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Abstract
In this thesis, we deal with Bayesian inference methods for regression using nonparametric infinite mixtures. The re-
gression method we are working with is called Dirichlet Process Mixtures of Generalized Linear Models (DP-GLM). The
general idea of this approach is to cluster inputs that share the same relation to the associated outputs. In each of the
clusters, a separate linear regression model is learned. A Dirichlet process prior is used to infer the number of clusters and
thus the number of linear models from the data. DP-GLM can be regarded as an infinite mixture of linear regression mod-
els. As we put priors on all parameters of the regression model, a quantification of the uncertainty of the predictions can
be achieved. The downside of this approach is that the posterior is too complex to be inferred analytically. Therefore, we
use the Bayesian inference methods of variational inference and Gibbs sampling. Gibbs sampling is a stochastic method
for generating samples from the true posterior by iteratively sampling from the conditional posteriors of the parameters.
Variational inference is a deterministic approximation scheme. We use the mean field assumption to calculate iterative
update equations of a factorized approximate posterior. The resulting algorithm has a similar structure to the expectation
maximization algorithm. The approximate posterior is used to derive a posterior predictive distribution for predicting on
new input data. We show that the combination of variational inference and Gibbs sampling for learning the parameters
of DP-GLM leads to good prediction accuracy on a broad range of different datasets. Among others, we use the method
for learning the forward kinematics of a robot arm with simulated data, as well as for learning the inverse dynamics of a
real SARCOS robot arm.

Zusammenfassung
In dieser Arbeit beschäftigen wir uns mit Bayes’schen Inferenzmethoden für Regression mit unendlichen parame-
terfreien Mischverteilungen. Die Regressionsmethode, die in dieser Arbeit im Fokus steht, heißt Dirichlet-Prozess-
Mischverteilungen aus generalisierten linearen Modellen (DP-GLM). Die Idee dieses Ansatzes ist es, Eingangsdaten
zu clustern, die ein ähnliches Verhältnis zu den zugehörigen Zielvariablen haben. In jedem der Cluster wird ein sepa-
rates lineares Regressionsmodell gelernt. Wir verwenden den Dirichlet-Prozess, um die Anzahl der Cluster automatisch
aus den Daten abzuleiten. DP-GLM kann als eine unendliche Mischverteilung aus linearen Regressionsmodellen betrach-
tet werden. Da alle Parameter des Regressionsmodells als Zufallsvariablen behandelt werden, kann eine Quantifizierung
der Unsicherheit von Vorhersagen für Testdaten erreicht werden. Der Nachteil dieses Ansatzes ist, dass die A-posteriori-
Verteilung der Parameter zu komplex ist, um analytisch berechnet zu werden. Wir verwenden daher die Bayes’schen
Inferenzmethoden der Variationsinferenz und des Gibbs-Stichprobenverfahrens. Das Gibbs-Stichprobenverfahren ist ei-
ne stochastische Methode zur Stichprobenauswahl aus der wahren A-posteriori-Verteilung durch iteratives Ziehen aus
der A-posteriori-Verteilung der Parameter, konditioniert auf die restlichen Parameter. Variationsinferenz ist eine determi-
nistische Approximationsmethode. Wir verwenden die Molekularfeldannahme, um iterative Aktualisierungsgleichungen
einer faktorisierten approximativen A-posteriori-Verteilung zu bestimmen. Die Struktur des resultierenden Algorithmus ist
ähnlich zur Struktur des Erwartungs-Maximierungs-Algorithmus. Wir leiten eine prädiktive Verteilung für die Vorhersage
neuer Eingangsdaten ab. Wir zeigen, dass die Kombination von Variationsinferenz und des Gibbs-Stichprobenverfahrens
zum Erlernen der A-posteriori-Verteilung von DP-GLM zu einer guten Vorhersagegenauigkeit bei einer Vielzahl von ver-
schiedenen Datensätzen führt. Unter anderem verwenden wir das Verfahren zum Erlernen der Vorwärtskinematik eines
Roboterarms mit simulierten Daten, sowie zum Erlernen der inversen Dynamik eines echten SARCOS Roboterarms.
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1 Introduction
In recent years, as more and more applications are becoming mature, machine learning and the field of artificial intel-
ligence in general have become quite visible in our daily lives and the public dialogue. An outstanding example of this
fact is the tremendous progress in bringing fully autonomous cars to the streets. In 2018 Waymo LLC, a subsidiary of
Alphabet Inc., started the first commercial self-driving taxi service in Arizona, USA [1]. Other increasingly apparent ap-
plications are chat-bots, computer vision (e.g for quality assurance in a production setting), speech recognition systems,
and intelligent robots. Behind all these efforts there is the goal to enable machines to learn from past experience and to
be able to execute complex tasks with human or even superhuman performance.

The increased economic and academic activity in machine learning to a large extent is due to the sharp increase in the
performance of deep artificial neural networks as universal function approximators. In 2012 AlexNet [2], a convolutional
neural network, lowered the error of image classification on the ImageNet dataset [3] significantly. This brought the fea-
sibility of deep neural networks for a broad range of tasks to the attention of a wider audience. Subsequently, other
impressive applications followed. In 2015 AlphaGo became the first computer program to beat a professional human
on a full Go board with 19 by 19 fields by using deep neural networks and Monte Carlo tree search [4]. This was a
significant step as the game previously had been considered too complex to be mastered by a machine.

Despite the recent successes of neural networks in these and many other applications, in the past research was focused
on solving pragmatic practical tasks rather than the theoretical understanding of how deep networks can achieves such
accurate predictions. Additionally these networks suffer from different problems, e.g. overfitting the test data, which
raises the need to use regularization techniques like dropout. In contrast to that, the Bayesian theory of machine learn-
ing has a very strong theoretical foundation. By putting priors on the model parameters, Bayesian regression methods
are able to quantify the uncertainty of predictions. For proper choice of the priors, Bayesian methods are a principled
approach to automatic regularization and model selection. Due to these strengths of the Bayesian approach there is a
trend towards Bayesian neural networks, where uncertainty is incorporated in the weights of the neurons. This is still an
active area of research.

In this thesis, as an alternative approach to neural networks as function approximators, we focus on a Bayesian regression
method called Dirichlet Process Mixtures of Generalized Linear Models (DP-GLM) [5]. In contrast to neural networks,
the uncertainty of predictions is incorporated in the model formulation naturally. The idea of DP-GLM is to model a
complex response distribution by simpler locally linear models. First the input data is clustered in regions, where inputs
have the same kind of relation to the associated output. Then a separate linear model is learned for each cluster. When
making predictions the complexity of the predictive distribution arises by marginalizing out which local model is active
in which region of the inputs. The number of clusters can be automatically inferred from data using the Dirichlet process
as a prior, without specifying the number of linear models in advance as a model assumption. This approach enables
the model to be just as complex as required by the data. As the number of clusters is theoretically unbounded and the
number of clusters does not need to be specified in advance, such clustering methods are referred to as nonparametric
infinite mixtures. As a Bayesian method DP-GLM naturally delivers an uncertainty of the predicted targets.
A second major advantage of DP-GLM is that the regression method can represent input-dependent variance. As variance
can vary across the linear models, it can be a function of the inputs in the global regression estimate. This makes DP-GLM
a good choice for heteroscedastic datasets and distinguishes the method from other state-of-the-art function approxima-
tors like Gaussian processes (GPs). In the standard version of the algorithm, GPs can not model input-dependent variance.
Furthermore, due to the use of a Kernel function for obtaining the covariance matrix, standard GPs are limited to smooth
functions. By using locally linear models DP-GLM allows a greater flexibility in modelling discontinuous functions.
As a further advantage of DP-GLM it is worth mentioning that linear models have a certain appeal in a control context. In
contrast to neural networks as function approximators, linear models retain the ability to interpret the results of learned
models from a classical theoretical control perspective.

1.1 Contributions

The ultimate goal of DP-GLM is to make predictions on test data. As DP-GLM is a Bayesian regression method, we need to
evaluate the joint posterior distribution of the parameters for obtaining the posterior predictive distribution. In DP-GLM
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there are many parameters, that are treated as random variables and have to be learned. The parameters are the location
and scale of the clusters, the regression parameters of the linear models, as well as the mixing weights. There are also
latent cluster assignment variables. The amount and potentially high dimensionality of the hidden variables prohibit to
calculate the evidence in Bayes’ formula for obtaining the posterior analytically. The integration over all possible values
of the parameters is intractable. Due to this reason we use the Bayesian inference techniques of Gibbs sampling and
mean field variational inference.

Variational inference (VI) [6] is a deterministic method that approximates the true posterior by a tractable, but simplified
distribution. A common simplification is the mean field assumption, which states that the posterior is fully factorized.
By introducing such assumptions, an approximate posterior can be obtained analytically. To our knowledge variational
inference has not been applied to the DP-GLM regression method before. The mean field variational inference algorithm
is an iterative procedure that has a similar structure as the expectation maximization algorithm. For obtaining the update
equations of the factors of the approximate posterior, we extend the variational Bayesian treatment of Gaussian mixture
models [7, 8] to an infinite mixture of linear regression models as in DP-GLM. We show our derivations in detail.

The second inference method we are concerned with is Gibbs sampling. Gibbs sampling belongs to the class of Markov
chain Monte Carlo (MCMC) methods. In contrast to variational inference it is a stochastic sampling procedure. The idea
is to iteratively draw samples from the conditional distributions of the parameters. After a burn-in period this procedure
converges to generating samples from the true joint posterior. Inaccuracies can arise as it is a stochastic method and only
a finite number of samples from the posterior can be generated. Furthermore the convergence of the algorithm is hard to
assess. One contribution of this thesis is to derive and implement a Gibbs sampling algorithm for DP-GLM. We extend a
Gibbs sampling algorithm of Gaussian mixture models [9, 10, 11] to the case of an infinite mixture of regression models.
A similar collapsed Gibbs sampling algorithm has been applied in the original DP-GLM paper [5].

We evaluate our method on different datasets that are chosen to demonstrate the broad applicability of DP-GLM in com-
bination with the implemented inference algorithms. In our experiments we use Gibbs sampling as an initialization for
the mean field variational inference algorithm. VI is prone to getting stuck in bad local optima and thus is dependent on
good initializations. A weakness of Gibbs sampling, on the other hand, is that the convergence is hard to assess. This is
no problem in mean field VI, as a quantity called variational lower bound can be used as a convergence criterion for the
algorithm. By Gibbs sampling as initialization different regions of the area can be explored. The samples will be from
different modes of the posterior. Variational inference then locks on the mode it has been initialized on. If the algorithm
is started multiple times, this approach lowers the risk of mean field VI to get stuck in bad local optima.

We examine the prediction accuracy of the algorithm for different settings of the hyperparameters and for different
sample sizes. We use a highly heteroscedastic dataset of the cosmic microwave background [12, 5] to demonstrate the
capability of DP-GLM to cover input-dependent noise. We also use simulated sinus data, simulated forward kinematics
data of a robot arm with one joint simulated forward kinematics data of a robot arm with three joints. We additionally
evaluate the prediction accuracy of DP-GLM on the inverse dynamics dataset of a real SARCOS robot arm [13, 14, 15].

1.2 Overview

The structure of the thesis is as follows.
In chapter 2 we introduce foundations from the field of machine learning that serve as a basis for the rest of the thesis.
We first motivate the Bayesian approach to regression by comparing the approach to classical least-squares regression. A
section about Bayesian linear regression shows which priors can be assumed for the mean and the variance of the linear
models of DP-GLM. Basics on graphical models are the prerequisites for understanding the graphical models that occur
in this thesis. In the end of the foundational chapter we review finite mixture models and describe how we can extend
finite mixtures to nonparametric infinite mixtures using the Dirichlet process. We introduce different representations of
the Dirichlet process, such as the stick-breaking construction, the Pólya urn sampling scheme and the Chinese restaurant
process.

In chapter 3 we gather several different ideas from literature for regression with locally linear models. Locally weighted
regression is an approach that started in the statistics community and subsequently was used for control purposes. Lo-
cally weighted projection regression is an improvement of locally weighted regression to be viable in an high-dimensional
online learning setting. In the mixture of experts model several experts (e.g. linear models) specialize in certain regions
of the input. In the section on DP-GLM we discuss the probabilistic generative model and the ideas behind this regression
model.
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In the chapters 4 and 5 we outline the Bayesian inference methods of Gibbs sampling and variational inference. For both
approaches we start with a general definition of the inference methods. We then sketch the inference algorithms for
the finite and infinite Gaussian mixture model and show how to extend these results to the case of an infinite mixture
of regression models. For mean field variational inference our derivations are shown in detail. In chapter 4 we show
how to calculate the posterior predictive distribution using the approximate posterior that is obtained by the VI algorithm.

In chapter 6 we apply DP-GLM to different data sets. The algorithm uses Gibbs sampling as an initialization for mean
field variational inference. The main criteria for assessing the algorithm are the prediction accuracy on test data, as well
as the number of linear models that are used to achieve this accuracy.

In chapter 7 we summarize the content of this thesis and give an outlook on potential future research questions.
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2 Foundations

2.1 Motivating the Bayesian Approach to Regression

This thesis builds upon the definition of Bayesian probabilities, which stands in contrast to the classical or frequentist
interpretation of probability. In the classical definition probabilities are seen as frequencies of repeatable random events.
From the Bayesian point of view probabilities quantify a degree of uncertainty of the outcome of a random variable.
[7, 8, 16]
We want to exemplify the benefits of the Bayesian approach by means of a simple regression problem. We are given
a training set x = (x1, . . . , xN )

T of N observations of input variables x together with corresponding observations t ≡
(t1, . . . , tN )

T of the target values t. The aim is to make a prediction ŷ for new input data x̂ . We consider the following
polynomial regression model:

y(x , w ) =
M
∑

j=0

w j x
j + ε

w = (w0, . . . , wM )
T are the regression parameters, M is the degree of the polynomial function and ε is the noise term that

is assumed to be normally distributed. In order to find parameter values for fitting the function to observed data we can
minimize an error function. In the frequentist approach of least squares regression the aim is to minimize the squared
deviations of the estimated targets y (xn, w ) from the ground truths yn. The following error function is commonly used:

E(w ) =
1
2

N
∑

n=1

{y (xn, w )− yn}
2

In our example this error function can be evaluated analytically in closed form. Specifying the order of the polynomial
here remains an open question. One would be able to achieve a perfect fit to the training data and a diminishing error, if
the degree of the polynomial is sufficiently large. In this case the parameters are calculated such that the function merely
interpolates the training data. This phenomenon is referred to as overfitting and leads to poor performance in general-
izing to unseen test data. Figure 2.1 illustrates this issue. In order to avoid overfitting one needs to use regularization
terms to the error function that penalize if the model fits the training data too closely.

The Bayesian approach alleviates the problem of overfitting in a more principled way. In the Bayesian framework
we capture assumptions on the regression coefficients w before having seen any data in the form of a prior prob-
ability distribution p(w ). We model the effect of the observed data through the conditional probability distribution
p(y|x , w ), which is called likelihood function. The likelihood expresses how probable the given observation are for dif-
ferent parameter values. Given the likelihood and the prior, we can use Bayes’ theorem to quantify the uncertainty in the
parameter values after having observed data:

p(w |x , y) =
p(y |x , w )p(w )

∫

p(y |x , w )p(w )d w
(2.1)

The quantity p(w |x , y) on the left hand side is called the posterior distribution and is normalized to a proper probability
distribution by dividing by the evidence in the denominator. This normalization is necessary as the likelihood in general
does not fulfil the requirements of a probability density. The likelihood does not sum to one if one does a summation
over the data given the parameters. In words one can state Bayes’ theorem as follows:

posterior ∝ likelihood × prior

For proper choices of the prior p(w ) the aforementioned problem of overfitting of the frequentist approach can be re-
duced. The prior on the parameters acts as a regularizer and restricts the values, that the learned parameter values can
take to stay close to the prior belief. If more training data is taken into account, the effect of the prior on the posterior
is reduced as the importance of the likelihood grows. According to equation 2.1 we average over all possible parame-
ter values to obtain the posterior, thus making extreme outcomes for the parameters unlikely. The frequentist method
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Figure 2.1.: The plots show training data (blue) and test data (red). A polynomial regression function is fitted to the test
data using a maximum likelihood estimate. (a) A polynomial degree of 2 generalizes well from the training
data to the test data. (b) A polynomial degree of 14 results in overfitting. The regression function is fitted
too closely to the training data and does not generalize well to test data. (c) For a polynomial degree of 20
the maximum likelihood approach leads to severe overfitting and a mere interpolation of the training data.
Figures created with the linregPolyVsDegree Skript of the Pmtk3 probabilistic modeling toolkit for Matlab
of Kevin Murphy [17].

of least-squares, on the other hand, is equivalent to a maximum likelihood estimation. By maximizing the likelihood
p(y |x , w ) the most probable parameter setting w ? given the data is obtained, which is equivalent to trying to explain
the training data as good as possible. The Bayesian method however allows to quantify the uncertainty in the parameter
values instead of only focusing on the most probable value.

In a regression setting the uncertainty in the parameter value leads to a quantification of the uncertainty in the pre-
diction ŷ for test data x̂ , if we integrate over all possible parameter values. The posterior predictive distribution of a
target ŷ for a new observation x̂ reflects this:

p( ŷ| x̂ , x , y) =

∫

p( ŷ| x̂ , w )p(w |x , y)d w (2.2)

The posterior predictive distribution is the distribution over possible unobserved targets conditional on the observed
training data. In equation 2.2 we obtain the predictive distribution of ŷ by marginalizing the distribution of ŷ given the
test input x̂ and the parameters over the posterior of the parameters given the training data x , y .
We now have stated two major advantages of the Bayesian framework. The marginalization over the parameters enables
automatic regularization and we are able to quantify the uncertainty of predictions for test data.

Equation 2.1 also reveals the shortcomings of the Bayesian approach. Due the complexity of the underlying proba-
bility distributions the integration over the whole parameter space might be intractable. The Bayesian inference methods
of Markov chain Monte Carlo, for which Gibbs sampling is a representative, and variational inference have been devel-
oped to solve this issue. In Gibbs sampling we can obtain samples from the posterior distribution by iteratively sampling
from the tractable marginal distributions. In variational inference we obtain an approximate posterior distribution by
making simplifying assumptions on the true posterior, such as a factorized structure. In this way we can make the in-
volved integrations analytically tractable. These Bayesian inference methods will be introduced in detail in Chapter 4
and Chapter 5. [7, 8]

2.2 Bayesian Linear Regression

After motivating the Bayesian approach to regression, we want to introduce Bayesian linear regression in a formal way.
We choose a very general problem statement, where there can be multiple inputs and outputs of arbitrary dimension and
the noise variance is unknown. An input vector x of length m is multiplied with a regression coefficient matrix β for
generating an output vector y of length d. A Gaussian noise term ε is added: [18]

y = βx + ε

ε∼ N(0, V)
(2.3)

This data model can be written as a likelihood using the following conditional probability distribution:

p(y |x ,β , V)∼ N(βx , V) (2.4)
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We are given a data set of exchangeable pairs D = {(y1, x1) , . . . , (yN , xN )}. We collect the matrices Y = [y1 · · · yN ] and
X = [x1 · · · · xN ]. The distribution of Y given X then is:

p(Y |X ,β , V) =
∏

i

p (yi |x i ,β , V)

=
1

|2πV |N/2
exp

�

−
1
2

∑

i

(yi −βx i)
T V−1 (yi −βx i)

�

We can use the matrix-normal density as a prior on the unknown parameter matrix β . The matrix-normal density is
conjugate to the likelihood. By using this distribution it is thus ensured that the posterior for β as well as the predictive
posterior for Y are also matrix-normal distributed.
A random d by m matrix β is matrix-normal distributed with parameters M0, V and K0 if the density of β is:

p(β)∼ N(M0, V , K0)

=
|K0|d/2

|2πV |m/2
exp

�

−
1
2

tr
�

(β −M0)
TV−1(β −M0)K0

�

� (2.5)

where M0 is d by m, V is d by d, and K0 is m by m. M0 is the mean. The two matrices V and K0 are covariances matrices
for the rows and the columns of β .
In the most general case we also consider V of our model in equation 2.4 as unknown and put an inverse Wishart prior
on it:

p(V)∼W−1 (S0, n)

=
1

Znd |V |(d+1)/2

�

�

�

�

V−1S0

2

�

�

�

�

n/2

exp
�

−
1
2

tr
�

V−1S0

�

�

where Znd = π
d(d−1)/4

d
∏

i=1

Γ ((n+ 1− i)/2)

(2.6)

The inverse Wishart prior is conjugate to the likelihood 2.4 so that the posterior of V will also be an inverse Wishart
distribution. After specifiying the priors and the likelihood of the mode, we can find the posterior distributions of both β
and V .
For notational convenience we first define the following expressions:

Sx x = XXT + K0

Sy x = YXT +M0 K0

Sy y = YYT +M0 K0MT
0

Sy|x = Sy y − Sy xS−1
x x ST

y x

We get the posterior for β by taking the likelihood (2.4) times the conjugate matrix-normal prior (2.5):

:
p(Y ,β |X , V)∝ exp

�

−
1
2

tr
�

V−1
�

βSx xβ
T − 2Sy xβ

T + Syy

��

�

∝ exp
�

−
1
2

tr
�

V−1
��

β − Sy xS−1
x x

�

Sx x

�

β − Sy xS−1
x x + Sy|x

���

We can see that the result is a matrix-normal posterior for β with the following parameters:

p(β |D, V)∼ N
�

Sy xS−1
x x , V ,Sx x

�

(2.7)

The posterior of V is obtained by taking the marginal likelihood times the inverse Wishart prior (2.6).

p(Y , V |X)∝
1

|V |(d+1)/2|2πV |(N+N0)/2
exp

�

−
1
2

tr
�

V−1
�

Sy|x + S0

��

�

This posterior for V again has the form of an inverse Wishart distribution:

p(V |D)∼W−1
�

Sy|x + S0, N + N0

�

(2.8)
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Figure 2.2.: The plots show the posterior predictive density of a Bayesian linear regression model. (a) Mean of the poste-
rior predictive density (black line) with error bars of 2 standard deviations (blue bars). The red dots are training
data points. One can observe that the uncertainty of the prediction is higher in regions with few data. (b)
The black lines are 10 samples from the posterior predictive. The variance in the samples again reflects the
uncertainty of the prediction far away from the training data. Figures created with the linregPostPredDemo
Skript of the Pmtk3 probabilistic modeling toolkit for Matlab of Kevin Murphy [17].

