate generalization
of the Beta distribution defined as

p(⇡) =
�
⇣PK

k=1 ↵k

⌘

QK
k=1 � (↵i)

KY

k=1

⇡
↵k�1
k ,

where � (a) = (a� 1)! is the gamma function.

In summary, we will define a full Bayesian Gaussian mixture model as a combination of the
basic mixture of K Gaussian distributions and all of its priors, which are assumed to be
conjugate. The graphical representation over all continuous random variables x,⇡,µ,⇤
and the discrete random variable z is shown in Figure 2.1 [2,3]. We will, for this model,
assume that z 2 ZK now represents an assignment as a one-hot vector of length K for
which we define

p (z |⇡) =
KY

k=1

⇡
zk
k ,

where zk is the kth element of z. The discrete variable z can be seen as an assignment of an

�



observation of x to the k
th component in the mixture, which is assumed to be responsible

for the creation of that observation. We can recover the non-Bayesian mixture of Gaussians
by marginalizing out z when no other priors are present as

p (x) =
X

z

p (z |⇡) p (x | z,µ,⇤)

=
X

z

KY

k=1

⇡
zk
k N (x |µk,⇤k)

zk

=
KX

k=1

⇡kN (x |µk,⇤k)

which we will use later in this thesis. To describe the Bayesian Gaussian mixture distribu-
tion in its entirety, we define the conjugate priors

µk,⇤k ⇠ NW (µ0,�, ⌫,W) 8 k = 1, ...,K,

⇡ ⇠ Dir (↵) ,

z ⇠ Cat (⇡) .

It follows the joint probability over all random variables

p (x, z,⇡,µ,⇤) = p (z |⇡) p (⇡ |↵)
KY

k=1

p (x |µk,⇤k)
zk p (µk,⇤k)

= C↵

KY

k=1

⇡
↵k�1
k NW (µk,⇤k |µ0,�, ⌫,W)⇡zkk N (x |µk,⇤k)

zk , (2.7)

where we marginalize over all parameters ⇡,µ,⇤ and the assignments to define the
probability for an observation x as

p (x) =
X

z

Z Z Z
p (x, z,⇡,µ,⇤) d⇡dµd⇤, (2.8)

which, however, is intractable [3]. Solving such a marginalization will be the central issue
discussed in the following chapter, where most methods presented rely on minimizing the
KL.

��



�.�. Kullback-Leibler Divergence

A fundamental concept at the core of inference when dealing with variational methods is
the KL, which represents a measure for the distance between probability distributions.

Let p (x) be a probability distribution over some random variable x 2 RD. We will, without
loss of generality, assume that the random variable is continuous. Further, let q (x) be a
second distribution, which, for correlation purposes to later chapters, we will assume is
some model on the same space as p (x). Given the densities of these distributions, the
family of f -Divergences is defined as

D(p (x) k q (x)) =
Z

q (x) f

✓
p (x)

q (x)

◆
dx,

where f (·) is convex on x > 0with f (1) = 0. The KL is as an f -Divergence whose function
f (·) is defined as f (t) = t · log t leading to

KL (p (x) k q (x)) =
Z

p (x) log
p (x)

q (x)
dx,

which is also known as the relative entropy between q (x) and p (x). The name comes
from the integral as it describes an expectation of the log-term w.r.t. to p (x) as

KL (p (x) k q (x)) = Ep(x) [log p (x)]� Ep(x) [log q (x)]

= H (p (x) , q (x))�H (p (x))

whereEp(x) [log p (x)] = �H (p (x)) is the Shannon entropy [47] of p (x) andEp(x) [log q (x)] =
�H (p (x) , q (x)) is the cross entropy [4,48–51]. The KL is defined for KL (p (x) k q (x)) �
0. With p (x) = q (x) corresponding to

KL (p (x) k p (x)) =
Z

p (x) log
p (x)

p (x)
dx = 0,

minimizing the model q (x) over an objective defined as KL leads to equality between
p (x) and q (x) [51]. An important property of the KL to consider, however, is asymmetry,
meaning thatKL (p (x) k q (x)) 6= KL (q (x) k p (x)) [49,51]. In the optimization we will be
discussing in the course of this thesis, asymmetry has an important e�ect. Optimizing the
original form KL (p (x) k q (x)) or Moment-Projection (M-Projection) w.r.t. q (x) enforces
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Figure �.�.: Shown is an example of the described I- and M-Projection. The red
contour depicts a uni-modal model q (x) on top of a bi-modal target
distribution p (x). The KL is optimized w.r.t. q (x). The figure is inspired
by a figure presented in [�].

an over-estimation of the target distribution p (x). This e�ect comes from the log-term in
the integral of the divergence as

log
p (x)

q (x)
! 1 for q (x) ! 0,

such that KL (p (x) k q (x)) ! 1, which is also known as zero avoidence [52]. Due to
asymmetry, taking what is known as the Information-Projection (I-Projection) or reverse KL
KL (q (x) k p (x)) when optimizing w.r.t. the model q (x) enforces an under-estimation of
the target distribution for the same reasons as

log
q (x)

p (x)
! 1 for p (x) ! 0.

This property is known as zero forcing as any point in RD where q (x) > 0 while p (x) ! 0
causes KL (q (x) k p (x)) ! 1 such that q (x) ! 0 8x where p (x) ! 0 when optimized.
An example of these e�ects is shown in Figure 2.2 with a bi-modal distribution p (x),
represented by a two component Gaussian mixture, and a uni-modal model q (x) =
N (x |µ,⇤).
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�. Inference

Statistical inference is concerned with reasoning about and drawing conclusions from
data, which involves two types of inference. One aims to answer queries about or predict
possible states of the world based on some observed data. However, to make predictions,
we need to find some underlying truth of the observed data. In inference, we define this
truth or nature of the data as a probabilistic model for which we infer parameters such
that the model best describes the observed data. This chapter discusses the fundamental
ideas and concepts of inferring parameters of an assumed probabilistic model given a set
of observed data.

Let X = {x1, ...,xN} be a set of N i.i.d. observations of a random variable x 2 RD,
for which we want to find the generating process. Literature often also refers to these
observations as evidence. The generative process imposes some conditional dependency
between the di�erent observations, which, in statistical inference, takes on the form of
some unknown distribution from which the observations are assumed to be drawn [2,3].
A flexible concept of describing such distributions and dependencies are Latent Variable
Models (LVM).

�.�. Latent Variable Models

Let p (x |✓) be a distribution conditioned on a set of unknown, latent variables ✓ =
{✓1, ...,✓M} [5,30]. We will refer to these latent variables ✓ as parameters of the condi-
tional distribution. However, generally the latent variables are not necessarily parameters
of the model but can be any type of additional unknown information we assume exists.
A corresponding graphical model showing the relation between the evidence of x and
these latent variables is depicted in Figure 3.1. Optimizing this construct to match the
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Figure �.�.: Graphical Model For Latent Variable Models

underlying nature of the evidence means solving the marginal likelihood

log p (X) = log

Z
p (X,✓) d✓

= log

Z
p (X |✓) p (✓) d✓, (3.1)

where p (✓) is a prior over the latent variables ✓. Solving this integral is generally in-
tractable, and instead, we need to find the closest approximation.
The easiest and straight forward approaches to approximating this integral, such that the
model best describes the underlying nature of the evidence, are ML and MAP estimation

✓ML = argmax
✓

p (X |✓) ,

✓MAP = argmax
✓

p (X |✓) p (✓) ,

which correspond to finding a maximizing point estimate of ✓ [5]. From a mathematical
perspective, finding a single point estimate means finding the single value of ✓ for which
the integrands contribute the most to the integral and choosing these integrands as an
approximation

log p (X) ⇡ log p (X |✓ML) ,

log p (X) ⇡ log p (X |✓MAP) p (✓MAP) .

Both approaches potentially ignore a majority of the contributing probability mass of the
integral. The ML estimation further ignores the prior density p (✓), which, for non-uniform
priors, means neglecting important prior information [5].
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Figure �.�.: Shown is an example of Gibbs sampling applied to a �D multivariate
Gaussian distribution. Each of the dimensions is treated as a separate
random variable. The process is initialized at x(0) = (3, 4) with the
black lines and red dots visualizing the Markov Chain of samples in
front of the true distribution.

Other methods that find more accurate approximations of the integral are mainly split into
two categories, MCMC sampling techniques, and variational methods. MCMC sampling
will only be discussed briefly in the next section for completeness as the focus lies in
variational methods.

�.�. Markov Chain Monte-Carlo

MCMC sampling combines the fundamental concepts of Monte-Carlo estimation with
Markov Chains. The idea of Monte-Carlo estimation is to estimate the inherent properties
of a distribution by analyzing samples drawn from the distribution [50,53]. In MCMC
these samples are assumed to possess the Markov Property, meaning each sample is only
depending on the previous sample generating aMarkov Chain of samples [8]. In potentially
heavily correlated distributions such as posterior distributions of LVMs a common choice of

��



MCMC technique is Gibbs sampling. In theory, Gibbs sampling produces complete samples
of a possibly correlated distribution by consecutively sampling every random variable
conditioned on the last, fixed sample of all other random variables [7, 8]. Assuming
an LVM of the form shown in Figure 3.1 with a marginal probability as described by
Equation (3.1) we can approximate the integral by obtaining an estimate of the true
posterior. The posterior is some unknown distribution p (✓ |X) over the set of random
variables ✓ = {✓1, ...,✓M} conditioned on the evidence X. To perform Gibbs sampling,
we have to define all conditional distributions, of which samples of the separate latent
variables are drawn as

✓(i)1 ⇠ p

⇣
✓1

���X,✓2 = ✓
(i�1)
2 , ...,✓M = ✓(i�1)

M

⌘
,

✓(i)2 ⇠ p

⇣
✓2

���X,✓1 = ✓
(i)
1 ,✓3 = ✓

(i�1)
3 , ...,✓M = ✓(i�1)

M

⌘
,

...

✓(i)M ⇠ p

⇣
✓M

���X,✓1 = ✓
(i)
1 , ...,✓M�1 = ✓

(i)
M�1

⌘
,

where ✓im is the new sample obtained in iteration i. The process is initialized by obtaining
a single sample from the prior distribution p (✓). A few iterations between each sample
have to be made to produce a set of i.i.d. samples, as the samples are correlated through
a Markov Chain [7]. Given enough iterations, a sample ✓(n) =

n
✓(n)1 , ...,✓(n)M

o
will

eventually match a sample of the true posterior distribution [6, 7]. However, reaching
this point may require a large number of iterations, which is why in high dimensional
distributions, Gibbs sampling is quite slow. Further, defining the conditional distributions
for arbitrarily complex joint distributions may be impossible. An example of Gibbs sampling
applied to a 2D multivariate Gaussian distribution is given in Figure 3.2, where we try to
find true samples of the Gaussian distribution shown in the background from which we
have drawn some initial observations.

�.�. Variational Methods

Instead of finding a suitable approximation to the integral directly, variational methods
formulate a tractable lower or upper bound to the integral, shifting the optimization to
bound optimization. Tightening the bound results in a closer approximation to the true
solution [3,5].
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Again, let X = {x1, ...,xN} be a set of i.i.d. observations from a random variable x, which
we are assuming is distributed according to an LVM of the form

log p (X) = log

Z
p (X |✓) p (✓) d✓,

where ✓ represents the parameters of the model. Further, we will introduce an additional
set of latent variables Z = {z1, ..., zN}. The problem thus changes into

log p (X) = log

Z Z
p (X,Z |✓) p (✓) dZd✓, (3.2)

where each latent variable zn in Z corresponds to an observation xn.

�.�.�. Expectation-Maximization

First, we will consider the problem of maximum likelihood for which Equation (3.2)
simplifies to

log p (X |✓) = log

Z
p (X,Z |✓) dZ =

NX

n=1

log

Z
p (xn, zn |✓) dzn,

as we are not taking the prior over the unknown parameters ✓ into account. The goal is to
find a point estimate ✓ML that maximizes the log-likelihood L (✓) = log p (X |✓) [2,3,5].
Due to the existence of the unobserved variables Z direct optimization of ✓ is di�cult as Z
induce new dependencies. Further, solving the integral may be intractable [5]. However, if
z1, ..., zN were to be observed the problem would again be solvable, which is achieved by
introducing auxiliary distributions q (Z) = {q (zn)}Nn=1, often also referred to as variational
distributions [3], such that

L (✓) =
NX

n=1

log

Z
q (zn)

p (xn, zn |✓)
q (zn)

dzn,

where q (Z) represents the posterior over Z and p (xn, zn |✓) is the complete-data likeli-
hood function [3]. The name of complete-data comes from the idea that the observations
are assumed incomplete and that zn is some missing information in the observation xn.
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Thus, xn and zn combined are a complete data point with zn being an augmentation of
the observed data. We then define a lower bound on L (✓) as

L (✓) �
NX

n=1

Z
q (zn) log

p (xn, zn |✓)
q (zn)

dzn,

=
NX

n=1

Z
q (zn) log p (xn, zn |✓) dzn �

Z
q (zn) log q (zn) dzn

�
,

= F (q (Z) ,✓)

using Jensen’s inequality [54] for concave functions [2,3,5,11,13]. This lower bound is
known as the Evidence Lower Bound (ELBO) or variational free energy [2,3,5].

