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Abstract
The application of machine learning techniques to the field of robotics has led to considerable progress towards the
aim of realising autonomous robots. An autonomous robot, when not having specific tasks to be engaged in, should
not remain idle, but prepare for upcoming tasks. One natural form of preparation is to explore the environment and
accumulate knowledge in the form of a model of the world. A robot can use such a model to predict consequences of
future actions which comes in handy for efficiently solving subsequent tasks. The central question we consider in this
thesis is which actions the robot should execute to learn new aspects of the world and to improve its model optimally. We
review existing work on exploration strategies and optimal decision making for information gain from several subfields of
machine learning. As core of this thesis, we present a novel approach based on insights from active learning. The world
is modelled as a Bayesian model and the optimal actions are formulated as the solution of an optimisation problem. To
plan actions that are expected to improve the model, the expected model variance and the uncertainty of the resulting
trajectory are considered as objectives, leading to two different problem formulations. Since an optimal solution for these
problems is not tractable, we consider an approximation that can be solved efficiently using gradient-based trajectory
planning methods. The resulting algorithms are compared to state-of-the-art exploration methods. Thanks to the natural
representation of model uncertainty and trajectory planning, our proposed method is significantly faster, leads to lower
model error and can be used to solve future tasks more reliably.

Zusammenfassung
Die Anwendung von maschinellen Lerntechniken auf den Bereich der Robotik hat zu erheblichen Fortschritten bei der
Realisierung autonomer Roboter geführt. Ein autonomer Roboter sollte, wenn er keine spezifischen Aufgaben zu erledi-
gen hat, nicht untätig bleiben, sondern sich auf anstehende Aufgaben vorbereiten. Eine natürliche Form der Vorbereitung
ist es, die Umwelt zu erforschen und Wissen in Form eines Modells der Welt zu sammeln. Ein Roboter kann ein solches
Modell verwenden, um die Folgen zukünftiger Aktionen vorherzusagen, was sich als nützlich erweist, um nachfolgende
Aufgaben effizient zu lösen. Die zentrale Frage, die wir in dieser Arbeit betrachten, ist, welche Aktionen der Roboter aus-
führen sollte, um neue Aspekte der Welt zu lernen und sein Modell optimal zu verbessern. Wir überprüfen bestehende
Arbeiten zu Explorationsstrategien und optimaler Entscheidungsfindung für den Informationsgewinn aus mehreren Teil-
bereichen des maschinellen Lernens. Als Kern dieser Arbeit stellen wir einen neuartigen Ansatz vor, der auf Erkenntnissen
aus dem aktiven Lernen basiert. Die Welt wird als bayesianisches Modell modelliert und die optimalen Handlungen wer-
den als Lösung eines Optimierungsproblems formuliert. Um Handlungen zu planen, von denen erwartet wird, dass sie
das Modell verbessern, werden die erwartete Modellvarianz und die Unsicherheit der resultierenden Trajektorie als Ziele
betrachtet, was zu zwei verschiedenen Problemstellungen führt. Da eine optimale Lösung für diese Probleme nicht um-
setzbar ist, betrachten wir eine Approximation, die mit gradientenbasierten Methoden der Trajektorienplanung effizient
gelöst werden kann. Die daraus resultierenden Algorithmen werden mit modernen Explorationsmethoden verglichen.
Dank der natürlichen Repräsentation von Modellunsicherheit und Trajektorienplanung ist unser vorgeschlagenes Ver-
fahren deutlich schneller, führt zu geringeren Modellfehlern und kann dazu verwendet werden, zukünftige Aufgaben
zuverlässiger zu lösen.
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1 Introduction
Within the last years, autonomous systems have found more and more their way into our daily lifes. While twenty years
ago, self-driving cars, autonomous vacuum cleaners, and virtual personal agents seemed like a science fiction fantasy,
nowadays these systems are already in widespread use. Many advances in these innovations were made possible by the
progress in the field of machine learning. The research in this field aims at enabling agents to ”learn” autonomously
without the need of programming complex behaviours by hand. One recent example is the program AlphaZero [1] that
learns how to play the games chess, shogi, and go at superhuman level within a few hours of training.