Our ultimate aim in Bayesian regression is to make predictions ŷ for new input data x̂ . We can get the posterior predictive
distribution by combining the definition of y (2.3), the posterior of β (2.7) and the posterior of V (2.8).
We first combine the definition y and the posterior of β to:

p( ŷ |x̂ , D, V) = N
�

Sy xS−1
x x x̂ , Vc−1

�

c =
�

1+ x̂ TS−1
x x x̂

�−1
= 1− x̂ T

�

Sx x + x̂ x̂ T
�−1

x̂

This expression is the predictive posterior distribution for ŷ , if the noise variance V is known. We now multiply this by
the posterior for V and integrate out V , in order to get the posterior predictive:

p( ŷ |x̂ , D) = T
�

Sy xS−1
x x x̂ ,

�

Sy|x + S0

�

c−1, N + N0 + 1
�

The result has the form of a Matrix t-distribution. [18]
For chapter 4 we introduce the following notation for the parameters of the inverse Wishart posterior and the matrix-
normal posterior:

Lk = Sy|x + S0

νk = N + N0

Mk = Sy xS−1
x x

Kk = Sx x

We thus can rewrite the Matrix t-distribution:

p( ŷ |x̂ , D) = T
�

Mk x̂ , Lkc−1,νk + 1
�

(2.9)

c = 1− x̂ T
�

Kk + x̂ x̂ T
�−1

x̂ (2.10)

Figure 2.2 shows a simple example of Bayesian linear regression, where both the input and outputs are one-dimensional
and the noise variance is assumed to be known. We can observe the advantages of the Bayesian approach in comparison
with a maximum likelihood estimate. The predictions have a quantification of uncertainty and the model is not prone to
overfitting.

2.3 Graphical Models

Graphical models [19] are visual representations of probabilistic models. They provide a simple way to visualize the
structure of the probabilistic model and encode properties like conditional independence.
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Figure 2.3.: Three examples of graphical models. (a) A simple graphical model that encodes the joint distribution of four
random variables. Random variables are denoted as large circles. (b) Graphical model of the joint distribution
of random variables of a Bayesian polynomial regression model. w are the regression parameters and yn are
the targets. (c) This graphical model shows the plate notation that is suitable for summarizing i.i.d. random
variables. Deterministic parameters are displayed as small solid circles. Observed random variables are shaded
in grey. Based on figures 8.2, 8.3 and 8.6 of [7].

We here want to focus on directed graphical models, which are denoted Bayesian networks. By the chain rule of prob-
abilities any joint distribution can be written as a product of conditional distributions, one for each of K variables:
[7]

p (x1, . . . , xK) = p (xK |x1, . . . , xK−1) . . . p (x2|x1) p (x1)

This can be displayed as directed graph with K nodes, where each node represents one random variable. Directed links
(arrows) which are pointing towards a node correspond to the variables that the distribution of that node is conditioned
on.
A Bayesian network does not need to be fully connected as we can see in Figure 2.3a. From this graph we can read off
the following joint distribution:

p
�

x1, . . . , x4

�

= p (x1) p (x2) p (x3|x2) p
�

x4|x1, x2, x3

�

The relationship between a Bayesian network and the corresponding distribution over variables can be stated in general
terms for a graph with K nodes as follows:

p(x ) =
K
∏

k=1

p
�

xk|pak

�

pak here denotes the set of parent nodes of the node k and x = {x1, . . . , xK}.
We use specific example of polynomial regression, which we already have introduced in section 2.1, in order to illustrate
graphical models. We define the polynomial coefficients w , the input data x = (x1, . . . , xN )

T and the observed targets
y = (y1, . . . , yN )

T. We want to treat the problem in a Bayesian way and put a Gaussian prior with precision α over the
regression coefficients w . The noise variance is σ2.
The joint distribution of the random variables variables of the model, y and w , can now be written as follows:

p
�

y , w |x ,α,σ2
�

= p(w |α)
N
∏

n=1

p
�

yn|w , xn,σ2
�

Figure 2.3b represents this joint distribution in a graphical model. Since all targets y1, . . . , yN are random variables and
need to be included in the graph, the visualization can get cluttered for more complex models. Due to this reason there
is a simplifying plate notation, which contains a single representative node yn that summarizes N nodes of this kind.
A further convention is that random variables are denoted by large open circles, whereas deterministic parameters are
indicated by small solid circles. In a supervised learning scenario there will typically be some observed variables during
training. These are marked by shading the respective nodes. In the regression case the values of the targets are observed
during training, whereas the parameters w are examples for latent or hidden variables, that are not observed. Following
these conventions we end up with the graphical model in Figure 2.3c for the regression model. [7]
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2.4 Finite Mixture Models

Mixture models [20] are taking linear combinations of basic distributions such as Gaussians, in order to create more
complex distributions. These can in turn be used for density estimation and clustering. By using a sufficient number
of Gaussians and inferring their means and covariances, almost any continuous density can be approximated accurately.
The mixture models we are concerned with in this section are finite in the sense that the number of mixture components
K needs to be specified. [7] Mixture models are an instance of latent variable models, which apart from observed variables
also take hidden variables into account. The formulation of a mixture model for a random variable x i is: [8]

p (x i |θ ) =
K
∑

k=1

πk pk (x i |θk) (2.11)

The latent variables in this model are the discrete indicator variables zi ∈ {1, . . . , K}, which indicate the corresponding
mixture component. A Categorical distribution p (zi) = Cat(π) is used as a discrete prior for the indicator variables. In
equation 2.11 we used the following abbreviations:

πk =p (zi = k|π)
pk (x i |θk) =p (x i |zi = k,θ )

pk is the kth base distribution, which can be of arbitrary type and is parametrized by parameters θk.
Equation 2.11 is a weighted sum of the pk ’s . The mixing weights have to satisfy 0≤ πk ≤ 1 and

∑K
k=1πk = 1.

The most common example of mixture model is the Gaussian mixture model (GMM), where each base distribution is a
multivariate Gaussian with mean µk and covariance matrix Σk. The model can thus be written as:

p (x i |θ ) =
K
∑

k=1

πk N (x i |µk,Σk)

In clustering applications we first fit the mixture model and then compute p (zi = k|x i ,θ ), which is the posterior proba-
bility that point i belongs to cluster k. This posterior probability is referred to as responsibilty of cluster k for point i. It
can be computed using Bayes’ rule: [8]

rik ¬ p (zi = k|x i ,θ ) =
p (x i |zi = k,θ ) p (zi = k|θ )

∑K
k′=1 p (x i |zi = k′,θ ) p (zi = k′|θ )

By using responsibilites we do not hard-assign a datapoint to one cluster, but for each of the clusters calculate the posterior
probability that a datum belongs to the respective cluster. That is why the approach is called soft clustering. Iterating
between the steps of fitting the parameters of the components by maximum likelihood and weighting the data with the
responsibilites and calculating new responsibilities comprises the expectation maximization algorithm (EM) [21].
It is possible to extend the mixture models by putting a prior H with hyperparameters λ on the parameters θ of the
components and a Dirichlet distribution prior with hyperparameter α on the mixing weights π, so that:

p(π|α) = Dir (α/K)1K)

1K is a unit vector with length K . The generative probabilistic model, which describes, how a datapoint can be sampled
from the model, can finally be written as: [8, 22]

π∼ Dir ((α/K)1K)

zi ∼ Cat(π)

θk ∼ H(λ)

x i ∼ F
�

θzi

�

We have here written p (x i |θk) as x i ∼ F
�

θzi

�

, where F is the observation distribution. For this generative model we get
a graphical model as in Figure 2.4a.
A central problem to mixture models is to choose the appropriate number of components K . In order to do so model

selection methods for probabilistic models can be used. If K is not chosen properly, this might result in over- or underfit-
ting of the data as there is a misfit between the complexity of the model and the amount of available data. An alternative
way of dealing with the problem is to use a Dirichlet process prior on the mixing weights, which automatically infers the
number of components from the data. In this case instead of the EM algorithm Bayesian inference methods like Gibbs
sampling and variational inference need to be used. [8, 23]
If the mixture components are probability densities for target variables and are conditioned on the inputs, and the mixture
coefficients are input-dependent, we get the regression method of mixture of experts (see chapter 3.3).
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Figure 2.4.: Two different graphical models for finite mixture models. Assuming a Gaussian mixture, the parameters θ
are a mean and a covariance matrix. (a) In the standard representation the component parameters θk are
drawn from a prior H with hyperparameters λ, separately for every component k. The latent variables zi
assign N data points x i to a component and are drawn from a Categorical distribution. The Categorical distri-
bution is parametrized by the mixture weights π. The mixture weights are drawn from a Dirichlet distribution
Dir ((α/K)1K). (b) In the alternative representation the parameters θi are drawn from a finite, discrete distri-
bution G. G is a weighted sum of delta distributions. α determines the structure of the weight vector π. The
delta distributions are located at the values of θ that are drawn from the prior distribution H. For each datum
we have a separate θi . In the alternative representation the coincidence of parameters of several data points
indicates that these data points belong to the same components. Based on figure 25.2 in [8] and figure 2.9
in [22].

2.5 Dirichlet Process for Infinite Mixture Models

As mentioned before, finite mixture models can be extended to infinite ones by using the Dirichlet process (DP)
[24, 23, 25] as a prior. In this section, we introduce the Dirichlet process and its’ several representations.

2.5.1 From Finite to Infinite Mixture Models

In section 2.4 we have introduced the standard representation of a finite mixture model, that is shown in 2.4a.
There is an alternative representation of finite mixture models, that is suitable for introducing infinite mixtures. In this
representation the parameters that are used to generate an observation x i are sampled from a discrete distribution G of
the form: [8]

G(θ ) =
K
∑

k=1

πkδθk
(θ )

We can observe that G is a finite mixture of delta distributions δθk
. The delta distribution δθk

is zero everywhere,
except for the value θk, where it is one. For each observation x i a own set of parameters is sampled. As G is a discrete
distribution, the parameters of the observations will frequently take the same values. If the same parameters are drawn
for two observations, they are associated with the same cluster. The probability that θi is equal to the parameters of a
certain cluster k is πk. This alternative representation of finite mixture models is depicted in 2.4b.
[8] In this model we still always get exactly K clusters. In order to obtain a more flexible model, where a variable number
of clusters can be generated, we can use the Dirichlet Process for generating the discrete distribution G:

G ∼ DP(α, H)

We will explain this in more detail in the following sections.
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2.5.2 Definition of the Dirichlet Process

We begin to introduce the Dirichlet Process (DP) as a generalization of the Dirichlet distribution by a formal definition. A
Dirichlet process is a distribution over probability measures G : Θ→ R+, where G(θ ) ≥ 0 and

∫

Θ
G(θ )dθ = 1. The DP is

defined by the requirement that (G (T1) , . . . , G (TK)) has the a joint Dirichlet distribution

Dir (αH (T1) , . . . ,αH (TK))

for any finite partition (T1, . . . , TK) of Θ.
If this requirement is fulfilled we can write G ∼ DP(α, H), where α is the concentration parameter and H is called base
measure.
Intuitively the Dirichlet process is a distribution over distributions, which means that each draw G from the Dirichlet
process is itself a distribution. It is called Dirichlet process as its’ finite dimensional marginal distributions are Dirichlet
distributed. This is analogous to the Gaussian process, which has Gaussian disitributed finite dimensional marginal dis-
tributions. The draws from a DP are discrete distributions. As G cannot be described with a finite number of parameters,
the DP is classified as a nonparametric model. [23]
The base distribution H is the mean of the DP, as for any T ⊂ Θ we have E[G(T )] = H(T ). The concentration parameter
α can be interpreted as an inverse variance: V [G(T )] = H(T )(1−H(T ))/(α+ 1). The larger α, the smaller the variance
and the DP will concentrate more of its mass around the mean H. For α→∞ we will have G(T )→ H(T ). α is also called
strength parameter, as it determines the strength of the prior, when DP is used as a prior in a Bayesian nonparametric
model. [23, 8]

2.5.3 Stick-breaking Construction of the Dirichlet Process

The stick-breaking construction [26] of the DP can be used for algorithmic realisations of the DP, for example in variational
inference or Gibbs sampling algorithms. Using the stick-breaking construction we can derive an infinite sequence of
mixture weights πk of an infinite mixture model from the following probabilistic process: [8]

vk ∼ Beta(1,α)

πk = vk

k−1
∏

l=1

(1− vl) = vk

�

1−
k−1
∑

l=1

πl

�

This process is sometimes denoted as:

π∼ GEM(α)

If the parameter α increases, the size of the πk components decreases on average. The stick-breaking procedure describes
how the vk that are drawn from a Beta distribution, are combined to obtain the mixture weights πk.
We now again use the definition of G from 2.5.1, but set the number of clusters to infinity:

G(θ ) =
∞
∑

k=1

πkδθk
(θ )

Here we use π ∼ GEM(α) and θk ∼ H. It has been shown that G ∼ DP(α, H) and the stick-breaking construction thus is
a representation of the Dirichlet process. [8]
As in the case of finite mixture models, the distribution G, which itself is drawn from a Dirichlet process, is a mixture of
delta functions and is discrete. This again means, if the parameters θ that we draw from G take on the same value for
observations x i , these observations belong to the same cluster. [8]
An extension of the basic stick-breaking construction is the logistic stick-breaking process [27]. It generalizes to applica-
tions, where the data is ought to be clustered spatially or temporally.

2.5.4 Pólya Urn Sampling Scheme

For sampling algorithms like Gibbs sampling often the Pólya urn or Blackwell-MacQueen sampling scheme is used [28]. It
describes how to draw samples from a DP. If there are N observations drawn from G, that take on k = 1 . . . K different
values θk, the predictive distribution of the next draw is given by [8]

p (θN+1 = θ |θ1:N ,α, H) =
1

α+ N

�

αH(θ ) +
K
∑

k=1

nkδθk
(θ )

�

(2.12)
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where nk is the number of previous observations equal to θk.
Equation 2.12 is helpful for thinking about the impact of the choice of the prior parameter α in an infinite mixture model
on the number of clusters. If α is large, it gets more likely that a new θN+1 gets drawn from the base distribution H
instead of taking on previously seen values. For larger α it is more likely to draw a value that has not seen before. If
that is the case, a new cluster k is created. This also underlines why α is denoted as strength parameter, indicating the
increasing influence of the base distribution H for larger α.

We can use indicator variables zi , which define which value of θk to use for the next draw. This is equivalent to defining
θi = θzi

. Using this definition we get for the next draw of an indicator, which specifies which parameters θk to use, the
following expression:

p (zN+1 = z|z1:N ,α) =
1

α+ N

�

αI (z = k∗) +
K
∑

k=1

nkI(z = k)

�

(2.13)

I is the indicator function and k? is a cluster index of a cluster that so far no data points are assigned to.
Equation 2.13 is referred to as Chinese restaurant process (CRP), comparing the assignment of cluster variables θk of a
new draw from G to the assignment of tables to customers in a Chinese restaurant. The analogy states that the tables
are like clusters and the customers are like observations. If a customer enters the restaurant the customer will join an
existing table with a probability proportional to the people already being seated at this table Nk. This shows the rich get
richer property of the Dirichlet process. If tables (clusters) already have a large number of customers (observations) they
are more likely to be assigned even more customers. With a probability proportional to α the customer will be seated at
a completely new table with index k?. The probability of being assigned to a new table reduces for the overall number
of customers in the restaurant. This is due to the 1/(α+ N) term. It has been shown that the number of overall clusters
grows logarithmically with the size of the dataset and almost surely approaches α log(N) for N →∞. In Gibbs sampling
algorithms the CRP is used for obtaining the probability of an observation belonging to one of the existing clusters or to
a newly created one. [8]

2.5.5 Nonparametric Infinite Mixture Models

After the introduction to the theory of the Dirichlet process and its’ representations we can extend the generative model
of finite mixtures from section 2.4 to the infinite mixture case [29, 30]. The generative model of nonparametric infinite
mixtures is: [8]

π∼ GEM(α)

zi ∼ Cat(π)

θk ∼ H(λ)

x i ∼ F
�

θzi

�

This generative model is depicted in Figure 2.5. In contrast to the finite mixture case G is now a random draw of an
unbounded number of parameters θk from the base distribution H, as discussed for the stick-breaking construction. Each
data point x i is generated by sampling an own parameter θi . Due to the rich get richer property for increasing amount of
data a new draw of an of observation is likely to have the same parameters as one of the θk that were drawn previously.
In this way a clustering effect is being achieved. New datapoints will likely be generated close to existing ones. There is
a probability proportional to α that a new datapoint will be drawn according to completely new cluster parameters that
are drawn the base measure H. If the observations distribution F takes on the form of a Gaussian, we call the model
Dirichlet process Gaussian mixture model (DP-GMM) in this thesis. [8]
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Figure 2.5.: Two different graphical models for infinite mixture models. Assuming a Gaussian mixture, the parameters θ
are a mean and a covariance matrix. (a) The first graphical model depicts the stick-breaking representation
and is largely identical to finite mixture models. The only difference is that the mixture weights pi are drawn
from a stick-breaking prior that is parametrized by α. As a result of this procedure the number of components
is unbounded. (b) In the Pólya Urn representation the parameters θi are drawn from the infinite, discrete dis-
tribution G. G is drawn from a Dirichlet process DP(α, H) with concentration parameter α and base measure
H. As in the case of finite mixtures two data points belong to the same cluster, if their parameters take on
the same value. Based on figure 25.6 in [8] and figure 2.9 in [22].
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3 Regression with Locally Linear Models
In this chapter we review different regression methods with locally linear models. The general idea of these regression
approaches is that they use linear sub-models, which specialize in certain regions of the input space. The mechanism of
how to choose which models are dominant in which regions of the input space and the learning and prediction procedures
differ significantly among the reviewed methods.
We discuss Locally Weighted Regression, Locally Weighted Projection Regression and Mixture of Experts. We then proceed
with Dirichlet Process Mixtures of Generalized Linear Models, which is the method we are mainly concerned with in this
thesis.

3.1 Memory-Based Locally Weighted Regression

Locally Weighted Regression (LWR), which also has been called local polynomial regression [31, 32], first appeared in
the statistical literature [33, 34]. It subsequently also was adopted for control purposes [35, 36]. The regression method
estimates the target y at an input x by only considering observations in the neighborhood of x . This concept is opposed
to global regression, where all the data is used for fitting a global regression curve. Examples for the global function
approximation approach are least squares regression, support vector machines, neural networks and Gaussian process
regression [37].

We limit our review to locally linear weighted regression. This is a generalization of the local fit of a constant as in
the Nadaraya-Watson kernel estimator [31, 32]. As some authors argue, linear models are a good trade-off of bias and
variance. Locally constant models suffer from bias at the boundaries, whereas higher-order local polynomials lead to
more variable estimates. We thus limit the scope of this thesis to the use of locally linear models and do not use higher-
order local polynomials or locally fitted constants. [34, 38]

LWR deals with the standard regression problem:

y = f (x ) + ε

x is a n-dimensional input vector, the noise term ε has zero mean and for simplicity the output y is kept one-dimensional.
The main idea of LWR is to approximate a nonlinear function by piecewise linear models. Key challenges here are to
determine the region of validity of the separate linear models and to fit the models within these regions. LWR computes
the region of validity through a Gaussian kernel:

wk = exp
�

−
1
2
(x − ck)

T Dk (x − ck)
�

ck is the center of the kth linear model and is set to the query point xq at which a prediction is ought to be made. Dk is a
positive semi-definite distance metric, that determines the size and shape of the region of validity of the linear model k.
Algorithm 1 shows how to predict for a query point xq [39, 37]. It has to be executed once for each query point. After
prediction, the regression coefficient βq of the local linear model is discarded. The computational complexity of the
algorithm is proportional to O(np), with p denoting the amount of training data and n denoting the input dimensions.
βn+1 is the (n+ 1)th element of the vector β .
The only remaining parameter to determine is the distance metric Dk, which can be optimized by leave-one-out cross-
validation. The detailed pseudo-algorithm for the leave-one-out cross validation can be found in [39]. To avoid too many
parameters Dk can be assumed to be a diagonal matrix in the form of Dk = h · diag(n1, n2, · · · , nn), where h is a scale pa-
rameter and the ni normalize the range of the input dimensions. Doing so, one reduces the leave-one-out cross-validation
to a one-dimensional search over the parameter h. [39]
The determination of the distance metric is critical for the bias-variance trade-off of the model. In case the kernel is too
narrow, it starts fitting noise. If the kernel is too broad the fitted curve will be too smooth. One can either use the same
Dk for the entire input space or optimize locally for the query point. [37]

Advantages of LWR are low bias and high accuracy due to the use of local linear models and few parameters that
have to be obtained by cross validation.

14



Input : Query point xq, p training points {x i , yi} in memory
Output: Prediction ŷq for xq

1 Compute diagonal weight matrix W with diagonal elements

wii = exp
�

−
1
2

�

x i − xq

�T
Dk

�

x i − xq

�

�

2 Build matrix X and vector y such that

X =
�

x̃1, x̃2, . . . , x̃p

�T
where x̃ i =

�

�

x i − xq

�T
1
�T

y =
�

y1,, y2, . . . , yp

�T

3 Compute regression coefficients of locally linear model

βq =
�

X T WX
�−1

X T W y (3.1)

4 The prediction for xq is

ŷq =
h

x T
q 1

i

βq

Algorithm 1: Predicting with Locally Weighted Regression

LWR is a so called "lazy" approach as all training data needs to be stored in memory and the processing of the training
data is done when prediction is made. If the learning system receives a large, possibly never ending stream of input data,
both the memory requirements to store all data as well as the computational cost for prediction become expensive. This
is a common observation in online robot applications. A non-memory-based version of the algorithm is desirable, so that
each datum can be incrementally included in the learning system. [39]
A further weakness of LWR is the inability to scale well to high-dimensional input. This is due to the covariance matrix
inversion in equation 3.1. LWR also becomes computationally expensive as the number of linear model increases. [37]

3.2 Locally Weighted Projection Regression

An extension to a memoryless version of LWR, which is better suited for online applications, is the Receptive Fields
Weighted Regression (RFWR) algorithm [40]. It is memoryless in the sense of keeping each model in memory for
further prediction and thus eliminating the need to store all training data points. New models are only created in
case the activation weight of the existing models does not exceed a certain threshold. Adding the second component
of applying dimensionality reduction to the input space one ends up with the Locally Weighted Projection Regression
(LWPR) algorithm [14, 41]. LWPR can not only deal with incrementally arriving data but also scales well to high-
dimensional inputs as it removes redundant input dimensions. It utilizes several locally weighted linear models to
approximate a globally non-linear function. The main ideas for extending LWR to the memoryless version RFWR are as
follows [37]:

• New kernels are not created for each new datapoint, but only if no existing kernel in memory covers the training
data point with some minimal activation weight.