Optimizing the ELBO follows an sequential procedure known as Expectation-Maximization
(EM) [32] or Baum-Welch algorithm [31], where an inference step (E-Step) and a maxi-
mization step (M-Step) are alternated [3]. For some parameters ✓(i) at step i one first
performs the E-Step, inferring a new posterior distribution q (Z)(i+1) such that

q (Z)(i+1) = argmax
q(Z)

F
⇣
q (Z) ,✓(i)

⌘
,

which is optimal when q (Z) = p

⇣
Z
���X,✓(i)

⌘
. Afterwards, the M-Step maximizes the

lower bound w.r.t. to ✓

✓(i+1) = argmax
✓

F
⇣
q (Z)(i+1)

,✓
⌘

= argmax
✓

Z
p

⇣
Z
���X,✓(i)

⌘
log p (X,Z |✓) ,

where we substitute q (Z) = p

⇣
Z
���X,✓(i)

⌘
with ✓(i) being kept fixed in the posterior [3,5].

We can get a better understanding of the optimization by looking at a slightly di�erent per-
spective of this problem. The goal was to maximize the log-likelihood L (✓) = log p (X |✓)
w.r.t. to ✓, which might not be possible if the data is incomplete. Instead we defined a
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complete data likelihood p (xn, zn |✓) to optimize over. Starting from the ELBO we derive

F (q (Z) ,✓) =

Z
q (Z) log

p (X,Z |✓)
q (Z)

dZ

=

Z
q (Z) log

p (Z |X,✓) p (X |✓)
q (Z)

dZ

=

Z
q (Z) log

p (Z |X,✓)

q (Z)
dZ+

Z
q (Z) log p (X |✓) dZ

=

Z
q (Z) log

p (Z |X,✓)

q (Z)
dZ+ log p (X |✓)

= log p (X |✓)�KL (q (Z) k p (Z |X,✓)) ,

where we applied the Bayes Rule

p (X,Z |✓) = p (Z |X,✓) p (X |✓) .

By performing the E-Step, we minimize the KL between the variational posterior q (Z) and
the true posterior p (Z |X,✓), closing the gap between the ELBO and the true objective
log p (X |✓). Maximizing the ELBO afterwards in the M-Step for a fixed posterior q (Z)
e�ectively maximizes log p (X |✓), re-widening the gap between variational and true
posterior [3,5,11]. This process is illustrated in Figure 3.3.

�.�.�. Variational Bayesian Expectation-Maximization

While the EM-Algorithm is easily extended to a maximum-a-posteriori estimate of the
parameters ✓, we are not interested in a point estimate but rather in the posterior distribu-
tion over the parameters. We will again assume the problem described in Equation (3.2).
The ulterior goal remains of maximizing the log-likelihood log p (X) for a set of N i.i.d.
observations X = {x1, ...,xN}, for which we need to solve the integral

log p (X) = log

Z Z
p (X,Z,✓) dZd✓,

= log

Z Z
p (X |Z,✓) p (Z |✓) p (✓) dZd✓.

Following a similar derivation as in the EM-Algorithm we will introduce an auxiliary
distribution q (Z,✓) to approximate the true posterior, obtaining a lower bound on log p (X)
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log p
⇣
x | ✓(t)

⌘

log p
⇣
x | ✓(t)

⌘

log p
⇣
x | ✓(t+1)

⌘

KL
⇣
q (Z)(t) k p (Z | x)

⌘

KL
⇣
q (Z)(t+1) k p (Z | x)

⌘
= 0

KL
⇣
q (Z)(t+1) k p (Z | x)

⌘

F
⇣
q (Z)(t) ,✓(t)

⌘

F
⇣
q (Z)(t+1) ,✓(t)

⌘

F
⇣
q (Z)(t+1) ,✓(t+1)

⌘

E-Step

M-Step

Figure �.�.: This figure visualizes the EM algorithm. The E-Step minimizes the
KL between variational and true posterior such that the lower bound
matches the log likelihood log p (x |✓). Through the M-Step the log like-
lihood is maximized, causing a new discrepancy between variational
and true posterior. These steps are repeated until convergence. This
figure is created based on three separate figures in [�].
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as

log p (X) = log

Z Z
q (Z,✓)

q (Z,✓)
p (X,Z,✓) dZd✓,

�
Z Z

q (Z,✓) log
p (X,Z,✓)

q (Z,✓)
dZd✓,

= F (q (Z,✓)) ,

applying Jensen’s inequality [2,3,5]. We again recognize the relation

log p (X) = F (q (Z,✓))�KL (q (Z,✓) k p (Z,✓ |X)) ,

such that maximizing the lower bound w.r.t. q (Z,✓)minimizes the KL to the true posterior.
However, this time, substituting the approximate posterior with the true posterior when
the KL reaches its optimum will not simplify the problem as the true posterior in most
models is an intractable distribution [3,5]. Instead, to find tractable solutions, we have to
restrict the approximate posterior q (Z,✓) to some tractable distribution while still being
su�ciently flexible to approximate the true posterior appropriately [3].

�.�.�. Mean-Field Inference

A traditional method to the variational posterior is to assume factorized distributions,
known as Mean-Field inference, which is derived from Mean-Field Theory [14] [2, 3].
The approach utilizes the Mean-Field assumption that all random variables from the
posterior distribution are partitioned into a set of disjoint groups Zi. For this definition,
we summarize the random variables {Z,✓} as Z, such that

q (Z) =
Y

Zi2Z
qi (Zi) ,

where each factor qi (Zi) has no assumed functional form, following the notation in [3].
The Mean-Field assumption introduces independencies between all random variables from
di�erent groups Zi [3]. The best solution we can find using the Mean-Field assumption
is when we find the least amount of disjoint groups such that the problem still remains
tractable [3]. For the slightly adjusted problem, where all latent variables and parameters
are jointly denoted by Z, we have

log p (X) = F (q (Z))�KL (q (Z) k p (Z |X)) ,
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with
F (q (Z)) =

Z
q (Z) log

p (X,Z)

q (Z)
dZ.

Similar to the EM-algorithm we will alternate between separate updates for each of the
factors qi (Zi) [2,3]. The update rule for a specific factor qj (Zj) is derived from the lower
bound

F (q (Z)) =

Z
log

p (X,Z)Q
i qi

Y

i

qidZ

=

Z
log p (X,Z)

Y

i

qidZ�
Z X

i

log qi
Y

i

qidZ

=

Z
qj

Z
log p (X,Z)

Y

i 6=j

qidZidZj

�
Z

qj

2

4log qj +
Z X

i 6=j

log qi
Y

i 6=j

qidZi

3

5 dZj

=

Z
qj log p̃ (X,Zj) dZj �

Z
qj log qjdZj + Cj

=�KL (qj k p̃ (X,Zj)) + Cj ,

while keeping all other factors fixed, where qj = qj (Zj) and qi = qi (Zi) with an auxiliary
distribution

log p̃ (X,Zj) =

Z
log p (X,Z)

Y

i 6=j

qidZi

= EQ
i 6=j qi

[log p (X,Z)] .

Further, Cj represents a constant that corresponds to the normalization constant of the
updated factor qj and can be retrieved if necessary [3]. Thus maximizing the lower bound
w.r.t. qj means minimizing the negative KL between qj and the auxiliary distribution. The
optimum of the KL defines the update for qj as

qj (Zj) = Cj expEQ
i 6=j qi

[log p (X,Z)]

=
expEQ

i 6=j qi
[log p (X,Z)]

R
expEQ

i 6=j qi
[log p (X,Z)]dZj

,
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which simply is taking the exponential of the expectation over the full joint distribution
log p (X,Z) w.r.t. all other, fixed factors with a normalization constant [3].

Returning to the problem defined previously

log p (X) = F (q (Z,✓))�KL (q (Z,✓) k p (Z,✓ |X)) ,

we can follow the same derivation by first factorizing the auxiliary distribution q (Z,✓) =
q (Z) q (✓). Adjusting the notation, we define the update of both factors at step i as E- and
M-Step

q (Z)(i+1) = CZEq(✓)(i)
[log p (X,Z,✓)] , (3.3)

q (✓)(i+1) = C✓Eq(Z)(i+1) [log p (X,Z,✓)] , (3.4)

which are guaranteed to converge to a local optimum in a way that the lower bound can
never decrease [5].

From this point it is easy to notice the relation of the assumed LVM to the Bayesian Gaussian
mixture model derived in the previous chapter (see Section 2.1.3). Let X = {x1, ...,xN}
be a set of N i.i.d. observations of a random variable x 2 RD which we assume are
distributed according to a Bayesian Gaussian mixture model as described by Figure 2.1
with conjugate priors. The marginal probability is defined as

log p (X) = log
X

Z

Z Z Z
p (X,Z,⇡,µ,⇤) d⇡dµd⇤

= log
X

Z

Z Z Z
p (X |Z,µ,⇤) p (Z |⇡) p (⇡) p (µ |⇤) p (⇤) d⇡dµd⇤,

where the joint probability factorizes according to the graphical model. Introducing
a factorized variational posterior q (Z,⇡,µ,⇤) = q (Z) q (⇡,µ,⇤) in accordance with
the Mean-Field assumption, we recognize that q (Z) q (⇡,µ,⇤) = q (Z) q (✓) with ✓ =
{⇡,µ,⇤} and Z now being discrete. Therefore, we can follow the update equations in
Equation (3.3) to define an E-Step over the assignment variable in step i as

log q (Z)(i+1) = E⇡,µ,⇤ [log p (X,Z,⇡,µ,⇤)] + CZ,

= E⇡ [log p (Z |⇡)] + Eµ,⇤ [log p (X |µ,⇤)] + CZ,

where all terms independent of Z were absorbed by CZ and with ⇡,µ,⇤ ⇠ q (⇡,µ,⇤) [3].
Due to the model being a Gaussian mixture with conjugate priors in conjunction with

��



the factorization of q there exists a closed-form analytical solution to both update steps.
Replacing the remaining factors of the joint distribution in the E-Step with their density
functions leads to

log q (Z)(i+1) =Eµ,⇤

"
NX

n=1

KX

k=1

znk

✓
1

2
(xn � µk)

T ⇤k (xn � µk) + log
q

(2⇡)D |⇤�1
k |

◆#

+ E⇡

"
NX

n=1

KX

k=1

znk log ⇡k

#
+ CZ

=
NX

n=1

KX

k=1

znk


E⇡k [log ⇡k] +

1

2
E⇤k

[log |⇤k|]�
D

2
log 2⇡

�
1

2
Eµk,⇤k

h
(xn � µk)

T ⇤k (xn � µk)
i�

+ CZ

=
NX

n=1

KX

k=1

znk log ⇢nk + CZ,

such that the update of q (Z) is defined in terms of ⇢ [2, 3]. It follows the updated
distribution described as

q (Z)(i+1) =
NY

n=1

KY

k=1

r
znk
nk ,

with the normalization constant defined in a way that

rnk =
⇢nkPK
j=1 ⇢nj

,

which corresponds to the responsibility the kth component of the mixture has in generating
the n

th observation [2, 3]. Noticing that the responsibilities are subject to the same
constraints as the parameters ⇡ we see that q (Z) is again a Categorical distribution with
parameters rn = {rn1, ..., rnK} [2,3].