Despite all the recent breakthroughs, it is still challenging for autonomous agents to learn a rich set of behaviour. Usually
in reinforcement learning, agents are developed for learning to solve only a specific task based on a predefined reward
function. This way, robots can solve quite complex tasks that require versatility and complex motor signals such as play-
ing games like ball-in-a-cup [2] or table tennis [3]. However, in these cases the objective can be precisely formulated and
the environment is predictable. Putting robots into complex diverse environments to do a variety of different tasks such
as for housekeeping or caring for the elderly, on the other hand, is still a big challenge and currently not feasible. For
building agents that can engage in a variety of tasks, they need to be made adaptable and able to accumulate knowledge
on the world. To this end, an agent needs to learn a useful model of the environment that he can make use of to solve
subsequent tasks more efficiently. Robots could benefit from learning about their own dynamics as well as about the
environment that can afterwards be applied to a variety of problems.

In the specific setting we consider, the agent might already be in the environment before having to solve any tasks.
In this case, it would be useful for it to explore the environment and to create an internal model of the world. One
central question in this setting is how to make the agent to behave in an interested or curious way such that it learns
a rich model. In the field of psychology, research on this behaviour in humans is known under the term curiosity [4]
as subfield of intrinsic motivation [5]. It deals with the problem of how humans explore and enrich their knowledge to
be more empowered for future situations. In the last thirty years, insights of these fields were tried to transfer to the
field of machine learning for building agents that show curious behaviour, e. g. [6, 7]. Especially recently, pushed by the
advances in the field of deep learning, very impressive results have been achieved. As an example, agents in video games
learned to explore worlds solely based on images [8, 9]. These approaches, however, are usually reactive [10], i. e. the
agent accidentally discovers an interesting state region and is reinforced to visit this region again in the near future. After
exploring an initially interesting area, the agent remains attracted to this region and has to gradually unlearn moving
to this area. This unlearning may require significant time and makes its exploratory behaviour sample-inefficient. This
problem is known as ”over-commitment” and can be avoided by actively planning exploration [10].

1.1 Contributions

We present a method which actively plans for exploration to make the agent move into regions that are expected to
improve the agent’s model. Our method makes use of ideas introduced in the field of active learning to select a sequence
of actions that leads to trajectories of maximal utility for the model. To this end, we formulate two optimisation objectives.
In the first one, actions are selected which are expected to reduce the uncertainty of the model most. In the second one,
the objective is to maximize the entropy of the trajectory based on an internal dynamics model as proposed by uncertainty
sampling. In each iteration of the resulting algorithm, the agent plans a trajectory which then is executed in the real
system. The obtained data is then used to refine the model. The dynamics of the environments are modelled using
a Bayesian model that naturally provides a measure of model uncertainty. As each sequence of actions is planned
independently from the last ones given the model, there is no behaviour of ”over-commitment” and therefore explores
the environment efficiently. In comparison to another recently proposed exploration algorithm which already provides
remedy for this problem [10], our method is significantly faster, leads to lower model error, and can be used to solve
future tasks more reliably.
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1.2 Overview of Chapters

This thesis is structured as follows.

Chapter 2 introduces fundamental concepts that serve as basic ingredients for the method we propose. The concepts
of reinforcement learning, regression, and planning are presented and measures of entropy and Fisher information are
introduced.

Chapter 3 presents related methods that can be used to make optimal decisions leading to maximal information gain.
This chapter therefore represents related work to our approach. The problem of exploration and information gain is ubiq-
uitous in the fields of machine learning and optimal control for making optimal decisions. Hence, various subtopics such
as active learning, dual control, and intrinsic motivation are introduced, and relevant work of these fields is presented
and related to the objective considered in this thesis.