• A weighted regression is updated with weighted recursive least squares for new training points {x , y}:

βn+1
k = βn

k +wPn+1 x̃
�

t − x̃ Tβn
k

�

with Pn+1
k =

1
λ

 

Pn
k −

Pn
k x̃ x̃ T Pn

k
λ

wk
+ x̃ T Pn

k x̃

!

and x̃ =
�

xT 1
�T

• The distance metric for each kernel Dk is determined by gradient descent employing leave-one-out cross validation.
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• The prediction for a query point is calculated as a weighted average of the predictions of all local models:

yq =

∑K
k=1 wq,k ŷq,k
∑K

k=1 wq,k

In above equations λ ∈ [0,1] determines how much old data in the regression parameters will be forgotten. Pk caches
the inverse of the covariance matrix of the input variables.

The second major problem of LWR, namely extending the regression method to high dimensional inputs, can be ad-
dressed by local dimensionality reduction techniques [14]. LWPR makes use of Partial Least Squares to eliminate
subspaces of the input that do not have a high correlation with the output. Redundant and irrelevant dimensions
are identified and removed. Due to this technique LWPR can scale up very well and has been used for learning con-
trol problems with over 100 input dimensions. The prediction, the update for one local model and the complete LWPR
algorithm can be found in [42]. The complete LWPR algorithm has a complexity of O(n) [37].

3.3 Mixture of Experts

The Mixture of Experts (MOE) [43] model is a modular model for regression based on soft probabilistic splits of the input
space. It can be though of as a probabilistic mixture of densities, where the component densities are conditional. This is
in contrast to standard mixture models (i.e. Gaussian mixtures), where the densities are unconditional. Additionally, in
MOE the mixing coefficients are a function of the inputs. The resulting probabilistic model thus is [7]:

p(y |x ) =
K
∑

k=1

πk(x )pk(y |x ,θk) (3.2)

In the context of MOE the mixing coefficients πk(x ) are called gating functions and the conditional distributions
pk(y |x ,θk) are called experts. The experts have parameters θk. According to equation 3.2 the prediction of the
model is a weighted average of the predictions of the individual components [8]. The gating functions determine,
which components of the mixture are dominant in which region of the input. They have to fulfill the following conditions
[7]:

0¶ πk(x )¶ 1 and
∑

k

πk(x ) = 1

One common way to represent the mixing coefficients that meets the above criteria is using linear softmax models of the
form [7]:

πk(x ) =
exp (ak)

∑

j exp
�

a j

� with ak = w T
k φ(x )

φ(x ) here is a linear transformation of the input and wk are gating parameters that need to be learnt.
The experts pk(y |x ,θk) are specialized in making predictions in certain regions of the input. Among others the experts
can be conditioned Gaussians, Gaussian processes [44], support vector machines or neural networks. As we are dealing
with locally linear models, conditioned Gaussians are a natural choice. We show the generative model as a graphical
model in Figure 3.1a. [45]

If both the gating and the experts are linear, the model can be fitted efficiently with the EM algorithm [46]. An ex-
tension of the MOE is the Hierarchical Mixture of Experts (HME) architecture using multilevel gating functions, where
each mixture component is itself a mixture. A Bayesian treatment of HME, which is limited to binary splits on each
mixture level and is employing variational inference can be found in [47].

3.4 Dirichlet Process Mixtures of Generalized Linear Models

The regression model that we in the main part of this thesis is called Dirichlet Process Mixtures of Generalized Linear Mod-
els (DP-GLM) [5]. It is a Bayesian regression method, where multiple localized linear regression models are composing
a global model of the joint distribution. The number of regression models is learned from data by using the Dirichlet
process as a prior. As the number of clusters is modeled as unbounded and does not need to be specified in advance,
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Figure 3.1.: (a) Graphical model for the Mixture of experts model. (b) Three separate experts fitted to some data. (c)
Input dependent gating functions for the three experts. (d) Prediction of the Mixture of Experts model as
conditionally weighted average of the expert predictions. Figure (a) based on Figure 4 of [45] and on Figure
2 of [48]. Figures (b) - (d) created with the mixexpDemo Skript of the Pmtk3 probabilistic modeling toolkit for
Matlab of Kevin Murphy [17].

DP-GLM can be categorized as a nonparametric infinite mixture model.

We first want to motivate DP-GLM in comparison to a very general regression framework that is called generalized
linear models (GLM) [49]. We deal with the general regression model, that can be written as: [5]

y |x ∼ f (m(x ))

Generalized linear models are a flexible class of models, where the output density of the targets y is in the exponential
family and the mean function m(x ) is a linear combination of the inputs x . Wrapped around the mean function, there
is a link function f , which in general can be non-linear. In linear regression, the link function is a Gaussian distribution.
The GLM formulation entails many methods such as linear regression, logistic regression, and Poisson regression. [8]
The GLM framework makes two assumptions, that limit the flexibility of the regression approach. Firstly, the inputs
enter the distribution of the targets through a linear function. A non-linear link function can be applied to the output
of the mean function, but it can not depend on the inputs. Secondly, the variance of the targets is not allowed to be
input-dependent. DP-GLM can relax both of these assumptions.

The idea of DP-GLM is, to model the mean function m(x ) by a mixture of simpler response distributions fi(mi(x )).
Each of these simpler distributions is just applicable in a region of the inputs that have similar response patterns. In this
thesis, each of the mixture components and thus each mi(x ) is a linear regression model. A non-linear mean function
m(x ) emerges if the uncertainty, which local response is active in which regions of the input, is marginalized out. As
the variance of the distribution of the targets can vary across the different linear models, we can capture the variance
as a function of the inputs. This feature enables the DP-GLM to deal with heteroscedastic data. Being able to model
input-dependent variance is a strong advantage of DP-GLM in comparison to models like standard Gaussian processes
[50] that assume a constant noise across the inputs. Additionally, GPs are mostly limited to smooth functions, as a kernel
is used for modeling the covariance matrix. Due to the use of locally linear models, DP-GLM is more flexible in modeling
arbitrary response function.
The infinite mixture modeling approach (see chapter 2.5) with a Dirichlet process prior is used to infer both the num-
ber and the shape of the locally linear models. This is important to obtain an adaptable regression method, which can
construct very simple, but also very complex target distributions, depending on the data. The complexity of the target
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distribution arises through the combination of many locally linear models. In this thesis, we also use the Dirichlet dis-
tribution prior as a replacement of the Dirichlet process and compare the resulting finite mixture model to the infinite
mixture case. [5]

In contrast to other methods that use locally linear models, like LWR, LWPR and MOE, DP-GLM is a Bayesian regres-
sion method. It allows us to calculate a posterior predictive distribution for the outputs. We thus have a quantification of
the uncertainty of predictions by marginalizing out the parameters. This uncertainty of predictions is naturally included
in the model formulation. When employing other state of the art function approximators, like neural networks, extra
efforts have to be taken to learn a posterior over all model parameters [51]. This is still an active area of research.

We now state the generative model of DP-GLM using multivariate Gaussians, which is a modeling approach that dates
back to [52, 53, 54]. This extends Dirichlet process mixtures (chapter 2.5) for density estimation to the regression case.
The generative model describes, how a new input-output pair (x i , yi) can be drawn from the model:

G ∼ DP(α, H)

µi ,Σi ,βi , Vi ∼ G

x i ∼ N (µi ,Σi)

yi |x i ∼ N (βiXi , Vi)

x i is an input vector of length m and yi is a target vector of length d. We model the inputs x i with a Gaussian distribution
and the outputs yi with a Gaussian that is dependent on the inputs. The output distribution for drawing a target yi thus
has the form of a Bayesian linear regression model (see chapter 2.2).
The steps of the data generating process are as follows. G is a discrete probability measure that is drawn from a Dirichlet
process with concentration parameter α and base measure H. The parameters of the input and the output distributions
are drawn from G. A new input x i is drawn from a Gaussian conditioned on the mean µi and the covariance matrix Σi .
The input enters the regressor matrix Xi of the linear model, which has the regression parameters βi and a covariance
matrix Vi . The new target variable yi is drawn from the linear model.
The regression coefficients βi and the regressor matrix Xi have the following shape:

Xi = [1 x i ]
T and βi = [β0 β1 ]

β1 is a d by m matrix and represents the slope parameters. β0 encodes the intercept and has a length of d.
As we know from infinite mixture models, in this generative model the model parameters are drawn individually for
every newly generated data pair (x i , yi). The clustering effect arises due to the rich get richer property of the Dirichlet
process. Previously seen parameter values are more likely to be drawn again, so that in some regions of the data the
input-output pairs will share the same cluster parameters. The generative model is represented as a graphical model in
Figure 3.2.

The DP prior takes the role of clustering the input-output pairs. It acts as a kernel for the inputs. It measures the
distance between two data points by the probability that the hidden parameters, and thus the cluster is shared [5]. In
training, when both x i and yi are observed, the posterior distribution of the generative model will cluster data points
according to nearby inputs that exhibit the same relationship to their input. When testing on new inputs, the posterior
predictive distribution can be understood as clustering the test data based on the training data and then predicting the
output according to the linear model that is associated with the test input’s cluster. We will give further details on the
predictive distribution in the following chapter.

The derivation of the predictive distribution differs, depending on which inference method is used for learning the
parameters of DP-GLM. The posterior of the DP-GLM is intractable, making it necessary to use Bayesian inference meth-
ods. This is due to the complexity of the integration when marginalizing out the uncertainty of the parameters. To
nonetheless obtain an approximation of the posterior, we derive and evaluate the Bayesian inference methods of Gibbs
sampling and variational inference for DP-GLM. [5]
Examples of data fitted with DP-GLM can be seen in chapter 6.
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Figure 3.2.: Two different graphical models for DP-GLM. Assuming Gaussian clusters and linear models, the parameters
θ are mean and covariance matrix of the clusters, as well as regression coefficients and covariance matrix of
the linear models. (a) The first graphical model displays the stick-breaking representation. The component
parameters θk are drawn from a prior H with hyperparameters λ, separately for every component k. The
latent variables zi assign N input-output pairs (x i , yi) to a component and are drawn from a Categorical
distribution. The Categorical distribution is parametrized by the mixture weights π. The mixture weights
π are drawn from a stick-breaking prior with parameter α. As a result of this procedure, the number of
components is unbounded in the model formulation. (b) In the Pólya Urn representation the parameters
θi are drawn from the infinite, discrete distribution G. G is drawn from a Dirichlet process DP(α, H) with
concentration parameter α and base measure H. Two input-output pairs belong to the same cluster, if their
parameters θi coincide. Based on figure 25.2 in [8] and figure 2.9 in [22] and extended to DP-GLM.
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4 Variational Inference
In section 3.4 on DP-GLM we have outlined that the posterior of the regression method is intractable. Due to this reason,
we need to resort to approximate inference methods. Our method of choice is mean field variational inference (VI).
In this chapter we first elaborate the basic ideas of variational inference [8, 7] and then go on deriving mean field vari-
ational inference algorithms. We collect the existing material of VI for the finite mixture of Gaussians [7, 8, 55] and
Dirichlet process Gaussian mixture models [56]. We add more detailed derivations for these two models. We then derive
a mean field VI algorithm for Dirichlet process mixtures of generalized linear models. In the end we use the obtained
approximate posterior distribution to derive a posterior predictive distribution for making predictions with DP-GLM.

4.1 Basics of Variational Inference

Variational inference [57, 58, 6, 59, 60, 61] is a deterministic approximation scheme for Bayesian models. The varia-
tional method is in contrast to sampling-based inference methods like the Markov chain Monte Carlo framework, which
is stochastic.

In Bayesian models, there are observed data variables, like the training inputs and the training outputs of a regression
model. There are also latent variables that are not observed and need to be inferred. These are for example cluster
assignment variables zn for each datum in a mixture model. We additionally have parameters, that we put priors on. The
number of latent variables typically grows with the size of the data set, whereas the number of parameters in general
stays constant for a bigger data set. To stay in the mixture model example, the parameters could be the component means
and covariance matrices. The priors of the parameters have deterministic parameters, which we call hyperparameters.[7]
The problem we are facing is that we want to calculate a posterior distribution p (x | D) of the unknown random variables
x given the observed variables D or want to evaluate expectations with respect to that posterior. In Bayesian models of
practical interest, the posterior is often too complex to be evaluated analytically. This is due to the involved integrations
over the space of latent variables that is potentially large and high-dimensional. he integrations may not have closed-form
analytical solutions or the exact calculation may be computationally too expensive. These intractable integrations arise
in the normalization constant of the posterior, whereas evaluating the unnormalized posterior usually is possible. [7, 8]

The main idea of variational inference is to approximate the true posterior p (x | D) by a q (x ) that is from a tractable
family of distributions. One can, for example, choose the form of a multivariate Gaussian or assume that q (x ) has a
factored structure. The parameters of the approximate posterior q (x ), which are called variational parameters, are then
chosen in a way that the approximate posterior gets as close to the true posterior as possible. The similarity of the ap-
proximate posterior and the true posterior hereby often is measured by using the Kullback-Leibler-divergence (KL) as a
cost function. As we will see standard KL-divergence is still not tractable so that the cost function is rewritten as a lower
bound of the log-likelihood of the data. This bound is called evidence lower bound (ELBO) or variational lower bound
(VLB). By maximizing this cost function, the inference problem is turned into an optimization problem. The outcome
is a variational Bayes algorithm with an EM-like structure for the variational parameters of the approximate posterior.
It iteratively updates responsibilities and then calculates a new set of the remaining variational parameters using the
responsibilities to weight the data.

4.1.1 Cost Functions of Variational Inference

In this section we want to reason, why the variational lower bound is commonly used as a a cost function for VI. The
KL-divergence from the true posterior to the approximate posterior is defined as:

KL(p ‖ q) =
∑

x

p (x | D) log
p (x | D)

q (x )

We use the sum for discrete random variables, but the definition is equivalent for continuous random variables, if the
sum is replaced by an integral. This definition is called the forwards KL-divergence or moment projection (M-projection).
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Inspecting the equation we see that the KL gets infinite if p (x | D) = 0 or q (x ) = 0. If the forward KL is minimized as a
cost function, the parameters of the variational distribution are chosen to avoid the approximate distribution becoming
zero. Consequently the variance of p(x ) is overestimated. If p(x ) is a multimodal distribution and q (x ) is restricted
to a unimodal family, the resulting mode of the approximate posterior will be in a region of low density of the true
posterior. This is not a very accurate approximation. Furthermore the forward KL is hard to evaluate, as we need to take
expectations with respect to p (x | D). This operation is assumed to be intractable.

An obvious alternative to the forwards KL is the reverse KL-divergence:

KL(q ‖ p) =
∑

x

q (x ) log
q (x )

p (x | D)

This definition is also called information projection (I-projection). In the context of VI the advantage is that we can choose
the family of q (x ) such that expectations with regard to this distribution are tractable. We observe that the reverse KL
is infinite for p(x ) = 0 and q(x ) > 0. This means that the KL divergence forces the approximate distribution to be zero,
wherever p(x ) is zero. The result is that the I-projection, assuming a unimodal q (x ), locks onto one mode of the true
posterior. The variance of the true posterior is underestimated. In such a setting the I-projection is a a better choice than
the M-projection because we avoid to get an approximate posterior with its’ mode in an area of low density of the true
posterior. [8, 7]

The remaining problem of this cost function is that the true posterior still appears in the equation. Usually the intractable
integrations arise in the normalization constant p (D) of the posterior, since it has to be integrated over the space of
all hidden variables. The unnormalized posterior p̃ (x | D) = p (x | D) p (D) usually can be calculated. We define a new
objective:

J (q) = KL(q ‖ p̃)

=
∑

x

q (x ) log
q (x )

p̃ (x | D)

=
∑

x

q (x ) log
q (x )

p (x | D) p (D)

=
∑

x

q (x ) log
q (x )

p (x | D)
− log p (D)

= KL(q ‖ p)− log p (D)

Since log p (D) is a constant, minimizing J (q) results in minimizing KL(q ‖ p) and thus enforces the approximate distri-
bution to become close to the true one. As the KL divergence never gets negative, J(q) is an upper bound on the negative
log-likelihood:

J(q) = KL(q ‖ p)− log p (D)≥ − log p (D)

Instead of minimizing this quantity, we can equivalently turn the problem into an maximization problem by reversing the
sign:

L(q) = −J(q) = −KL(q ‖ p) + log p (D)≤ log p (D)

= −
∑

x

q (x ) log
q (x )

p̃ (x | D)

=
∑

x

q (x ) log
p̃ (x | D)

q (x )

By maximizing L(q) we maximize a lower bound on the log-likelihood of the data. L(q) is thus called evidence lower
bound or variational lower bound. L(q) is the final cost function that will be used throughout this chapter.
In principle it is possible to use other measures as a cost function, for example the alpha divergence or the Hellinger
distance. [8]

21



4.1.2 The Mean Field Method

The mean field method [62] is one of the most common approximations to make the posterior tractable. It is assumed
that the posterior is a fully factorized distribution of the form:

q (x ) =
D
∏

i=1

qi (xk)

No other assumptions on the functional form of the individual factors qi have to be made. The functional form will be an
automatic result of the optimization. Other approximation schemes assume that the approximate posterior belongs to a
certain family of tractable distributions, for example Gaussians. [7]

The optimization problem is to maximize the variational lower bound:

max
q1,...,qK

L(q)

We optimize over the variational parameters of each marginal distribution qi . In the following we show the steps to get
a general update equation in the case of the mean field assumption, which can be used to derive an EM-like coordinate
ascent algorithm for the variational parameters of the approximate posterior.

We can do the optimization for one term q j at a time. We factor out the term that contain q j and regard the other
terms as constant. Following [8] we get:

L(q j) =
∑

x

q (x ) log
p̃ (x | D)

q (x )

=
∑

x

∏

i

qi (x i)

�

log p̃ (x | D)−
∑

k

log qk (xk)

�

=
∑

x j

∑

x− j

q j

�

x j

�

∏

i 6= j

qi (x i)

�

log p̃ (x | D)−
∑

k

log qk (xk)

�

=
∑

x j

q j

�

x j

�

∑

x− j

∏

i 6= j

qi (x i) log p̃ (x | D)−
∑

x j

q j

�

x j

�

∑

x− j

∏

i 6= j

qi (x i)





∑

k 6= j

log qk (xk) + q j

�

x j

�





=
∑

x j

q j

�

x j

�

log f j

�

x j

�

−
∑

x j

q j

�

x j

�

log q j

�

x j

�

+ const (4.1)

Where:

log f j

�

x j

�

=
∑

x− j

∏

i 6= j

qi (x i) log p̃(x | D) = E−q j
[log p̃(x | D)]

The expressionE−q j
[ f (x )] denotes an expectation of f (x ) with respect to the q distributions over all variables zi except

for z j . An example of this for three variables is:

E−q2
[ f (x )] =

∑

x1

∑

x3

q(x1)q(x3) f (z1, z2, z3)

We see that the expectation is only taken with respect to q1 and q3. We now keep all
�

qi 6= j

	

constant and maximize the
VLB L(q j) with respect to the distribution q j . Inspecting equation 4.1 we see that this is a KL divergence between q j and
f j . We can write:

L
�

q j

�

= −KL(q j ‖ f j) + const

L can be maximized by minimizing KL(q j ‖ f j). This is achieved by setting q j = f j:

q j

�

x j

�

=
1
Z j

exp
�

E−q j
[log p̃(x | D)]

�
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The normalization constant Z j can be ignored, as we know that q j has to be a normalized probability distribution. The
normalization can be done after finding the functional form of q j .

The mean field update formula to obtain the variational parameters of the factorized approximate posterior distribution
thus is:

log q j

�

x j

�

= E−q j
[log p̃(x | D)] + const (4.2)

The distribution p̃(x | D) can also be written as p (x | D) p(D) or p(x , D). In the following derivations we call this distri-
bution the joint distribution of the hidden variables and the data or unnormalized posterior. It is our target distribution,
because we need it to plug it into the mean field update equation (4.2) to find the approximate posterior q. [8, 7]

4.1.3 Variational Bayes Expectation Maximization

Models with the two categories of unknowns of parameters θ and latent variabels z are often fitted with the EM algorithm.
In the E-step a posterior p (zi |xn,θ ) over the latent variables is inferred and in the M-step a point estimate of the
parameters θ is calculated.
If we use mean field variational inference to only infer the latent variables (i.e. cluster assignment variables z), the
method is called Variational Bayes (VB). Variational Bayes EM (VBEM) is an alternative, where the uncertainty in the
parameters is modelled in addition to the uncertainty in the latent variables. The computational cost stays roughly the
same as for EM. The mean field factorization then is of the form:

p (θ , z1:N |D)≈ q(θ )q(z) = q(θ )
N
∏

n=1

q (zi) .

The first factorization is crucial for obtaining a tractable algorithm and represents the mean field assumption. The second
factorization is the general model assumption that the latent variables are i.i.d. conditional on the parameters.
In an VBEM algorithm we alternate between updating q (zi |D) (Variational E-step) and updating q(θ | D) (Variational
M-step). Standard EM is recovered, when a delta function is used for approximating the posterior of the parameters
q(θ |D)≈ δθ̂ (θ ). In comparison to standard EM the steps are:

• Variational E-step: Update q (zi |D). Instead of plugging in a MAP estimate of θ , we have to average over all
possible parameter values.

• Variational M-step: Update q(θ |D). Except of computing a point estimate of the parameters, we have to update
the hyperparameters (variational parameters) of the approximate posterior of the parameters θ .

One advantage of VBEM over EM is that we can compute the variational lower bound, which is a lower bound on the
marginal likelihood. This can be used for model selection or checking the convergence of the algorithm. Furthermore
in VBEM there is no artificial distinction between parameters and latent variables, as both are treated as unknowns. By
inferring a posterior over the parameters, we get a quantification of uncertainty of predictions, for example in a regression
setting. Similar to EM, a weakness of VBEM is that it can get stuck in bad local optima. To lower this risk, the algorithm
should be started multiple times with different initializations. In chapter 5 we introduce Gibbs sampling as a method for
initializing VBEM. [8]
In the following we show the steps for deriving VBEM algorithms for GMM, DP-GMM and DP-GLM in detail.
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4.2 Variational Bayes EM for Gaussian Mixture Models

In this section, we show the steps for deriving a variational Bayes EM algorithm for Gaussian mixture models. [55, 8, 7]
We first define the likelihood and the priors and state the mean field factorization to obtain a variational posterior. After
that, we show the steps for deriving the variational E-step and the variational M-step. In the end, we show the form of
the variational lower bound.