Similarly, we find a closed-form update for the parameters in an M-Step from

log q (⇡,µ,⇤)(i+1) =EZ [log p (X,Z,⇡,µ,⇤)] + C✓

=EZ [log p (Z |⇡)] + EZ [log p (X |µ,⇤)]

+ log p (⇡) + log p (µ |⇤) + log p (⇤) + C✓,

where the prior distributions are independent of Z. Noticing that there are no terms with
both ⇡ and µ,⇤ at the same time, we can conclude that q (⇡,µ,⇤) further factorizes into
q (⇡) q (µ,⇤) such that q (⇡) and q (µ,⇤) can be updated separately [2,3]. Considering
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only the terms involving ⇡ and again supplementing the functional form of the di�erent
factors in the joint distribution, we obtain

log q (⇡)(i+1) = log
KY

k=1

⇡
(↵k�1)
k + log

KY

k=1

NY

n=1

⇡
rnk
k + C⇡,

= log
KY

k=1

⇡

⇣
↵k+

PN
n=1 rnk�1

⌘

k + C⇡,

for which we recover the functional form of the Dirichlet distribution. This Dirichlet
distribution is parameterized by

↵ =

(
↵k +

NX

n=1

rnk

)K

k=1

,

where the responsibilities computed in the E-Step represent the expectation over Z [2,3].
For q (µ,⇤) we obtain a further factorization into

QK
k=1 q (µk,⇤k) by recognizing that all

factors appearing in the update equation that depend on µ,⇤ are sums over the mixture
components such that

log q (µk,⇤k)
(i+1) = log p (⇤k) + log p (µk |⇤k) +

NX

n=1

rnk log p
�
xn

��µk,⇤
�1
k

�
+ Cµk,⇤k ,

which again is a Gaussian-Wishart distribution whose parameters are defined by a weighted
Bayesian update [2,3] using Equation (2.3) with

Nk =
NX

n=1

rnk,

x̄k =
1

Nk

NX

n=1

rnkxn,

Sk =
NX

n=1

rnk (xn � x̄k)
T (xn � x̄k) .

This derivation shows that we get closed-form analytical solutions for all factors for a
Bayesian Gaussian mixture model in conjunction with the Mean-Field assumption. While
appealing, these solutions are only possible by introducing independence between the
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xn
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K

Figure �.�.: This figure shows the graphical model considered in [��,��]. The blue
colored node xn represents the n

th observation as a known variable.
For each observation a set of local latent variables zn is introduced.
Observations and local latent variables are dependent on a set of global
latent variables � = {�1, ...,�K}.

assignments Z and the mixture’s parameters ⇡,µ,⇤. If we consider that the Categorical
distribution, as the prior on these assignments, is not independent of the parameters, we
must conceit that the Mean-Field assumption potentially causes significant approximation
errors. This problem is not a specific case of the Bayesian Gaussian mixture but is a cause
for potential approximation errors independent of the model. Still, since Gibbs sampling
is slow in high dimensional problems, Mean-Field inference o�ers a viable alternative.

While we have considered Mean-Field as a separation into disjoint groups of the random
variables, this point of view is per definition already considered a StructuredMean-Field [15]
approach as naive Mean-Field considers fully factorized distributions [2,16,33]. In [55]
Structured Mean-Field is presented for two types of substructures. The first substructure
represents the approach we have discussed for deriving Mean-Field inference by defining
disjoint groups of random variables, where only dependencies between the variables of
the same group are retained in the variational distribution. The other type describes
substructures, where the groups of variables might not be entirely disjoint, meaning there
is some dependency between the di�erent groups remaining. This dependency is typically
induced by some global variable on which all groups depend. An example of such a
structure is a hierarchical model where all groups depend on some global random variable
drawn from a prior distribution [56].

The approach we want to focus on here is presented in the context of Stochastic Variational
Inference [57]. Given exceedingly large datasets computing the expectations comprising
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the lower bound becomes prohibitively expensive [57]. SVI is proposed as an approach
for variational inference with such large datasets by repeatedly subsampling mini-batches
from the dataset to compute noisy estimates of the expectations for which stochastic
optimization is performed [57]. In [34, 35] SVI is extended to Structured Mean-Field
for graphical models of the form shown in Figure 3.4. Let � = {�1, ...,�K} be a set of
K global latent variables and Z = {z1, ..., zN} be a set of N local latent variables, where
each variable may be comprised of a subset of multiple variables. The local variables are
in correspondence to a set X = {x1, ...,xN} of N i.i.d. observations of a random variable
x. Further, we define a model

p (X,Z,�) = p (�)
NY

n=1

p (xn, zn |�) ,

where all local variables Z are conditionally independent of each other given the global
variables � [34]. The objective is to maximize the marginal probability for the observations

p (X) =

Z Z
p (�)

NY

n=1

p (xn, zn |�) d�dZ,

where, without loss of generality, we have assumed that both sets of latent variables are
sets of continuous variables. In cases where either variable is discrete, the integral is
replaced by a sum. While Mean-Field inference would assume a factorized variational
posterior

q (�,Z) =

 
KY

k=1

q (�k)

!
NY

n=1

q (zn) ,

where q (�,Z) is fully factorized, [34,35] propose a more structured factorization of the
form

q (�,Z) =

 
KY

k=1

q (�k)

!
NY

n=1

q (zn |�) .

Here, the local latent variables are no longer assumed independent from each other
but are only conditionally independent given the global latent variables as described
by p (X,Z,�) [34]. While this approach recovers some dependency between the local
latent variables there is still a full factorization between all global variables to remain
tractable [34], which, for models where � are not independent of each other, might be
detrimental.

We have discussed the general idea of Bayesian inference in LVMs, highlighting the di�erent
approaches to approximate the marginal distribution described by the LVM. We described
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the idea behind Gibbs sampling as a representative for MCMC methods, pointed out its
strength of finding true posterior samples given enough time and its weakness of being
slow in high dimensional problems. Further, we have thoroughly discussed the concept
of variational methods deriving the EM-algorithm from a Bayesian perspective, first for
maximum likelihood point estimates of the parameters and afterward for full posterior
distributions over the parameters and assignment variables. In this context, we derived
Mean-Field inference for general LVMs and specifically derived closed-form solutions for
Bayesian Gaussian mixture models. Next, we have described how Structured Mean-Field
alleviates the problem of approximation errors induced by the Mean-Field assumption,
however still requiring some potentially devastating independence assumption to remain
tractable.

While Mean-Field inference o�ers far better viability in high dimensional problems than
Gibbs sampling, our goal is to find a variational posterior over the parameters of the
assumed model, for which we will consider a Bayesian Gaussian mixture model without
any independence assumptions. To achieve this goal, we will consider a parametric model
of the form

q (Z) = q (Z |!) ,

where ! is a set of parameters. While Mean-Field inference induces independence by
factorizing to restrict the variational posterior to a tractable form, it does so without
assuming any functional form of these factors. Instead, the functional form of the factors
was derived from the lower bound. In contrast, the parametric model restricts the vari-
ational posterior to a tractable form by predefining some functional form the posterior
is restricted to [3]. However, we no longer have to assume independence between the
random variables of the variational posterior. The quality of the approximation relies
entirely on the representational power of the parametric model.
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�. Normalizing Flows As Parametric
Generative Models

Applying variational inference to relevant real-world applications often requires highly
complex models not only for approximate posterior but also for density estimation tasks.
Representing these complex distributions, however, while remaining tractable for inference
is challenging. In the previous chapter, we have discussed the idea of parametric models
in variational inference. A concept of parametric generative models that gained a lot of
attention in modern variational inference is Normalizing Flows.

�.�. Normalizing Flows

Normalizing flows represent a form of generative models that originated in the context
of density estimation from Tabak and Vanden-Eijnden in 2010 [17]. The idea behind
Normalizing Flows is to describe complex distributions using a base distribution in combi-
nation with parameterized, invertible, and di�erentiable transformations [18,26]. While
typical choices for the base distribution are the Gaussian or Uniform distribution, one
is not restricted to either one of the two. Rather the base distribution can be any form
of distribution with a tractable probability density function from which one can draw
samples. In practice, the base distribution acts as some form of a prior on the resulting
complex distribution, which can potentially simplify the following optimization of the
transformation [26].

Let x 2 RD be a sample from a random variable drawn from the base distribution whose
probability density function qx is known and tractable. Further, we define an invertible,
and di�erentiable transformation g(x) : RD ! RD mapping samples from the base
distribution qx to samples of a more complex distribution qy, such that

x ⇠ qx(x) ! y = f(x) ⇠ qy(y).
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With f being the inverse of g and following the change of variables formula [58] we can
define the probability density function of the complex distribution qy as

qy(y) = qx(x)
�� detJg (x)

���1
, (4.1)

= qx(f(y)) | detJf (y) | ,

where Jg (x) and Jf (y) are the respective Jacobians of the transformation and its inverse
with [18,25,26]

Jg (x) =

2

6664

@g1
@x1

. . .
@g1
@xD

... . . . ...
@gD
@x1

. . .
@gD
@xD

3

7775
.

An intuitive way of imagining a transformation is to think of a function that expands
and contracts the space of the base distribution qx to warp and twist it into the shape
of the complex distribution qy [25]. In this context, the absolute determinant of the
Jacobian is a measure for the relative change of volume around a sample x caused by the
transformation [25].

As Normalizing Flows represent a form of generative models, literature often refers to
y = g(x) as the generative direction with g being used to generate data points from the
complex distribution by sampling the base distribution and transforming the samples. The
inverse function or flow f is instead seen as the normalizing direction as it maps the complex
distribution onto a simple, "more normal" base distribution [26]. The only restriction
imposed on the transformation is for it to be a di�eomorphism, which is a bijective and
di�erentiable function whose inverse is di�erentiable as well [25, 26, 59]. Under this
restriction, we may construct arbitrarily complex distributions from any base distribution
by defining an arbitrarily complex transformation as shown formally in [60,61] [25,26].
However, as we are interested in finding a tractable model for the complex distribution
qy(y), we have to find transformations whose inverse and Jacobian are easy to compute
[25,26]. A key property that is exploited in the construction of such transformations is
composability.

Let g1, ..., gL be a set of invertible and di�erentiable transformations, then their composition

g = gL � ... � g2 � g1,

is also invertible and di�erentiable. The inverse of such a composition is similarly defined
as

f = g
�1 = g

�1
L � ... � g�1

2 � g�1
1 .
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Generative

Normalizing

Base Distribution Complex Distribution

Figure �.�.: This figure visualizes the generative and normalizing direction. Sam-
ples from the base distribution are transformed into samples from the
complex distribution forming a generative model. Its inverse normal-
izes the complex samples to fit a "more normal" base distribution.
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More importantly, the determinant of the Jacobian is given by

detJg (x) = detJg1 (x)
LY

l=2

detJgl (gl�1 � ... � g1(x)) . (4.2)

This composability allows for complex transformations to be represented through a set of
simpler transformations [25,26]. Inherently this also means, for a complex distribution qy,
that is described by the same set of transformations g, we can easily compute the density
qy(y) as long as we can easily compute the determinant of the Jacobian of every single
transformation g1, ..., gL.

To summarize, a Normalizing Flow transforms a simple base distribution, e.g., a standard
Gaussian, into a much more complex distribution of the same dimensions through a set of
bijective and di�erentiable transformations whose inverses are di�erentiable as well. A
Normalizing Flow is thereby described as

x ⇠ qx, y = gL � ... � g1(x),

log qy(y) = log qx (f(y))�
LX

l=1

log | detJgl(yl�1) | , (4.3)

where x = f(y) is the inverse of g.

�.�. Bijective And Differentiable Transformations

Finding transformations that meet the requirements we have discussed thus far is an
ongoing research topic. This section, will roughly discuss the designs of several approaches,
highlighting certain properties required for application in variational inference. A more
comprehensive review of various transformations is given in [25, 26]. The following
transformations are described in terms of the generative direction.

The most simplistic forms of transformations are elementwise transformations. Let a
transformation g : RD ! RD be defined by a set of scalar, bijective, non-linear functions

g (x) = (h1(x1), h2(x2), ..., hD(xD))
T
,

where hd(xd) : R ! R maps the d
th input dimension to the d

th output dimension
[26]. The inverse is defined by separately inverting all function hd to form a similar set
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while the Jacobian is a diagonal matrix. The big disadvantage, however, of elementwise
transformations is the separate transformation of every dimension which prevents any
potential inter-dimensional dependencies [26]. While limited in representational power,
we can construct transformations with inter-dimensional dependencies as linear functions
of the form

g (x) = Ax+ b,

with A 2 RD⇥D and b 2 RD [25,26].

To represent complex posterior distributions, neither elementwise nor linear transforma-
tion are su�cient as the posterior distribution may contain a set of several multidimen-
sional latent variables that require inter-dimensional dependencies while being arbitrarily
complex for which linear transformations are too limited.