Chapter 4 introduces a novel approach for exploration to the end of learning a model. This approach makes use of a
Bayesian model and planning methods to make decisions that are expected to improve the model.

Chapter 5 presents experiments where the approach of chapter 4 is compared to state-of-the art methods for exploration
for model learning. In the comparison, random actions, an intrinsic motivation algorithms based on model-free rein-
forcement learning, andthe model-based active exploration (MAX) algorithm are considered.

Chapter 6 gives a conclusion of the insights discovered in this thesis as well as directions for future research on the
problem of exploration for model learning.
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2 Foundations
This chapter introduces fundamental concepts that serve as basic ingredients for the exploration method proposed in
chapter 4. The concepts of reinforcement learning, planning, and regression are presented and measures of entropy and
fisher information are introduced.

2.1 Model-based Reinforcement Learning

In model-based reinforcement learning [11], the task is to find a trajectory τ = {s0, a0, s1, a1, . . . , aT−1, sT } by mini-
mizing some cost c(τ) for a certain time horizon T . Equivalently, instead of minimizing a cost function, a reward
function r(τ) = −c(τ) may be maximized. The trajectory has to be optimized such that it follows a model f , i. e.
st+1 = f (st , at), ∀t = 0, . . . , T − 1. Model and reward are either explicitly provided or estimated using past system
interactions. Model learning in continuous space can be achieved by means of regression methods which are handled in
greater detail section 2.3.

Once having a model of the system and reward function, one can use a planning algorithm to solve for the optimal tra-
jectory under the model given reward function and initial state. Different formulations for of the objective are presented
in the following section (2.2) of shooting methods.

2.2 Shooting Methods for Planning

Planning with continuous state-action models can be done using direct shooting methods [12]. In single shooting methods,
the optimization problem is formulated as optimizing for the actions and computing the following states implicitly by
plugging in the model:

min
a0, . . . , aT−1

c(s0, a0, s1, a1, . . . , aT−1, sT )

where st = f (st−1, at−1) for t = 1, . . . , T .
In multiple shooting methods the states are also considered as optimization variables and consistency between states and
model is ensured by inserting a constraint:

min
a0, s1, . . . , aT−1, sT

c(s0, a0, s1, a1, . . . , aT−1, sT )

s.t. st = f (st−1, at−1), t = 1, . . . , T

Multiple shooting methods are often considered superior to single shooting methods as lifting the problem to a higher
dimension is known to often improve convergence [13]. Also, using multiple shooting offers the possibility to initialize
the trajectory using some guess. A drawback of multiple shooting methods is that the problem gets much larger as more
quantities have to be determined and additional constraints have to be considered. This drawback however is often
compensated by the fact that it the problem becomes much sparser [13].

The formulated optimization problems can be directly solved using numerical optimizers such as IPOPT [14] together
with frameworks like CasADi [13].

2.3 Regression Methods

In supervised learning, we are given inputs x with corresponding target values y with y = f (x) + ε for some unknown
function f and optional noise ε. The goal of regression is to get an estimate of f when the targets are continuous which
enables us to predict targets for new inputs x∗.
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2.3.1 Bayesian Linear Regression

Linear Regression models f (x) to be a function of the form θ Tφ(x) where θ are parameters to learn and φ(x) are fixed
basis functions. If we assume Gaussian noise, the likelihood of observations is given by

p(y | θ ;x) =N �

y | θ Tφ(x),Σ
�

.

A popular choice for the feature representation are radial basis functions (RBF) with centers equally distributed over the
space [15]:

φRBF(x) = exp

�

−‖x− νi‖2

2σ2

�

An example of RBF features is shown in figure 2.1.