4.2.1 Choice of Likelihood and Priors

The likelihood function of a multivariate Gaussian mixture model is:

p(x |z,µ,Σ) =
N
∏

n=1

K
∏

k=1

N
�

xn|µk,Σ−1
k

�znk (4.3)

=
N
∏

n=1

K
∏

k=1

�

1
(2π)D/2

|Σk |1/2 exp
§

−
1
2
(xn −µk)

TΣk(xn −µk)
ª�znk

For each of n = 1 . . . N observations we have a corresponding latent variable zn, which is a 1-of-K binary vector with
elements znk. The latent variable takes the value znk = 1, if the data point with index n belongs to cluster k and znk = 0
otherwise. µk and Σk are the mean and the precision matrix of a cluster. D is the length of a data vector x . K is the
upper limit of clusters.

In the further thesis we do not always write out the involved probability distributions. These can be looked up in Appendix
C. The normalization constants of the distributions can also be looked up there.
We assume the following factored conjugate prior:

p (z,π,µ,Σ) = p (z | π) p (π) p (µ | Σ) p (Σ) (4.4)

=
N
∏

n=1

Cat (zn|π)Dir (π|α0)
K
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k=1

N
�

µk|m0, (λ0Σk)
−1
�

Wi (Σk|L0,ν0)

=
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N
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n=1

K
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k=1

π
znk
k
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C(α0)
K
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k=1

π
α0−1
k
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K
∏
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|λ0Σk |1/2

(2π)D/2
exp

§

−
1
2
(µk −m0)

Tλ0Σk(µk −m0)
ª

B(L0,ν0)|Σk|(ν0−D−1)/2 exp
§

−
1
2

Tr
�

L−1
0 Σk

�

ª

�

We put a Normal-Wishart prior on the cluster means and cluster precision matrices. This distribution is a composite
prior consisting of of a normal distribution and a Wishart distribution. It is used, if both the means and precisions are
unknown. The Normal-Wishart prior has the hyperparameters m0,λ0, L0 and v0.

The mixing weights π have a symmetric Dirichlet prior with hyperparameters α0 = α0I . α0 has a decisive effect on the
effective number of clusters that will be used for representing the data. Depending on the choice of α0, for some of the K
clusters, the expected values for the mixing weights will be indistinguishable from their prior values. A smaller α0 favors
solutions, where some of the mixing coefficients are close to zero. We will evaluate the hyperparameter α0 in detail in
chapter 7. [7]

The latent variables zn are drawn from a Categorical distribution conditioned on the mixing weights. The unknown
random variables in summary are z,π,µ and Σ. The subscript 0 indicates hyperparameters of the prior.

4.2.2 Mean Field Factorization

The exact, but intractable posterior p (z,π,µ,Σ | x ) is a mixture of KN distributions corresponding to all possible labelings
z. The mean field approximation of the posterior concentrates the density around one of these modes: [8]

p (z,π,µ,Σ | x )≈ q (π,µ,Σ)q (z) = q (π,µ,Σ)
N
∏

n=1

q (zi)
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The first factorization is the mean field approximation and enables a tractable algorithm. The second factorization
represents that the latent variables z are i.i.d. conditional on the parameters. Using this factorization, we will derive an
approximate posterior of the following form in the next sections:

q?(z,π,µ,Σ) = q? (z)q? (π,µ,Σ)

=

�

N
∏

n=1

Cat (zn|rn)

��

Dir(π|α)
K
∏

k=1

N
�

µk|mk, (λkΣk)
−1
�

Wi (Σk|Lk,νk)

�

The superscript ? denotes that the respective probability distribution is the optimal solution of the optimization problem.
The subscript k indicates the updated variational parameters of the approximate posterior. We do not need to specify this
variational posterior in advance. It will be a result of the free form optimization of the variational distributions using the
mean field update equation (4.2).

4.2.3 Target Distribution

As we know from the mean field update equation (4.2), we need the unnormalized log posterior for deriving the form
of the factorized distributions of the approximate posterior. We thus call this distribution the target distribution of the
optimization procedure. It is as follows:

log p(x , z,π,µ,Σ) = log p(x |z,µ,Σ) + log p(z,π,µ,Σ)

= log p(x |z,µ,Σ) + log p(z|π) + log p(π) + log p(µ|Σ)p(Σ)

= log
N
∏

n=1

K
∏

k=1

N
�

xn|µk,Σ−1
k

�znk + log
N
∏

n=1

Cat (zn|π) + logDir (π|α0)

+ log
K
∏

k=1

N
�

µk|m0, (λ0Σk)
−1
�

Wi (Σk|L0,ν0)

We see that the log joint over data and hidden variables is a sum over the log of the data likelihood and the log prior.
In the following we use this distribution for deriving the variational E-step and the variational M-step of the VBEM
algorithm.

4.2.4 Variational E-step: Updating q(z)

The form of q?(z) can be derived by taking the expectation of the unnormalized log posterior with respect to all hidden
variables except of z. All terms, that do not involve z are constant when updating q(z) and can be ignored.

log q?(z) = Eq(π,µ,Σ)[log p(x , z,π,µ,Σ)] + const

= Eq(π,µ,Σ)

�

log
N
∏

n=1

K
∏

k=1

N
�

xn|µk,Σ−1
k

�znk

�

+Eq(π,µ,Σ)

�

log
N
∏

n=1

Cat(zn|π)

�

+ const

+Eq(π,µ,Σ)

�

log
N
∏

n=1

K
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k=1

π
znk
k

�

+ const

=
N
∑

n=1

K
∑

k=1

znk logρnk + const (4.5)

Where we have defined:

logρnk = Eq(π,µ,Σ) [logπk] +
1
2
Eq(π,µ,Σ) [log |Σk|]−

D
2

log(2π)−
1
2
Eq(π,µ,Σ)

�

(xn −µk)
T Σk (xn −µk)

�

In this term three expectations have to be calculated. Using equation C.16 we have for the first expectation:

log π̃k = E [logπk] =ψ (αk)−ψ

�

∑

k′
αk′

�

with ψ(a) =
d

da
log Γ (a)
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ψ(a) is the Digamma function.
Using standard expectations of a Wishart distribution (equation C.40) we get for the second expectation:

log Σ̃k = E [log |Σk|] =
D
∑

j=1

ψ

�

νk + 1− j
2

�

+ D log2+ log |Σk|

The expectation of the quadratic term can be derived by using the definition of the expectation:

Eµk ,Σk

�

(xn −µk)
T Σk (xn −µk)

�

=

∫∫

(xn −µk)
T Σk (xn −µk) q? (µk,Σk) dµkdΣk
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(xn −µk)
T Σk (xn −µk) q? (µk|Σk) dµk
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q? (Σk) dΣk

=

∫

Eµk

�

(µk − xn)
T Σk (µk − xn)

�

· q? (Σk) dΣk

The inner expectation thus is with respect to µk of a Gaussian distribution. We use Equation 380 in [63] for x ∼ N(m, V)
to get:

Eµk

�

(µk − xn)
T Σk (µk − xn)

�

= (mk − xn)
T Σk (mk − xn) + Tr

�

Σk · (λkΣk)
−1
�

Substituting back yields the following expression for the expectation of the quadratic term:
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Tr
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Σk · (mk − xn) (mk − xn)
T�	
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k + Tr
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EΣk
[Σk] · (mk − xn) (mk − xn)

T	

= Dλ−1
k + Tr

�

vkLk · (mk − xn) (mk − xn)
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= Dλ−1
k + vk (mk − xn)

T Lk (mk − xn)

We here used the knowledge, that q?(Σk) is a Wishart distribution with expectation EΣk
(Vk) = νkLk (see equation C.39).

This is unknown at this step, but will be confirmed in the derivation for the variational M-step.

We have gathered all necessary expectations and can derive the functional form of for q?(z). By taking the exponential
on both sides of Equation 4.5 we obtain a Categorical distribution:

q?(z)∝
N
∏

n=1

K
∏

k=1

ρ
znk
nk

This is an unnormalized distribution and we still need to find the normalization constant. For each value of n the
quantities znk are binary and sum to one for all values of k. As a result of this the basis of the exponent znk has to sum to
one for all values of k. We call these values the responsibilities rnk = (ρnk/

∑

j ρn j). Therefore a normalized distribution
is given by:

q?(z) =
N
∏

n=1

K
∏

k=1

rznk
nk with rnk∝ π̃kΣ̃

1
2
k exp

�

−
D

2λk
−
νk

2
(xn −mk)

T Lk (xn −mk)
�

(4.6)

rnk =
ρnk
∑

j ρn j

The variational E-step is complete and we go on with the variational M-step.
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4.2.5 Variational M-step: Updating q(π,µ,Σ)

Starting again from the mean field update equation (4.2) we can derive q(π,µ,Σ). In the resulting equations we will
hold the responsibilities constant, which we known from the variational E-step. We have to take the expectation of the
unnormalized log posterior with respect to z. All terms, that do not involve π, µ, or Σ are constant when updating these
variables and can be ignored. The definitions of the involved densities can be found in appendix C. We get for q(π,µ,Σ):

log q?(π,µ,Σ) = Eq(z)[log p(x , z,π,µ,Σ)] + const

= Eq(z)

�

log
N
∏

n=1

Cat(zn|π)

�

+Eq(z) [logDir (π|α0)]

+Eq(z)

�

log

¨

N
∏

n=1

K
∏

k=1

N
�

xn|µk,Σ−1
k

�znk

«�

+Eq(z)

�

log

¨

K
∏

k=1

N
�

µk|m0, (λ0Σk)
−1
�

Wi (Σk|L0,ν0)

«�

+ const

=
N
∑

n=1

K
∑

k=1

Eq(z) [znk] logπk + (α0 − 1)
K
∑

k=1

logπk

+
N
∑

n=1

K
∑

k=1

Eq(z) [znk]
�

1
2

log |Σk| −
1
2
(xn −µk)

T Σk (xn −µk)
�

+
K
∑

k=1

1
2

log |Σk| −
1
2
(µk −m0)

T λ0Σk (µk −m0) +
ν0 − D− 1

2
log |Σk| −

1
2

Tr
�

L−1
0 Σk

�

+ const

We can see that this expression factorizes into terms, which only depend on π and into terms, which only depend on µk
and Σk. We thus can rewrite:

log q?(π,µ,Σ) = log q?(π) +
K
∑

k=1

log q? (µk,Σk)

q?(π,µ,Σ) = q?(π)
K
∏

k=1

q? (µk,Σk)

Using the fact that Eq(z) [znk] = rnk for the Categorical distribution q(z) (see equation C.6), we get the following result
for the π term:

log q?(π) = (α0 − 1)
∑
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logπk +
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∑
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rnk logπk + const

Exponentiating on both sides, we recognize this as a Dirichlet distribution:
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= Dir (π|α)

The variational parameters of the Dirichlet distribution are:

αk = α0 + Nk with Nk =
N
∑

n=1

rnk (4.8)

For the µk and Σk terms we have:
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For the further derivations we assume that the optimal q?(µk,Σk) can be written as a Normal-Wishart distribution:

q?(µ,Σ) =
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Given this functional form, we can do a comparison of coefficients of equation 4.9 and the assumed Normal-Wishart
distribution in equation 4.10.

We first want to find q?(µk|Σk). We collect all the terms in equation 4.9, that contain µk and then complete the square
with respect to µk .
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We now take a look at all terms in equation 4.11 that are quadratic in µk:
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Comparing the quadratic term with the term − 1
2 (µk −mk)TλkΣk(µk −mk) in equation 4.10 we obtain:

λk = λ0 + Nk

In order to determine mk we only consider the terms in equation 4.11, which are linear in µT
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We here used the following definition:
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Comparing the linear term with the term − 1
2 (µk −mk)TλkΣk in equation 4.10 we obtain:

mk =
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We have now found the parameters of q?(µk|Σk) = N
�

µk|mk, (λkΣ
−1
k )
�

.

For obtaining the parameters Lk and νk of the Wishart distribution q?(Σk), we need the following relation:

log q? (Σk) = log q? (µk,Σk)− log q? (µk|Σk)

We additionally need the definition of the trace aT a = Tr(aaT ), the cyclic property of the trace Tr(abcd) = Tr(bcda) =
Tr(cdab) = Tr(dabc) and the definition of the Cholesky decomposition Σk = UU T [63].
Combining these rules and using the substitution y = (µk −mk), we see that:
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Writing down the terms of log q? (µk,Σk) in equation 4.9 that contain Σk and subtracting log q? (µk|Σk) yields:
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Here we have defined:

T = λ0 (µk −m0) (µk −m0)
T + L−1

0 +
N
∑

n=1

rnk (xn −µk) (xn −µk)
T −λk (µk −mk) (µk −mk)

T (4.12)

By matching coefficients with the term |Σk|(νk−D−1)/2 in the Wishart distribution in equation 4.10 we get:

vk = v0 + Nk

By matching coefficients with the term exp
�

− 1
2 Tr(L−1

k Σk)
	

in equation 4.10 we see that:

L−1
k = T

We have now fully specified q?(Σk) and therefore know all update rules for obtaining the mean field approximation
q?(µ,Σ) of the exact posterior. A more compact update equation for L−1

k is:

L−1
k = L−1

0 + NkSk +
λ0Nk

λk + Nk
(m0 − x k) (m0 − x k)

T

We use this definition:

Sk =
1
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rnk (x i − x k) (x i − x k)
T

The details of deriving the simplified update equation can be found in appendix D.1.

4.2.6 Variational Lower Bound on the Marginal Likelihood

For the variational lower bound on the marginal likelihood of the variational mixture of Gaussians we get:
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= E[log p(x |z,µ,Σ)] +E[log p(z|π)] +E[log p(π)] +E[log p(µ,Σ)]

−E[log q(z)]−E[log q(π)]−E[log q(µ,Σ)]
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All expectations are with respect to q(z,π,µ,Σ). The terms involving expectations over the logs of the q distributions are
the negative entropies of these distributions. The results for the individual terms are:
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In appendix D.1 we show the derivations for these expressions one by one. The variational lower bound is very helpful
for checking the convergence of the algorithm. Each iteration of the variational E-steps and M-steps has to increase the
VLB. If the VLB is not changing anymore, the algorithm is converged. [8, 7]
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4.3 Variational Bayes EM for Dirichlet Process Gaussian Mixture Models

In comparison to finite Gaussian mixture models, the variational Bayes EM algorithm and the variational lower bound
of the log-likelihood for Dirichlet Process Gaussian Mixture Models have some differences. These differences will be
highlighted in the following sections.

4.3.1 Choice of Likelihood and Priors

The likelihood function remains the same as in the case of Gaussian mixture models:

p(x |z,µ,Σ) =
N
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K
∏

k=1

N
�

xn|µk,Σ−1
k

�znk (4.13)

We assume the following factored conjugate prior:

p (z,π,µ,Σ) = p (z | π) p (v ) p (µ | Σ) p (Σ) (4.14)
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As in the case of GMM we assume Normal-Wishart priors on the cluster means and precision matrices. The latent cluster
assignment variables zn are drawn from a Categorical distributions conditioned on the mixture weights.

Instead of drawing the mixture weights from a Dirichlet distribution, these are now constructed by the stick-breaking
method. The number of clusters is a-priori unbounded and is learned from data. πk in the Categorical distribution is sub-
stituted by the expression πk(v ) = vk

∏k−1
j=1

�

1− v j

�

. The parameters v = {vi . . . vk} are independently Beta distributed.

The hyperparameters of the Beta distributions are γ0,1 and γ0,2. By definition of the stick-breaking construction we set
γ0,1 = 1. The second hyperparameter of the Beta distributions γ0,2 has an important impact on the number of clusters
that are effectively learned for the dataset. In section 2.5 on the Dirichlet Process we call this parameter the concentration
parameter and name it α. Inspecting the Pólya Urn Sampling Scheme we observe that for a large concentration parameter
it gets more likely that a new set of parameters is drawn from the base distribution H, instead of taking on previously
seen values. It is thus more likely that a new cluster is created. The base distribution in DP-GMM is the Normal-Wishart
prior.
γ0,2 takes a comparable role as the parameter α0 for a Dirichlet prior of the GMM in section 4.2, which also steers the
number of clusters that are learned. We will assess the hyperparameter γ0,2 in detail in the evaluation of DP-GLM in
chapter 6.
In summary the unknown random variables are z, v ,µ and Σ.

4.3.2 Mean Field Factorization

The mean field approximation of the posterior is:

p (z,π,µ,Σ|x )≈ q(v ,µ,Σ)q (z) = q(v ,µ,Σ)
N
∏

n=1

q (zn)

Using this factorization, we will derive an approximate posterior of the following form in the next sections:

q?(z, v ,µ,Σ) = q? (z)q? (v ,µ,Σ)

=

�

N
∏
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Cat (zn|rn)

��
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Beta
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�

K
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N
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µk|mk, (λkΣk)
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Wi (Σk|Lk,νk)

�

As before the functional form of the posterior is a result of the optimization and does not need to be specified in advance.

31



4.3.3 Target Distribution

For variational infinite mixture models the unnormalized log posterior is:

log p(x , z, v ,µ,Σ) = log p(x |z,µ,Σ) + log p(z, v ,µ,Σ)

= log p(x |z,µ,Σ) + log p(z|π) + log p(v ) + log p(µ|Σ)p(Σ)

= log
N
∏

n=1
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∏
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N
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�znk + log
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µk|m0, (λ0Σk)
−1
�

Wi (Σk|L0,ν0)

We see that as the target distribution includes products will infinite limits. For calculating the variational posterior we
will approximate these products.

4.3.4 Variational E-step: Updating q(z)

The form of q?(z) can be derived by taking the expectation of the unnormalized log posterior with respect to all hidden
variables except of z. All terms, that do not involve z are constant when updating q(z) and can be ignored.
According to Blei and Jordan (2006) [56] the infinite sums of the stick-breaking prior of the variational posterior can be
truncated at an upper limit K . If this upper limit is chosen appropriately high, the variational posterior is a reasonable
approximation. It is important to note that the model is still an infinite mixture model, just the variational posterior is
truncated.

log q?(z) = Eq(v ,µ,Σ)[log p(x , z, v ,µ,Σ)] + const

= Eq(v ,µ,Σ)
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log
N
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=
N
∑
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K
∑

k=1

znk logρnk + const (4.15)

We defined here:

logρnk =
1
2
Eq(v ,µ,Σ) [log |Σk|]−

D
2

log(2π)−
1
2
Eq(v ,µ,Σ)

�

(xn −µk)
T Σk (xn −µk)

�

+Eq(v ,µ,Σ) [log vk] +
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Eq(v ,µ,Σ)
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(log(1− v j)
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All expectations have been stated before, except of the expectation of the terms that involve the Beta distributed vk.
Refering to [56] we get:

Eq(v ,µ,Σ) [log vi] = Ψ
�

γi,1

�

−Ψ
�

γi,1 + γi,2

�

with ψ(x) =
d

d x
log(Γ (x)) =

Γ ′(x)
Γ (x)

Eq(v ,µ,Σ) [log (1− vi)] = Ψ
�

γi,2

�

−Ψ
�

γi,1 + γi,2

�

The first expectation can be derived by using the fact, that for exponential families the expectation of the log of a random
variable is equivalent to the maximum likelihood solution. The second expectation is a result of symmetry properties of
the Beta distribution. [64]
By exponentiating equation 4.15 we get a Categorical distribution, just as in the case of finite mixture models:

q?(z)∝
N
∏

n=1

K
∏

k=1

ρ
znk
nk

The normalized distribution is given by:

q?(z) =
N
∏

n=1

K
∏

k=1

rznk
nk (4.16)

The responsibilities are:

rnk∝ Σ̃
1
2
k exp

 

−
D

2λk
−
νk

2
(xn −mk)

T Lk (xn −mk) +Eq(v ,µ,Σ) [log vk] +
k−1
∑

j=1

Eq(v ,µ,Σ) [log (1− vi)]

!

rnk =
ρnk
∑

j ρn j
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4.3.5 Variational M-step: Updating q(v ,µ,Σ)

To derive q(v ,µ,Σ) we have to take the expectation of the unnormalized log posterior with respect to z. All terms, that
do not involve v , µ, or Σ are absorbed into the constant term. The infinite sums are again truncated at K [56].
We get for q(v ,µ,Σ):

log q?(v ,µ,Σ) = Eq(z)[log p(x , z, v ,µ,Σ)] + const
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In this equation the unknown expectation Eq(z) [log p (zn|π)] remains to be calculated. We use the following result from
[56]:

Eq(z) [log p (zn|π)] = Eq(z) [logCat(zn|π)] =
K
∑

k=1

K
∑

j=k+1

rn j log(1− vk) + rnk log vk

We can see that the whole expression for log q?(v ,µ,Σ) factorizes into terms, which only depend on v and into terms,
which only depend on µk and Σk. We can write the approximate posterior as the following factorized distribution:

log q?(v ,µ,Σ) = log q?(v ) +
K
∑

k=1

log q? (µk,Σk)

q?(v ,µ,Σ) = q?(v )
K
∏

k=1

q? (µk,Σk)

Using the fact that Eq(z) [znk] = rnk for the Categorical distribution q(z) (see equation C.6), we get as a result for the v
term:

log q?(v ) =
N
∑

n=1

K
∑

k=1

K
∑

j=k+1

rn j log(1− vk) + rnk log vk

+
K
∑

k=1

�

γ0,1 − 1
�

log vk +
�

γ0,2 − 1
�

log (1− vk)

=
K
∑

k=1

log(1− vk)





N
∑

n=1

K
∑

j=k+1

rn j + γ0,2 − 1



+
K
∑

k=1

log(vk)

�

N
∑

n=1

rnk + γ0,1 − 1

�

+ const

Exponentiating on both sides, we recognize q?(v ) as a product of Beta distributions:

q?(v )∝
K
∏
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v
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k=1 rnk+γ0,1−1
k (1− vk)
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The variational parameters of the Beta distributions are:

γk,1 =
N
∑

n=1

rnk + γ0,1

γk,2 =
N
∑

n=1

K
∑

j=k+1

rn j + γ0,2

We stop the product of the Beta distributions at K − 1 as the truncated stick-breaking construction defines, that q(vk =
1) = 1 and thus all mixture proportions π(v ) are equal to zero for k > K [56].
The terms that depend on µ and on Σ are the same as for the variational Gaussian mixture model.