A concept that is not widely used in practice are planar, and radial Flows for their limited
access of the inverse transformation [18, 26]. However, optimizing an approximate
posterior distribution does not necessarily require the computation of the inverse. Let a
planar transformation be defined as

g (x) = x+ uh
�
wTx+ b

�
,

with u 2 RD, w 2 RD, b 2 R and h being an elementwise, non-linear function [18]. The
inverse of such transformations does not have a closed-form solution and might not even
exist [26]. However, the absolute determinant of the Jacobian is easily computed as

 (x) = h
0 �wTx+ b

�
w,

| detJg (x) | =
�� 1 + uT

 (x)
�� ,

where h
0 is the derivative of h. Such transformations stretch and compress the base

distribution perpendicular to a hyperplane [18]. A similar e�ect is created around a
reference point x0 2 RD using radial transformations defined by

g (x) = x+ �h (↵, r) (x� x0) ,

with ↵ 2 R+, � 2 R and

r = |x� x0 | ,
h (↵, r) = 1/ (↵+ r) .

The corresponding Jacobian is given as

| detJg (x) | = [1 + �h (↵, r)]d�1 ⇥1 + �h (↵, r)�h0 (↵, r) r
⇤
,
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where h
0 is the derivative of h [18].

While significantly more powerful than linear and elementwise transformations, planar
and radial flows still require large sets of successive transformations to represent complex
distribution, especially in the posterior estimation, where highly multi-modal distributions
are to be expected. Most state-of-the-art approaches, therefore, rely on coupling functions
[19,24] and auto-regressive networks [20,24,62] to define more expressive transformations
[26]. Let x 2 RD be divided into two disjoint sets x1:d�1 2 Rd and xd:D 2 RD�d. Further,
let h(xd:D;�) : RD�d ! RD�d be a bijective function, then a coupling transformation g

is defined as

g (x) =

8
<

:
y1:d�1 = x1:d�1

yd:D = h (xd:D;�)
, (4.4)

with � = � (xd:D), where � is some arbitrary function [19, 24–26] (see Figure 4.2).
Typically this function is represented by a fully connected neural network or an auto-
regressive network [19,24]. The Jacobian for coupling transformations is a lower, block
triangular matrix of the form

Jg (x) =

2

4 I 0

A D

3

5 .

whose determinant is the product of the diagonal elements, which are the identity matrix
I 2 Rd⇥d and a diagonal matrixD 2 R(D�d)⇥(D�d) containing the derivatives of h [25,26].

Early approaches of coupling transformations rely on a�ne mappings, limiting the ex-
pressiveness of the transformation [28]. Instead, [24, 28] present monotonic rational
spline functions of linear and quadratic order as coupling functions. Spline couplings
follow the idea of using piece-wise polynomial functions as coupling functions introduced
in [63] [24,28]. The spline itself serves as an elementwise bijective function with each
dimension xd of x being transformed separately.

Let a spline be defined by a set of K linear or quadratic rational functions bounded
by a set of K + 1 monotonically increasing points

��
x
(k)

, y
(k)
� K

k=0
called knots in an

interval
�
x
(0)

, y
(0)
�
= (�B,�B) and

�
x
(K)

, y
(K)

�
= (B,B) [24, 28]. Each function k

maps the points in the corresponding interval
⇥
x
(k)

, x
(k+1)

⇤
known as bin. The derivative

of the spline is the derivative of the rational functions inside the bins and some positive
scalar {�(k) > 0}Kk=0 at the knots. At the bounds of each bin, its function must match the
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x

x1:d�1

xd:D

y

y1:d�1

yd:Dh(xd:D;�)

�(x1:d�1)

g(x)

Figure �.�.: Schematic of a coupling transform. Shown is a single transform
y = g(x) as described by Equation (�.�). Figure inspired by Hadi M.
Dolatabadi.

bounding knots while its derivative matches the positive scalars [�(k), �(k + 1)] [24,28].
In the quadratic case, the derivatives at the boundaries x(0) and x

(K) are set to �(0) =
�(K) = 1 for numerical stability due to discontinuities at these points [24]. The inverse of
both, linear and quadratic couplings has an analytic and easy to compute solution.

In [28] the set of monotonic linear rational functions is defined by following the method
described in [64]. To match all required constraints, each bin is further split in two
intervals

⇥
x
(k)

, x
(m)

⇤
and

⇥
x
(m)

, x
(k+1)

⇤
, where x

(m) =
�
1� �

(k)
�
x
(k) + �

(k)
x
(k+1) is an

intermediate point with 0  �  1. Therefore, a linear rational function is described by

h (⇣) =

8
<

:

!(k)y(k)
�
�(k)�⇣

�
+!(m)y(m)⇣

!(k)
�
�(k)�⇣

�
+!(m)⇣

0  ⇣  �
(k)

!(m)y(m)(1�⇣)+!(k+1)y(k+1)
�
⇣��(k)

�

!(m)(1�⇣)+!(k+1)
�
⇣��(k)

� �
(k)  ⇣  1

,

where ⇣ =
�
x� x

(k)
�
/
�
x
(k+1) � x

(k)
�
with k being the bin in which x lies [28].

The construction of monotonic quadratic rational splines as proposed in [24] follows a
method introduced in [65] for parameterizing the splines. This method constructs the
quadratic function of the k

th bin as

h (⇣) = y
(k) +

�
y
(k+1) � y

(k)
� ⇥

s
(k)
⇣
2 + �(k)⇣ (1� ⇣)

⇤

s(k)
⇥
�(k + 1) + �(k)� 2s(k)

⇤
⇣ (1� ⇣)

,
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where ⇣ =
�
x� x

(k)
�
/
�
x
(k+1) � x

(k)
�
and s

(k) =
�
y
(k+1) � y

(k)
�
/
�
x
(k+1) � x

(k)
�
. For a

detailed explanation on the construction of these splines, their derivatives and inverse
please refer to [24] and [28].

Taking the concept of coupling transformations even further are auto-regressive flows.
Exploiting the chain rule of probability, which decomposes a density p (y) with y 2 RD

into a product of conditionals with each conditional being one-dimensional

p (y) = p (y1)
DY

d=2

p (yd | y1:d�1) ,

these flows decompose an input variable x 2 RD into D scalars. Each dimension is
transformed by a scalar di�erentiable bijective function yd = h(xd;�d) whose parame-
ters are determined by some arbitrary function �d = �

�
y1:d�1

�
known as conditioner.

Therefore, the transformation of the d
th dimension of the input variable x is conditioned

on all previous dimensions of the output y [25,26,62]. A schematic of the transform’s
design is shown in Figure 4.3. By conditioning the output of a transformation on its own
lower dimensions, the transformation cannot be computed in parallel and is inherently
slow [26]. However, its inverse xd = h

�1 (yd;�d) can be computed e�ciently due to
the dependency of xd only on �d = �

�
y1:d�1

�
. Therefore, depending on the direction,

the transformation is implemented in, we have either fast sampling or fast evaluation.
The Jacobian of the auto-regressive transformation is again a lower triangular whose
determinant is the sum of the derivatives of h and, thus, easy to compute. Flows following
this design are for example Neural Auto-Regressive Flows [21], Block Neural Auto-Regressive
Flows [27], Masked Auto-Regressive Flows [62] and Inverse Auto-Regressive Flows [20]. For
density estimation, we need a fast normalizing direction to maximize the likelihood of the
complex distribution on a fixed set of samples projected onto the base distribution. We can
think of density estimation as minimizing KL (p (x) k q (x)) w.r.t. q (x) which corresponds
to

min
q(x)

EX [log p (x)� log q (x)] / min
q(x)

EX [� log q (x)] ,

where X is a set of samples from the unknown distribution p (x). In turn, for variational
inference, we compute an expectation w.r.t. samples drawn from the variational distri-
bution q (x) which requires a fast generative direction. The required densities q (x) for
these samples are computed alongside the transformation following Equation (4.1) and
Equation (4.2). Since q (x) does not need to be evaluated on any other samples, fast
computation of the inverse or even the existence of an analytically computable inverse is
not strictly necessary [26]. Therefore, depending on the application, an auto-regressive
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Figure �.�.: Schematic for auto-regressive coupling transforms. Each dimension
d of the output vector y 2 RD is a scalar bijective functional mapping
h of the corresponding input dimension xd. The function’s parameters
are determined through another functional mapping � whose input
are all previous output dimensions y1:d�1, creating an auto-regressive
structure.
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transformation must be implemented in the correct direction. The next section will de-
scribe variational inference with Normalizing Flows in more detail as a continuation of
Chapter 3. However, later in this thesis, we will also consider a concept for updating
mixtures of Normalizing Flows, where both directions need to be easy to compute.

�.�. Variational Inference With Normalizing Flows

Applying Normalizing Flows to variational inference is straightforward. LetX = {x1, ...,xN}
be a set of N i.i.d. observations of a continuous random variable x. We will assume that
this data is distributed according to a Latent Variable Model as described by Figure 3.1
for which we define the marginal log-probability

log p (X) = log

Z
p (X |✓) p (✓) d✓.

Introducing a variational distribution q (✓ |!) we derive the lower bound

log p (X) �
Z

q (✓ |!) log p (X,✓) d✓ �
Z

q (✓ |!) log q (✓ |!) d✓

= F (q (✓ |!)) ,

where ! denote the parameters of the variational distribution. Using Normalizing Flows
gives q (✓ |!) a tractable functional form through which we can draw samples which in
turn allows for an optimization of the lower bound using Monte-Carlo estimates. It follows
an approximation of the lower bound as

F (q (✓ |!)) = E✓⇠q(✓ |!) [log p (X,✓)� log q (✓ |!)]

⇡ 1

Ns

NsX

i=1

log p
�
X,✓i

�
� log q

�
✓i
��!

�
,

where ✓i ⇠ q (✓ |!) for a total of Ns samples [18]. Typically the approximation is done
using a single sample. By computing the gradient r! � F (q (✓ |!)) of the negative
lower bound we optimize the objective using Stochastic Gradient Descent (SGD) [18].
Supplementing q (✓ |!) with the formulation for the complex density described by the
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Flow (see Equation (4.3)) leads to

�F (q (✓ |!)) =Eq0(y0)
[log qL (yL)� log p (X,yL)]

=Eq0(y0)
[log q0 (y0)]� Eq0(y0)

[log p (X,yL)]

� Eq0(y0)

"
LX

l=1

log
�� detJgl(yl�1)

��
#
,

where yL = gL � ... � g1(y0) = ✓ is the complex transformed sample and y0 ⇠ q0 (y0) is
drawn from the base distribution. Then ! describes the parameters of the L transfor-
mations. We notice that the lower bound can be computed for samples from the base
distribution by computing the absolute determinant of the Jacobian along the generative
direction such that the normalizing direction does not need to be easily computable for
optimizing the lower bound.

The concept of variational inference with Normalizing Flows as parametric variation
distributions has been considered mainly in the context of Variational Auto-Encoders
(VAE) [18,20,39]. VAEs are comprised of an encoder and decoder. The encoder q (z |x)
represents a mapping or encoding of high dimensional samples x to lower dimensional
feature representations z as in dimensionality reduction methods. In turn the decoder
provides the counterpart by reconstructing a high dimensional sample x̂ from a lower
dimensional feature representation equivalent to p (x | z,✓), where kx� x̂k2 is minimized.
A more detailed introduction to VAEs is given in Chapter 6. Through this dimensionality
reduction, VAEs provide a highly scalable approach for complex high dimensional datasets
[18,39]. However, VAEs define a variational posterior q (z |x) as encoder only w.r.t. the
lower dimensional feature representation z considering an additional prior p (z). The VAE
is optimized w.r.t. the variational posterior over z and a point estimate of the parameters
✓ of the model. The focus of this thesis, instead lies in the posterior over the parameters ✓
of mixture models such as the Bayesian Gaussian mixture model.
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�. Contribution And Results

So far, we have discussed traditional approaches to variational inference following the
Mean-Field assumption and a generic parametric approach with Normalizing Flows. This
chapter is split into two di�erent contributions. The first part presents the exact designs
and derivations we have considered for learning posterior distributions over the parameters
of Bayesian Gaussian mixture models. For each design, experimental results are provided
with a comparison of the di�erent designs. Throughout this work, some of the designs
have been developed as more sophisticated extensions of one another. In these cases,
the reasoning behind the development is described such that the process is understood.
The second part of this chapter discusses the concept of mixtures of Normalizing Flows.
We describe a concept for separately updating each component in the mixture following
an idea described in [36, 37]. While this concept is applicable to variational posterior
distributions, the experiments focus on density matching. The experiments shown in this
thesis are provided as a proof of concept.

