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Abstract

Dexterous in-hand manipulation allows robots to precisely reconfigure objects at a low time and energy effort. However,
the complex contact-rich dynamics of in-hand manipulation are hard to model and uncertainty must be taken into
account. We describe a reinforcement learning method that does not require an analytical model but estimates the
dynamics using samples of policy roll-outs. To deal with uncertainty, we utilize high-dimensional tactile sensors on the
fingertips.

Since tactile sensor data is hard to interpret, we perform supervised end-to-end training of a neural network policy,
mapping the sensor inputs directly to torque commands. To generate training data for the network, a trajectory-centric
reinforcement learning algorithm is deployed. This algorithm produces local controllers which are able to solve the
problem for specific initial states. Trajectories resulting from these controllers are then used to train the neural network
in a supervised learning fashion. Since these trajectories succeed from different initial states, the neural network is able
to generalize and solve the problem for unseen states.

The method is evaluated in simulation on three different tasks: positioning fingers, rolling a cylinder, and positioning
a freely-moving object. We present results for all tasks and conclude that our method is capable of learning dexterous
manipulation skills.
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1 Introduction

The evolution of the human hand and our cognitive ability to con-
trol it is believed to be one of the major reasons for our success as a
species [1]. Our hands play a crucial role in nearly all our physical
interaction with the environment and enable us to perform a vari-
ety of tasks, including grasping, movement of objects, tool usage, or
even complex in-hand manipulation like twirling a pen. Regarding
robotics, in-hand manipulation can be vital to reorient objects that
cannot be grasped in their desired configuration or need to be recon-
figured during the execution of a task. Especially, when the move-
ment range of the robot’s arm is limited due to obstacles and some
orientations cannot be reached, it can be beneficial to perform object
reorientation in-hand. Additionally, hand dexterity can improve pre-
cision and efficiency, since a lower inertial load needs to be moved
when using the fingers, compared to using the entire arm [2]. As
an example, consider a robot using a screwdriver to remove a screw.
While dexterity is arguably already required to insert the screwdriver
into the screw, it also becomes important when the robot is twisting
the screw. Due to joint limits and obstacles, the robot might be inca-
pable of performing a full screwdriver rotation using its arm only. To
avoid having to remove the screwdriver from the screw to reorient it,
dexterity could be used to reconfigure it at a lower time and energy effort. However, despite numerous possibilities for
robotic applications, dexterous in-hand manipulation is a largely unsolved problem in robotics.

Figure 1: Allegro hand manipulating a freely-
moving cuboid in simulation.

In this work, we describe our approach on tackling the problem of in-hand manipulation in a general way. A ma-
jor challenge of hand-based manipulation tasks are the complex discontinuous dynamics that arise from contact-rich
environments. Due to their complexity, these dynamics are hard to model accurately, making trajectory planning for
hand-based manipulation often infeasible. Jointly with the underactuation that naturally occurs when manipulating ob-
jects, the complex dynamics make controller design for in-hand manipulation a difficult problem. Thus, approaches which
use planning typically focus on very specific manipulation tasks and strategies on low dimensional systems for which an-
alytical models can be derived [3-12]. Since we aim to tackle the problem of in-hand manipulation in a general way, our
method does not require an analytical model of the system. Instead, we rely on a reinforcement learning algorithm that
estimates a dynamics model using samples taken from the robot. The objective is defined in terms of a high level cost func-
tion that merely specifies the desired goal but does not contain any robot or solution specific knowledge. Consequently,
our algorithm is not limited to predefined strategies or tasks but tackles in-hand manipulation from a general perspective.

However, additionally to the complex dynamics, the high number of continuous control and state dimensions make
reinforcement learning challenging. Since discretizing the action space is not a good option for high numbers of dimen-
sions, our method relies on a policy gradient. In prior work, policy gradient methods have been shown to be capable
of dealing with different manipulation tasks [13-15], including in-hand manipulation [16-19]. The ability to deal with
high-dimensional continuous systems makes policy gradient methods a reasonable choice for in-hand manipulation.

Another key challenge of hand-based manipulation is uncertainty. In systems with highly nonlinear dynamics, small
perturbations in the state can already lead to entirely different outcomes. As an example, consider the screwdriver robot
holding the screwdriver slightly displaced and thus missing the screw with its tip. While without the displacement, the
robot would succeed in removing the screw, the robot now might not even manage to perform a single rotation of the
screw. One way to deal with uncertainty is the use of compliant hands, which mechanically adapt to the manipulated
object’s geometry [20, 21]. However, Jentoft et al. [21] point out that there are limits to compliance, particularly when
the uncertainty in object size or weight is high. To overcome these limits, they suggest to use tactile sensors and show
improvements in grasping precision and stability. Prior work has also shown that tactile sensors are not only capable of
improving grasping [22-29], but also provide enough data to perform manipulation [16, 18, 27, 30-33]. In our work,
our final control policy relies solely on tactile feedback, which we found sufficient to perform manipulation tasks.

While it is possible to train a policy directly on sensor data, like tactile data [16], training is likely to become signifi-
cantly faster when information about the full system state is included [34]. For in-hand manipulation, these information
can include, for example, the pose of the manipulated object. While this information can be acquired during training time,
for example by using motion trackers, it is unlikely that it will be accessible outside of the training environment. In other
words, requiring objects to have motion tracking tags to be able to manipulate them is imposing a serious limitation to the

4



method’s usability. To overcome these limitations while still taking advantage of all information available at training time,
we use a dual training approach. Using the full system state as input, we deploy a trajectory-centric policy gradient algo-
rithm to generate good trajectories resulting from different initial states. These trajectories are then used to train a neural
network policy in supervised learning fashion. Unlike the algorithm that generated the trajectories, the neural network
receives only partial state information, like the joint states and tactile sensor data. This enables the resulting policy to be
deployed outside controlled environments, where the full state is not available. Since the policy is trained using trajecto-
ries resulting from different initial states, it is able to generalize and reach the objective starting from previously unseen
initial states. This method was proposed in prior work [34] and has been applied to different manipulation tasks [13, 19].

In order to evaluate this method, we designed three tasks with different objectives: positioning of the fingers, rolling
a fixed cylinder, and positioning a freely-moving object. For each of these tasks, we present results of local controllers
which solve the problem for specific initial states, and a global policy that generalizes and solves the problem for arbitrary
initial states, including previously unseen states. All our experiments run in simulation, which enables us to perform rapid
testing while providing a reasonable insight into the methods performance. We use a simulated version of the Allegro
hand [35] with tactile sensors on the fingertips.

In the following section, we present related work on robotic manipulation and specifically in-hand manipulation. Sec-
tion 3 contains a complete derivation of the algorithm used in this work. In Section 4, we provide details on the simulation
environment we use and describe the setup of the experiments performed to validate our method. The results of the ex-
periments are collectively summarized in the subsequent section. Finally, we draw a conclusion of our work and discuss
possible future work in Section 6.




2 Related Work

Planning-based approaches

Many approaches to in-hand manipulation rely on known robot models to plan strategies in advance. Planning based
approaches have been successfully applied to reposition objects in-hand by rolling them between fingers [4, 7, 8, 321,
using finger gaiting [5], utilizing controlled rolling [3] or slip [11] induced by gravity or by pushing them against static
objects in the environment [10, 12]. While these strategies are all very specific and limited to certain applications, there
have also been efforts to use planning for more general tasks.

Hertkorn et al. [9] propose a method to plan grasping and subsequent reconfiguration of arbitrary objects. However,
this method requires not only precise dynamics models of the robot and the object, but also a detailed definition of the
desired object trajectory. Since not all object trajectories are feasible, these trajectories need to be carefully chosen for
each object and initial condition, which limits the method’s generality. Additionally, to find the ideal grasp, the method
relies on iterating over all possible grasps, which increase rapidly with the number of fingers and dimensions. Conse-
quently, Hertkorn et al. were able to present results in 2D environments only. In contrary, our method does not require
any solution-specific input. Instead, we rely on a high-level description of the target state only, which enables the algo-
rithm to generalize and solve the problem for previously unseen states. Furthermore, our method deals more efficiently
with high-dimensionality and we show results using 4 fingers in 3 dimensions.