4.3.6 Variational Lower Bound on the Marginal Likelihood

For the variational lower bound on the marginal likelihood of the Dirichlet process mixture of Gaussians we get:

L=
∑

z

∫∫∫

q(z, v ,µ,Σ) log
§

p(x , z, v ,µ,Σ)
q(z, v ,µ,Σ)

ª

dv dµ dΣ

= E[log p(x , z, v ,µ,Σ)]−E[log q(z, v ,µ,Σ)]

= E[log p(x |z,µ,Σ)] +E[log p(z|π)] +E[log p(v )] +E[log p(µ,Σ)]

−E[log q(z)]−E[log q(v )]−E[log q(µ,Σ)]

All expectations are with respect to q(z, v ,µ,Σ).
With exception of E[log p(z|π)], E[log p(v )] and E[log q(v )] all expectations are the same as in the case of GMM. We do
not derive the remaining terms in detail.
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4.4 Variational Bayes EM for Dirichlet Process Mixtures of Generalized Linear Models

In this section, we build upon the results for finite and infinite Gaussian mixture models and extend the variational
Bayesian treatment to the regression case. A summary of the results of this section can be found in appendix B.

4.4.1 Choice of Likelihood and Priors

The likelihood function of Dirichlet Process Mixtures of Generalized Linear Models, assuming linear models, is:

p(y , x |z,µ,Σ,β , V) = p(y |x , z,β , V)p(x |z,µ,Σ) (4.17)

=
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m is the length of the input vector x and d is the length of the target vector y . The regression coefficients β and the
regressor matrix X have the following shape:

X = [1 x ]T and β = [β0 β1 ]

β1 is a d by m matrix and represents the slope parameters. β0 encodes the intercept and has a length of d.

We assume the following factored conjugate prior:

p (z, v ,µ,Σ,β , V) = p (z | π) p (v ) p (µ | Σ) p (Σ) p (β | V) p (V)
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The first four prior densities in equation 4.18 are the same as for the case of infinite mixtures of Gaussians. As discussed
in chapter 2.2 on Bayesian linear regression we use a Matrix-Normal-Wishart prior for the regression coefficients βk and
the precision matrix Vk of the linear models. The dimension of the parameters of the Matrix-Normal distribution is: M0 is
d by m+1, Vk is d by d, and K0 is m+1 by m+1. The input dimension is m+1 as the regressor matrix X has a row of ones.

By definition of the stick-breaking process, the first hyperparameter of the Beta distribution γ0,1 is set to 1. The second
hyperparameter γ0,2 has a crucial impact on the number of clusters that are effectively learned from the data. In the
foundations of this thesis (section 2.5) we denote this parameter as α and call it concentration parameter. Looking at the
Pólya urn sampling scheme, we observe, that for a large concentration parameter it is more likely to draw a new set of
parameters from the base distribution H. It is less likely that the parameters take on values from an existing cluster. The
base distribution in DP-GLM is the composite distribution of the Normal-Matrix-Wishart prior on the linear regression
model and the Normal-Wishart prior on the cluster parameters. We will asses the impact of the hyperparameter γ0,2 in
chapter 6.
In summary the unknown random variables are z, v ,µ,Σ,β and V .
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4.4.2 Mean Field Factorization

We assume the following mean field factorization of the posterior:

p (z, v ,µ,Σ,β , V | x )≈ q (v ,µ,Σ,β , V)q (z) = q (v ,µ,Σ,β , V)
N
∏

n=1

q (zn)

Using this factorization, we will derive an approximate posterior of the following form in the next sections:

q?(z, v ,µ,Σ,β , V) = q? (z)q? (v ,µ,Σ,β , V)
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K is the truncation level of the stick-breaking construction.

4.4.3 Target Distribution

For DP-GLM the unnormalized log posterior over the data and hidden variables is:

log p(x , y , z, v ,µ,Σ,β , V) = log p(y , x |z,µ,Σ,β , V) + log p(z, v ,µ,Σ,β , V)

= log p(y |x , z,β ,Σ) + log p(x |z,µ,Σ) + log p(z|π) + log p(v ) + log p(µ|Σ)p(Σ)
+ log p(β |V)p(V)
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This distribution is plugged into the mean field update equation (4.2) for deriving the form of the approximate posterior.

4.4.4 Variational E-step: Updating q(z)

The form of q?(z) can be derived by taking the expectation of the unnormalized log posterior with respect to all hidden
variables except of z. All terms, that do not involve z are constant when updating q(z) and can be ignored.
We again truncate the infinite sums of the variational posterior at K . That does not apply to the true posterior of the
model, which still has an unbounded number of components. [56]
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We defined here:

logρnk =
1
2
Eq(v ,µ,Σ,β ,V) [log |Vk|]−

d
2

log(2π)−
1
2
Eq(v ,µ,Σ,β ,V)

�

(yn −βkXn)
TVk(yn −βkXn)

�

+
1
2
Eq(v ,µ,Σ,β ,V) [log |Σk|]−

m
2

log(2π)−
1
2
Eq(v ,µ,Σ,β ,V)

�

(xn −µk)
T Σk (xn −µk)

�

+Eq(v ,µ,Σ,β ,V) [log vk] +
k−1
∑

j=1

Eq(v ,µ,Σ,β ,V)

�

(log(1− v j)
�

The expectations to a great extend are analogous to DP-GMM. We need to calculate one more expectation of a quadratic
term. We use the definition of the expectation:
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The inner expectation is with respect to a Matrix-Normal distribution. We use the following two expectations of a Matrix-
Normal distribution: [65, 66]
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Substituting back yields:
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We here used the expectation of the Wishart distribution (equation C.39).

As for GMM and DP-GMM we exponentiate equation 4.19 and get a Categorical distribution:
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The normalized distribution is given by:
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Ṽk is calculated in an analogous way to Σ̃k:

log Ṽk = E [log |Vk|] =
d
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ψ
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2
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+ d log2+ log |Vk|

The expectations with respect to q(v ) of the Beta distribution are the same as for DP-GMM.

4.4.5 Variational M-step: Updating q(v ,µ,Σ,β , V)

To derive q(v ,µ,Σ,β , V) we have to take the expectation of the unnormalized log posterior with respect to z. All terms,
that do not involve v , µ, Σ,β or V are absorbed into the constant term. We truncate the infinite sums of the approximate
posterior at K [56].
We derive q(v ,µ,Σ,β , V) as follows:
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We see that the expression for log q?(v ,µ,Σ,β , V) factorizes in the following way:

log q?(v ,µ,Σ,β , V) = log q?(v ) +
K
∑
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log q? (µk,Σk) +
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log q? (βk, Vk)
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∏
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For q?(v ) the result is the same as for DP-GMM and for q?(µk,Σk) the update equations are the same as for GMM and
for DP-GMM.

We therefore only need to collect the βk and Vk terms:
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We assume that the optimal form of q?(βk, Vk) is a Matrix-Normal-Wishart distribution:

q?(β , V) =
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Given this functional form, we can do a comparison of coefficients of equation 4.21 and of the assumed Matrix-Normal-
Wishart distribution in equation 4.22.

For finding q?(βk | Vk) we gather all terms in equation 4.21 that contain βk:
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The quadratic term with respect to βk is:
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The linear term with respect to βk is:
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We compare the coefficients with the relevant term of the Matrix-Normal distribution in equation 4.22, which is:
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We thus get for the variational parameters of the Matrix-Normal distribution:
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We here used the following definitions and transformations:
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For obtaining the parameters Pk and ηk of the Wishart distribution q?(Vk), we need the following relation:

log q? (Vk) = log q? (βk, Vk)− log q? (βk|Vk)

For finding q?(Vk) we collect all terms in equation 4.21 that contain Vk and subtract the log q? (βk | Vk) term. We also use
the cyclic property of the trace (equation 16 in [63]) and the definition of Nk:
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Here we defined T as:
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rnk(yn −βkXn)(yn −βkXn)
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By matching coefficients with the term |Vk|(ηk−d−1)/2 in the Wishart distribution in equation 4.22 we get:

ηk = η0 + Nk
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By matching coefficients with the term exp
�

− 1
2 Tr

�
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k Vk

�	

in equation 4.22 we get:

P−1
k = T

We have now derived the equations for updating the variational parameters of the Matrix-Normal-Wishart distributions
q?(βk, Vk).

The update term for the variational parameter P−1
k can be further simplified. We can get the following result as a more

convenient equation for the variational parameter:
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We used the definitions:
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In appendix D.2 we show in detail how to get to the more convenient update equation for P−1
k .

A summary of the likelihood function, the prior, the approximate posterior and the update equations for the variational
parameters of the approximate posterior can be found in appendix B.

4.4.6 Variational Lower Bound on the Marginal Likelihood

For the variational lower bound on the marginal likelihood of the Dirichlet process mixture of generalized linear models
we get:
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All expectations are with respect to q(z, v ,µ,Σ,β , V).
With exception of the expectations E[log p(y , x |z,µ,Σ,β , V)], E[log p(β , V)] and E[log q(β , V)] all terms are the same
as for the variational treatment of GMM and DP-GMM.

Using results from before, the first term is:
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The second term is:
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In this term there are two expectations left that we need to derive:
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In summary the second term is:
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The third term is:
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And:
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In summary the third term is:
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A summary of the algorithm for the variational Bayes EM algorithm for DP-GLM can be found in appendix B. We now
have the tools for obtaining an approximate posterior. In a regression setting usually the prediction on new inputs is the
aim. Therefore we need to use the approximate posterior to calculate a predictive distribution. This is the focus of the
next section.
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4.5 Posterior Predictive Distribution of Dirichlet Process Mixtures of Generalized Linear Models

For making predictions with DP-GLM we need to derive the posterior predictive distribution. We will make use of the
approximate posterior here.
One can obtain the predictive distribution by marginalizing the likelihood of the prediction ŷ given the test input x̂ and
the parameters and the likelihood of the test input x̂ over the posterior of the parameters given the training data x , y .
Associated with x̂ , ŷ is a latent cluster assignment variable ẑ. X̂ is defined as X̂ = [1 x̂ ]T . We follow the derivation of
the posterior predictive distribution of a variational mixture of Gaussians in [7] and extend it to DP-GLM.
The posterior predictive distribution is as follows:

p ( ŷ | x̂ , y , x ) =
∑

ẑ
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As the true posterior p (π,µ,Σ,β , V | x , y) is not tractable we replace it by the approximate posterior. The approximate
posterior factorizes to:
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For all indices j 6= k the integration with respect to µ j ,Σ j , βk and V will sum to 1:

p ( ŷ | x̂ , y , x )≈
K
∑

k=1

∫∫∫∫∫

vk

k−1
∏

j=1

�

1− v j

�

K−1
∏

j=1

q(v j)N
�

ŷ | βk X̂ , V−1
k

�

N
�

x̂ | µk,Σ−1
k

�

(4.26)

q (µk,Σk)q (βk, Vk) dv dµk dΣk dβk dVk

We see that we need to calculate the expectation of the term vk

∏k−1
j=1

�

1− v j

�

under the Beta distributions
∏K−1

j=1 q
�

v j | γ1, j ,γ2, j

�

. The expectation of a Beta distribution is E(v j) = γ1, j/(γ1, j + γ2, j) (see B.7 in [7]).
Using this fact and writing out the approximate posterior we get:

p ( ŷ | x̂ , y , x )≈
K
∑

k=1

γ1,k

γ1,k + γ2,k

K−1
∏

j=1

�

1−
γ1, j

γ1, j + γ2, j

�∫∫

N
�

ŷ | β X̂ , V−1
k

�

N
�

βk | Mk, V−1
k , Kk

�

Wi (Vk | Lk, vk)

∫∫

N
�

x̂ | µk,Σ−1
k

�

N
�

µk |mk, (λkΣk)
−1
�

Wi (Σk | Pk,ηk) dµk dΣk dβk dVk

∝
K
∑

k=1

γ1,k

γ1,k + γ2,k

K−1
∏

j=1

�

1−
γ1, j

γ1, j + γ2, j

�

· pk (x̂ ) · T
�

Mk x̂ , L−1
k c−1, vk + 1

�

In the last step we inspected the integral over the likelihood of ŷ times the Matrix-Normal-Wishart posterior of the
regression parameters βk and the precision matrix Vk and recognized it as the predictive distribution of a Bayesian
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linear regression model. The predictive distribution of a Bayesian linear regression model is a matrix T-distribution (see
equation 2.10). In contrast to equation 2.10 we use the inverse of Lk. This is due to the reason that we use the Wishart
distribution for our derivations.
The constant c is:

c = 1− x̂ T
�

Kk + x̂ x̂ T
�−1

x̂

We also made use of the fact that the integral over the likelihood of a given input data point x̂ times the Normal-
Wishart posterior of the cluster means µk and the precision matrix Σk is the evidence pk (x̂ ) of the input x̂ for cluster
k. The evidence is also called marginal likelihood. According to equations (233) and (234) in [67] the evidence can be
calculated as:

pk (x̂ ) =
Z x̂

Zk

1
(2π)nm/2

=
1

πnm/2

Γm (η x̂/2)
Γm (ηk/2)

|Pk|
ηk/2

|Px̂ |
η x̂ /2

�

λk

λ x̂

�m/2

The parameters with index x̂ indicate the parameters of the Normal-Wishart posterior, that have been updated by the
new input x̂ . This means that we take the posterior parameters with index k as a new prior and apply the mean field
update equations with input data x̂ to obtain new posterior parameters with index x̂ . As we only use one data point for
calculating the evidence we can set n= 1.
The first line shows an alternative way of calculating the evidence as a ratio of the normalization constants of the Normal-
Wishart posterior Zk and the updated Normal-Wishart posterior Z x̂ .

To obtain a proper probability distribution, the approximate posterior predictive distribution still needs to be normal-
ized. We use the following abbreviation:

εk =
γ1,k

γ1,k + γ2,k

K−1
∏

j=1

�

1−
γ1, j

γ1, j + γ2, j

�

We get as a final result:

p ( ŷ | x̂ , y , x ) =
1

∑K
k=1 εk · pk (x̂ )

K
∑

k=1

εk · pk (x̂ ) · T
�

Mk x̂ , L−1
k c−1, vk + 1

�

The posterior predictive distribution of DP-GLM is a mixture of matrix T-distributions. It can be interpreted as follows.
The prediction for ŷ is a weighted sum of the predictions of the overall K linear models that have been used for fitting
the training data. The prediction of ŷk for a cluster k is drawn from a matrix T-distribution with mean Mk x̂ . The weights
are represented by the term εk · pk (x̂ ). εk is large, if many data points were assigned to the cluster k in training. The
evidence pk (x̂ ) of is large, if it is probable that the new input x̂ was generated by cluster k.

Replacing the Stick-Breaking Prior with a Dirichlet Prior
In chapter 6 we want to compare the infinite mixture approach of DP-GLM to the finite mixture case, that uses a Dirichlet
distribution instead of the stick-breaking construction as a prior. In equation 4.25 we do not replace πk by the stick-
breaking construction, but we use a Dirichlet distribution as an approximate posterior of the mixture weights. The
k = 1, . . . , K mixture weights πk are distributed according to a Dirichlet distribution q(π | α) with α= (α1, . . . ,αK)

T.
The approximate posterior now factorizes to:

q (π,µ,Σ,β , V) = q(π)
K
∏

j=1

q
�

µ j ,Σ j

�

K
∏

j=1

q
�

β j , V j

�

After some analogous intermediate steps we get the following result, which is similar to equation 4.26:

p ( ŷ | x̂ , y , x )≈
K
∑

k=1

∫∫∫∫∫

πkq(π)N
�

ŷ | βk X̂ , V−1
k

�

N
�

x̂ | µk,Σ−1
k

�

q (µk,Σk)q (βk, Vk) dπdµk dΣk dβk dVk
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We see that we need to calculate the expectation of πk under the Dirichlet distribution p (π | α). This expectation is
E(πk) = αk/

∑K
j=1α j (see B.17 in [7]).

The intermediate steps are then again the same as in the case of using the DP. We get for the approximate predictive
posterior for the DP-GLM, where the DP is replaced with a Dirichlet distribution as a prior:

p ( ŷ | x̂ , y , x )∝
K
∑

k=1

αk
∑K

j=1α j

· pk (x̂ ) · T
�

Mk x̂ , L−1
k c−1, vk + 1

�

In the normalized form this is:

p ( ŷ | x̂ , y , x ) =
1

∑K
k=1αk · pk(x̂ )

K
∑

k=1

αk · pk (x̂ ) · T
�

Mk x̂ , L−1
k c−1, vk + 1

�

The interpretation is analogous to the predictive distribution, where the DP is used as a prior.
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5 Gibbs Sampling
This chapter is about the Bayesian inference method of Gibbs sampling for obtaining samples from the true posterior of
DP-GLM. In contrast to variational inference, which is a deterministic approach, Gibbs sampling is a stochastic sampling
method. We first give a general overview of the method in the context of the Markov chain Monte Carlo framework and
then show how to apply Gibbs sampling to DP-GLM.
In the experiments in chapter 6 we use Gibbs sampling as an initialization for the variational Bayes EM algorithm. This
combines the strengths of both algorithms. The mean field VI algorithm can get stuck in bad local optima. An initialization
with Gibbs sampling can overcome this weakness. On the other hand, the convergence of the Gibbs sampling algorithm
is hard to assess. It thus is sensible to combine Gibbs sampling with mean field VI. The variational lower bound of VI
can be used for judging the convergence. The VLB increases with every iteration of the variational Bayes EM algorithm
and thus provides a criterion for stopping the algorithm. The samples that are obtained by Gibbs sampling can be from
different modes of the posterior, which lowers the risk of variational Bayes EM to repeatedly getting stuck in bad local
optima.

5.1 Gibbs Sampling as a Markov Chain Monte Carlo Method

Monte Carlo techniques are approximate inference methods, that are based on numerical sampling. The problem that we
want to address is to find the expectation of a function f (x ) with respect to a probability distribution p(x ). In the case
of continuous variables x the expectation is: [7]

E[ f ] =
∫

f (x)p(x)dx

If the expectation is too complex to be evaluated analytically, one can make use of sampling methods. First a set of
samples x(l) with l = 1, . . . , L have to be obtained. These samples are drawn independently from p(x). The expectation
can then be approximated by a finite sum:

bf =
1
L

L
∑

l=1

f
�

x(l)
�

If the samples are drawn from true distribution p(x ), the estimator f̂ has the correct mean. The variance of the estimator
is:

var[bf ] =
1
L
E
�

( f −E[ f ])2
�

The accuracy of the estimator does not depend on the dimensionality of x and in principle high accuracy can be achieved
for a relatively small amount of samples. A frequent problem in that subsequent samples are not drawn independently.
In these cases many samples might need to be taken, to estimate the mean with sufficient accuracy.

We now turn to the framework of Markov chain Monte Carlo (MCMC). In MCMC samples are drawn from a proposal
distribution q

�

x | x(τ)
�

. The prosal distribution depends on the current state x(τ), so that a record of the current state has
to be maintained. The proposal distribution needs to be sufficiently simple to draw samples from it. The sequence of
samples x(1),x(2), . . . forms a Markov chain. A first order Markov chain is defined as a series of random variables, such
that the following conditional independence property holds: [7]

p
�

x(m+1)|x(1), . . . ,x(m)
�

= p
�

x(m+1)|x(m)
�

This means that each state is only dependent on the directly preceding state.

At each cycle of an MCMC algorithm, a candidate sample x ? is drawn from the proposal distribution. The sample is
accepted or rejected, depending uppon an appropriate criterion. In the case of Gibbs sampling the samples are always
accepted.
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Gibbs sampling [68] is a special instance of a MCMC algorithm called Metropolis-Hastings algorithm [69]. In Gibbs
sampling we have a joint distribution p(x) = p (x1, . . . , xM ) that we want to sample from. In the case of DP-GLM this
is the joint distribution of the hidden variables. First an initial state of the Markov chain has to be chosen, i.e. by an
intialization of the random variables. Then in each iteration of the algorithm the value of one of the variables needs to
be replaced by a value drawn from the distribution of that variable conditioned on the values of the remaining variables.
This procedure is repeated by cycling through the conditional distributions in some particular order. We use the example
of a joint distribution of three random variables p(x1, x2, x3). The Gibbs sampling procedure is displayed in algortihm 2.
[7]
After a burn-in period this procedure produces samples from the true joint distribution p(x ). The advantage of this ap-

Input: Initial state of the Markov chain: x1, x2, x3

1 for τ in T do

2 Sample x (τ+1)
1 ∼ p

�

x1|x
(τ)
2 , x (τ)3

�

;

3 Sample x (τ+1)
2 ∼ p

�

x2|x
(τ)
1 , x (τ)3

�

;

4 Sample x (τ+1)
3 ∼ p

�

x3|x (τ)1 , x (τ)2

�

;

Algorithm 2: Gibbs sampling algorithm for obtaining samples from a joint distribution of three random variables.

proach is, that no samples need to be drawn from p(x ) directly, as that might be infeasible. Sampling from the conditional
distributions is sufficient to converge to samples from p(x ). We refer to [7] for an explanation why the algorithm creates
samples from the required distribution. Successive samples from the Markov chain are highly correlated, so that the
sequence must be sub-sampled to generate nearly independent samples.

5.2 Gibbs Sampling for Dirichlet Process Mixtures of Generalized Linear Models

We begin our analysis of the Gibbs sampling algorithm by showing the connection of the finite and infinite mixture
models to the Chinese restaurant process representation of the DP as described in [30, 11, 10].
In a finite mixture model one can write the conditional prior distribution of an indicator variable, that assigns a datum
to a component, as follows: [10, 30]

p (zi = k|z−i ,α0) =
nk,−i +α0/K

N +α0 − 1
(5.1)

z−i are the indicator variables of the other data points in cluster k excluding data point x i . α0 is the hyperparameter of
the Dirichlet prior. K is the number of clusters and N is the number of data points. nk,−i is the number of data points in
cluster k exluding x i . For the derivation of the formula see [11, 30].

If we let K go to infinity, the conditional prior distributions of the indicator variables reach the following limits:

P (zi = k|z−i ,α0) =
nk,−i

N +α0 − 1
(5.2)

P
�

zi 6= z j for all j 6= i|z−i ,α0

�

=
α0

α0 + N − 1

As the ordering of the assignment variables zi does not matter in infinite mixture models, we can think of zi being the
last one in the order. Equation 5.2 then resembles the results of the Chinese restaurant process (equation 2.13). We need
these conditional probabilities for the Gibbs sampling algorithm of DP-GLM. We develop the algorithm by starting with
GMM and DP-GMM.