Let X = {x1, ...,xN} be a set of N i.i.d. observations of a continuous random variable
x 2 RD. We will assume that the observations are distributed according to a Bayesian
Gaussian mixture model as defined in Chapter 3 of the form

p (X,Z,⇡,µ,⇤) = p (X |Z,µ,⇤) p (Z |⇡) p (⇡) p (µ |⇤) p (⇤) ,

where Z = {z1, ..., zN} is a set of one-hot assignment variables z 2 ZK with K being
the number of components. Further, µ = {µ1, ...,µK} and ⇤ = {⇤1, ...,⇤K} denote the
parameters of the K Gaussian components whose mixing coe�cients are summarized by
⇡ = {⇡1, ...,⇡K}. The mixture is constructed with uninformative conjugate priors such
that its joint distribution is described by Equation (2.7) with

p (X |Z,µ,⇤) p (Z |⇡) =
NY

n=1

KY

k=1

⇡
znk
k N (xn |µk,⇤k)

znk ,
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where znk denotes the k
th element of zn. The true posterior of this model p (Z,⇡,µ,⇤) is

assumed to be intractable.

While Mean-Field inference deals with the intractable posterior by introducing a factorized
variational approximation where Z is assumed independent of the parameters ⇡, µ and
⇤, we are considering a parametric variational approximation. The posterior distribution
of the Bayesian Gaussian mixture model covers both discrete and continuous variables.
Constructing such a variational distribution over both types as a single distribution is
di�cult. Instead we will consider a factorization of the variational posterior as

q (Z,⇡,µ,⇤) = q (Z |⇡,µ,⇤) q (⇡,µ,⇤) ,

where q (Z |⇡,µ,⇤) further factorizes into
QN

n=1 q (zn |⇡,µ,⇤). We have implemented
di�erent approaches to the problem, which will be presented in succession, each with
results and a short discussion on their performance.

�.�. Amortized Variational Inference For Bayesian GMMs

As the main interest lies in the posterior over the parameters of the mixture, namely ⇡,
µ and ⇤, we will consider the case of amortized variational inference. Amortization is
easily described with the case of N i.i.d. observations X for which we want to learn the
posterior of the corresponding labels Z in a Gaussian mixture model with

p (X) =
NY

n=1

p (xn | zn,✓) p (zn) .

We would have to optimize a variational posterior qn (zn |xn) for every observation in X.
It is easy to see that the number of parameters to optimize increases with N . Amortized
inference assumes some function zn = f (xn) mapping the observations to labels such
that the number of parameters to optimize is fixed to the parameters of f (·) allowing for
much larger sets of observations [66]. In general, we can define amortization as replacing
the optimization of a set of free variables with the optimization of a function such that the
free variables are a result of the function, which fixes the number of parameters that are
optimized to a certain level independent of the number of free variables. This constraint,
however, comes with associated potential approximation errors. When optimizing free
variables directly, these variables can take on any value in the space they are defined in.
Amortization binds the variables to the limits for which the function is defined, causing
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some variables never to be fully optimized. The resulting gap is known as the amortization
gap [67–69].

Following this idea we will consider
QN

n=1 q (zn |⇡,µ,⇤) to be represented by a neural
network mapping zn = NN(xn,⇡,µ,⇤) for which the lower bound is defined as

F (q (⇡,µ,⇤ |!)) =
X

Z

Z Z Z
q (⇡,µ,⇤ |!) log p (X,Z,⇡,µ,⇤) d⇡dµd⇤

�
Z Z Z

q (⇡,µ,⇤ |!) log q (⇡,µ,⇤ |!) d⇡dµd⇤,

where Z = {NN(xn,⇡,µ,⇤)}Nn=1. The variational posterior is defined as a Normalizing
Flow with
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where
n
⇡(L)

,µ(L)
,⇤(L)

o
represents a sample of the complex transformed distribution. We

have switched indexing here to not confuse an intermediate result of the transformation
µ(l�1) with a sample of the parameters of the k

th component µk. The parameters ! we
will optimize are defined through the transformations g = gL � ... � g2 � g1. It follows the
negative lower bound
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for which we compute the gradients

r! � F (q (⇡,µ,⇤ |!)) ,
r � F (q (⇡,µ,⇤ |!)) ,
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where denotes the parameters of the neural networkNN(x,⇡,µ,⇤). We againminimize
the negative lower bound with SGD. This definition holds for any transformation e�cient
in the generative direction and is viable as long as su�cient representational power is
provided.

As ⇤ denotes the set of precision matrices {⇤k}Kk=1 with ⇤k 2 RD⇥D, we will, in practice,
redefine a complex sample from the Normalizing Flow as {⇡,µ,�} with � = {�k}Kk=1.
Here �k 2 RD� denotes a vector of the elements in the lower triangular matrix Lk of the
Cholesky decomposition of ⇤k with ⇤k = LkL

T
k with

D� = D +
D(D � 1)

2
,

significantly reducing the number of dimension in the variational posterior. Further, to
remain tractable when computing the gradients we will assume a continuous relaxation
of the discrete labels zn. Instead of directly mapping onto the discrete labels we are using
a temperature relaxed one-hot Categorical distribution parameterized by the functional
mapping ⇢n = NN(xn,⇡,µ,�) used to amortize the discrete labels. The relaxed one-hot
categorical distribution relies on a Gumbel Softmax relaxation defined as

znk =
exp ((log (⇢nk) + gi) /⌧)PK
j=1 exp ((log (⇢nj) + gj) /⌧)

,

where ⌧ denotes the temperature and gk are i.i.d. samples drawn from a Gumbel distribu-
tion Gumbel (0, 1) [70,71]. It follows the probability density of the relaxed categorical
distribution

p (zn |⇢n) = � (K) ⌧K�1

 
KX

k=1

⇢nk

z
⌧
nk

!�1 KY

k=1

⇢nk

z
⌧+1
nk

,

also known as Gumbel-Softmax [70] or Concrete [71] distribution, which were discovered
independently [70]. For lower temperatures the distribution gets closer to the discrete
categorical distribution while the variance of the gradient increases until vanishing com-
pletely [70]. Typically one follows an annealing schedule for the temperature to prevent
high variance in the gradients to interfere with the optimization [70].

We have first applied this approach to evaluate its initial performance to basic datasets with
D = 2 dimensions. In Figure 5.1 and Figure A.2 the results are shown for N = 1000 data
points sampled from randomly generated Gaussian mixture distributions, each comprised
of five equally weighted components. We have assumed the data is distributed according
to a Bayesian Gaussian mixture model with K = 5 components. The hyperparameters
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Figure �.�.: Shown are the results of the three presented approaches on data sam-
pled from randomly generated Gaussian mixture distributions with
five equally weighted components. The dataset contains N = 1000
samples. Figure (a) presents the minimization of the negative lower
bound as an average of 100 posterior samples. In (b), the dataset is dis-
played in a single coloration as the assignment variables are collapsed.
The other figures show the data colorized according to the assignment
variables. The approximate likelihood corresponds to p (x |⇡,µ,⇤) pa-
rameterized by an average of 100 samples from the variational poste-
rior q (⇡,µ,⇤).
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p (⇡) = Dir (↵) ↵ = {1/K}Kk=1

p (µ |⇤) = N
⇣
µ0

��� (�⇤k)
�1
⌘

µ0 = 0, � = 0.1 8 k = 1, ...,K

p (⇤) = W (⌫,W) ⌫ = D + 1, W = I 8 k = 1, ...,K

Table �.�.: Hyperparameters for the conjugate priors of every Bayesian Gaussian
mixture model assumed for the experiments discussed in this chapter.

for the corresponding conjugate priors are listed in Table 5.1. The variational posterior
q (Z,⇡,µ,⇤) is factorized, where q (⇡,µ,⇤) is represented by a Block Neural Auto-
Regressive Flow [27] with L = 2 transformations. The BNAFs are implemented in the
generative direction for fast sampling in all experiments using the Pyro.ai library [72]
and are optimized by an Adam [73] optimizer. The other factor {q (zn |xn,⇡,µ,⇤)}Nn=1
is designed as a relaxed Categorical distribution whose parameters are computed by a
dense neural network ⇢n = NN(xn,⇡,µ,⇤) with two hidden-layers where each layer
consists of K ·D · 50 neurons. The temperature relaxation of the discrete assignments
follows an annealing schedule according to a linear function

⌧ = max


0.01 , 1� t

0.75T

�
, (5.1)

where t is the current episode and T is the maximum number of episodes for training. We
have also considered a smoothing of the negative lower bound of the form

�F (q (⇡,µ,⇤ |!))

=E
q0
⇣
⇡(0),µ(0),⇤(0)

⌘
h
log qL

⇣
⇡(L)

,µ(L)
,⇤(L)

⌘
� ⌘ log p

⇣
X,Z,⇡(L)

,µ(L)
,⇤(L)

⌘i
,

(5.2)

where ⌘ = min
⇥
1 , 0.01 + t

1000

⇤
[18].

Further, a more structured example is given in Figure 5.2 for the Eight Gaussians data. In
our example, the data contains N = 1000 observations. The Bayesian Gaussian mixture is
now comprised ofK = 8 components while keeping the priors’ initialization fixed. We have
reduced the variational posterior to L = 1 Block Neural Auto-Regressive transformation,
which gave the best results. Smoothing and temperature relaxation were applied in the
same way as for the random Gaussian mixture data. Further, the amortization was kept
unchanged. In all three experiments, Figure 5.1, Figure A.2 and Figure 5.2, we use a
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Figure �.�.: Shown are the results of the three presented approaches on the Eight
Gaussians data. The dataset contains N = 1000 samples. Figure (a)
presents the minimization of the negative lower bound as an average
of 100 posterior samples. In (b), the dataset is displayed in a single
coloration as the assignment variables are collapsed. The other figures
show the data colorized according to the assignment variables. The
approximate likelihood corresponds to p (x |⇡,µ,⇤) parameterized by
an average of 100 samples from the variational posterior q (⇡,µ,⇤).
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batch of 100 samples from the variational posterior to compute the Monte-Carlo estimate
of the lower bound during training.

The results in Figure 5.1, Figure A.2 and Figure 5.2 show an underwhelming performance
of amortized variational inference as it was presented for even the most simplistic datasets.
The main reason is that the model cannot fully separate clusters close to each other. The
resulting variational posterior assigns small mixing coe�cients to most components in
the Bayesian Gaussian mixture, causing a mode-averaging behavior of the likelihood. In
some cases, the posterior collapses entirely, causing all observations to be assigned to a
single component. We have verified that each factor q (Z |X,⇡,µ,⇤) and q (⇡,µ,⇤) of
the variational posterior by itself is capable of correctly representing its corresponding
variables by fixing the other factor to the optimal solution. However, trained in conjunction,
the data is not correctly separated. The problem persists independent of the training
procedure. We have tried a separate EM-like update procedure where either factor was
kept fixed while the other is being updated, including di�erent hyperparameters for the
neural network and di�erent optimizers. Furthermore, the described approach becomes
unbearably slow for more complex models. The dimensionality of the variational factor
q (⇡,µ,⇤) not only increases with the growing dimensionality of the observations but
also with the number of components in the Bayesian Gaussian mixture. Thus, due to the
dependency placed on the mixture parameters ⇡,µ,⇤ in the neural network used for
amortization, the necessary parameters we have to optimize grows even further. Due to
its poor performance, we have not applied the approach to more complex data. Instead,
further approaches presented in this chapter are compared to Mean-Field inference.