In Bayesian Linear Regression [15, 16], we incorporate a prior over θ which enables us to maintain a full distribution
over parameters θ and thus to reason about the uncertainty of predictions f (x∗). To simplify posterior computation, the
prior should be chosen conjugate to the likelihood, so we opt for a Gaussian prior over θ :

p(θ ) =N (θ | θ 0,Σ0)

By applying Gaussian identities [15] we obtain the posterior

p(θ | D)∝ p(y | θ ;x)p(θ )

=N (θ |µ∗,Σ∗)
with µ∗ = Σ∗

�

Σ−1
0 µ0 + βΦ

T Y
�

Σ−1
∗ = Σ

−1
0 + βΦ

TΦ (2.1)

where feature inputs and targets of the training set D = {xi , yi}i=1,...,N are aggregated into Φ = [φ(x1), . . . ,φ(xN )] and
Y = [y1, . . . ,yN ] respectively.
Once we have computed the posterior, we can evaluate the predictive distribution

p(y∗ | x∗,D) =
∫

p(y∗ | θ )p(θ | D)dθ

=N (y∗ |µT
∗φ(x∗),σ

2
∗(x∗))

with σ2
∗(x∗) =

1
β
+φ(x∗)

TΣ∗φ(x∗).

For now we considered only one-dimensional targets, i. e. yi ∈ R. However, the extension to multi-dimensional targets,
yi ∈ RN , is straight-forward. In this case, parameters θ become a matrix. As sigma doesn’t depend on the target values,
it can be used directly for multiple outputs and only the mean µ∗ has to be shaped into a matrix by having µ0 and Y as
matrices.

If data flows in sequentially, the posterior can be iteratively updated. To do so, the last computed posterior becomes the
prior and only the new data is considered for the likelihood. This procedure enables efficient computation in the case of
sequential data and is usually denoted as iterative least squares [15].

2.3.2 Gaussian Processes

A common problem when applying linear regression is that it is necessary to engineer the features, i. e. a suitable number
and form of features has to be determined. Gaussian Processes [17] offer a way to do Bayesian linear regression with
implicitly using infinitely many features by replacing products of features by a kernel function.

Formally, the optimal approach [16] for making predictions for some new inputs x∗ is to use a distribution p( f | D) over
possible functions given the data D = {xi , yi}i=1,...,N :

p(y∗ | x∗,D) =
∫

p(y∗ | x∗, f )p( f | D)d f

4
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Figure 2.1: The plot shows radial basis (left) and random fourier (right) features for a one-dimensional x . In each plot
there are five examplesφi(x) shown. For RBF,σwas set to 1, for RFF νwas set to 1. In linear regression, these
feature functions are linearly combined in order to approximate a continuous function.

A Gaussian Process (GP) [17] defines in this context a convenient and powerful [18] prior distribution p( f | D)
over functions. It assumes that the any finite set of points {x1, . . .xN}, induces a multivariate Gaussian distribution
p( f (x1), . . . , f (xN )). This distribution is fully specified by some mean µ(x) and covariance Σ(x) given by Σi j = κ(xi ,x j)
where κ is a positive definite kernel function. The prior over f defined by the GP can be converted into a posterior over
functions when we observe some data. Even if GPs can be applied to both regression and classification tasks, we focus in
this thesis only on the former case. In the regression setting, the process of inferring the posterior can be done in closed
form and in O (N3) time.

2.3.3 Gaussian Processes for Regression

We denote the GP that is the prior on the regression function by

f (x)∼ GP(m(x),κ(x,x′))

where m(x) is the mean function and κ(x,x′) the positive-definite kernel covariance function. The mean and kernel
function can be chosen freely. A popular choice for the kernel function is the squared exponential kernel, also known as
RBF kernel, which is given by

κ(xi ,x j) = σ
2
f exp

�

−1
2
(xi − x j)

T M(xi − x j)
�

+σ2
yδi j

where M is a matrix determining the horizontal length scale, σ2
f the vertical scale and σ2

y the noise variance.