In a Gibbs sampling algorithm for finite mixture models [8, 11], the data points x= {x i}
n
i=1 are observed and z= {zi}

n
i=1

are latent cluster indicator variables. The Gibbs sampling algorithm draws from the conditional distributions of the
random variables given the other random variables. It iteratively draws from the distributions of the

• Cluster indicators z= {zi}
n
i=1,

• and the cluster parameters {θk}
K
k=1.
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The mixture weights can be integrated out and do not have to be updated. For implementing the Gibbs sampling
algorithm, the conditional distributions of the remaining variables have to be derived. The hyperparameters of the
Dirichlet distribution α0 and of the hyperparameters λ of the observational distribution F are assumed as known. The
conditional posterior for each indicator variables then is: [10]

p
�

zi = k|z−i ,x, {θk}
K
k=1 ,α0,λ

�

=
nk,−i +α0/K

N +α0 − 1
F (x i |θk)

F here is the distribution of the observations. In the case of a GMM these are Gaussians with cluster means and cluster
covariances.

The conditional posterior of the parameters of the kth cluster, θk, only depends on the observations of that cluster xk:
[10]

p (θk|θ−k, ,z,x,α0,λ)∝ G0 (θk|λ)L (xk|θk)

G0 is the prior on the cluster parameters, which is usually chosen to be conjugate. The conjugate prior to a Normal
distribution with unknown variance in a univariate setting is the Normal-inverse-Gamma distribution. L is the likelihood
of the data xk that is assigned to cluster k. The stated conditional distributions are sufficient for implementing a Gibbs
sampling algorithm for finite mixture models as in algorithm 2 of [10].

The Gibbs sampling algorithm for GMM can be generalized to DP-GMM by taking the limit of infinity for the num-
ber of clusters K [10, 30, 9]. By doing so, the conditional prior of zi changes from equation 5.1 to equation 5.2. If zi is
assigned to one of the existing clusters K , the conditioned posterior of zi thus becomes:

p
�

zi = k|z−i ,x, {θk}
K
k=1 ,α0,λ

�

=
nk,−i

N +α0 − 1
F (x i |θk)

If zi is assigned to a new cluster index, that is denoted as K + 1, the conditional posterior for this case is:

p (zi = K + 1|z−i ,x,α0,λ) =
α0

N +α0 − 1

∫

F (x i |θ )G0(θ |λ)dθ

If zi is assigned to a news cluster index we need to sample cluster parameters for the newly created cluster. The new
cluster parameters θK+1 can be drawn from the posterior distribution based on the prior G0 and the likelihood of the
single observation x i . This posterior is:

H (θK+1|x i) =
G0 (θK+1) F (x i |θK+1)
∫

θ
G0(θ )F (x i |θ )

Furthermore the number of clusters K must be increased by one.
With these results it is possible to implement a Gibbs sampling algorithm for Dirichlet process Gaussian mixture models
as algorithm 4 of [10].

If we want to extend infinite mixtures to the regression case, we need to consider the set of parameters of the GLM, which
we assume to be linear models. The Gibbs sampling algorithm iteratively samples from the conditional distributions of
the

• Cluster indicators z= {zi}
n
i=1

• cluster parameters
�

θx ,k

	K

k=1,

• and the GLM parameters
�

θy,k

	K

k=1.

yi are the targets that are associated with the inputs x i . We also have a composite observational distribution F and a
composite prior G0 of the form:

F = Fx (x i |θx) Fy

�

yi |x i ,θy

�

G0 = Gx (θx)Gy

�

θy

�

We now have all ingredients for the Gibbs sampling algorithm of DP-GLM which is shown in algorithm 3. xk indicates all
input data that is assigned to a cluster and yk are all targets that are assigned to a cluster. L denotes the likelihood.

In our implementation that is used for the evaluation in chapter 6 we have used a conjugate Normal-inverse-Wishart prior
on the cluster means and covariance matrices. For the linear models, we have used a Matrix-Normal-inverse-Wishart prior
on the mean of the regression coefficients and the covariance matrices.
Other conjugate priors are possible. For one-dimensional targets, one can choose a Normal-inverse-Gamma prior for the
clusters and a multivariate Normal-inverse-Gamma for the linear models. In this case, the detailed derivations of the
conditional posteriors are shown in appendix D.3.
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Input : Data pairs D = {x i , yi}
N
n=1, initial state

�

θx ,k

	K

k=1,
�

θy,k

	K

k=1 and {zi}
N
n=1, prior hyperparameters, initial

number of clusters K , number of iterations T , convergence criterion

1 for t in number of iterations T do
2 for i in number of data pairs N do
3 Remove data pair {x i , yi} from cluster zi;
4 if cluster zi is empty then
5 Remove cluster zi and its’ parameters θx ,zi

and θy,zi
;

6 Decrease K by 1;

7 Sample a new zi from the cond. posterior of cluster assignments:

p (zi = k, k ≤ K)∝
nk,−i

N +α0 − 1
Fx

�

x i |θ
(t−1)
x ,k

�

Fy

�

yi |x i ,θ
(t−1)
y,k

�

nk,−i =
∑

j 6=i

δ
�

z j − k
�

p (zi = K + 1)∝
α0

N +α0 − 1

∫

θx

∫

θy

Fx (x i |θx) Fy

�

yi |x i ,θy

�

Gx (θx)Gy

�

θy

�

dθx dθy

8 if zi = K + 1 then
9 Sample θx ,K+1 and θy,K+1 for new cluster zi from the cond. posteriors of cluster and GLM parameters:

H
�

θx ,K+1|x i

�

=
Gx

�

θx ,K+1

�

Fx

�

x i |θx ,K+1

�

∫

θx
Gx(θx)Fx (x i |θx)

H
�

θy,K+1|yK+1

�

=
Gy

�

θy,K+1

�

Fy

�

yi |x i ,θy,K+1

�

∫

θy
Gy(θy)Fy

�

yi |x i ,θy

�

10 Increase K by 1;

11 for k in number of clusters K do
12 Resample θk for all clusters k from the cond. posteriors of cluster and GLM parameters:

H
�

θx ,k|x
(t)
k

�

=
Gx

�

θx ,k

�

Lx

�

x (t)k |θ
(t−1)
x ,k

�

∫

θx
Gx(θx)Lx

�

x (t)k |θx

� H
�

θy,k|y
(t)
k

�

=
Gy

�

θy,k

�

Ly

�

y (t)k |x
(t)
k ,θ (t−1)

y,k

�

∫

θy
Gy(θy)Ly

�

y (t)k |x
(t)
k ,θy

�

13 if convergence criterion is met then
14 Record state {z1, . . . , zN},

�

θx ,1, . . . ,θx ,K

	

and
�

θy,1, . . . ,θy,K

	

;

Algorithm 3: Gibbs Sampling for DP-GLM.
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6 Experiments
In this chapter, we use a Python implementation of DP-GLM for predicting on test datasets. We apply the Bayesian infer-
ence methods of variational inference and Gibbs sampling to DP-GLM for learning the posterior. We evaluate the method
on several different datasets. We use simulated sine data, heteroscedastic cosmic microwave background data [12, 5],
simulated forward kinematics data from a robot arm with one joint, simulated data from a robot arm with three joints,
as well as inverse kinematics data from a real SARCOS robot arm [13, 15, 70].

6.1 Experimental Setup

For learning the parameters of DP-GLM we use Gibbs sampling (chapter 5) in combination with a variational Bayes EM
algorithm (section 4.4). The Gibbs sampling algorithm generates samples from different modes of the posterior. The
variational Bayes EM algorithm locks onto the respective mode. We start the algorithm by running 1000 iterations of
the Gibbs sampling algorithm. The VBEM algorithm then is initialized with the posterior parameters of the last iteration
of Gibbs sampling and subsequently improves the initialization by iterating the variational E- and M-steps. The varia-
tional lower bound is used as a convergence criterion. If the VLB does not change by a threshold of 0.01, we regard the
algorithm as converged. We set an upper limit of 500 for the iterations of the VBEM algorithm. We use the learned ap-
proximate posterior to calculate the posterior predictive distribution. We finally use the mean of the posterior predictive
distribution to make predictions on test data.

We use the following datasets to evaluate the predictive accuracy of DP-GLM:

• Simulated sine data (Sine): This dataset has one input dimension and one output dimension.

• Cosmic microwave background data (CMB) [12, 5]: This dataset is characterized by heteroscedastic data. The
level of noise in the data is high and input-dependent. The CMB dataset has one input dimension and one output
dimension.

• Simulated forward kinematics data of a robot arm with one joint (Fk_1_joint): The Fk_1_joint dataset is a
forward kinematics dataset of a robot arm with one joint. The input variable is the joint angle and the output
variables are the x- and y- coordinates of the endeffector.

• Simulated forward kinematics data of a robot arm with three joints (Fk_3_joint): The input variables are three
joint angles. The target variables are the x- and y- coordinates of the endeffector.

• Inverse dynamics dataset of a SARCOS robot arm (Sarcos) [13, 70, 15]: This is a high-dimensional dataset of
a real SARCOS robot arm. There are 21 input variables and 7 targets. The inputs are the position, velocity, and
acceleration of the 7 joints. The targets are the motor torques of the joints.

Further details on the datasets are given in the following sections.

6.1.1 Explained Variance Score as a Metric for the Prediction Accuracy

For every dataset, we evaluate the prediction accuracy and the number of models that are used for the predictions. The
prediction accuracy is assessed using the sklearn.metrics.explained_variance_scoremetric of the sklearn package.
We call this metric the explained variance score. The best explained variance score is 1.0 and lower values are worse. The
score can also be negative, as the prediction for test data can be arbitrarily bad. It is important to note that the explained
variance score is dependent on the dataset. If there is a lot of noise in the data, the score is comparatively low. A fitted
regression curve is not able to explain a large share of the variance for very noisy datasets.
The score is calculated as follows:

explained_variance(y, ŷ) = 1−
Var{y − ŷ}

Var{y}
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y is the ground truth for the target and ŷ is the prediction. We use the argument multioutput=‘variance_weighted‘.
If there is more than one output dimension, the individual score of each dimension is weighted by the variance of the
corresponding dimension. If the target dimensions are of different scale, the score puts more importance on explaining
dimensions with higher variance. [71]

6.1.2 Three Types of Experiments

For every dataset we evaluate the predictive accuracy and the number of learned models on test data. We do this by
using different settings of the data and the prior hyperparameters. The following experimental settings are used:

• Training sample size: For every dataset we use five different settings of the training sample size to evaluate the
predictive accuracy and the number of linear models. The average number of training samples can vary for the
datasets. For these experiments, the stick-breaking prior is used. The hyperparameter γ0,2 of the Beta distribution
is held constant at γ0,2 = 10.

• Hyperparameter of the stick-breaking prior: We then fix the largest sample size from the training sample size
evaluation to assess the influence of the hyperparameter γ0,2 of the stick-breaking prior on the prediction accuracy
and the number of linear models. In these experiments, the truncation level K of the stick-breaking prior, which is
an upper bound on the number of components of the approximate posterior, is set to 100.

• Hyperparameter of the Dirichlet prior: To asses the stick-breaking prior we evaluate the Dirichlet prior as a finite
mixture alternative (see section 4.2). We fix the largest sample size from the training sample size evaluation and
use different values α0 for the symmetric Dirichlet prior. We then evaluate the prediction accuracy and the number
of linear models. We set the number of components to 100. In the experiments, in general, many components
will not be represented in the data as their mixing weights are indistinguishable from their prior values. α0 can be
regarded as the effective prior counts for a component [7, 8].

6.1.3 Choice of Hyperparameters

For creating the violin plots in the following sections, each experiment is run for 100 times. In each run for some hyper-
parameters of the prior new values are drawn from a uniform distribution. The details of the initialization of the priors
can be found in appendix E.
For making the derivation of the VBEM algorithm more compact we assume the Wishart distribution as a prior in this the-
sis. For the implementation the inverse Wishart distribution is used, which is closely related to the Wishart distribution.
A draw from a Wishart distribution is a precision matrix, whereas a draw from an inverse Wishart is a covariance matrix.
To convert the draws of the two distributions from a precision matrix to a covariance matrix and vice versa, a matrix
inversion operation suffices. In our implementation, we use the inverse Wishart as a prior on the covariance matrices of
the clusters and as a prior on the covariances matrices of the linear models. The form of the composite conjugate prior
for DP-GLM, for the case of inverse Wishart distributions, can also be found in appendix E.

6.1.4 Violin Plots

We visualize the prediction accuracy and the number of linear models for 100 runs of each setting of the experiments.
Violin Plots combine the ideas of boxplots and kernel density estimation. They show the extreme values, as well as the
whole distribution of the dataset in between the extreme values. The distribution of the dataset is estimated with kernel
density estimation. The black bar within the violin plots shows the lower quartile (0.25-quantile) and the upper quartile
(0.75-quantile). This means that 50% of the data lies within the black bar. The white dot in the violin plot is the median
value. If no black bar is visible, the lower quartile and the upper quartile are identical to the median value and more
than 50% of the data is equal to the median value. [72]

6.2 Sine Dataset

The first dataset that we evaluate is the sine dataset. The training dataset is displayed in Figure 6.1a in black. In figure
6.1a we additionally see the training data fitted into clusters, with the prediction given one draw of the approximate
posterior after the convergence of the algorithm (red). The model learns an appropriate number of models, as well as a
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Table 6.1.: Median of the explained variance score for different choices of α0 of the Dirichlet prior. The best results for
each dataset are marked in bold font.

α0 of Dirichlet prior - Median

0.01 0.1 1 5 10 50 100

Sine 0.121 0.949 0.953 0.957 0.954 0.874 0.863

CMB 0.127 0.170 0.152 0.086 0.079 0.073 0.072

Fk_1_joint 0.981 0.991 0.997 0.998 0.999 0.999 0.999

Fk_3_joints 0.635 0.918 0.925 0.927 0.944 0.970 0.970

Sarcos 0.930 0.941 0.943 0.944 0.944 0.944 0.947

Table 6.2.: Median of the explained variance score for different choices of γ0,2 of the Stick-breaking prior. The best results
for each dataset are marked in bold font.

γ0,2 of the Stick-breaking prior - Median

0.1 1 10 50 100 500 1000

Sine 0.002 0.282 0.952 0.952 0.953 0.953 0.953

CMB 0.011 0.127 0.153 0.166 0.153 0.152 0.152

Fk_1_joint 0.318 0.981 0.992 0.996 0.997 0.997 0.997

Fk_3_joints 0.069 0.687 0.922 0.933 0.924 0.927 0.923

Sarcos 0.929 0.931 0.942 0.943 0.943 0.943 0.942

linear relationship between the training input and outputs within the clusters. We can observe that sometimes additional
linear models are learned at the peaks of the sine curve, where relatively many training samples are concentrated. In
Figure 6.1b we see a test data set of one-fifth of the training data (black). The red regression line represents the mean of
the predictive posterior distribution for the training samples. The algorithm successfully produces a smooth and accurate
prediction for test data. The green lines represent the mean of the predictive posterior distribution plus and minus two
standard deviations. The variance of a mixture, such as a mixture of regression models, is calculated according to the
law of total variance: [73]

Var(X ) = E[Var(X |Θ)] + Var[E(X |Θ)]

The variance of a mixture thus is a mixture of the variances plus an additional variability that is caused by component
uncertainty. We take the square root of the variance to get the standard deviation of the mixture at each training data
point.

Figure 6.2 shows a detailed statistical evaluation of the sine dataset using violin plots. Additionally, the median of the
explained variance score for the stick-breaking prior and the Dirichlet prior are summarized in the tables 6.1 and 6.2 for
all datasets. The tables A.1 and A.2 in appendix A additionally sum up the results using the mean as an alternative metric.

In figure 6.2 each row summarizes the results of one of the three types of experiments that we have conducted. The first
row element (left) hereby always shows the explained variance score on the y-axis, whereas the second row element
(right) displays the corresponding number of linear models on the y-axis. The first row in figure 6.2 contains the violin
plots for different training sample sizes on the x-axis. The second row evaluates the type of experiment, where we have
fixed the largest size of the training data set from the evaluation in the first row. We assess different values of the γ0,2
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Figure 6.1.: Prediction of DP-GLM on training data and test data for the sine data set. (a) We see the training data (black
dots) fitted into clusters. The red dots represent the prediction for training data according to one draw from
the approximate posterior distribution. (b) The test data is displayed as black dots. The smooth regression
estimate (red line) represents the mean of the posterior predictive distributions for the test data. The green
lines are the mean of the posterior predictive distribution plus / minus two standard deviations.

hyperparameter of the Stick-breaking prior (x-axis). In contrast to the second row, the third row in figure 6.2 replaces
the stick-breaking prior by a Dirichlet prior. We analyze various values of the α0 parameter (x-axis) and its’ impact
on the prediction accuracy and the number of linear models (y-axis). Each of the violin plots in figure 6.2 has been
created by executing 100 experiments. Since some hyperparameters of the prior are drawn from uniform distributions,
the initialization can vary for each run of an experiment. Details on the initialization can be found in appendix E.

Evaluation of the Training Sample Size
The first row in Figure 6.2 shows the influence of the training sample size on the explained variance score and the
number of linear models. We use a stick-breaking prior with a hyperparameter of γ0,2 = 10. In figure 6.2a we observe
that the accuracy increases for the number of samples in the training set. Starting from 750 data points relatively high
explained variance scores are reached. For 1500 samples we have a median of the explained variance score of 0.95. The
median is denoted by the white dot in the violin plots. The black bar indicates the range from the 0.25-quantile to the
0.75-quantile. A sample size of only 250 or 500 data points is not sufficient to learn the sinus function from figure 6.1.
For 250 data points, some experiments even have negative scores for the explained variance scores. In 6.2a we observe
that also for larger sample sizes there are outliers with low explained variance score. We attribute this to the fact, that
each run uses uniformly initialized prior hyperparameters. The outliers possibly represent bad initializations of the prior.
Additionally, the Gibbs sampler, which initializes the VBEM algorithm, is of stochastic nature. it generates samples from
modes of the posterior, which are a bad initialization for VBEM.
In figure 6.2b we observe that the number of linear models roughly correlates with the results for the explained variance
score. For small training sample size, few linear models are learned, that cannot represent the sine function accurately.
If 750 or more training samples are used, the median of the number linear models stays within the range of 16 to 17
models.

Evaluation of the Stick-breaking Prior and the Dirichlet Prior
The second row in figure 6.2 shows the explained variance score and the number of linear models for a varying hyper-
parameter γ0,2 of the stick-breaking prior. The size of the dataset is fixed to 1500 samples. In figure 6.2c we see that
values of 0.1 and 1 for γ0,2 are too small. Higher values in the range of 10 to 1000 consistently produce high accuracy
scores. The highest median score of 0.953 is achieved by a setting of the hyperparameter of 100, 500 or 1000. 6.2d
shows that the number of linear models increases with the parameter γ0,2. At a certain threshold of γ0,2, the number of
linear models does not increase anymore with a higher value of γ0,2. In the range of γ0,2 = 10 to γ0,2 = 1000 the median
number of models stays in a range from 17 to 19.
The last row in figure 6.2 shows our evaluation of the hyperparameter α0 of the Dirichlet prior that replaces the stick-
breaking prior. In comparison to the stick-breaking prior it is noteworthy, that a higher α0 consistently raises the number
of linear models (see 6.2b). This is different for the stick-breaking prior, where the median value does not exceed 20
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Figure 6.2.: Sine dataset: Statistical analysis of DP-GLM with simulated sine data using violin plots. (a) and (b): Impact
of the training sample size on the explained variance score (a) and the number of linear models (b). (c) and
(d): Influence of the hyperparameter γ0,2 of the stick-breaking prior on the explained variance score (c) and
the number of linear models (d). (e) and (f): Effect of the α0 hyperparameter of the Dirichlet prior on the
explained variance score (e) and the number of linear models (f).
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Figure 6.3.: Prediction of DP-GLM on training data and test data for the CMB data set. (a) The training data (black dots)
is fitted into clusters. The red dots represent the prediction for training data according to one draw from the
approximate posterior distribution. (b) We make predictions on test data (black dots). The smooth regression
estimate (red line) represents the mean of the posterior predictive distributions for the test data. The green
lines are the mean of the posterior predictive distribution plus / minus two standard deviations.

models. For α0 = 100 we have a median result of 95 models. This high number of models is not necessary for approxi-
mating the suggested sine function and correlates with a worse performance in the accuracy score. For α0 = 100 we have
a score of 0.863. The highest median score is 0.957 for α0 = 5. This is slightly higher than the highest median score of
the stick-breaking prior.

We conclude that for a proper choice of the training sample size and the prior hyperparameters, DP-GLM achieves a
high prediction accuracy on the simulated sine dataset. The stick-breaking prior is more robust to the choice of the
hyperparameters, as there is no decline in the median score for relatively high values of γ0,2.

6.3 Cosmic Microwave Background Dataset

The second dataset we are evaluating is the cosmic microwave background (CMB) dataset [12, 5]. The training data
is shown in Figure 6.3a. In this figure, we also see the prediction for one draw of the posterior (red). We observe that
the data is fitted to an overall of nine clusters. For each cluster, a linear model is learned. The approximate posterior
is used to calculate the predictive distribution to make predictions on test data. This is depicted in figure 6.3b. The
red line shows the prediction using the mean of the predictive distribution. The green lines represent the mean plus
and minus two standard deviations. For calculating the standard deviation we use the law of total variance. In figure
6.3b we can observe that DP-GLM can deal with input-dependent variance and adjusts the uncertainty of the predictions
accordingly. The uncertainty of the predictions is higher on the right side of x-axis the plot, where the input data has
the highest intensity of noise. In figure 6.4 the statistical evaluation of the CMB dataset is summarized. The plot has
the same structure as the one for the sine dataset. We have three rows, that focus on the training sample size, and the
hyperparameters of the stick-breaking prior and the Dirichlet prior.