�.�. Analytically Deriving Assignment Variables

The results for amortized variational inference, as discussed before, are unsatisfying. In
an attempt to overcome the issues with the amortization, we have considered a di�erent
approach to computing the assignment variables. Let ⇡,µ,⇤ ⇠ q (⇡,µ,⇤ |!) be a sample
from the variational posterior. Given this sample we have conditional independency
between the n

th assignment variable zn and all other assignment variables z¬n as well as
conditional independence between the n

th sample xn and all other samples x¬n. These
independencies allow for a computation of zn as a distribution

p (zn |xn,⇡,µ,⇤) =
p (zn,xn |⇡,µ,⇤)

p (xn |⇡,µ,⇤)
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using Bayes Rule. From the definition of the Bayesian Gaussian mixture model, we know
that the numerator is given as

p (zn,xn |⇡,µ,⇤) =
KY

k=1

⇡
znk
k N (xn |µk,⇤k)

znk ,

while the denominator is obtained by marginalizing out the assignment variable zn

p (xn |⇡,µ,⇤) =
X

zn

KY

k=1

⇡
znk
k N (xn |µk,⇤k)

znk

=
KX

k=1

⇡kN (xn |µk,⇤k) ,

where we use the fact that zn is a one-hot vector to regain the non-Bayesian Gaussian
mixture density. As the denominator is independent of zn we can consider it constant to
arrive at the relation

p (zn |xn,⇡,µ,⇤) /
KY

k=1

(⇡kN (xn |µk,⇤k))
znk

=
KY

k=1

⇢
znk
k ,

which is a Categorical distribution whose unnormalized weights are denoted by ⇢ [2].
With the normalized weights being under the constraints that

0  rk  1,
KX

k=1

rk = 1,

and knowing that zn is a one-hot vector, we can define

p (zn |xn,⇡,µ,⇤) =
KY

k=1

r
znk
k ,

where the weights are normalized by the constant p (xn |⇡,µ,⇤) such that

rk =
⇡kN (xn |µk,⇤k)PK
k=1 ⇡kN (xn |µk,⇤k)

.
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We use this relation to replace the amortization of the discrete assignments we have
discussed before. Instead of parameterizing the relaxed one-hot Categorical distribution
by some weights predicted through a neural network mapping, we use the unnormalized
weights ⇢ to sample continuous relaxations of the discrete assignments. This approach
allows for the assignments to be computed freely without being bound to a functional
mapping while slowly converging to the discrete analytical solution using an annealing
schedule for the temperature as described in Equation (5.1). In Figure 5.1 and Figure 5.2
we already see a significant improvement over the amortized variational inference ap-
proach. We refer to this approach as Analytical for clarity. The experiments are performed
under the same constraints as the amortized counterpart with a Bayesian Gaussian mix-
ture model of K = 5 and K = 8 respective components. The conjugate priors are again
initialized according to Table 5.1. The same parametric model comprised of L = 2 for
the random Gaussian mixture data and L = 1 Block Neural Auto-Regressive Flows for
the Eight Gaussians data is used as the variational posterior with smoothing of the loss
function as described for Equation (5.2). As for the amortized approach, we have used
100 samples to compute the Monte-Carlo estimate of the lower bound during training.

The approach scales better to more complex data such as the Pinwheel dataset (see
Figure 5.3). In our experiments, the Pinwheel dataset contains N = 3000 observations
distributed along six half-moon shapes. The Bayesian Gaussian mixture model is comprised
of K = 40 components, where each components’ prior is initialized by the parameters
listed in Table 5.1. The variational posterior q (⇡,µ,⇤) is designed as a Normalizing
Flow with L = 3 Block Neural Auto-Regressive transformations. We have further applied
linear smoothing of the lower bound following the design in Equation (5.2). While the
results show a reasonable recreation of the data distribution, we see in Figure 5.3 (a)
that Mean-Field inference still provides a better approximation. Further applying the
approach to the Two Spirals data, which is also comprised of N = 3000 observations
shown in Figure 5.4 strengthens this statement. In this experiment, we used the exact
same setting as described for the Pinwheel experiment. A summary of the final values
for the negative lower bound is listed in Table 5.2. The only experiment listed where this
approach outperforms Mean-Field inference is on the Eight Gaussians data.

An interesting result we have encountered in some experiments is bi-modal or even multi-
modal behavior of the posterior distribution. By defining the variational posterior as a
Normalizing Flow, the posterior is theoretically capable of representing multi-modal data.
Figure A.1 shows a variant of the Two Spirals data with a Bayesian Gaussian mixture
comprised of K = 60 components where we have documented such behavior. While the
other results are shown by computing an average of 100 posterior samples, here we use
only a single sample to compute the assignments and approximate likelihood. We do so
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Figure �.�.: Shown is a comparison of two of the presented approaches and Mean-
Field inference on the Pinwheel data. The dataset contains N = 3000
samples. Figure (a) presents the minimization of the negative lower
bound as an average of 100 posterior samples. In (b), the dataset is dis-
played in a single coloration as the assignment variables are collapsed.
The other figures show the data colorized according to the assignment
variables. The approximate likelihood corresponds to p (x |⇡,µ,⇤) pa-
rameterized by an average of 100 samples from the variational poste-
rior q (⇡,µ,⇤).

��



Approach Random GMM Eight Gaussians Pinwheel Two Spirals

Amortized 5277 3606

Analytical 4581 3038 16433 13357

Mean-Field 3084 15889 13139

Collapsed 4533 2980 15832 12939

Table �.�.: Listed are the final negative lower bound values for the presented ap-
proaches as an average over 100 posterior samples. The table includes
results for Mean-Field inference as presented in Chapter � where the
variational posterior is initialized by a single step Gibbs Sampling.

as we have not found a reasonable way of separating the samples from the posterior to
filter out samples from a single mode.

�.�. Collapsed Variational Inference For Bayesian GMMs

We have discussed before that our main interest is a posterior over the parameter of the
mixture ⇡, µ and ⇤. So far, we have considered approaches to obtain some reasonable
assumption about the assignment variables Z. Another option is to assume a collapsed
approach, where some of the latent variables are marginalized out beforehand [13,74]. In
most cases, this technique is applied to marginalize out the parameters of the model such
that the posterior is a distribution over the latent assignments Z [75–77]. However, we
will apply the concept to marginalize out the assignment variables Z which corresponds
to exact inference w.r.t. to those variables and removing them from the derivation of the
lower bound. Considering such a collapsed model not only improves the lower bound but
also speeds up learning as fewer variables need to be inferred [13]. We take the problem
definition from the beginning of this chapter with a Bayesian Gaussian mixture model
whose full joint distribution is described as

p (X,Z,⇡,µ,⇤) = C↵

KY

k=1

⇡
↵k�1
k NW (µk,⇤k | ⇣k)

NY

n=1

⇡
znk
k N (x |µk,⇤k)

znk ,
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where we have assumed conjugate priors. From this joint distribution we marginalize out
the assignment variables Z such that

p (X,⇡,µ,⇤) =
X

Z

C↵

KY

k=1

⇡
↵k�1
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where ⇣k represents the parameters µ0,k,�k, ⌫k,Wk of the k
th Gaussian-Wishart prior.

This marginalizing of the assignment variables is possible due to all zn being one-hot
vectors. Being given every possible state of zn corresponds to the term ⇡kN (xn |µk,⇤k)
being evaluated exactly once for every component k in the mixture distribution. Thus the
sum over Z and the product over components k merges into a sum over components [3].
It follows the log marginal distribution for the observation p (X) as

log p (X) = log

Z Z Z
p (X,⇡,µ,⇤) d⇡dµd⇤,

where we introduce the variational posterior q (⇡,µ,⇤ |!) to derive the lower bound

F (q (⇡,µ,⇤ |!)) =
Z Z Z

q (⇡,µ,⇤ |!) log p (X,⇡,µ,⇤) d⇡dµd⇤

�
Z Z Z

q (⇡,µ,⇤ |!) log q (⇡,µ,⇤ |!) d⇡dµd⇤,

using Jensen’s inequality. By marginalizing over the assignment variables Z beforehand,
there no longer exists a closed-form solution for the variational posterior. However, by
assuming a parametric variational distribution q (⇡,µ,⇤ |!) we can still optimize the
lower bound w.r.t. the parameters !. Following similar steps as before, we arrive at the
negative lower bound
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where the variational posterior is defined by a Normalizing Flow in terms of L bijective
and di�erentiable transformations g and a base distribution q0.

We have applied the collapsed variational inference approach to all experiments we have
explained so far using the same designs for the variational posterior q (⇡,µ,⇤ |!) and
the Bayesian Gaussian mixture. Across all experiments, the collapsed model performs at
least as well as the previously presented approaches. While in Figure 5.1, Figure A.2 and
Figure 5.2 we have used a Monte-Carlo estimate over 100 posterior samples per episode
for the previously presented approaches, the collapsed model achieves at least as good
of a performance on a single sample Monte-Carlo estimate. Further, the experiments
on the Pinwheel (see Figure 5.3) and Two Spirals (see Figure 5.4) data show that the
collapsed model also outperforms Mean-Field inference. The final estimated values of the
lower bound are listed for all experiments in Table 5.2 as a Monte-Carlo estimate over 100
posterior samples for all approaches. We have experienced a more stable optimization
during the experiments allowing for higher learning rates and thus faster convergence.
Furthermore, the collapsed model shows a significant boost in per-episode computation
time.

We have thoroughly discussed variational inference in the context of learning variational
posterior distributions as approximations to the true posterior of an assumed model over
given data. The following section of this chapter, however, is devoted to the concept of
Density Estimation or Density Matching using variational inference. We do so to show a
proof of concept for a separate update procedure for mixtures of Normalizing Flows based
on ideas from [36,37]. The goal is to learn highly multi-modal distributions rather as a
mixture of less complex distributions than having a single highly complex distribution.

�.�. Variational Inference With Mixtures Of Normalizing Flows

Distributions of real world data are almost certainly hideously complex to the point where
inferring any valuable information becomes intractable. Such distributions p⇤ (x) follow a
general form such as

p
⇤ (x) =

1

C✓

Y

k

�k(Gk (x) ;✓),

where C✓ is a normalization constant representing a marginalization over all possible
values of the random variables x. If we consider undirected graphical models, each factor
�k(Gk (x) ;✓) corresponds to a potential function over a clique or in other words fully
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Figure �.�.: Shown is a comparison of two of the presented approaches and Mean-
Field inference on the Two Spirals data. The dataset containsN = 3000
samples. Figure (a) presents the minimization of the negative lower
bound as an average of 100 posterior samples. In (b), the dataset is dis-
played in a single coloration as the assignment variables are collapsed.
The other figures show the data colorized according to the assignment
variables. The approximate likelihood corresponds to p (x |⇡,µ,⇤) pa-
rameterized by an average of 100 samples from the variational poste-
rior q (⇡,µ,⇤).
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connected subgraph Gk (x) [5]. We assume that the normalization constant is intractable
and thus sampling is impossible. For such models however, it is, in most cases, still possible
to compute all potential functions �k(Gk (x) ;✓) for a given sample of x such that the
unnormalized density p (x) =

Q
k �k(Gk (x) ;✓) can be evaluated. It is, therefore, possible

to learn a tractable generative model to represent the intractable true data distribution by
density matching using variational inference.

Let q (x |!) be a tractable, parametric generative model, e.g. a Normalizing Flow, for
which we want to minimize some distance measure to the true data distribution p

⇤ (x)
such as the KL

min
q(x |!)

KL (q (x |!) k p⇤ (x)) ,

where we consider an information projection to get an expectation w.r.t. the tractablemodel
rather than the intractable true distribution. Minimizing this KL directly is impossible for
either case as p⇤ (x) is assumed to be intractable. Instead we reformulate the problem to

KL (q (x |!) k p⇤ (x)) = KL (q (x |!) k p (x)) + logC✓,

by isolating the intractable normalization constant [36,37,42]. By recognizing that the
log of C✓ is again a constant we notice that KL (q (x |!) k p (x)) � 0 is a negative lower
bound �F (q (x |!)) on the original objective with

F (q (x |!)) =
Z

q (x |!) log p (x)

q (x |!)dx.

As discussed before, we minimize the true objective by minimizing the negative lower
bound through a Monte-Carlo estimate

�F (q (x |!)) = Ex⇠q(x |!) [log q (x |!)� log p (x)] ,

where samples are drawn from the tractable approximation. For arbitrary tractable models
a minimization is performed by SGD via the gradient r! � F (q (x |!)) of the negative
lower bound w.r.t. the parameters of the tractable model.

It was shown that for Gaussian mixture models of the form q (x |!) =
PK

k=1 ⇡kq (x |!k),
where q (x |!k) = N (x |µk,⇤k) with !k = {µk,⇤k}, that a closed-form solution exists
for each component updated separately using a policy search method called Model-Based
Relative Entropy [78] stochastic search [36,37]. While MORE introduces a trust-region and
entropy constraint to stabilize the optimization, these constraints are not strictly necessary
in the formulation of separate updates for the di�erent components of the mixture. In fact
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we can derive a separate update procedure for mixture models of arbitrary distributions
by following the underlying concept presented in [36,37].