Similar to our method, other planning-based methods rely on high-level descriptions of the objective as well. Erez
et al. [36] apply an iterative linear quadratic Gaussian regulator [37] to object manipulation and present results in ma-
nipulating a cylindric object using a 4 fingered non-anthropomorphic robot. Further, Mordatch et al. [38] use Contact
Invariant Optimization [39] to learn a variety of hand-based manipulation skills, like grasping, twirling a cylindric object
and drawing, in simulation. However, especially when facing previously unseen situations, an accurate model of both the
robot and the environment might not be present. Our method uses samples of previous rollouts to estimate the system
dynamics and is thus able to learn manipulation tasks without the need for a prior dynamics model.

Usage of tactile sensors

Several approaches show that tactile sensors are capable of measuring [22-24] and enhancing [21, 25-29] grasp
stability. Compared to purely vision based grasping approaches [40, 41], tactile sensors provide more reliable and
accurate information on object geometry and contacts and do not suffer from occlusion [24]. Furthermore, prior work
has shown that robots are capable of performing manipulation tasks, while solely relying on tactile feedback and internal
sensors. These tasks range from 2D object translation [16, 30, 31] and object reorientation [18, 32] to gentle scraping
of a surface [33] and screwing a light bulb [27]. Since tactile data is only available when the robot is in contact with
the object, some approaches combine tactile sensors with vision-based sensors [24] or rangefinders [28]. In our work,
however, we assume that the object has been grasped prior to the manipulation and rely solely on tactile sensors as input
for our policy.

Imitation learning

The concept of learning from human demonstration has been applied to robotics several times with remarkable results.
Starting from human gesture imitation [42], imitation learning has also been applied to manipulation [14, 19, 43, 44]
and even to high-dimensional tasks like grasping [19, 27, 29] and in-hand manipulation [45]. Multiple approaches to
in-hand manipulation use human demonstrations to support reinforcement learning algorithms [15, 17-19].

In this work, however, we chose not to use imitation learning to initialize our algorithms for several reasons. Firstly,
since we are working in simulation, the demonstrator could not gain any tactile feedback and performing manipulation
tasks based on visual feedback only is challenging and might lead to poor results. Secondly, the only measure of task
performance is a cost function, which would leave the demonstrator without clear notion of the actual objective. Finally,
the structure of the Allegro hand differs in many ways from the human hand. Not only does it have one finger less, but it
also allows to control the proximal and distal joints independently and to rotate all fingers around their longitudinal axis.
Since humans typically cannot perform these movements, this would leave the demonstrator unable to fully exploit the
robot hand’s workspace. Thus, demonstrations of strategies that work very well for humans are likely to be sub-optimal
for the robot and could result in a bad initialization.

Reinforcement learning

Contrary to planning-based approaches, reinforcement learning (RL) does not rely on manually designed models of
the robot and the environment. This gives RL a significant advantage in terms of generality and makes it very suitable for
tasks in unknown environments. In the past years RL has been successfully applied to many tasks in robotic manipula-
tion, including grasping [14, 46, 47], opening doors [47], screwing a lid on a bottle [13], and stacking LEGO bricks [15].
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Since discretizing the action space quickly becomes infeasible in high dimensions, these approaches typically rely either
on policy gradient methods or PI2 [48] to solve a continuous RL problem.

Several approaches in the past years use RL to tackle the problem of in-hand manipulation. Van Hoof et al. [16]
use Relative Entropy Policy Search (REPS) [49] to learn time-independent control policies for rolling cylindric ob-
jects between two fingers. Similar to our method, tactile feedback serves as the only input to the final control policy
and the entire training is performed end-to-end, with no hand-designed feature extraction in-between. However, the
gripper used in this work is considerably less complex in terms of state and control dimensions than the hand used in our
approach.

Rajeswaran et al. [17] use a policy gradient method to learn in-hand manipulation based on expert demonstrations.
To overcome the problems with imitation learning mentioned mentioned before, a specialized, well-shaped cost function
is used to train another RL algorithm to generate demonstrations. This limits the method’s generality, since this cost
function needs careful manual adaptation for each different task. Additionally, the resulting policy needs the exact object
position as input, while our policy is trained to work on tactile sensor input only.

Similar to our work is the work of Kumar et al. [50], who learn to rotate a cylinder with an anthropomorphic hand.
The method used in this work is the same method we use to generate our local controllers. However, these local
controllers do not generalize and only work for specific initial states. Kumar et al. overcome this problem in a later
publication [18], by introducing a nearest-neighbor method and alternatively a neural network trained as global policy
using data of the local controllers. The difference to our work is that this policy is trained offline, after the training of the
local controllers is complete. In our work, however, the global policy is trained jointly with the local controllers, while
the KL divergence between them is limited to ensure that the local controllers provide a good training set.

Gupta et al. [19] propose an approach to hand-based manipulation that uses the same policy search method as in
our work and report results in turning a valve, pushing beads on an abacus and grasping. Contrary to our work, they aim
to imitate a human demonstrator performing a task while we define our tasks exclusively in terms of the objective to be
reached. Additionally, Gupta et al. need motion trackers to feed the object position into the policy at test time, while we
only require tactile input for testing.




3 Guided Policy Search

This section describes the policy search algorithm we use to learn control policies for the Allegro hand. Guided Policy
Search (GPS) was proposed by Levine et al. and published in multiple iterations over the past years [13, 34, 51-54].
This section aims to present the derivations of the latest iteration [34] in a comprehensive way, by adding details and
intermediate steps omitted in the original work.

3.1 Problem Specification and Definitions

The objective of stochastic policy search is to find a policy 7y (u|o) that minimizes the expected value of a cost function

K(T) = ZtT:lﬁ ¢ (u[,xt) in an episode of T discrete time steps. Here, 8 denotes the policy parameters to optimize, for
example the weights of a neural network representing the policy. Furthermore, T = (xl,ol,ul, S oT,uT) denotes
a trajectory, which is modelled as a sequence of states x,, observations o,, and actions u,. More specifically, x, is a real
valued vector representation of the full system state at time t, which could contain robot joint angles and velocities, as
well as positions of objects in the scene. o, is a vector of observations that serves as feedback for the policy my. The
observation vector can contain similar entities as the state vector but does not contain any information that is not avail-
able at test time. Thus, o, could contain tactile sensor data but not the exact position of objects in the scene, since these
can be difficult to acquire in unstructured environments. u, is a vector representation of the performed action that led
to the transition of state X, to X, ;. As an example, u, could contain torque commands sent to the motor at time step t.
Note that the last action of a trajectory u,. has no influence on the state trajectory, since no state is following, and could
be omitted. However, we chose to use this representation for notational convenience and will assume that u, is con-

stant 0. The observation distribution P, (o |x) as well as the real system dynamics P, (x’|u, X) are assumed to be unknown.

While the observations o serve as feedback for the global policy my (u|o), they do not have any direct influence on
the cost function £. Hence, they can be omitted when measuring the policy’s performance. In the following, we write ©

for state-action trajectories that do not contain observations, such that T = (xl,ul, .. .,xT,uT). Jointly with the system
dynamics, the policy induces a distribution over state-action trajectories 7 :

Ty (%) = Pl (Xl)ijpt (Xt+1|ut’xt) Ty (utlxt)

where P, (xl) is the distribution of the initial state x, and 7, (ulx) = f Ty (u|o)Pt (0|x) do is the global policy condi-
tioned on the state. Using this definition, the overall objective becomes:

min & [¢(%)] &)

3.2 Method Summary

GPS splits the problem of policy search into two components. The first component is a trajectory-centric RL algorithm
that learns to solve the problem for multiple distinct initial states. Considering in-hand manipulation, these initial states
could correspond to different poses of the manipulated object relative to the hand. In the following, we will use index
i €{1,...,N} as a superscript to refer to the i-th initial state. Consequently, we write Pli (x) for the i-th initial state
distribution. For each initial state distribution Pl" (x), a time-varying local controller ¢ lt (u|x) is trained to minimize the
expected value of the cost function £ (Ti) for trajectories 7' succeeding from this initial state distribution. It is important
to note that each controller is trained on its specific initial state distribution only and is unlikely to succeed from states
outside that distribution. Thus, these controllers alone are not sufficient to solve any task in general.