Suppose, we have a set of observations D = {xi , yi}i=1,...,N where yi = f (xi) + εi are noisy observations. We assume the
noise εi to be independent identically distributed Gaussian noise with variance σ2

f . For convenience, we aggregate both
inputs and outputs X = [x1, . . . ,xN ] and y= [y1, . . . , yN ] respectively.

Given a set of new data points X∗ of size N∗ × D that we want to predict outputs y∗ for, by the definition of the GP, the
joint distribution can be written as





y

y∗



∼N








µ

µ∗



 ,





K K∗

KT
∗ K∗∗









where K = κ(X,X) +σ2
y IN is N × N , K∗ = κ(X,X∗) is N × N∗, and K∗∗ = κ(X∗,X∗) is N∗ × N∗.
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Figure 2.2: In this figure, Gaussian process fits on three data points (blue) using different vertical length-scales are shown.
On the left, σ2

f was set to 0.12 whereas on the right σ2
f = 0.2. The parameter set for the right fit assumes

higher smoothness of the underlying function. Even if the fit on the right has higher training data likelihood,
depending on the knowledge about the true function either of the parameter choices could be more suitable.

By means of standard rules for conditioning Gaussians [16] the posterior can be derived as

p(y∗ |X∗,X,y) =N (y∗ |µ∗,Σ∗)
µ∗ = µ(X∗) +KT K−1

∗ (y−µ(X))
Σ∗ = K∗∗ −KT

∗ K−1K∗.

The posterior is the distribution of the prediction we obtain for X∗ given our GP model.

2.3.4 Parameter Optimization

The performance of the GP model strongly depends on the choice of the kernel function. While the previously introduced
RBF kernel is a common choice and usually leads to good results, it depends on parameters M, σ f and σy that have to
be chosen thoroughly. Examples of different parameter choices are shown in figure 2.2. A common empirical Bayesian
approach to optimize these parameters is to maximize the marginal likelihood [16]

p(y |X) =
∫

p(y |X, f )p( f |X)d f .

Using the definition of the Gaussian Process and the fact that the observations are independent given f we end up with
the log likelihood

log p(y |X) = logN (y | 0,K) = − 1
2

yK−1y
︸ ︷︷ ︸

data fit

− 1
2

log |K|
︸ ︷︷ ︸

complexity

− N
2

log(2π)
︸ ︷︷ ︸

const.

where we are assuming the mean is zero, for notational simplicity. This formula is differentiable w.r.t. the kernel function,
thus, the gradient w.r.t. the kernel parameters can be computed. Any gradient-based optimization method, e. g. the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [19], can then be used to determine the parameters yielding
maximal likelihood.

2.3.5 Sparse Gaussian Processes

As non-parametric method, the computational complexity for doing inference in Gaussian Processes depends on the
number of training points. Inference for making new predictions lies in O (N3) with N being the number of training
examples which leads to slow performance if there are many data points. Sparse Gaussian Process methods decrease the
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complexity to O (M2N) by approximating the dataset by a fixed number M of pseudo-inputs. The computation of K−1 in
equation ?? is then approximated using the Nyström approximation K−1 ≈ KN M K−1

M M KMN where KM M is the covariance
matrix evaluated for the pseudo-inputs. This formulation requires only the inversion of a matrix of size M × M instead
of an N × N matrix.

There have been presented numerous approaches to infer the pseudo-inputs. In [20] a subset of the data is greedily
selected. [21] formulates the search for pseudo-input locations in form of marginal likelihood maximization. As most
recent and currently popular approach, pseudo-inputs are modelled as variational parameters [22, 23] and a lower bound
of the true log marginal likelihood is maximized. The pseudo-inputs are this way chosen to minimize the Kullback-Leibler
between the approximated GP and the original one.