Let q (x |!) =
PK

k=1 ⇡kq (x |!k) =
PK

k=1 q (x | k) q (k) be a mixture model for an arbitrary
parametric distribution where all components q (x |!k) have the same functional form,
e.g. a Normalizing Flow. To keep the following derivations uncluttered we will, without
loss of generality, hide the dependency on !. Starting from the negative lower bound we
derive

�F (q (x)) =

Z
q (x) [log q (x)� log p (x)] dx

=

Z KX

k=1

q (x | k) q (k) [log q (x, k)� log q (k |x)� log p (x)] dx

=
KX

k=1

q (k)

Z
q (x | k) [log q (x, k)� log q (k |x)� log p (x)] dx,

where q (x) = q (x, k) /q (k |x) 8 k = 1, ...,K follows from Bayes Rule [36,37]. Introduc-
ing an auxiliary distribution q̃ (k |x) for the posterior on the mixing coe�cients leads
to

�F (q (x)) =
KX

k=1

q (k)

Z
q (x | k)


log q (x, k)� log

q (k |x) q̃ (k |x)
q̃ (k |x) � log p (x)

�
dx

=
KX

k=1

q (k)

Z
q (x | k) [log q (x, k)� log q̃ (k |x)� log p (x)] dx

�
Z KX

k=1

q (x | k) q (k) log q (k |x)
q̃ (k |x)dx

=
KX

k=1

q (k)

Z
q (x | k) [log q (x, k)� log q̃ (k |x)� log p (x)] dx

� Eq(x) [KL (q (k |x) k q̃ (k |x))] ,

where the last step uses the Chain Rule of probability to obtain q (x)
PK

k=1 q (k |x) =PK
k=1 q (x | k) q (k) through which we get an expectation of the KL between q (k |x) and

q̃ (k |x) w.r.t. q (x) [36,37]. By recognizing that
Z KX

k=1

q (x | k) q (k) [log q (x, k)� log q̃ (k |x)� log p (x)] dx,
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is an upper bound on the negative lower bound �F (q (x)) we optimize the lower bound
in an EM-like procedure, where the E-Step is simply defined as

q̃ (k |x) = q (x | k) q (k)
PK

k=1 q (x | k) q (k)
.

As the upper bound no longer depends directly on q (x) and decomposes into individual
terms of the mixing coe�cients q (k) and the mixture components q (x | k), the M-Step is
further divided into updates for each component, and the mixing coe�cients [36,37].
Using a Monte-Carlo estimate, the M-Step for the k

th component is defined as

min
q(x | k)

Ex⇠q(x | k) [log q (x, k)� log q̃ (k |x)� log p (x)]

= min
q(x | k)

Ex⇠q(x | k) [log q (x | k)� log q̃ (k |x)� log p (x)] +H (q (k))

/ min
q(x | k)

1

N

NX

n=1

[log q (xn | k)� log q̃ (k |xn)� log p (xn)] ,

where N is the number of samples xn drawn from q (x | k) [36,37]. The update is per-
formed by SGD using the gradientr!k of the Monte-Carlo estimates. After all components
have been updated, the M-Step for the mixing coe�cients is defined as

q (k) =
expR (k)

PK
k=1 expR (k)

,

where R (k) is the negative of the Monte-Carlo estimate

R (k) = � 1

N

NX

n=1

[log q (xn | k)� log q̃ (k |xn)� log p (xn)] , (5.3)

for which new samples from the updated components are drawn [36,37]. Applying this
decomposition to mixtures of Normalizing Flows allows for a separate update procedure
of each individual Flow in the mixture.

Given su�ciently many su�ciently complex bijective transformations, a Flow can provably
match any arbitrarily complex distribution. Though, in highly multi-modal distributions,
it might become di�cult to supply these transformations. Instead, we propose using
mixture models through which a single component must not match the full multi-modal
distribution but only a subset of modes. Matching only subsets of the modes is easier and
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Figure �.�.: The figure summarizes the results of a mixture of Normalizing Flows
trained in the presented decomposable update procedure on a Pin-
wheel density. The mixture contains K = 6 components, where each
component is comprised ofL = 2 affine coupling transformations. The
top left graphic shows the ground truth density p (x), while right next
to it, the full trained mixture density is plotted. The two lower rows
show each component of the mixture separately to visualize how each
component targeted a different mode.

requires less complex Flows such that basic transformations, e.g., a�ne coupling trans-
formations, become viable for complex distributions without large numbers of successive
transformations. As a proof of concept, we show the use of a�ne coupling transformations
on a Pinwheel density in Figure 5.5. For the experiment, we provide a ground truth density
matching the Pinwheel data. We initialize the variational distribution as a mixture of
Normalizing Flows withK = 6 components where each component is comprised of a Gaus-
sian base distribution and L = 2 a�ne coupling transformations. The base distribution is
trainable and initialized with zero mean and identity precision matrix. Since we consider
an example with only two dimensions, the input dimensions to the a�ne transformations
are swapped after the first transformation in each component. The variational distribution
is trained by an Adam optimizer for each component with a learning rate of 10�1 where
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we use N = 1000 samples to compute the Monte-Carlo estimate of the lower bound. The
results show that even with only L = 2 a�ne coupling transformations in each component,
we achieve a reasonable representation of the ground truth density. This result is achieved
by having each component only represent a single of the six modes in the ground truth
density.

However, there is no guarantee with the presented approach that each component locks
onto a di�erent mode. It is entirely possible that some components converge onto the
same mode causing one of the components’ mixing coe�cients to approach zero. Still,
representing a distribution with mixture models whose components’ updates are decom-
posable allows for parallel computation of the updates, significantly increasing available
computational power. In addition, each component is less complex than a single distri-
bution of equal representational power, further simplifying computations. Applying this
decomposition to mixtures of Normalizing Flows brings an advantage compared to the
Gaussian mixture models considered in [36,37]. To fully represent all modes of a target
density, the approach presented in [36,37] relied on large initial mixtures with enough
components to su�ciently represent the target density or on adding new components
during the optimization. While rather simple coupling transformations such as a�ne
couplings are inferior to auto-regressive couplings in representational power, they are
still far superior to Gaussian distributions and capable of potentially modeling more than
a single mode. As such a mixture of Normalizing Flows can compensate for missing
components to a certain extend by representing multiple modes with a single component.

It is easy to see that the shown derivations also extend to variational posteriors defined
as mixture models. Let X = {x1, ...,xN} be a set of N i.i.d. observations of a random
variable x, where we will assume that this data is distributed according to a Latent Variable
Model as described by Figure 3.1. For this setting, we have derived the negative lower
bound as

�F (q (✓ |!)) = E✓⇠q(✓ |!) [log q (✓ |!)� log p (X,✓)] ,

where q (✓ |!) is the variational posterior and p (X,✓) is the joint probability of the LVM.
By assuming that q (✓ |!) =

PK
k=1 ⇡kq (✓ |!k) we arrive at a similar decomposition as

presented for density matching. Thus, we can learn a multi-modal representation of the
posterior over the parameters ✓ as a mixture of Normalizing Flows with decomposable
updates for the mixture components and mixing coe�cients, given that each component is
powerful enough to represent at least one of the posteriors’ modes. Considering, however,
that, in the parameter space of models such as the Bayesian Gaussian mixture, the modes
represent a re-ordering of certain dimensions in the posterior distribution, there is no
benefit to the lower bound itself.
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6. Discussion And Related Works

We have presented results and ideas around variational inference for mixture models
in Chapter 5. The contribution here was split into two parts, estimating the variational
posterior over parameters of a Bayesian Gaussian mixture model and learning a density
as an I-Projection for some unnormalized distribution with mixtures of Normalizing Flows.
In this chapter, we will further discuss the results and approaches presented, including
important related work.

The results presented in Chapter 5 show that the performance of variational inference
as we have presented depends heavily on the quality of the prediction for the discrete
assignment variables. Amortizing the assignment variables as a relaxed Categorical
distribution parameterized by a dense neural network performed poorly on any given
data we have tested. The approach was unable to separate clusters of data close to each
other resulting in mode averaging behavior of the Bayesian Gaussian mixture model.

Deriving a closed-form solution for the assignment variables from the idea of Gibbs
sampling where

p (zn |X, z¬n,⇡,µ,⇤) = p (zn |xn,⇡,µ,⇤) ,

with given samples ⇡,µ,⇤ ⇠ q (⇡,µ,⇤) provided significant improvement. Even though
the derivation for the assignment variables included specific dependency on the parameters
⇡,µ,⇤, the approach did still perform worse than Mean-Field inference for the Pinwheel
and Two Spirals data. This result is surprising as we expected to see a better performance
than Mean-Field, which assumes independence between the assignment variables and
the parameters. Only on the Eight Gaussians data did we outperform Mean-Field (see
Table 5.2).

To further improve the performance of variational inference with Normalizing Flows on
Bayesian Gaussian mixture models, we collapsed the assignment variables. By collapsing
a subset of the latent variables, we e�ectively perform exact inference over the collapsed
latent variables. While there is no longer a closed-form solution for the parameters of the
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mixture model, we can still perform variational inference given a parametric model for
the variational posterior. The provided results show as a proof of concept that we achieve
better performance than Mean-Field inference across all experiments. Not only did we
improve the performance but also significantly increased the per-episode computation
time allowing for higher dimensional problems and larger mixtures to be solved in a
reasonable amount of time.

However, by defining the variational posterior over the Bayesian Gaussian mixture model’s
parameters, we have a rapidly increasing amount of dimensions to represent. Even with
reduced dimensionality by only learning the lower triangular Cholesky decomposition of
the precision matrix, we have

Dq = K(1 + 2D +
D(D � 1)

2
),

dimensions in the posterior, where K is the number of components in the mixture, and
D is the number of dimensions of the observed data x. Due to the dependence of Dq

on D and K, the approach does not scale well to very high dimensional data x without
applying some form of dimensionality reduction beforehand. To achieve good scaling
to high dimensional data, the literature around Normalizing Flows typically considers
VAEs [39, 40, 79] [18, 20, 24, 27]. Due to their design, the number of dimensions over
which the variational posterior is defined is much lower.

6.�. Variational Auto-Encoder

Let X = {x1, ...,xN} be a set of N i.i.d. observations of a continuous random variable
x 2 RD. Further, let Z = {z1, ..., zN} be a set of latent variables with zn 2 RDz where
Dz << D. Introducing latent variables to augment the observations represents a latent
variable model for which we define

log p (X) = log

Z
p (X |Z,✓) p (Z) dZ, (6.1)

where ✓ denotes some set of parameters of the conditional distribution p (X |Z,✓). We
may recognize that this formulation is very close to what we have discussed for maximum
likelihood expectation-maximization. The di�erence here lies in the definition of the latent
space RDz and the conditional distribution p (X |Z,✓). While in EM we have assumed
some mixture model such that the latent variables represent assignment variables to a
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x Encoder x̂Decoderz

Figure �.�.: Shown is a basic schematic for an Auto-Encoder. High dimensional
samples xinRD are mapped to a lower dimensional feature represen-
tation z 2 RDz or latent space by the encoder, where Dz << D. The
decoder reconstructs a sample x̂ 2 RD from the latent variable z
to be as close as possible to the original sample x. Due to this de-
sign, Auto-Encoders are closely related to dimensionality reduction
schemes such as principle component analysis.

component in the mixture for each observation xn, for VAEs we typically think of the
latent space more as a reduced feature space of the observations [38, 79]. This point
of view comes from the underlying concept of Auto-Encoders that are, in their behavior,
closely related to dimensionality reduction (Principle Component Analysis) [80] [2,38].

The Auto-Encoder is comprised of two elements, the encoder and the decoder, which are
typically represented by some arbitrary neural network [38,40]. The encoder takes as
input an observation xn from which it extracts a lower dimensional feature representation
zn. Equivalently the decoder recovers an observation xn from its latent representation
zn [38]. A representation of this construct is shown in Figure 6.1. Auto-Encoders are
trained to minimize the error between the original observation and its reconstruction
after going through the Auto-Encoder defined as

loss = kxn � x̂nk2,

where x̂n = d (e (xn |!) |✓) is the reconstructed observation with e (· |!) being the
encoder and d (· |✓) being the decoder [38]. The gradients for the two neural networks
are described by

r!kxn � x̂nk2,
r✓kxn � x̂nk2,

which are used to perform gradient descent.
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y0 ⇠ q0 yL = g (y0;� (x)) yL = z

x

� (x)

x̂

Decoder
Probabilistic
Encoder

Figure �.�.: Shown is the Variational Auto-Encoder for Normalizing Flows. The
variational posterior is represented as a Normalizing Flow with a base
distribution q0 and a set of L transformations summarized by g (·). The
parameters of the transformations are computed through some func-
tional mapping � (·) for an observation x. The decoder p (x | z) recon-
structs the observation as x̂ from the latent sample z = g (y0;� (x)) [��].