However, the local controllers can be used to generate training data for a supervised learning algorithm, which forms
the second component of GPS. The objective of the second component is to train a single time-independent global policy
Tg (u\o) to resemble the behavior of all local controllers. Trajectories ’rj. generated by rolling out the local controllers
on the robot multiple times serve as demonstrations. The subscript j is used here to differentiate between trajectories
generated by different roll-outs of the same local controller. Note that unlike the local controllers, wich are conditioned
on the full system state x, the global policy 7y (u|o) is conditioned on the observation o. This enables us to roll out the
global policy outside of controlled training environments, where the full state x cannot be recorded and the robot has to
rely on sensor observations.

In the supervised learning scenario, the local controllers serve as experts for trajectories resulting from their respec-
tive initial state distribution, while the global policy is the learner. The most straightforward way of transferring this
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knowledge would probably be to train the local controllers until they reach good performance and use the resulting
trajectories as training data for the global policy. This approach however has a flaw, as during roll-outs of the learner’s
policy, small compounding control errors can lead the learner into states that are far away from the expert’s trajectory
distribution. Since the experts demonstrate no knowledge for these states, the learner cannot learn to succeed from them
and will perform poorly. Thus, to be successful for the expert’s initial states alone, the learner would have to copy their
trajectories exactly and is at that point likely to overfit. To tackle this problem, Ross et al. [55] suggest to apply the
expert policy to states from the learner’s state distribution. This way, the learner receives feedback on how to behave
for states from its own state distribution instead of states from the expert’s distribution. Here, a similar approach is
chosen, by training local controllers and global policy in an alternating fashion, while at the same time enforcing a KL
divergence constraint between them. This forces the local trajectory optimizer to remain close to the global policy and
hence generate training data within the learner’s state distribution.

Hence, the local controllers { lt (u|x) are optimized to minimize the cost function while staying close to the global
policy my (u|o), and the global policy is optimized to match the local controllers. Since *r; contains trajectories suc-
ceeding from different initial states, the global policy is able to generalize and can be applied to previously unseen initial
states. The efficiency of this method arises from the fact that the full system state is assumed to be known during training
time. Knowledge of the state enables us to train the local controllers based on full state information, which is more
efficient than training the global policy based on observations directly. However, during test time when the global policy
Ty (u|o) is executed on the robot, knowledge of the full state x is not required, as the global policy was trained based on
observations o only.

Figure 2 presents a flowchart of the GPS algorithm. Each iteration of the outer loop starts by rolling out all current
local controllers ¢ (u|x) on the robot. In the first iteration, these local controllers are initialized to be a Gaussian dis-
tribution around 0 with small variance. Since the dynamics of the system are unknown, the collected trajectories T; are

used to estimate a local dynamics model di ( ¢ ) for each initial state. The inner loop alternates between optimiz-
ing the local controllers i (u|x using the estlmated dynamics d! (x |u X and optimizing the global policy 7y u|o to
match ¢ i u|x) Note that in the inner loop, no new samples are drawn from the robot. Since the trajectories 7 were
drawn using the controllers of the previous iteration, only their states are utilized for training of the global policy, while
the corresponding actions are sampled directly from the updated local controllers. The entire process is repeated until
convergence.

run each
1

4 (u |x

on robot

inner loop

)
fit dynamics optimize 7y
i x’|u,x) w.rt. Ly

optimize each {!
w.r.t. ,Cg

Figure 2: Flowchart of the GPS algorithm. £, and L, are the Lagrangians of the local and global optimization as further
defined in Section 3.3.

In the following, we will use the term “roll-out” exclusively to refer to a single execution of a local controller or the global
policy on the robot. Each roll-out produces a trajectory 7, which we will also refer to as “sample”. The term “iteration”
is reserved for an iteration of the outer loop as shown in Figure 2. Each iteration starts with drawing samples from the
robot and results in an updated global policy and updated local controllers, which are used to draw samples for the next
iteration. Furthermore, we will use the term “current samples” to refer to the samples drawn at the beginning of the
current iteration and “previous samples” to refer to samples drawn in all prior iterations.




3.3 Algorithm Derivation

Guided policy search aims to minimize the expected cost of trajectories generated by the local controllers lt (u|x), while
ensuring that the global policy matches all local controllers:

minZ E [¢(2)] st ng(u|x)=§’i(u|x) VieLLt e T,ucRu x cR™> &)

where I = {1,...,N} is the set of initial state identifiers, T = {1,...,T} is the set of time steps of a single controller
roll-out and n, and n, are the dimensions of the action vector u and the state vector x. Furthermore, the probability
distribution of state-action trajectories under the local controller ¢ (%) is defined as

T-1

l l_[df t+1 t’ t) \X

t=1

Recall that Pli (X1) is the initial state distribution of controller i. For completeness, we define the state distribution of the
local controllers at time t + 1 in a recursive manner as

t+1 t+1 ff d (Xt+1|ut, X, {i(xt,ut)dxtdut, where

& (xou) = (u|x ) (x,
gil(xl):z 1i(X1)

Since the constraint ensures equality between the local controller and global policy, minimizing w.r.t to (2) is equivalent
to minimizing w.r.t the objective (1). Note that even though the constraint is defined on 7, (u|x), we optimize 7, (u|o)
and thus control 7y ( |x) indirectly, since 71'9 | frtg |0)Pt (o|x)do. If the observation o holds enough infor-
mation about the state x, controlling (u|o) is sufficient to satisfy the equality constraint. However, knowledge about
P, (o|x) is not required by this method.

In this implementation, the constrained dual problem (2) is solved using a variant of Bregman-ADMM (BADMM) [56].
Like ADMM, BADMM is a method for solving constrained dual problems of the form

mm f (v)+g(w) st. Av+Bw=c
vey,w

where f and g are convex functions, A € R™™ B € R™"2, ¢ € R™ and X € R™ and W C R"™ are nonempty
closed convex sets. However, BADMM allows to replace the squared Euclidean distance in ADMM’s Lagrangian by a
Bregman divergence B to exploit the problem structure and offers better convergence guarantees in return. This yields
the following dual update step:

vt = argmin f (v) + <7L(i),Av +Bw® — c) + pB (c —Av, Bw(i))
vey

w1 = argmin g (w) + (A0, Av) + Bw —c) + pB (Bw, c — AV D)
wew

AT =20 4 (Av(i) +Bw) — c)

where A € R™ is the Lagrangian multiplier, p € R is a penalty factor and a € R is the update rate of the Lagrangian
multiplier.

To transfer the original optimization problem into a problem we can solve using BADMM, we start by modifying the
equality constraint in (2):

Ty (u\x) i(x)-¢ (u|x) {i(x)=0 VielteT,ueR™ xeR™ 3)
While this constraint is still equivalent to the original constraint, it will simplify the update rules as we will see later.

Since it is not possible to express this constraint as a linear function of finite dimensional vectors Av + Bw = ¢, we
need to introduce modifications to the original BADMM formulation. We start by redefining  and WV to fit our needs.
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Since 7y (u|x) 4 lt (x) as well as ¢ lt (u|x) 4 lt (x) are both time-varying probability density functions over state-action pairs
conditioned on the respective initial state i, we define V and W accordingly:

Vi=W:= {f:]IxTx]R”“x]R”Xe]R VieH:VtGT:(VuER”" :Vx € R™ :fti(u,x)ZOAf fti(u,x)duzl)}
—o0

(C))]
This modification also implies that the matrices A and B need to be replaced by linear functions a and b that take func-
tions in V or W as arguments and return arbitrary functions with consistent signatures. Furthermore, ¢ must be replaced
with a function ¢ consistent with the output functlons of a and b. Setting a (v) :=v, b(w) := —w and c := 0 and setting
vi (u, x) = 77:9 |x) 4 i (x) as well as w! (u X |x) C i ylelds the modified equality constraint (3).