Evaluation of the Training Sample Size
In Figure 6.4a we see the effect of the training sample size on the explained variance score. An observation is that the
explained variance score is overall much lower than for the sine data set. This can be explained by the fact, that the CMB
dataset is very noisy. For noisy datasets, a fitted curve can not make very accurate predictions. A second finding is that,
in contrast to the sine dataset, there is a less linear relationship of training sample size and explained variance score. For
100 training samples, a score of 0.573 is reached. The sample sizes 200, 300, 400 and 600 lie in a range of medians close
to zero up to a score of 0.169 for 600 samples. We can explain this fact by the heteroscedasticity of the CMB dataset. If
there are only 100 training data points, it is less likely that these training data points include some of the outliers of the
dataset. These outliers with a large variance in comparison to the rest of the dataset can be seen in figure 6.4 for x = 800
and larger values on the x-axis. If the outliers are not included in the training samples, it becomes easier to fit the data
with a small number of linear models.
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Figure 6.4.: CMB dataset: Statistical analysis of DP-GLM with cosmic microwave background data using violin plots. (a)
and (b): Impact of the training sample size on the explained variance score (a) and the number of linear
models (b). (c) and (d): Influence of the hyperparameter γ0,2 of the stick-breaking prior on the explained
variance score (c) and the number of linear models (d). (e) and (f): Effect of the α0 hyperparameter of the
Dirichlet prior on the explained variance score (e) and the number of linear models (f).
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(a) (b)

Figure 6.5.: Prediction of DP-GLM on training data and test data for forward kinematics data set with one joint
(Fk_1_joint). (a) We see the training data (black) fitted into clusters. The red dots represent the predic-
tion for training data according to one draw from the approximate posterior distribution. (b) The test data
is displayed as black dots. The smooth regression estimate (red line) represents the mean of the posterior
predictive distributions for the test data.

The medians of the number of linear models lie within a small range of 2 to 4 models. We again see the tendency of an
increasing number of models for larger sample sizes.

Evaluation of the Stick-breaking Prior and the Dirichlet Prior
In 6.4c we can confirm the finding of the sine dataset that the accuracy score is not very sensitive to the setting of the
hyperparameter γ0,2 of the stick-breaking prior, as long as the parameter is not chosen too small. For a value of 0.1 and
1 the regression performs relatively bad. The best median score of 0.166 is achieved for γ0,2 = 50. The number of linear
models in 6.4d ranges from only one model to a median value of 5 models. As in the case of the sine dataset for high
values of γ0,2 the number of modelsdoes not change substantially.
In figures 6.4e and 6.4f we see that there is a correlation between high values of α0, an increasing number of linear
models, and a decreasing explained variance score. The stick-breaking prior indeed seems to be less sensitive to the
hyperparameters than the Dirichlet prior. On the other hand, the overall best median score of 0.170 is achieved by using
a Dirichlet prior with α = 0.1. This is a slightly higher value than a score of 0.166 for the stick-breaking prior with
γ0,2 = 50.

6.4 Forward Kinematics Dataset with One Joint

The third dataset is a forward kinematics dataset of a robot arm with one joint. An equivalent analogy for the data is the
kinematics of a pendulum. The data is simulated according to the following equations:

x = l1 · cos(θ )

y = l1 · sin(θ )

In these equations, θ is the joint angle and x and y are the x- and y-coordinates of the endeffector of the robot arm. l1
is the length of the arm, which is set to 1. For the data generation, we uniformly draw an angle from the interval [0,2π)
and calculate the respective endeffector coordinates x and y .
We thus have a regression problem with one input, θ , and two outputs, x , and y . The z dimension of the endeffector is
ignored, which means that we have the kinematic of a robot arm within a plane and the y-coordinate of the endeffector
is kept constant. Apart from the fact that there are two output variables, there is another feature of the Fk_1_joint dataset
that differentiates it from the sine and the CMB datasets. There is no noise added in the equations above, whereas there
is noise in the previously evaluated datasets.
Figure 6.5 shows a three-dimensional plot of the output variables x and y, as well as the target variable of the joint angle.
The black training data in figure 6.5a has no noise added. In figure 6.5a we see a draw from the training data, where
8 linear models are in use. The plot on the right hand (6.5b) side shows the corresponding smooth prediction on test data.

58



30 100 250 500 1000

0.8

0.85

0.9

0.95

1

Training Sample Size

Ex
pl

ai
ne

d
Va

ri
an

ce
Sc

or
e

(a)

30 100 250 500 1000

2

4

6

8

Training Sample Size

N
um

be
r

of
Li

ne
ar

M
od

el
s

(b)

0.1 1 10 50 100 500 1000

0.4

0.6

0.8

1

γ0,2 of Stick-breaking Prior

Ex
pl

ai
ne

d
Va

ri
an

ce
Sc

or
e

(c)

0.1 1 10 50 100 500 1000

2

4

6

8

γ0,2 of Stick-breaking Prior

N
um

be
r

of
Li

ne
ar

M
od

el
s

(d)

0.01 0.1 1 5 10 50 100

0.8

0.85

0.9

0.95

1

α0 of Dirichlet Prior

Ex
pl

ai
ne

d
Va

ri
an

ce
Sc

or
e

(e)

0.01 0.1 1 5 10 50 100
0

5

10

15

20

α0 of Dirichlet Prior

N
um

be
r

of
Li

ne
ar

M
od

el
s

(f)

Figure 6.6.: Fk_1_joint dataset: Statistical analysis of DP-GLM with forward kinematics data of a robot arm with one joint
using violin plots. (a) and (b): Impact of the training sample size on the explained variance score (a) and
the number of linear models (b). (c) and (d): Influence of the hyperparameter γ0,2 of the stick-breaking
prior on the explained variance score (c) and the number of linear models (d). (e) and (f): Effect of the α0
hyperparameter of the Dirichlet prior on the explained variance score (e) and the number of linear models (f).
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Evaluation of the Training Sample Size
As there is no noise added to the dataset, we can achieve very high explained variance scores. Figure 6.6a and 6.6b show
the influence of the size of the training set on the prediction accuracy and the number of linear models. For a sample size
of 1000 we have an accuracy score of 0.992. It is worth noting that an accuracy score of 0.944 can be achieved with only
30 training data points. As the violin plots indicate, there are some outliers of experiments with a low accuracy score. We
attribute this to the stochastic initialization of the hyperparameters. The median number of linear models ranges from 3
to 4 models.

Evaluation of the Stick-breaking Prior and the Dirichlet Prior
Figure 6.6a and 6.6b confirm our results from the other datasets. The stick-breaking prior is not sensitive to the hyperpa-
rameter γ0,2, in case the value of the hyperparameter is not chosen too low. For a γ0,2 of 0.1, 1 and 10 a median of 1, 3
and 4 linear models is used. For higher γ0,2 the median stays constant at 5 linear models. The highest median explained
variance score of 0.997 is achieved by a value of the hyperparameter γ0,2 of 10, 100 or 1000.
We have the overall highest median explained variance score of 0.999 for the Dirichlet prior with a α0 of 10, 50 or 100.

6.5 Forward Kinematics Dataset with Three Joints

The forth data set is similar to the third one. We have a simulated forward kinematics datasets of a robot arm with three
joints. The dataset is generated using the following kinematic equations:

x = l1 · cos(θ1) + l2 · cos(θ1 + θ2) + l3 · cos(θ1 + θ2 + θ3)

y = l1 · sin(θ1) + l2 · sin(θ1 + θ2) + l3 · sin(θ1 + θ2 + θ3)

There are three joint angles θ1,θ2 and θ3, as well as the endeffector position that is described by x and y . The lengths
l1, l2 and l3 are set to 1. As in the case of the dataset Fk_1_ joint, the dataset Fk_3_ joint does not have noise added
to the kinematic equations. In contrast to the Fk_1_ joint dataset, we now have three input dimensions and two output
dimensions. For the data generation we sample the angles from a uniform distribution on the range of [0,2π) and then
calculate the endeffector position according to the kinematic equations.

Evaluation of the Training Sample Size
Regarding the training sample size we see a pattern in the figures 6.7a and 6.7b that a larger sample size results in
higher accuracy and more linear models. The median of the explained variance score for a sample size of 2500 is 0.921.
Depending on the sample size the number of models ranges from 3 to 13. If we compare this dataset to Fk_1_ joint we
notice that the explained variance score is a bit lower and the number of used linear models is higher. This makes sense
as Fk_3_ joint has a total of three input angles.

Evaluation of the Stick-breaking Prior and the Dirichlet Prior
The figures 6.7c and 6.7d validate our findings for the other datasets. The stick-breaking prior is not sensitive to γ0,2, if
the value is chosen high enough. For values of 10, 50, 100, 500 or 1000 a median number of 13 to 14 models is used.
A median explained variance score of 0.927 is the highest in the experiments, where a stick-breaking prior is assumed.
This score is obtained at γ0,2 = 500. The Dirichlet prior accomplishes a median accuracy of 0.970 if α0 is set to a value
of 50 or 100. In contrast to the stick-breaking prior, the number of models continuously rises for higher α0. Overall the
range of the median of used models lies between 3 and 10 models.

6.6 Sarcos Inverse Dynamics Dataset

The last dataset is an inverse dynamics dataset of a real SARCOS robot arm [13, 70, 15]. A robot is governed by the
following state dynamics: [13]

M(q)q̈ +C(q , q̇) +G(q) + ε(q , q̇ , q̈) = u

Here the variables q , q̇ , q̈ are joint angles, velocities and accelerations. u denotes the torque that is applied to the joints.
M(q) is the inertia matrix of the robot, C(q .q̇) represents the Coriolis and centripetal forces and G(q) represents the
gravity forces. ε(q , q̇ , q̈) are non-linearities of the robot that are not part of the rigid body dynamics. If the aim is to learn
the torques u, while the above inertia, Coriolis and gravity matrices are unknown, one can learn the mapping q , q̇ , q̈ → u
from data. Such a mapping can then be used for model-based control.
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Figure 6.7.: Fk_3_joints dataset: Statistical analysis of DP-GLM with forward kinematics data of a robot arm with three
joints using violin plots. (a) and (b): Impact of the training sample size on the explained variance score (a)
and the number of linear models (b). (c) and (d): Influence of the hyperparameter γ0,2 of the stick-breaking
prior on the explained variance score (c) and the number of linear models (d). (e) and (f): Effect of the α0
hyperparameter of the Dirichlet prior on the explained variance score (e) and the number of linear models (f).
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We want to learn the mapping of the joint angles, velocities and accelerations of 7 joints to the torques of these joints. We
thus have 3 input variables per joint and a total of 21 input dimensions. The 7 output dimensions represent the torques
of the joints. The data is sampled from a real SARCOS robot arm. As the data is taken from a real robot, the mapping
that is learned does not only include the rigid-body dynamics, but also the nonlinearities that arise through friction and
other factors. [13, 70, 15]

Evaluation of the Training Sample Size
In figure 6.8a) and 6.8b) the impact of the training sample size on the explained variance score and on the number of
linear models is shown. For all sample sizes, the number of linear models has a low median value. The median ranges
from one model for 500 data points to three models for 2500 training samples. DP-GLM is nevertheless able to achieve
accuracy scores of over 0.9 if the sample size is increased to 2000 or 2500.

Evaluation of the Stick-breaking Prior and the Dirichlet Prior
For the Sarcos dataset, we observe in the figures 6.8c to f that neither a variation in the hyperparameter γ0,2 of the
stick-breaking prior, nor a variation in the hyperparameter α0 of the Dirichlet prior have a large impact on the number
of used models. The median value for most settings stays constant at three linear models. The predictive accuracy only
suffers, if the values of the hyperparameters are too low.
The overall highest median score of 0.947 is achieved with a Dirichlet prior and a hyperparameter setting of α0 = 100.
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Figure 6.8.: Sarcos dataset: Statistical analysis of DP-GLM with inverse dynamics data of a SARCOS robot arm using violin
plots. (a) and (b): Impact of the training sample size on the explained variance score (a) and the number
of linear models (b). (c) and (d): Influence of the hyperparameter γ0,2 of the stick-breaking prior on the
explained variance score (c) and the number of linear models (d). (e) and (f): Effect of the α0 hyperparameter
of the Dirichlet prior on the explained variance score (e) and the number of linear models (f).
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7 Discussion and Outlook
In this thesis we have covered Bayesian Inference for regression using nonparametric infinite mixtures. After reviewing
some general foundations from the field of machine learning, we gave a short introduction to different methods for
regression with locally linear models. The focus was on the Bayesian regression method of Dirichlet process mixtures of
generalized linear models. The idea of this regression method is to model a complex response distribution by means of
simpler linear models. We listed some advantages of the method, such as a quantification of the uncertainty of predic-
tions and the applicability to heteroscedastic data.

Learning the posterior distribution of DP-GLM is hard as intractable integrations over the hidden variables are involved.
The main contributions of this thesis are the implementation of a Gibbs sampling algorithm and the derivation and im-
plementation of a mean field variational inference algorithm. In the context of GMM, DP-GMM, and DP-GLM we also
call the VI algorithm variational Bayes EM.
We adjusted an existing Gibbs sampling algorithm for infinite Gaussian mixture models [9, 10, 11] to make it applicable
to DP-GLM. A similar, collapsed Gibbs sampling method has been suggested in the original DP-GLM paper [5]. The
starting point for our variational Bayes EM algorithm was the variational treatment of a finite mixture of unconditional
Gaussians in literature [7, 8]. We extended this basis to the infinite mixture case by using the stick-breaking construction
of the Dirichlet process as a prior, as described in [56]. The last step was to extend the variational treatment to the
regression case. We applied the mean field assumption to make the posterior tractable. We derived and implemented
iterative mean field update equations, that have a similar structure like the expectation maximization algorithm. To our
knowledge mean field variational inference has not been applied to DP-GLM before.

Using the approximate posterior we derived and implemented the posterior predictive distribution to make predictions
for test data. We have evaluated our method on various data sets. The main criterion was the prediction accuracy of
DP-GLM. The explained variance score was used as a metric for measuring accuracy. We evaluated the stick-breaking
prior and a Dirichlet prior as a finite mixture alternative with different settings of the hyperparameters. We also varied
the training sample size. The results suggest that the stick-breaking prior is less sensitive to the choice of hyperpa-
rameters than the Dirichlet prior. We evaluated DP-GLM on a broad range of data sets. We used simulated sine data,
a heteroscedastic dataset of the cosmic microwave background, simulated forward kinematics data of robot arms and
inverse dynamics data of a real SARCOS robot arm. The results are consistent throughout the evaluated datasets. The
prediction accuracy is the highest for datasets with little noise, such as the kinematics datasets, where we achieve an
explained variance score of up to 0.999.

Several topics can be addressed in future research.
In this thesis, we focused on locally linear models. The justification for this approach is, that linear models constitute
a good balance between bias and variance of the global regression estimate [34]. Nevertheless, it would be important
to do an empirical comparison of our approach of locally linear models and higher-order local polynomials. Hereby
the local polynomials still need to be linear in the parameters to be consistent with the GLM setting but can use more
complex features. The aim of such an empirical assessment could be to determine an optimal polynomial degree for local
regression.

Bayesian inference, in particular variational inference, has recently been successfully applied to robotics applications
[74, 75]. A potential application of DP-GLM in combination with Bayesian inference is to learn the mapping of the joint
positions, velocities, and accelerations to the torques of the joint motors of a robot. This is known as learning the inverse
dynamics. We have demonstrated this on a high dimensional dataset with the SARCOS dataset and achieved an explained
variance score of up to 0.947 with a training sample size of 2500. It can be expected that a larger amount of training
data points would further increase the number of used linear models and thus accuracy score.
In future research, the learned mapping of joint positions, velocities, and accelerations to joint torques can be used for
determining feedforward motor commands. In this way, the regression method can be applied for control. A next step
of evaluating the predictive accuracy of DP-GLM is, to use it for model-based control and to compare the result to other
state-of-the-art function approximators. In this context, an interesting research question is to apply DP-GLM as an alter-
native function approximator in a reinforcement learning setting. [13]
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A further interesting perspective for future research is that alternative inference methods could be applied to DP-GLM.
In some cases, the mean field assumption of VI might be too inaccurate for approximating the true posterior. The mean
field approximation in combination with a cost function that is derived from the information projection, leads to a focus
on one of the modes of the posterior. In other cases, the iterative gradient ascent algorithm might get stuck in poor local
optima. Variational autoencoders [76] are an alternative way of learning latent variable models that can circumvent these
weaknesses. They are based on variational inference and add several further ideas. Firstly, variational autoencoders use
black-box VI methods to maximize the evidence lower bound by gradient ascent, rather than using an EM-like approach.
Hereby a low-variance gradient estimator is utilized, which is based on a reparametrization trick [77, 78]. Lastly, the
approximate posterior is parametrized by a neural net, which is called the encoder. The joint distribution of data and
latent variables is parametrized by a neural net that is named decoder.

Another research stream for future investigation is to further look into the paradigm of locally linear models by examining
spatially and temporally correlated data. This can be done by using hidden Markov models and state space models
instead of the regression approach. Many non-linear dynamical phenomena can be described by a system that switches
a set of linear dynamical systems, such as in Fox et al. (2009) [79]. The authors propose a nonparametric Bayesian
way of learning to switch linear dynamical systems and successfully apply this interesting approach to diverse dynamical
systems like dancing honeybees and stock markets. The extension to recurrent switching linear dynamical systems makes
the approach much more interpretable [80].
Regarding the Bayesian nonparametric area of research, the logistic stick-breaking process [27] is a tool that can extend
the stick-breaking construction of the Dirichlet process to temporally or spatially correlated data.
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A Results

Table A.1.:Mean of the explained variance score for different choices of α0 of the Dirichlet prior. The best results for each
dataset are marked in bold font.

α0 of Dirichlet prior - Mean

0.01 0.1 1 5 10 50 100

Sine 0.131 0.887 0.951 0.952 0.940 0.869 0.864

CMB 0.109 0.142 0.134 0.112 0.095 0.076 0.062

Fk_1_joint 0.908 0.971 0.986 0.987 0.983 0.996 0.970

Fk_3_joints 0.615 0.914 0.918 0.924 0.934 0.961 0.965

Sarcos 0.934 0.937 0.943 0.944 0.945 0.945 0.946

Table A.2.:Mean of the explained variance score for different choices of γ0,2 of the Stick-breaking prior. The best results
for each dataset are marked in bold font.

γ0,2 of the Stick-breaking prior - Mean

0.1 1 10 50 100 500 1000

Sine 0.018 0.289 0.930 0.950 0.948 0.951 0.945

CMB 0.023 0.110 0.135 0.143 0.136 0.135 0.130

Fk_1_joint 0.509 0.942 0.988 0.990 0.993 0.986 0.991

Fk_3_joints 0.173 0.639 0.917 0.928 0.924 0.922 0.920

Sarcos 0.930 0.933 0.941 0.943 0.943 0.942 0.942
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B Summary of the VBEM Algorithm for DP-GLM

Summary of the Mean Field Update Equations

Likelihood function:
In the general case of multivariate inputs and multivariate outputs the following likelihood function can be used for
DP-GLM:

p(y , x | z,µ,Σ,β , V) = p (y | x , z,β , V) p (x | z,µ,Σ)

=
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Conjugate prior:
We assume the following conjugate prior:

p (z, v ,µ,Σ,β , V) = p (z | π) p (v ) p (µ | Σ) p (Σ) p (β | V) p (V)
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Variational posterior:
As a result of applying the mean field update equation (4.2) we get an approximation variational posterior of the form:

q? (z, v ,µ,Σ,β , V) = q? (z)q? (v ,µ,Σ,β , V)
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Variational E-step:
The responsibilities are the variational parameters of the following Categorical distribution:

q?(z) =
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The responsibilities can be calculated as:
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2
(yn −MkXn)

T Pk (yn −MkXn)

+Eq(v ,µ,Σ,β ,V) [log vk] +
k−1
∑

j=1

Eq(v ,µ,Σ,β ,V) [log (1− vi)]

!

We here use:

Eq(z,v ,µ,Σ,β ,V) [log vk] =ψ
�

γk,1

�

−ψ
�

γk,1 + γk,2

�

Eq(z,v ,µ,Σ,β ,V) [log (1− vk)] =ψ
�

γk,2

�

−ψ
�

γk,1 + γk,2

�

log Σ̃k =
m
∑

j=1

ψ

�

νk + 1− j
2

�

+m log2+ log |Σk|

log Ṽk =
d
∑

j=1

ψ

�

ηk + 1− j
2

�

+ d log2+ log |Vk|
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Variational M-step:
The update equation for the remaining variational parameters, which are needed for the variational M-step, are as
follows:

γk,1 =
N
∑

n=1

rnk + γ0,1

γk,2 =
N
∑

n=1

K
∑

j=k+1

rn j + γ0,2

λk = λ0 + Nk

mk =
1
λk
(Nkx k +λ0m0)

vk = v0 + Nk

L−1
k = L−1

0 + NkSk +
λ0Nk

λk + Nk
(m0 − x k) (m0 − x k)

T

Kk =
N
∑

n=1

rnkXnX T
n + K0

= NkRk + NkX kX
T
k + K0

Mk =

�

N
∑

n=1

rnkXn y T
n + K0M T

0

�

K−1
k

=
�

NkXY k + K0M T
0

�

K−1
k

ηk = η0 + Nk

P−1
k = P−1

0 +M0 K0M T
0 +

N
∑

n=1

rnk yn y T
n −Mk KkM T

k

= P−1
0 +M0 K0M T

0 + NkQk + Nk y k y T
k −Mk KkM T

k

We use the following statistics of the data:

Nk =
N
∑

n=1

rnk

x k =
1
Nk

N
∑

n=1

rnkxn

Sk =
1
Nk

N
∑

n=1

rnk (x i − x k) (x i − x k)
T

X k =
1
Nk

N
∑

n=1

rnkXn

Rk =
1
Nk

N
∑

n=1

rnk(Xi − X k)(Xi − X k)
T

XY k =
1
Nk

N
∑

n=1

rnkXn y T
n

y k =
1
Nk

N
∑

n=1

rnk yn

Qk =
1
Nk

N
∑

n=1

rnk(yn − y k)(yn − y k)
T
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C Probability Distributions
In the following we list some of the probability distributions that are used in this thesis. The definitions are taken from
Appendix B of [7].

Beta Distribution

The Beta distribution is a distribution over a continuous variable µ ∈ [0,1]. The two parameters a and b are constrained
to be positive.

Beta(µ|a, b) =
Γ (a+ b)
Γ (a)Γ (b)

µa−1(1−µ)b−1 (C.1)

E[µ] =
a

a+ b
(C.2)

var[µ] =
ab

(a+ b)2(a+ b+ 1)
(C.3)

mode[µ] =
a− 1

a+ b− 2
(C.4)

Γ (a) is the Gamma function. The Beta distribution is a special case of the Dirichlet distribution for K = 2.