With Equation (6.1) we have defined a latent variable model, where we can think of
the conditional distribution p (x | z,✓) as the decoder structure which generates a recon-
struction of a sample x from a lower dimensional latent representation z. The decoder is
defined as some generative model, whose parameters are denoted by ✓ [39,40]. Further
by considering a prior distribution p (z) we can introduce a variational posterior q (z |X,!)
that replaces the encoder structure [39,40]. By following the derivations of variational
inference, we get a lower bound

F (q (Z |X,!)) =

Z
q (Z |X,!) log

p (X |Z,✓) p (Z)
q (Z |X,!)

dZ

= Eq(Z |X,!) [log p (X |Z,✓) + log p (Z)� log q (Z |X,!)] ,

which we compute as Monte-Carlo estimates. For the negative lower bound, we define the
gradients

r! � F (q (Z |X,!)) ,

r✓ � F (q (Z |X,!)) ,

to optimize a point estimate of the parameters of both encoder and decoder with SGD
[39,40]. Due to the relation to dimensionality reduction and by only considering point
estimates over the parameters of encoder and decoder, VAEs scale much better to high
dimensional problems compared to the design presented in this thesis. Especially con-
sidering that the variational posterior is described by a parametric model, the concept
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of VAEs is easily enriched with Normalizing Flows [18,20]. The idea was first presented
in [18]. By defining a neural network with parameters !, an observation x is mapped
onto the parameters of a set of bijective and di�erentiable transformations g [18]. These
transformations are used to transform a sample from a possibly trainable base distribution
q0 defined over the lower dimensional latent space into a sample z on the latent space [18].
A visualization of the approach is shown in Figure 6.2. The decoder in VAEs is designed
as some Deep Latent Variable Model [40]. By defining the variational posterior over the
reduced feature space z the dimensionality of the variational posterior is significantly
lower compared to the variational posterior we defined for the parameters of a Bayesian
Gaussian mixture. By further conditioning the parameters of the L transformations of the
Normalizing Flow on observations x the number of dimensions in the variational posterior
becomes independent of the dimensionality of x and the number of observations. This
independence means that we can freely define the dimensions of z and thus the variational
posterior in accordance with the decoder p (x | z,✓) allowing for better scaling to high
dimensional data. However, restricting the variational posterior to the lower dimension
features z also entails that only a point-estimate over the parameters is optimized while
the approaches we presented consider the full posterior.

The second part of Chapter 5 discussed the idea of separately updating each component
in a mixture of Normalizing Flows using a decomposition of the lower bound. This decom-
position follows the concept presented in [36,37]. We have presented the decomposition
for a mixture of K = 6 Normalizing Flows, each comprised of L = 2 a�ne coupling trans-
formations on a Pinwheel density as a proof of concept. As a comparison in Figure A.3
we have added results on the same density for a single Normalizing Flow with L = 12
a�ne coupling transformations. The figure shows that the single Normalizing Flow is
incapable of fully matching the ground truth density despite the same total amount of
transformations. While learning mixtures comes with increased computational costs by
having to di�erentiate every component w.r.t. the parameters of the components that get
updated, the decomposition allows for parallel computation of the updates, alleviating the
increased computational cost. However, the presented approach is still bound to certain
restrictions. We rely on fast computation of the Normalizing Flows in both generative
and normalizing direction, preventing e�cient use of auto-regressive transformations.
Further, the decomposition we presented is bound to the I-Projection. Thus, it is only
applicable to density matching and posterior estimation in variational inference. A slightly
di�erent type of decomposition for mixtures of Normalizing Flows has been presented
in [43] based on variational boosting [41,42].
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6.�. Boosted Normalizing Flows

Variational boosting improves upon the lower bound of the variational objective by itera-
tively refining the approximation with newly added components to the variational mixture
distribution. We will consider the lower bound of the form

F (q (x |!)) =
Z

q (x |!) log p (x)

q (x |!)dx,

where q (x |!) =
PK

k=1 q (x | k,!k) q (k) is some mixture distribution [41, 42]. Supple-
menting the definition of the mixture model, the lower bound changes to

F (q (x |!)) =
Z KX

k=1

q (x | k,!k) q (k) log
p (x)

q (x |!)dx

=
KX

k=1

q (k)

Z
q (x | k,!k) log

p (x)

q (x |!)dx

=
KX

k=1

q (k)Eq(x | k,!k) [log p (x)� log q (x |!)] ,

which allows for a separate computation of the gradients for each component [42]. While,
in the presented approach in Chapter 5 we iterate through the updates of all components
in every episode, with boosting, only the most recently added component in the mixture is
being updated. All previously existing components are kept fix as soon as a new component
is added to the mixture [41–43]. Given we are at the point of adding component K + 1
to the existing approximation q (x |!) we define a new approximation as

q
(K+1) (x |!K+1) = (1� q (K + 1)) q (x |!) + q (K + 1) q (x |K + 1,!K+1) ,

where q (K + 1) 2 [0, 1] [42]. This leads to a new lower bound

F
⇣
q
(K+1) (x |!K+1)

⌘
=Eq(K+1)(x |!K+1)

h
log p (x)� log q(K+1) (x |!K+1)

i

=(1� q (K + 1))Eq(x |!)

h
log p (x)� log q(K+1) (x |!K+1)

i

+ q (K + 1)Eq(x |K+1,!K+1)

h
log p (x)� log q(K+1) (x |!K+1)

i
,

which is optimized w.r.t. !K+1 and q (K + 1) as the preexisting approximation q (x |!) is
kept fix [42]. The approach has been extended to mixtures of Normalizing Flows in [43].
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�. Outlook

In our final approach to learning variational posterior distributions for a Bayesian Gaussian
mixture model, we have considered a collapsed model, marginalizing out the discrete
assignment variables Z. While we achieve better results than traditional Mean-Field
inference as derived in Chapter 3 the approach does not scale well to high dimensional
problems and large mixture models because of the rapid increase in the number of
dimensions of the variational posterior distribution. An interesting idea for the future is
to consider a collapse of the parameters instead such that the posterior is a distribution
over the assignment variables q (Z). By further considering an amortized approach as
presented in [18] introducing a functional mapping �n = � (xn) to parameterize the
transformations of a Normalizing Flow we reduce the variational posterior q (Z) to q (zn |�)
with z 2 ZK . Thus, the number of dimensions of the variational posterior only depends
on the number of components in the Bayesian Gaussian mixture. By considering a collapse
of the parameters, we further get an exact inference estimate of the parameters, which
is an improvement compared to the point estimate of VAEs. However, as the assignment
variables are discrete random variables, we cannot rely on any of the transformations
presented in Chapter 4. Instead, we need some form of discrete Normalizing Flow.

�.�. Discrete Normalizing Flows

For discrete Normalizing Flows, the underlying concept of Normalizing Flows remains,
that a complex distribution is described by transforming samples from a base distribution
through a set of bijective transformations. Here the base distribution is some discrete
distribution, such as a Categorical distribution. The di�erence to continuous Normalizing
Flows lies in non-di�erentiable transformations [22,23]. Instead of defining the density
function of the complex distribution qy as

qy(y) = qx(x)
�� detJg (x)

���1
,
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where qx is the base distribution and Jg is the Jacobian of the transformation, the complex
distribution for a discrete Normalizing Flow is described as

qy(y) = qx(x),

with y = g (x) [22,23]. We no longer need to compute the absolute determinant of the
Jacobian of the transformation, simplifying the computation.

A discrete Normalizing Flow based on an extension of the XOR function for a Categor-
ical base distribution is presented in [22] called Modulo location-scale transform. This
transformation is defined as

yd = (µd + �dxd)modK,

with x 2 ZD
+ , where each element xd takes on values in 0, 1, ...,K � 1. Further µd and

�d are some auto-regressive functions with discrete output [22]. For gradient tracking a
continuous temperature-softmax relaxation of the auto-regressive functions is used during
the backward pass [22].

In [23] a discrete coupling transform is proposed. The concept is similar to discrete
coupling transformations. Given a sample x 2 ZD split in two smaller vectors x1:d�1 and
xd:D at dimension d the transform is defined as

y1:d�1 = x1:d�1,

yd:D = xd:D + bNN(x1:d�1)e,

with b·e being the nearest rounding operation and NN being a dense neural network [23].
To reduce gradient bias in the optimization the split dimension is chosen as d ⇡ 0.75D [23].

It may be interesting to see how a collapsed variational inference approach for Bayesian
Gaussian mixture models with discrete Normalizing Flows compares to the commonly
used VAE in high dimensional data. However, while collapsing the parameters of the
Bayesian Gaussian mixture might scale better to high dimensional data, we can also
improve on the collapsed approach presented in Chapter 5. For the experiments, we have
considered a Monte-Carlo estimate of the lower bound to compute an estimate of the
gradient. The quality of the gradient estimate can be improved by considering Importance
Weighting [81]. Introducing importance weighted updates might increase the speed and
overall performance of the presented approach.
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The approach presented in [36,37] considers several ways to improve the performance
of their algorithm for mixtures of Gaussians. Similarly, we could benefit from the same
improvements for mixtures of Normalizing Flows presented in the second part of Chapter 5.
To boost sample e�ciency, O. Arenz et al. introduce a replay bu�er to use past samples
during the update of the mixing coe�cients. A set of N samples is drawn from the replay
bu�er where for each sample an importance weight ✏n is computed as

✏n (k) =
1

C

q (xn | k)
c (xn)

, C =
NX

n=1

q (xn | k)
c (xn)

.

Here k refers to the kth component in the mixture model and c (xn) denotes the distribution
that generated the sample xn [36,37]. As shown in [36,37] the Monte-Carlo estimate in
Equation (5.3) is, therefore, replaced by

R̃ (k) =
NX

n=1

✏n [log q̃ (k |xn) + log p (xn)] +H (q (x | k)) .

While the entropy H (q (x | k)) for Gaussian components is computed easily, we cannot
compute the entropy of arbitrary Normalizing Flows. In Chapter 5 we have, therefore,
included the entropy in the Monte-Carlo estimate. We have yet to determine whether
the entropy can still be included when using an importance weighted estimate to really
benefit from this formulation.

As it might not be possible to determine the correct number of mixture components in
advance, [36,37] dynamically adjust the mixture’s size during training by adding and
removing components. As we have discussed before, components may converge onto the
same modes of the target density. In these cases, one of these components dominates the
contribution to the lower bound, causing the mixing coe�cients of the other components
to converge to zero. In [36,37] all components with mixing coe�cients below a certain
threshold are removed as their contribution to the optimization is negligible. Though
Normalizing Flows are less prone to overlap entirely due to their flexibility, it is still possible
such that we could speed up learning by removing these components. Further, [36,37]
initialize learning with small mixtures and expand the mixture sequentially by adding
new components at a certain rate. New components are added based on a heuristic that
determines whether the new component is initialized close to the existing approximation
to refine areas of the target density that have already been discovered or far away to
discover new areas of high density in the target distribution [36, 37]. While we have
considered a mixture distribution with a fixed size and with identical base distributions,
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slowly introducing new components to an initially small mixture could further increase
computation speed and allow the algorithm to initialize the new components with a base
distribution in areas where the target density is not well matched.
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A. Appendix

(a) Mode � (b) Mode �

Figure A.�.: Shown are the results of variational inference with the analytically de-
rived solution of the assignment variables on an up-scaled Two Spi-
rals dataset. The dataset contains N = 3000 observations. The data
is assumed to be distributed according to a Bayesian Gaussian mix-
ture comprised of K = 60 components. The left side of each figure
(a) and (b) visualizes the data, colorized according to the assignment
variables. The right shows the corresponding approximate likelihood
parameterized by the variational posterior q (⇡,µ,⇤). Since the vari-
ational posterior is designed as a Normalizing Flow capable of repre-
senting multi-modal distributions we have encountered bi-modal be-
haviour in some experiments. This shows such an example where the
analytical approach to the assignment variables trained two modes in
parallel displayed by (a) and (b).
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Figure A.�.: Shown are the results of the three presented approaches on data sam-
pled from randomly generated Gaussian mixture distributions with
five equally weighted components. The dataset contains N = 1000
samples. Figure (a) presents the minimization of the negative lower
bound. In (b) the dataset is displayed in a single coloration as the as-
signment variables are collapsed. The other figures show the data col-
orized according to the assignment variables. The approximate like-
lihood corresponds to p (x |⇡,µ,⇤) parameterized by the variational
posterior q (⇡,µ,⇤).
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Figure A.�.: The figure summarizes the results of a single Normalizing Flow
trained on a pinwheel density. The Flow is comprised of L = 12 affine
coupling transformations. The left graphic shows the ground truth
density p (x), while right next to it, the Flow density is plotted. This
figure serves as a comparison to the results for a mixture of Normal-
izing Flows trained on the same pinwheel density to highlight the in-
creased versatility of adopting broader instead of deeper models.
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