We define the optimization objective function of the local controller to equal the expected cost of the local controllers:

f (my) remains zero as the cost function min, g E;()[£(7)] does not depend on the global policy. Consequently, the
resulting update steps of the dual descent algorithm are:

Ve argmin (A, v—w) + pB(v,w)

N
W argmln (Z
=1 t=1%t ( X)

Ae—=A+a(v—w) 5)

T

)]) + (A, v—w) + pB(w,V)

Note that, due to (5) and the definition of v and w, A is a function I x T x R™ x R"™ — R.
Since all elements in V and W are integrable by definition, a scalar product can now be defined as:
N T oo
{f,g) ZZJ f! (u,x) g, (u,x) dudx
i=1 t=1J J—o00
Using this definition and writing A, ; , , for A (i, t,X, u), the update steps become:

N T [poo
v argr min Z Z J:f Aiexa (Vi (u, x) =W (4, x)) dxdu + pB (v, w) (6)

i=1 t=1 —00

T =]
W« arg m1nZ Z &y (€, (x,u)]+ ff Aiexn (Vi (0, x) =W (4, x)) dxdu + pB (w,v) @
i=1 t=1 We{LX —o0

Aiexu < Airxu T a( i ( ) t (u, x)) Viel,Lt e T,ueR% xe€R™

Due to the modification of the equality constraint (3), we can now express the integrals in (6) and (7) as expectations:
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= we(u X) vi(wx)
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Mz
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As v and w are probability distributions, we select the Bregman divergence term B to be the expectation of the KL
divergence of the global policy and the local controller:

B(v,w):= > > $? (6,

i=1t

B(w,v): ﬁ:

i=1t

Il
-

M”

¢: (¢',0)

Il
-

where qbf (9, 4 i) and qbf (C i 9) are the expected controller KL divergences at time t under the local controller’s trajectory
distribution:

f&ﬂ?ﬁ#MMMWMMm]
¢f (gi’ 9) = ci[](Ex) [DKL (Ct (u|x) | 7o (u\x))]

We further replace the penalty multiplier p by a time-varying multiplier v,, which enables us to penalize divergence
in certain parts of the trajectories more than in others. This is useful to enforce equality between local and global con-
troller in specific regions where they start do diverge. Dropping terms independent of the optimization variable and
replacing v and w with their definitions, this results in:

N T
0« argeminlzl:; ng(uliE)Ci(x) [Ai’m,u] +v,6?(6,0)

cﬁargmmZZ [ )= A |+ Uc0F (2,0)

io =1 i
Aicxu < Airxu T OV, (719 (u|x) C‘r (X) — Ci (x,u)) Viel,t € T,ueR%,x eR™

As no assumptions about the class of the probability distributions have been made yet, ¢ ( ) and my ( ) can be chosen
to be in a class of probability distributions that can be optimized efficiently. Choosing ¢’ ( ) to be Gaussian distributed
enables us to use an Iterative Linear Quadratic Gaussian regulator (ILQG) [37] which optimizes trajectories in an highly
efficient way, as described in Section 3.4. However, this requires not only the local controllers ¢ lt (u|x) to be linear-
Gaussian, but also implies assumes that the estimated system dynamics df (x’ . ) are linear-Gaussian. While this seems
like a drastic simplification, it is important to recall that the estimated dynamics are time-varying and we can select a
different linear function for each time step. Time-varying linear functions enable to model arbitrary dynamics along a
nominal trajectory and are sufficiently tolerant for real physical systems with small or Gaussian noise [34]. Even though
the dynamics of contact-rich environments are usually highly non-linear, this approximation was found to to be suffi-
ciently precise to learn in-hand manipulation skills [18, 50]. Due to the equality constraint between local and global
controller in (2), 7y (u|o) must be conditionally Gaussian like {, (u|x). Requiring the global policy to be conditionally

Gaussian is reasonable, as mean and covariance can be any function of the observation o, which allows (u|o) to
represent arbitrary policies with Gaussian noise.

Although these assumptions already introduce some simplifications to the original problem, a way to represent the
infinite set of constraints 7, (u|x) 4 lt (x) = lt (x,u) is still required. Peters et al. [49] proposed to approximate con-
straints on probability distributions by constraints on the expectation of features. If these features consist of monomials
of the random variable, they introduce constraints on the moments of the distributions. In GPS, only the first order
moments are used since that was found to be more stable than including higher moments [34]. Using the first order
moments results in an equality constraint on the expected action: Ei (u]x)zi (%) [u] = E o (ulx)zi (%) [u]. Although this
approximation does not consider the action covariance of the controllers at all, it is still reasonable, as the previously
assumed low entropy of the dynamics causes the covariance of the optimal control solution ¢ (7) to be low. Additionally,
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the KL-divergence terms d)f (9, 4 i) and qbf (C i 9) will softly enforce equality between higher moments. The alternating
optimization including the approximate constraints is given by:

N T
0 «— argmlnzz E [uTli,t] +Ut¢f 6,0) (10)
0 i3 = me(up)ei(x)
N T
{(—argmlnzz & )[Zt(x,u)—uTAi)t]+vt¢f(C,9) an
i= t:lc xu

}’i,t(_}'i,t—i_avt( VielLteT

E — E
ool c;(x,u)[u])

where 4, , is the Lagrange multiplier for the expected action.

3.4 Local Controller Optimization under Unknown Dynamics

Local controller optimization is performed by a trajectory-centric RL algorithm, which is described in this section. The
RL algorithm was proposed by Levine et al. [34] and can be seen as a variant of Iterative Linear Quadratic Gaussian
regulator (ILQG). Objective of local controller optimization is to find time-varying controllers ¢ ‘t (u|x) that minimize the
following Lagrangian for each starting condition i € I:

i mg) = Z(l(xu) (xu)—u"a ]+ v (S,0) (12)

Since the optimization procedure for each local controller is equal and independent of the other local controllers, the
superscript of (u|x) is dropped for notational convenience and , (u|x) is used instead.

As stated before, { () is chosen to be Gaussian distributed, which implies that the local controller , (u|x) and the
estimated dynamics d, (x’ ) are both time-varying linear-Gaussian:

(u|x) =N (Kx+k|%,)
(fcx + £, u+f. |F,)

d, (¥

where K, € R™*™ k, € R™, X, € R f, € R™ ™ f € R f € R™, F, € R™*"x are the parameters of these
distributions.

In this work, the dynamics are assumed to be unknown and need to be estimated using previously drawn samples.
Using basic linear regression to obtain f, ., f, ,, f. , and F, from the latest samples works for systems with low state and
action dimensions, but requires an infeasible arnount of samples for higher dimensional systems, like the robot hand
used in this work. To tackle this problem, a Normal-Inverse-Wishart distribution is used as a prior for the estimated
system dynamics. The prior is obtained from a mixture of Gaussians, which is trained to fit the distribution of tuples
(%,41,4,,%,) from samples drawn in the current and previous iterations. Using a prior reduces the number of required
samples drastically while still giving good approximations to the real system dynamics. In our work, 30 samples per
iteration where found to be sufficient to approximate the dynamics of a 16 DOF robot hand controlling a freely-moving
object. For further details to the dynamics fitting, please refer to Levine et al. [34].

The estimated dynamics are only valid in a small area around the sample trajectories they were estimated from, since
they are only local approximations. Hence, the distance of the trajectories generated by the optimized controller to the
sample trajectories needs to be bound, to ensure that the error of the estimated dynamics to the real dynamics remains
low. Thus, similar to [49], an upper bound € on the KL divergence of the new trajectory distribution to the distribution
of the sample trajectories is introduced as a constraint and the objective becomes:

min £ (¢, %) st D (Z(2)I1E(m) <e

where ¢ () is the distribution of the trajectories drawn during the sampling phase of the current iteration, thus using the
local controller of the previous iteration. The upper bound e of the KL divergence can be seen as a step size of the local
controller optimization and needs to be chosen carefully.
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As this objective introduces a new constraint, the Lagrangian is augmented with an additional term:

T
L= Z({ E )[et (xu)—u'A ]+ v f (c,e)) +1 (D (C ()N E (7)) —e) (13)

where 7 is the new Lagrangian multiplier. The overall algorithm now becomes an instance of generalized BADMM [56],
as an additional Bregman divergence term is introduced by the new KL divergence constraint.