Categorical Distribution

The categorical or discrete distribution is a distribution over a K-dimensional binary variable x with components xk ∈
{0,1}. The parameters are {µk}. These are constrained by 0≤ µk ≤ 1 and

∑

k µk = 1.

p(x ) =
K
∏

k=1

µ
xk
k (C.5)

E [xk] = µk (C.6)

var [xk] = µk (1−µk) (C.7)

cov
�

x j xk

�

= I jk (1−µk) (C.8)

H[x] = −
M
∑

k=1

µk lnµk (C.9)

I jk is the j, k element of the identity matrix. The conjugate prior for the parameters µk is the Dirichlet distribution.

Dirichlet Distribution

This is a distribution over K random variables µk, where k = 1, . . . , K . The random variables are constrained to:

0¶ µk ¶ 1,
K
∑

k=1

µk = 1 (C.10)
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Using µ= (µ1, . . . ,µK)
T and α= (α1, . . . ,αK)

T we have:

Dir(µ|α) = C(α)
K
∏

k=1

µ
αk−1
k (C.11)

E [µk] =
αk

bα
(C.12)

var [µk] =
αk (bα−αk)
bα2(bα+ 1)

(C.13)

cov
�

µ jµk

�

= −
α jαk

bα2(bα+ 1)
(C.14)

mode [µk] =
αk − 1
bα− K

(C.15)

E [lnµk] =ψ (αk)−ψ(bα) (C.16)

H[µ] = −
K
∑

k=1

(αk − 1) {ψ (αk)−ψ(bα)} − ln C(α) (C.17)

H denotes the entropy. We are using the following definitions:

C(α) =
Γ (bα)

Γ (α1) · · · Γ (αK)
(C.18)

bα=
K
∑

k=1

αk (C.19)

ψ(a) is the digamma function:

ψ(a) =
d

da
ln Γ (a) (C.20)

The parameters αk are constrained to positive values. The Dirichlet distribution is a conjugate prior to the categorical
distribution. H denotes the entropy.

Gamma Distribution

This is a probability distribution over a positive random variable τ > 0. The parameters are a and b, which are subject
to the constraints a > 0 and b > 0.

Ga(τ|a, b) =
1
Γ (a)

baτa−1e−bτ (C.21)

E[τ] =
a
b

(C.22)

var[τ] =
a
b2

(C.23)

mode[τ] =
a− 1

b
for α¾ 1 (C.24)

E[lnτ] =ψ(a)− ln b (C.25)

H[τ] = ln Γ (a)− (a− 1)ψ(a)− ln b+ a (C.26)

ψ(a) is the digamma function (see equation C.20). The Gamma distribution is the conjugate prior for the precision of a
univariate Gaussian. H denotes the entropy.

75



Normal Distribution

The normal distribution is also called Gaussian. In the univariate case it is a distribution over a continuous variable
x ∈ (−∞,∞). It has two parameters, the mean µ ∈ (−∞,∞) and the variance σ2 > 0.

N
�

x |µ,σ2
�

=
1

(2πσ2)1/2
exp

§

−
1

2σ2
(x −µ)2

ª

(C.27)

E[x] = µ (C.28)

var[x] = σ2 (C.29)

mode[x] = µ (C.30)

H[x] =
1
2

lnσ2 +
1
2
(1+ ln(2π)) (C.31)

The inverse of the variance is called precision and the square root of the variance is called standard deviation. The
conjugate prior for the mean is a normal distribution. The conjugate prior for the precision is a Gamma distribution. The
conjugate prior for the variance is an inverse Gamma distribution.
In the multivariate case of a D-dimensional vector x , the Gaussian has a D-dimensional mean vector µ and a D × D
covariance matrix Σ. The covariance matrix must be symmetric and positive definite.

N(x |µ,Σ) =
1

(2π)D/2
1
|Σ|1/2

exp
§

−
1
2
(x −µ)TΣ−1(x −µ)

ª

(C.32)

E[x ] = µ (C.33)

cov[x ] = Σ (C.34)

mode[x ] = µ (C.35)

H[x ] =
1
2

ln |Σ|+
D
2
(1+ ln(2π)) (C.36)

The conjugate prior on a multivariate Normal is again a multivariate Normal. The conjugate prior on the precision of
a multivariate Normal is the Wishart distribution. The conjugate prior on the covariance matrix is an inverse Wishart
distribution.

Wishart Distribution

The Wishart distribution is the conjugate prior for the precision of a multivariate Normal distribution.

Wi(Λ|W ,ν) = B(W ,ν)|Λ|(ν−D−1)/2 exp
�

−
1
2

Tr
�

W−1Λ
�

�

(C.37)

B(W ,ν) = |W |−ν/2
�

2νD/2πD(D−1)/4
D
∏

i=1

Γ

�

ν+ 1− i
2

�

�−1

(C.38)

E[Λ] = νW (C.39)

E[ln |Λ|] =
D
∑

i=1

ψ

�

ν+ 1− i
2

�

+ D ln2+ ln |W (C.40)

H[Λ] = − ln B(W ,ν)−
(ν− D− 1)

2
E[ln |Λ|] +

νD
2

(C.41)

W is a D by D symmetric and positive definite matrix. ψ(a) is the digamma function (see equation C.20). v is called the
number of degrees of freedom and is restricted to ν > D − 1. The Wishart distribution is a generalization of the Gamma
distribution to the multivariate case. H denotes the entropy.
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D Derivations

D.1 Variational Bayes EM Algorithm for GMM

Simplifying the Update Equation for L−1
k

For simplifying the update equation for L−1
k we need this definition:

Sk =
1
Nk

N
∑

n=1

rnk (x i − x k) (x i − x k)
T

And the following transformation, where we make use of the definition of x k:

N
∑

n=1

rnkxnx T
n =

N
∑

n=1

rnk (xn − x k + x k) (xn − x k + x k)
T

=
N
∑

n=1

rnk

�

(xn − x k) (xn − x k)
T + x kx T

k + 2 (xn − x k) x
T
k

�

=
N
∑

n=1

rnk

�

(xn − x k) (xn − x k)
T�+

N
∑

n=1

rnk

�

x kx T
k

�

+
N
∑

n=1

rnk

�

2 (xn − x k) x
T
k

�

= NkSk + Nkx kx T
k + 2

N
∑

n=1

rnk

�

(xn − x k) x
T
k

�

= NkSk + Nkx kx T
k + 2

�

(Nkx k − Nkx k) x
T
k

�

= NkSk + Nkx kx T
k

Using these expressions we now can simplify T . We first multiply out and then inspect the constant, linear and quadratic
terms with respect to µk.

T = λ0

�

µkµ
T
k −µkmT

0 −m0µ
T
k +m0mT

0

�

+ L−1
0 +

N
∑

n=1

rnk

�

xnx T
n − xnµ

T
k −µkx T

n +µkµ
T
k

�

−λk

�

µkµ
T
k −µkmT

k −mkµ
T
k +mkmT

k

�

The quadratic term is as follows:

(quadratic) = λ0µkµ
T
k +

N
∑

n=1

rnkµkµ
T
k −λkµkµ

T
k =

�

λ0 +
N
∑

n=1

rnk −λk

�

µkµ
T
k = 0

This follows from the definition of λk.
The linear term is:

(linear) = −2λ0m0µ
T
k +

N
∑

n=1

2rnkxnµ
T
k + 2λkmkµ

T
k

= 2

�

−λ0m0 +
N
∑

n=1

rnkxn +λkmk

�

µT
k = 0
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The last step is due to the definition of mk.
The only remaining term is the constant one:

(const) = L−1
0 +λ0m0mT

0 +
N
∑

n=1

rnkxnx T
n −λkmkmT

k

= L−1
0 +λ0m0mT

0 + NkSk + Nkx kx T
k −λkmkmT

k

= L−1
0 + NkSk +λ0m0mT

0 + Nkx kx T
k −

1
λk
λ2

kmkmT
k

= L−1
0 + NkSk +λ0m0 mT

0 + Nkx kx T
k −

1
λk
(λ0m0 + NK x k) (λ0m0 + NK x k)

T

= L−1
0 + NkSk +

�

λ0 −
λ2

0

λk

�

m0mT
0 +

�

Nk −
N2

k

λk

�

x kx T
k −

1
λk

2 (λ0m0) · (NK x k)
T

= L−1
0 + NkSk +

λ0Nk

λk + Nk
m0mT

0 +
λ0Nk

λk + Nk
x kx T

k −
λ0NK

λk + Nk
2 (m0) · (x k)

T

= L−1
0 + NkSk +

λ0Nk

λk + Nk
(m0 − x k) (m0 − x k)

T

Our simplified update equation thus is:

L−1
k = L−1

0 + NkSk +
λ0Nk

λk + Nk
(m0 − x k) (m0 − x k)

T

Variational Lower Bound

The variational lower bound on the marginal likelihood of the variational mixture of Gaussians is:

L=
∑

z

∫∫∫

q(z,π,µ,Σ) log
§

p(x , z,π,µ,Σ)
q(z,π,µ,Σ)

ª

dπdµ dΣ

= E[log p(x , z,π,µ,Σ)]−E[log q(z,π,µ,Σ)]

= E[log p(x |z,µ,Σ)] +E[log p(z|π)] +E[log p(π)] +E[log p(µ,Σ)]

−E[log q(z)]−E[log q(π)]−E[log q(µ,Σ)]

All expectations are with respect to q(z,π,µ,Σ). The terms involving expectations over the logs of the q distributions are
the negative entropies of these distributions.
According to the definition of the likelihood in equation 4.3, we have for the first term:

E[log p(x |z,µ,Σ)] =
N
∑

n=1

K
∑

k=1

E
�

znk logN
�

xn|µk,Σ−1
k

��

=
N
∑

n=1

K
∑

k=1

E [znk] ·E
�

−
D
2

log2π+
1
2

log |Σk| −
1
2
(xn −µk)

T Σk (xn −µk)
�

=
1
2

N
∑

n=1

K
∑

k=1

E [znk] ·
�

−D log2π+E [log |Σk|]−E
�

(xn −µk)
T Σk (xn −µk)

�	

=
1
2

N
∑

n=1

K
∑

k=1

rnk ·
�

−D log2π+ log eΣk − Dλ−1
k − vk (xn −mk)

T Lk (xn −mk)
	

The first three terms in the bracket can be written as:

1
2

N
∑

n=1

K
∑

k=1

rnk ·
�

−D log2π+ log Σ̃k − Dλ−1
k

	

=
1
2

K
∑

k=1

Nk ·
�

−D log2π+ log eΣk − Dλ−1
k

�

(D.1)
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The last term in the bracket can be further simplified. We use the previously derived statement y TΣk y = Tr
�

y y TΣk

�

to
show that:

1
2

N
∑

n=1

K
∑

k=1

rnk ·
�

−vk (xn −mk)
T Lk (xn −mk)

	

= −
1
2

N
∑

n=1

K
∑

k=1

Tr
�

rnkvk · (xn −mk) (xn −mk)
T · Lk

�

= −
1
2

K
∑

k=1

Tr

�

N
∑

n=1

rnkvk · (xn −mk) (xn −mk)
T · Lk

�

We can simplify a part of this term to:

N
∑

n=1

rnkvk · (xn −mk) (xn −mk)
T = vk

N
∑

n=1

rnk · (x k −mk + xn − x k) (x k −mk + xn − x k)
T

= vk

N
∑

n=1

rnk · (x k −mk) (x k −mk)
T + vk

N
∑

n=1

rnk · (xn − x k) (xn − x k)
T

+ vk

N
∑

n=1

rnk · 2 (x k −mk) (xn − x k)
T

= vkNk · (x k −mk) (x k −mk)
T + vkNkSk + vk · 2 (x k −mk)

�

N
∑

n=1

rnkx n −
N
∑

n=1

rnkx k

�T

= vkNk · (x k −mk) (x k −mk)
T + vkNkSk

The last term in the bracket therefore is equivalent to:

1
2

N
∑

n=1

K
∑

k=1

rnk ·
�

−vk (xn −mk)
T Lk (xn −mk)

	

= −
1
2

K
∑

k=1

Tr
�

vkNk · (x k −mk) (x k −mk)
T Lk

�

−
1
2

K
∑

k=1

Tr [vkNkSkLk]

= −
1
2

K
∑

k=1

Nkvk · (x k −mk) Lk (x k −mk)
T −

1
2

K
∑

k=1

Nkvk Tr [SkLk]

Combining these results we get the following solution for the first term of the variational lower bound L:

E[log p(x |z,µ,Σ)] =
1
2

K
∑

k=1

Nk

�

log eΣk − Dλ−1
k − νk Tr (SkLk)− νk (x k −mk)

T Lk (x k −mk)− D log(2π)
	

According to the definition of the conjugate prior in equation 4.4, p(z|π) is a Categorical distribution. For the second
term of L we get:

E[log p(z|π)] =
N
∑

n=1

K
∑

k=1

E [znk logπk] =
N
∑

n=1

K
∑

k=1

rnk log eπk

According to the definition of the conjugate prior in equation 4.4, log p(π) is a Dirichlet distribution. For the third term
in L we get:

E[log p(π)] = log C (α0) + (α0 − 1)
K
∑

k=1

E [logπk] = log C (α0) + (α0 − 1)
K
∑

k=1

log eπk

According to the definition of the conjugate prior in equation 4.4, log p(µ,Σ) is a Normal-Wishart distribution. We use
equation 19 in [63] for simplifying the term 1

2 log |λ0Σk|:

det(cA) = cn det(A), if A ∈ Rn×n
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We thus have for the forth term in L:

E[log p(µ,Σ)] =
K
∑

k=1

E
�

logN
�

µk|m0, (λ0Σk)
−1
��

+
K
∑

k=1

E [logWi (Σk|L0, v0)] (D.2)

=
K
∑

k=1

E
§

−
D
2

log2π+
1
2

log |λ0Σk| −
1
2
(µk −m0)

T (λ0Σk) (µk −m0)
ª

+
K
∑

k=1

E
§

log B (L0, v0) +
v0 − D− 1

2
log |Σk| −

1
2

Tr
�

L−1
0 Σk

�

ª

=
K
∑

k=1

E
§

−
D
2

log2π+
D
2

logλ0 +
1
2

log |Σk| −
1
2
(µk −m0)

T (λ0Σk) (µk −m0)
ª

+
K
∑

k=1

E
§

log B (L0, v0) +
v0 − D− 1

2
log |Σk| −

1
2

Tr
�

L−1
0 Σk

�

ª

=
K · D

2
log

λ0

2π
+

1
2

K
∑

k=1

log eΣk −
1
2

K
∑

k=1

E
�

(µk −m0)
T (λ0Σk) (µk −m0)

	

+ K · log B (L0, v0) +
v0 − D− 1

2

K
∑

k=1

log eΣk −
1
2

K
∑

k=1

E
�

Tr
�

L−1
0 Σk

�	

This expression leaves us with two expectations, that still need to be calculated.
Using equation C.39 we obtain:

K
∑

k=1

E
�

Tr
�

L−1
0 Σk

�	

=
K
∑

k=1

Tr
�

L−1
0 ·E [Σk]

	

=
K
∑

k=1

vk · Tr
�

L−1
0 Lk

	

For the second expectation we need equation C.33 and E
�

µkµ
T
k

�

=mkmT
k +λ

−1
k Σ
−1
k (see equation 318 in [63]). For the

second expectation we get:

K
∑

k=1

E
�

(µk −m0)
T (λ0Σk) (µk −m0)

	

= λ0

K
∑

k=1

E
�

Tr
�

Σk · (µk −m0) (µk −m0)
T�	

= λ0

K
∑

k=1

Eµk ,Σk

�

Tr
�

Σk ·
�

µkµ
T
k − 2µkmT

0 +m0mT
0

��	

= λ0

K
∑

k=1

EΣk

�

Tr
�

Σk ·
�

mkmT
k +λ

−1
k Σ
−1
k − 2mkmT

0 +m0mT
0

��	

= λ0

K
∑

k=1

EΣk

�

Tr
�

λ−1
k I +Σk ·

�

mkmT
k − 2mkmT

0 +m0mT
0

��	

= λ0

K
∑

k=1

EΣk

�

D ·λ−1
k + Tr

�

Σk · (mk −m0) (mk −m0)
T�	

=
KDλ0

λk
+λ0

K
∑

k=1

EΣk

�

(mk −m0)Σk (mk −m0)
T	

=
KDλ0

λk
+λ0

K
∑

k=1

(mk −m0) · EΣk
[Σk] · (mk −m0)

T

=
KDλ0

λk
+λ0

K
∑

k=1

(mk −m0) · (vkLk) · (mk −m0)
T

Substituting the two expectations back, we get for the forth term:

E[log p(µ,Σ)] =
1
2

K
∑

k=1

§

D log (λ0/2π) + log eΣk −
Dλ0

λk
−λ0νk (mk −m0)

T Lk (mk −m0)
ª

+ K log B (L0,ν0) +
(ν0 − D− 1)

2

K
∑

k=1

log eΣk −
1
2

K
∑

k=1

νk Tr
�

L−1
0 Lk

�
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According to equation 4.7 the variational distribution for log q(z) is a Categorical distribution: q∗(z) =
∏N

n=1

∏K
k=1 rznk

nk .
We get for the fifth term:

E[log q(z)] =
N
∑

n=1

K
∑

k=1

E [znk] · log rnk =
N
∑

n=1

K
∑

k=1

rnk · log rnk

According to equation 4.6 the variational distribution for log q(π) is a Dirichlet distribution. We get for the sixth term:

E[log q(π)] = log C(α) + (αk − 1)
K
∑

k=1

E [logπk]

= log C (α) + (αk − 1)
K
∑

k=1

log eπk

According to equation 4.10 the variational distribution for log q(µ,Σ) is a Normal-Wishart distribution. We approach this
problem in a similar manner to equation D.2. We use the following expectation:
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Using this expectation we get for the seventh term:
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We rewrite this term by using the entropy H of a Wishart distribution (see equation C.41). The final form of the seventh
term thus is:

E[log q(µ,Σ)] =
K
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k=1
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2
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D
2
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�

λk
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�

−
D
2
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ª

D.2 Variational Bayes EM Algorithm for DP-GLM

Simplifying the Update Equation for P−1
k

In this section we show how the update equation for P−1
k can be simplified.

As we assume a Wishart distribution, P−1
k should contain terms including Vk, but be independent of βk. Thus the linear

and quadratic terms with respect to βk should cancel out. We verify this in the following.
If we multiply the terms in 4.24 out, we get for P−1

k :
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The quadratic terms of P−1
k are:
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We used the definition of Kk here.
The linear terms of P−1

k are:
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We used the definition of Mk here.
For the remaining constant terms of P−1

k we use these definitions:
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For the simplification of the term we used a similar approach as in equation 4.23.
The simplified update equation for P−1

k thus is:
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D.3 Gibbs Sampling for DP-GLM with Normal-Inverse-Gamma Priors

Likelihood
Gaussian likelihood of an input x i:

Fx
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2
x ,i

�

Gaussian likelihood of all inputs xk = x1, . . . , xnk
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Gaussian likelihood of a response yi . β0 is the offset and β1 the slope of the linear model.
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Prior / base measure
The conjugate prior on the mean µ and covariance σx of a cluster is a Normal-inverse-Gamma distribution Gx .
The conjugate prior on the parameters β and σ2

x of the corresponding GLM is a Multivariate-Normal-inverse-Gamma
distribution Gy .
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Conditional posterior of cluster parameters θx ,k
The conditional posterior of the cluster parameters µ and σx , like the conjugate prior, also is a Normal-inverse-Gamma
distribution.
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It has the following, updated parameters: [67]
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Conditional posterior of GLM parameters θy,k
The conditional posterior of the GLM β and σy , like the conjugate prior, is also a Multivariate-Normal-inverse-Gamma
distribution.
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It has the following, updated parameters: [67]
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Here X and y are:

X = [ x̂1 . . . x̂nk
]T with x̂ j = [1 x j ] ∀ j ∈ {1, . . . , nk}

y = [ y1 . . . ynk
]T

Conditional posterior of cluster assignments zi
The conditional posterior of cluster assignments takes the following form:
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In the last step we calculate the marginal likelihoods according to [67].
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E Hyperparameters

General Settings

The following general settings are held constant for all experiments:

• Iterations of Gibbs sampler: 1000

• Maximal Iterations of VBEM: 500

• Convergence criterion of VBEM: We stop the algorithm for less than 1% change in the VLB.

• Size of the test data set: 1/5 of the training data set.

Implemented Prior

As mentioned in chapter 7 in our implementation we use the inverse Wishart prior instead of the Wishart prior from the
derivations in chapter 4. This results in the following implemented conjugate prior:

p (z, v ,µ,Σ,β , V) = p (z | π) p (v ) p (µ | Σ) p (Σ) p (β | V) p (V)

=
N
∏

n=1

Cat (zn|π)
∞
∏

k=1

Beta
�

vk|γ0,1,γ0,2

�

∞
∏

k=1

N
�

µk|m0,λ−1
0 Σk

�

Wi−1 (Σk|L0,ν0)

∞
∏

k=1

N (βk|M0, Vk, K0)Wi−1 (Vk|P0,η0)

In comparison to the setting in section 4.4 the matrices Σk and Vk are not inverted.

Hyperparameters of the Implemented Prior

The following settings of the hyperparameters are chosen for all experiments. In each run of the experiment, there is a
new random seed for drawing the hyperparameters from uniform distributions. m is the length of the input vector and d
is the length of the output vector:

• Normal-inverse-Wishart prior:

– m0: Drawn from a uniform distribution on the interval
�

m low, mhigh

�

. m low and mhigh represent the lowest
and highest value of the input data on the training set.

– λ0: Drawn from a uniform distribution on the interval [0,0.1).

– L0: Identity matrix with dimension m times a real value ψ0. ψ0 is drawn from a uniform distribution on the
interval [0,10).

– ν0: m+ 1.

• Matrix-Normal-inverse-Wishart prior:

– M0: Zero matrix with dimensions d by m+ 1.

– K0: Diagonal matrix with dimension m+ 1 by m+ 1. All elements except of the last diagonal element are
multiplied by a real valueψ1. The last diagonal element, representing the variance of the offset, is multiplied
by a real value ψ2. ψ1 is drawn from a uniform distribution on the interval [0,10). ψ2 is drawn from a
uniform distribution on the interval [0,1000).

– P0: d by d identity matrix times a real value ψ3. ψ3 is drawn from a uniform distribution on the interval
[0,0.1)
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– η0: d · (m+ 1) + 1

• Stick-breaking prior or Dirichlet prior:

– Dirichlet prior:

* Number of components K: 100

– Stick-breaking prior:

* Truncation level of the variational distribution K: 100

* Hyperparameter γ0,1 of Beta distribution: 1
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