Note that the augmented Lagrangian £ ({) still depends on the global policy conditioned on the state g (u|x) due
to the KL constraint d)f (Z,0) in (12). Unfortunately, 7, (u|x) cannot be computed directly, since the global policy is
conditioned on the observation vector o and no knowledge about the observation distribution P, (0 |x) is assumed. How-
ever, as the full state x and the observation vector o, are accessible at training time, a linearization of 7y (u\x) can be
computed for each time step. Thus, points (xi’Eﬂe(ulol; ) (u)) are taken from the current samples and used to approxi-

mate 7T, (u|x) with a linear Gaussian distribution similar to the dynamics estimation. This estimated distribution is then
used to compute the KL divergence. To reduce the required number of samples, a Gaussian mixture model can be used to
obtain a prior based on current and previous samples. This is reasonable, as the global policy does not change much due
to the step size € imposed on the local trajectory optimization. Given the dynamics, the Lagrangian (13) can be solved
efficiently by a standard Linear Quadratic Regulator (LQR) backward pass as described in Section 3.4.1.

3.4.1 Local Trajectory Optimization

This section contains the derivation of the LQR backward pass used in GPS to optimize the trajectories of the local
controllers. The content of this section follows prior work [34]. Objective of local trajectory optimization is to optimize
the augmented Lagrangian (13):

T
£({)=(Z E [Kt(x,u)—uTlt]+thbf(C,9))+n(DKL(Z,’(T)||f(r))—e) (13 revisited)

t=1 Ze(xu

We start by expressing the first KL divergence term as en expectation over , (x, u):

:(L,0)= Ig)[DKL(Cf (ufx) Il 74 (u]x))]

R U “cluo) log || )) ]
ff (%) ¢ (ufx) log || ))
)]

= c:t(IE,u) [log Ct |x) —logmg (u|x

(13) now becomes:

T
L) = (Z E [¢(x,u)—u"A]+v, E )[log Z, (u|x) —log 7, (u|x)]) +0 (D (C()1E(T)—e) 4

t=1 Ze(xu {e(xu

Using the linearity of the expectation and defining

(14) can be reformulated to

L= R [c ()] = v H(E (D) +71 (D (¢ () 1 £ (7)) =€)
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where H ({ (7)) = —Eg(, [log{ (7)] is the entropy of the local controller’s trajectory distribution. Replacing the second
KL divergence term with its definition then yields:

L@ = E [cO)=vHEE)+aHE )= E [logl(7)]—ne
= E [e(®)=nlogl ()] +(n—v)H(E (=) —ne
The minimization of this Lagrangian can then be rewritten as:

. 1 . 1
min E c(t)—
{DEN ()DL N + v, n+v

1oggm] CHE @)

where N (1) is the set of Gaussian distributed trajectories. This objective corresponds to minimizing a maximum entropy
problem:

. . coay 1 sy M 5
g(fﬂﬂﬁ(e)g%)[cm] H (¢ (7)) where c(T)—nJrUrc(r) n+vrlog5(r)

The parameters K,, k, and %, of the optimal linear Gaussian controller ¢, (u |x) =N (Ktx +k;; Zt) can now be computed
with a standard LQR backward pass [57], which is summarized below.

Since the cost per step ¢, (x,u) are not quadratic, we use a quadratic approximation around the trajectory mean of
the previous local controller (il,ﬁl, . ,)_(T,ﬁT) =K [T]:

¢, (x,u) R G, (x,u) 1= [x —X;u —H]T €t xuxu [x—)_(;u —ﬁ] + [x—i;u—ﬁ]T Gt xu T coOnSt

N[N

[x;u]T ¢t xuxu [x;u] + [x; u]T Ct xu T cONSt

where subscripts denote derivatives, such that ¢, ,, is the Jacobian of ¢, with respect to [x;u] and ¢, 4 x4 is the Hessian,
respectively.

The Q-function Q, (x, u) and the cost-to-go function V; (x) of this problem are generally defined as:

Q. (x,u)=¢ (x,u) + Vg (fx +f u+f,) forl<t<T-—1
QT (X,u) = 6'1" (X,u)
V. (x)zmin Qt(x,u) for1<t<T
u

Both functions Q, (x,u) and V, (x,u) are quadratic, which we will prove by recursively constructing their quadratic
representations, starting at T. The assumption trivially holds for Q (x, u), since it is equal to the quadratic cost function
Cr (X, u). Assuming that Q, (x, u) is quadratic for any 1 < t < T enables us to write it in its quadratic form:

Q. (x,1) = > [x3u]" Quxua [X5u]+ [x3u]" Qqxy +const

—= N =

T T 1 T T T
= EX QrxxX+uW QX+ Eu Qruugu+X Q x+u Q;, +const

where Q; yy xu is Symmetric. To compute the coefficient matrices of V, (x), we compute the derivative of Q, (x,u) W.LL.
u and set it to zero:

0= Qt,u,uu + Qt,u,xX + Qt,u

= u=-Q,, ,QuuxX— Q4 Quu (15)

t,u,u
Using the assumed quadratic form of Q, (x, u), this gives:
L r T
V; (x) = EX VixxX +X Vi +const

— T —1
where Vf,X,X - Qf,X,X - Qt,u,th,u,qu,U,X

— T —1
Vt,x - Qt,x - Qt,u,th,u,th,“

15



which implies that the Q-function of the previous time step is also a quadratic.

1
Qi (x,u)= 3 [x:u] Qotxuxa [X3u]+ [x5u]" Qe xu + const

—_= T
Where Qtfl,xu,xu - thl,xu Xu + fxu t VX, xfxu t
Qt—l,xu = Ct—l,xu + fxu tV + fxu tVt X, xfc

Note that the symmetry of Q,_; 4, s follows directly from the symmetry of V,,,. Thus, the Q-functions and value
functions of all time steps are quadratic and their coefficients can be computed with the following recurrence, starting at
t=T:
Qt,xu,xu = Et,xu Xu + fxu tV +1,x, xfxu t
—_ = T
thu - Ctxu +fxuf t+1,x +fxu[ t+1xxfc t
t X,X Qt X,X Qt,u,th_,u,th,u,x
_ T -1
Vt,x - Qt,x - Qt,u,th,u,qu,“

Using equation (15), the optimal control law is given by:

(x) =Kx+k,
where K, =Q_} Q:ux
kt = Qf,u,th,u

To optimize the maximum entropy objective, the controller’s covariance ¥, must be set to Q7! | as shown in prior

t,u,u’

work [51]. Consequently, the optimal linear-Gaussian controller is A/ (Ktx +k; Q:lll u).

3.5 Supervised Global Policy Optimization

Objective of global policy optimization is to optimize 7, (u|o) such that the KL divergence between g (u|x) and the
local controllers ¢ lt (u|x) and the expectation of the Lagrangian term uTli’t becomes minimal:

N T
La0.0=2.2, B[R] rosl 0.0
i=1 t=1 "o u]x)c(x

Unlike the local controllers, the global policy is conditioned on the observation vector o only. Thus, knowledge about the
full system state x is not required at test time. Since g (u|o) is Gaussian distributed, the global policy can be represented
by two functions u” (o) and X7 (0), such that my (u|0) = N(u” (0) , L7 (o)). Using the definition of the KL divergence,
this yields:

Lo (6, c)——Zi [ [c;1=7 (0)] - log|=" (o)

o1 =1 f(OIX)Zt(X (16)

# (7 (0) =0t 09) €1 (17 (0) =, () + 4L (o)

where ufi (x) and C,; are mean and covariance of the local controller: ¢ lt (u|x) =N (ufi (x),Cm-). The expectation
under P, (0 |X) g, (x) is evaluated using samples from the real system, which were drawn in the beginning of the iteration.
Additionally to the state, the observations o belonging to the states x need to be recorded at sampling time, since the

observation distribution P, (o|x) is unknown. Since u™ (o) and X7 (o) are independent functions, they can be optimized
individually, as described in the following two sections.

3.5.1 Global Policy Mean Optimization

When optimizing (16) w.r.t. u” (o), all summands independent of u™ (o) can be removed and the objective becomes:

i %ZZMX):{(X)[ (7 ()=, () €31 (1™ (0) =y 00) 210 o)
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which is equivalent to

1 N T

mnge 23 B ()= 00+ ) € (1 (o) )+ - )

T
H 2Nl 1t= 1Pf(°

+2}thu“(x)+—lTC A ]

Dropping again terms independent of u” (o) gives:

T

1 e 1 1
mj[n—zz |: (u” (o)—uf’i (x)+ —Ct,ili,[) Ct_l1 (u” (0)—uf,i (x)+ —Ct,ili,tﬂ
uw* 2N U, VU

i=1 t=1 Pt(o x)(t(x

Thus, the objective becomes an Euclidean loss function between the means of global policy and local controller, offset by
the Lagrangian term and weighted by the local controller’s precision matrix. In this work, u” (o) is represented by a fully
connected neural network. The training data of this network is a set of observation-action pairs (o u ) To generate

these pairs, observation state pairs (0 ) are obtained from the samples drawn at the beginning of the iteration and the

t’ t
controller mean of the respective optimized local controllers is computed: ( t’EC[(u|X) [ ]) Due to the definition of the

local controllers, the mean is computed as u, = K;x, + K.

3.5.2 Global Policy Covariance Optimization

When optimizing X7 (o), objective (16) becomes:

1 N T
min = > D v

is1t=1 Pe(olx )cr(x

[ r[CZ}Z“ (o)] —log|=" (o) I]
as all other summands are independent of %7 (o). In this work, %™ was chosen not to depend on the observation, which

yields the following objective:
N T
Z;T LN ZZ v, (tr[C;}Z”] —log |E”|)

min
i=1t=1

—_

Differentiating and setting to zero gives:

1
N

> o (o7

t=1

N
ipM=

i

which results in the following equation for %7:

(S5 (Sgeer)

i=1 t=1 i=1 t=1
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4 Experimental Procedure

In this section we describe the experiments we conducted to validate GPS performance for in-hand manipulation. The
aim of the experiments is to examine whether GPS is capable of acquiring in-hand manipulation skills from scratch within
a reasonable amount of time. Hence, we designed three experiments that require different levels of hand dexterity. In
the first experiment, GPS has to learn to reach and hold a defined hand pose from a range of starting poses, while
compensating for gravity. This experiment does not include any object manipulation and was conducted to evaluate
whether GPS is generally capable of dealing with the high-dimensionality of the Allegro hand. The second experiment is
a task in which a fixed cylinder has to be rolled between two fingers. Since the position of the cylinder varies, the tactile
sensors have to be utilized to to determine the rolling strategy to be used. This experiment was deployed to analyze
GPS capability of dealing with non-linear contact dynamics and performing in-hand manipulation on a fixed object. To
evaluate GPS performance on freely-moving objects, we conducted a third experiment, in which a grasped cuboid has to
be moved to a 3D target location. This experiment requires substantially more dexterity than the previous experiment,
since the cuboid is not fixed and can thus slip and drop if not handled carefully. The objective of this experiment is to
evaluate how GPS is performing on one of the key challenges of dexterous manipulation - in-hand object reconfiguration.
In the following, we describe the platform we used and provide details to the different experimental setups. The results
of the experiments are collectively described in section 5.

4.1 Setup

All our experiments run in simulation, which enables us to per-
form rapid testing while still giving a reasonable insight into
our method’s performance. We use a simulated version of
the Allegro Hand [35] with tactile sensors on the fingertips.
The general design of the Allegro Hand is similar to the hu-
man hand, although it has 4 fingers instead of 5. Each
finger consists of 4 fully controllable revolute joints, includ-
ing one joint able to rotate the entire finger around its lon-
gitudinal axis, while the other joints are placed similar to
the joints of a human hand. The simulated tactile sen-
sors measure orthogonal external force on 23 points around
each fingertip.  Since these sensors are placed on each fin-
ger tip, they generate a 92 dimensional continuous input sig-
nal, which serves as only external input to the final pol-
icy. Combined with the joint positions and velocities, the hand
provides a 124 dimensional input signal. @ As all joints are
torque-controlled, the resulting continuous control space is 16-
dimensional.

We use pybullet as simulation platform. As the name suggests, Figure 3: Allegro hand in simulation.

pybullet is a python API for the Bullet 3 physics engine. We con-

figured pybullet to use a simulation time step of 1ms to ensure that the contact dynamics are simulated with sufficient
precision. Every 10ms, the current hand state is fed into the policy and a new control signal is generated. The length
of a roll-out is 1s in all our experiments, which corresponds to a trajectory of 100 states. In every iteration, we draw 30
samples for each initial state, which corresponds to 30s robot time per initial state. Except for the second experiment,
gravity is generally enabled in all simulations to make the scenarios as realistic as possible. We chose the global policy
to be represented by a fully-connected neural network with 6 hidden layers and 150 rectified linear units (ReLU) in each
layer.

4.2 Positioning Fingers

In this experiment, we evaluate the general ability of GPS to control complex high-dimensional systems like the Allegro
hand. In order to do so, we provide a constant target hand configuration (see Figure 4) and learn a controller to reach
and hold this configuration starting from a range of initial configurations. Here, a hand configuration is defined by the
positions of all joints of the hand, joint velocities are ignored. Since gravity is simulated in this experiment, the task
includes to learn gravity compensation additionally to the positioning control task. While this task is generally solved
from an engineering perspective, it gives valuable insight into the ability of GPS to estimate a dynamics model of the
hand and use it for a standard control task.
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Figure 4: Target hand configuration for the finger positioning task. The objective is to reach this configuration and hold
it until the end of the roll-out.

We chose the number of initial states for training to be 4. The initial states correspond to different hand configurations,
which are depicted in Figure 5. To generate these configurations, we sample from a Gaussian distribution around the
target joint angles. Since no object is manipulated in this experiment, we disable the tactile sensors to reduce the input
dimensions. Consequently, the joint positions and velocities serve as only inputs to the local and global policies, which
results in a 32 dimensional input space. We use the summed squared distance to the target joint positions as cost function
and additionally penalize torques to ensure smooth and efficient trajectories:

¢ (x,u)= HUH2 + Hposjoint (x) _ptarget”2

where py,... is the vector of target joint positions and po. R2 — R!® extracts the joint positions from the state.

Sjoint :

== o

Figure 5: Initial hand configurations used to train local controllers for the finger positioning task.

4.3 Rolling a Fixed Cylinder

While the previous experiment gives insight into the ability of GPS to control the Allegro hand, it does not touch manipu-
lation and the challenges related to it. Additionally to the inherent higher complexity of the task, these challenges include
underactuation, more complex dynamics and the partial observability of the state. The underactuation occurs naturally
when manipulating objects, since the object pose cannot be controlled directly but has to be influenced by the fingers.
Furthermore, occurrence of contact introduces non-linearities to the dynamics, which makes their estimation harder. In
the previous experiment, the dynamics of the fingers were mutually independent as long as no contact occurred. When
manipulating an object, however, this is not the case anymore, as all fingers in contact with the object can influence
each other. This makes the system dynamics significantly more complex and introduces the necessity to coordinate finger
movement, contrary to the previous experiment.
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Figure 6: Experimental setup of the cylinder rolling task. The left picture shows the system in the initial configuration.
The objective is to roll the cylinder by exactly 180° using thumb and index finger, reaching the configuration
depicted in the right image. The location of the cylinder on the plane differs for each initial state.

In this experiment, we test the ability of GPS in dealing with the challenges stated above by introducing an in-hand
manipulation task. The objective of this task is to rotate a grasped cylinder 180° as depicted in Figure 6. The cylinder is
fixed on the ground and can only be rotated around its longitudinal axis. Here, the initial states correspond to different
positions of the cylinder on the ground plane as shown in Figure 7. To ensure that they are feasible, we draw these
positions from a uniform distribution in a range of 6cm x 1cm, instead of drawing them from a Gaussian distribution.

Tl 7 %7 57

Figure 7: Initial configurations used to train local controllers for the cylinder rolling task. The cylinder locations on the
plane are selected randomly from a two dimensional uniform distribution.

We chose the number of different initial training configurations to be 4. The small finger and the ring finger as well as the
twist joints of each finger are disabled, since they provide no advantage in solving this task. As the policy has no access
to any past observations and the task requires to lose contact with the cylinder, we provide the policy with the position
of the cylinder. This compensates for the fact that the policy has no way of knowing the cylinder location while it is not
in contact with any of the tactile sensors. Considering the 23 dimensional input of the tactile sensors for each finger,
this results in a 60 dimensional input space and a 6 dimensional output space for the final policy. For local optimization,
however, we do not include tactile sensor information of any kind, since we found it to slow down convergence due to the
increased complexity of the state. Instead, we include the cylinder angle and velocity, which results in a 14 dimensional
state. Note that the cylinder position is constant for each local controller and thus not beneficial to add. Performance is
measured using using the following cost function:

I (x,u) = ||u||2 + min((angleqlinder (x) + 77:)2)

where angleinge : R>* — R extracts the cylinder angle from the state. Similar to the previous experiment, we penalize
control commands to ensure a smooth and efficient trajectory.
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4.4 Reconfiguring a Freely-Moving Cuboid

The previous experiment evaluates GPS on the manipulation of a fixed object using two fingers. While that task cov-
ers the ability of GPS to perform manipulation in general, solving it does not require the full capability of the Allegro
hand. Hence, in this experiment we take a step further and evaluate GPS’s ability to reorient freely-moving objects in-
hand. Contrary to the previous experiment, we enable all fingers and joints in order to leave the robot as unrestricted
as possible. Additionally to the higher state and control dimensions, this task introduces further new challenges, since
the movement of the manipulated object is not restricted anymore. This essentially shifts the movement range from a
1 dimensional space to 6 dimensions. Furthermore, the object can now be dropped and thus the robot has to learn to
perform a stable grasp prior to any manipulation attempts.

Figure 8: Experimental setup of the cuboid positioning task. The objective is to reconfigure the cuboid from its initial pose
to the target pose marked by the transparent cuboid. Note that the hand is 0.5m above the ground.

Objective of this task is to reconfigure a grasped cuboid into a constant target pose as shown in Figure 8. Since the hand
is controlled in torque control mode, the initial grasp is not stable and the object will drop if no action is taken. In this
scenario, the initial states correspond to different poses of the cuboid. Similar to the previous experiment, the poses are
drawn from a uniform distribution to ensure that they are feasible. The ranges of the uniform distribution compared to
the target pose can be obtained from Table 1.

Sampling range | Target value
X 0.1 £0.05m 0.1m
y 0.0 £0.01m 0.0 m
z 0.0m 0.0m
roll 0.0 £11.5° 45.0°
pitch | 0.0 1.7 ° 0.0°
yaw | 11.3 =1.7° 11.3°

Table 1: Initial cuboid pose sampling range. Each initial state is generated by drawing all parameters from a uniform
random distribution with the respective range.
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Figure 9: Initial configurations used to train local controllers for the cuboid positioning task. For each initial state, the
cuboid’s pose is drawn from a uniform random distribution, further specified in Table 1.

Similar to the previous experiments, we use 4 distinct initial states for training. As all joints and fingers are enabled,
this results in a 124 dimensional input space (16 joint positions, 16 joint velocities, 92 tactile forces) and 16 dimensional
output space for the final policy. For the local controller optimization we drop the tactile forces again and replace them
with the positions and linear velocities of 4 markers placed on the cuboid. As visible in Figure 9, the markers are placed
on opposite corners on both sides of the cuboid and their position, hence, fully defines the pose of the cuboid. Using the
marker positions to encode the object pose instead of using object position and orientation directly has the advantage
that the distance between two poses can be measured in terms of a euclidean distance. Alternatively, the orientation
offset could also be measured by computing the error angle to the target pose. However, this requires trigonometric
functions and thus leads to a more complicated cost term. Additionally, we found our measure to produce better results.
Jointly with the joint state, this results in a 56 dimensional state space for the local optimization. Utilizing this distance
measure, the cost function used for this experiment is:

L (x,u) = ||u||2 +d(x)+10°log(d (x) +107%)

where d (x) = Z?Zl ||ml (x) — pi”2 is the summed squared marker distance, p; € R® is the target position of marker i
and m; : R°® — R3 extracts the position of the i-th marker from the state. This type of cost function has been proposed
for tasks which require high precision in prior work [13]. The idea behind this is that the quadratic term encourages
the optimization to quickly converge towards the target state, even from a far distance. As soon as the distance becomes
small, however, the quadratic term will become very shallow and less helpful for the optimization. Adding the logarithmic
term includes a concave “spike” around 0 to the cost function, which leads to a quicker convergence for small distances.
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Figure 10: Plot of the distance term used in the cost function: ¢ (d) = d? + 10 °log(d?+ 107°). The concave shape
introduced by the logarithmic term encourages the optimization to reach the target position as precisely as
possible.
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5 Results

In this section we summarize the results of the experiments we conducted. For each task, we compare the performances
of the local controllers and the global policy over the course of a single GPS execution. Additionally to the 4 training
configurations, the global policies were tested on 100 randomly generated unseen initial configurations in every iteration.
This validates that the global policies did not overfit but solved their respective tasks in a general way. To enable a com-
parison, the performances of the global policy on seen and unseen configurations are visualized individually in every task.

Since the probability of success shall be maximized at test time, the control signal with the highest probability is
chosen at each time step during the roll-outs presented here. As the local controllers as well as the global policy are
conditionally Gaussian, the control signal with the highest probability is the controller mean in both cases. Considering
that the simulator is deterministic, roll-outs of a controller on a fixed initial configuration will always result in the same
trajectory. Thus, the presented results are generated by single roll-outs of the local controller and the global policy on
each initial configuration in each iteration of each experiment.

A video of the global policy performing roll-outs on all three tasks can be found here: https://youtu.be/b®IGW4WI6OK.

5.1 Positioning Fingers

Figure 11 shows the learning progress of GPS in the finger positioning task. Since the value of the cost function does
not provide an intuitive explanation of the performance, the mean joint position error at the final time step is added
for comparison. As shown in Figure 11, the policy has been trained for 30 iterations which corresponds to 1h of robot
time. The final policy was not only able to deliver good performance on seen configurations, but also achieved a similar
performance on unseen configurations (refer to Figure 12 for examples of unseen configurations). This indicates that the
policy did not overfit, and indeed solved the problem generally. Hence, these results show that GPS is capable of dealing
with high-dimensional systems like the Allegro hand.

= Local controller === Global policy (seen configurations) === Global policy (unseen configurations)
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Figure 11: Performance comparison of the local controllers and the global policy over the course of one GPS execution on
the finger positioning task. The mean final joint position error is defined as mean position error of all joints of
the Allegro hand at the final time step of the respective roll-out. In the last iteration, the average mean final
joint position errors are 0.28° for the local controller, 0.35° for the global policy on seen states and 0.89° on
unseen states.
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Figure 12: Examples of unseen initial hand configurations used for policy testing in the finger positioning task.

5.2 Rolling a Fixed Cylinder

Figure 13 depicts the learning progress of GPS in the cylinder rolling task. The course of the cylinder angle error in the
final time step of each roll-out is visualized to provide an intuitive understanding of the optimization progress. In this
task, the training was performed for 50 iterations, which corresponds to 1:40h of robot time. Both the local controllers
and the global policy achieved reasonable improvement over the iterations of this experiment. As in the previous exper-
iment, the global policy did not overfit and was able to deliver similar performance on seen and unseen configurations
(refer to Figure 14 for examples of unseen configurations).

= Local controller === Global policy (seen configurations) ==== Global policy (unseen configurations)
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Figure 13: Performance comparison of the local controllers and the global policy over the course of one GPS execution on
the cylinder rolling task. The final cylinder angle error is defined as the difference between the cylinder angle
and the target angle of 180° at the final time step of the respective roll-out. In the last iteration, the average
final angle errors are 17.73° for the local controller, 21.98° for the global policy on seen configurations and
49.71° on unseen configurations.

However, as visible in the graphs, the local optimization converged towards an error of approximately 35° and not to
0°. The error occurs most likely due to the fact that the robot cannot perform a 180° rotation with one rolling motion
of the finger. Thus, in order to achieve the target angle, the robot has essentially two options: perform a finger-gait
or flick the cylinder to its target position. Since the optimization method used here is restricted by a KL-divergence to
the previous trajectory, it does not perform much exploration and focuses on exploitation instead. To find strategies like
finger-gaiting, however, exploration is required, since during a “step” of the finger no progress is made and the gradient
of the cost function is 0. Hence, we found that the local controller optimization typically develops flicking strategies
that require a precise amount of force but little planning-ahead to minimize the error angle. For most of the tested
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configurations, the flicking strategies aim to place the cylinder in the right angle with a single flick without any further
intervention. An example of a roll-out on such a configuration is shown in Figure 15. In the other tested configurations,
the cylinder is intentionally flicked with enough force to overshoot, but then stopped with the index finger and rolled to
the target orientation as shown in Figure 16. This strategy typically results in lower overall cost, since the cylinder is spun
faster and thus the error angle is reduced quicker as in the other strategy. Recall, that the cost are not only computed for
the final time step but accumulated over all time steps of the roll-out.

Although flicking can be perfected to minimize the error, it is very prone to control errors and the cylinder tends to
overshoot or undershoot as visible in Figure 15. Small perturbations in the fingertip position quickly make the difference
between a good flick or one that either misses the cylinder or hits the cylinder at an unfortunate angle. Also when using
the second strategy, as the cylinder is perfectly round, the robot cannot measure its orientation when stopping it and
thus has to rely solely on the precision of the initial flick. This high-accuracy requirement is especially challenging for the
global policy, which has to adapt the flicking strategy for unseen cylinder positions. The error-sensitivity of this strategy
is most likely also the cause for the jagged cost graph of the global policy.

MW

Figure 14: Examples of unseen initial configurations used for policy testing in the cylinder rotation task.

Nevertheless, these results show clearly that GPS is capable of dealing with complex discontinuous dynamics and is able
to perform in-hand manipulation. The presented strategies were all learned from scratch and GPS achieved significant
improvement within 50 iterations.

Angle error of a single roll-out
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Figure 15: Comparison of the angle error over a single roll-out of the global policy and the respective local controller in
iteration 50. Both controllers performed a flicking motion with the index finger at the beginning and did not
touch the cylinder again. The cylinder overshot slightly in both cases. On the right is a picture of the final time
step of the global policy roll-out.
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Figure 16: Comparison of the angle error over another roll-out of the global policy and the respective local controller in
iteration 50. Both controllers performed a strong flick and corrected the orientation of the cylinder after it
overshot. On the right is a picture of the final time step of the global policy roll-out.

5.3 Reconfiguring a Freely-Moving Cuboid

Figure 18 shows the learning progress of GPS in the cuboid positioning task. To provide an intuition about the optimiza-
tion progress, we visualize further performance measures additionally to the cost. These performance measures consist
of the mean marker position error and the error in cuboid position and orientation at the final time step of the roll-outs.

At the beginning of the optimization, GPS has to learn to stabilize the object first to avoid dropping it. Since the
floor is 0.5m below the hand, the inflicted cost upon dropping are fairly high, which explains the high cost at the begin-
ning and the spikes throughout the optimization. After the object has been stabilized, the algorithm continues to optimize
the cuboid’s pose and is finally capable of reaching the target pose with high accuracy as visible in Figure 19. As shown in
Figure 18, the policy generalizes and achieves similar performance on seen and unseen configurations (refer to Figure 17
for examples of unseen configurations). The reason for the temporarily bad performance on seen configurations is that
GPS struggles to find a stable grasp for one of the four training configurations and thus often drops the object. However,
in iteration 80, a stable grasp for this configuration has been acquired.

o

Figure 17: Examples of unseen initial configurations used for policy testing in the cuboid positioning task.

These results show that our method is capable of performing dexterous manipulation of a freely-moving object. The task
introduces significant challenges, since the object can slip and drop and is inherently more complex than the previous
two tasks due to the higher degrees of freedom. Despite these challenges, an accurate and robust policy was learnt in 80
iterations, which corresponds to 2h and 40min of robot time.
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Figure 18: Performance comparison of the local controllers and the global policy over the course of the optimization for
the cuboid positioning task. The mean marker position error is computed as the mean position error over all
4 markers. The cuboid position error is computed as the distance of the cuboid center to its target location,
while the orientation error is measured as the angle between current and target orientation. All performance
measures except for the cost are computed at the final time step of the respective roll-out. In the last iteration,
the average final marker errors are 2.0cm for the local controller and 3.1cm for the policy on seen configurations
and 2.3cm for the policy on unseen configurations.
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Figure 19: Final state of the global policy applied to an unseen configuration. All fingers are used to stabilize the object
in a very accurate position and orientation. The general configuration of the hand looks natural despite the
fact that it was not trained on human demonstrations.
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6 Conclusion

In this work, we used Guided Policy Search to learn policies for in-hand manipulation driven on tactile feedback. We
demonstrated that our method is capable of performing simple control tasks, like position control for the fingers of a
robot hand, but also presented results for two in-hand manipulation tasks. One task consists of the manipulation of a
fixed object with two fingers, while the other task’s objective is to reposition a freely-moving object in-hand using all
fingers. The algorithm is not provided with any domain or robot specific knowledge and merely uses a high-level cost
function which defines the objective of the task. Especially the lack of a robot model is challenging, since complex high-
dimensional dynamics have to be estimated from roll-outs on the robot. Despite these challenges, our method was able
to achieve reasonable performance for distinct initial states and managed to learn a global neural network policy for each
presented task. We validated that the global policies did not overfit, by testing each of them on 100 randomly generated
unseen states. Our results show that the algorithm is capable of learning dexterous in-hand manipulation policies that
solely rely on tactile sensor data and the internal robot state as input.

An issue of this work is that it does not use the original, but a modified BADMM version to deal with probability
density functions instead of finite dimensional vectors as optimization variables. While Levine et al. [34] claim that
the modified version inherits the proven convergence guarantees of the original BADMM, they do not provide a proof.
Experimental evaluation suggests that the method converges at a good rate, but without a mathematical proof it remains
unclear if this holds for all cases. Especially since the convergence bounds of BADMM depend on the problem dimen-
sionality, a mathematical analysis of the convergence of the modified BADMM would add confidence in this method.
However, since performing such an analysis is beyond the scope of this thesis, this question remains open.

Following up to this thesis, a couple of issues could be addressed in future work. While simulated results already
give a reasonable insight into the method’s performance, it has to be tested on real hardware to confirm its applicability
in the real world. This certainly comes with a variety of new challenges, since the real world cannot be simply reset to
some initial state. Thus, tasks need to be found, in which the robot can either reset itself after each roll-out or in which
a human can do this with sufficient precision and at a reasonable time effort. While the cylinder task falls in the first
category, our last experiment is probably not executable in the real world, since the cuboid would drop before the robot
could take any action. One option is to alter this experiment by placing the cuboid on a solid surface or by finding a
different intrinsically stable initial configuration similar to Kumar et al. [18].

Furthermore, it would be interesting to see if, given more time and initial states for training, the algorithm is capa-
ble of producing a global policy that solves our final task for a broader range of initial configurations. These initial
configurations could, for example, include a higher range of initial object poses or maybe even different grasps or devia-
tions in the object size or shape. This would obviously introduce a completely new challenge to the training procedure,
since for each of these configurations or objects, a proper grasp needs to be found prior to training, which is an entire
research topic on its own. However, solving the problem of in-hand object reconfiguration in a more general way would
certainly mean a big step towards general hand-based dexterity.
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