2.3.6 Random Fourier Features

One advantage of Gaussian Processes compared to Bayesian linear regression using RBF features is that they require
little parameter tuning. Random Fourier Features (RFF), introduced by Rahimi [24], offer a powerful representation in
randomized low-dimensional space that can be used to approximate a Gaussian Process with an exponentiated quadratic
kernel. Empirically, they were shown to perform competitively with state-of-the-art kernel machines [25]. Their applica-
tion in the linear regression set-up thus requires little tuning like GPs while offering a parametric model that can be used
to carry out iterative linear regression.

The RFF representations φ(x) ∈ RM of inputs x ∈ RN is given as presented in [25] as

φi(x) = sin

 ∑N
j=1 Pi js j

ν j
+ϕi

!

where each element Pi j is drawn from N (0,1) and ϕi are random phase shifts which are sampled uniformly from the
interval [−π,π). ν denotes bandwidth parameters for changing the frequency of the sinus. In [25] it was suggested to
chose them approximately as the average pairwise distances between different observation vectors. A better alternative,
however, is to tune them in order maximizing the data likelihood, analogously to section 2.3.4. To introduce a bias term,
one can set P0· = 0 and ϕ0 = 0, so that φ0(x) = 1.

2.4 Entropy

Entropy [26] is an information-theoretic measure that represents the amount of information needed to "encode" a distri-
bution. In machine learning it is often used as measure of uncertainty [16]. The distribution with maximum entropy is
the uniform distribution which shows the highest possible degree of uncertainty.

The entropy of a random variable X with distribution p(X ) is defined as

H(X ) = −
∫

p(x) log p(x)dx .

For the Gaussian distribution pN (X ) =N (µ,Σ) the entropy is given in closed form as

HN (X ) =
k
2

ln(2πe) +
1
2

ln(|Σ|).
Within this thesis, we will frequently use the concept of entropy for measuring the certainty of beliefs. For parameter
estimates we want a distribution of low entropy so we are certain and its highly peaked..

2.5 Fisher Information

In parameter estimation problems, we want to get information about the parameters from a sample set of data. The
Fisher information is an information measure describing the amount of information, data provides about an unknown
parameter. For a random sample X with probability density p(X | θ ) for some model of data with parameters θ the
Fisher Information Matrix (FIM) is defined as

I (θ ) = − E
p(x | θ )

∇θ log p(x | θ )T ∇θ log p(x | θ ) (2.3)

= − E
p(x | θ )

Hθ log p(x | θ ). (2.4)
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A theorem, known as the Cramér Rao Lower Bound (CRLB) [27], states that the inverse of the Fisher information defines
a lower bound on the variance of any unbiased estimator θ̂ of θ :

Vθ (θ̂ )≥
1
I (θ ) (2.5)

Put into other words, the precision to which we can estimate θ is limited by the inverse Fisher information of the likeli-
hood function. This theorem can be intuitively explained for maximum likelihood estimators as follows: If the variance
Vθ (θ̂ ) is high, log p(x | θ ) is broadly shaped as we are unsure about the estimate. This means ∇θ log p(x | θ ) changes
slowly around the maximum likelihood estimate and results in a low Hessian, thus I (θ ) becomes small.

The concept of Fisher information is widely used in optimal experimental design. As estimator variance and Fisher infor-
mation are reciprocally connected, minimizing the variance corresponds to maximizing the information.
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3 Related Concepts
This chapter presents related methods that can be used to make optimal decisions leading to maximal information gain.
It therefore introduces related work to our exploration approach presented in chapter . The problem of exploration and
information gain is ubiquitous in the fields of machine learning and optimal control for making optimal decisions. We
present relevant work of various subtopics which tackle the problem of exploration, i. e. active learning, dual control, and
intrinsic motivation. Further, we take a look at concepts that are related in a broader sense, i. e. Bayesian optimisation
and empowerment.

3.1 Active Learning

In the supervised learning setting, we need labelled data for learning a model. In many cases, the process of labelling is
expensive, for example when manual labelling by human is necessary or if experiments in reality need to be conducted.
In this case, it is useful to select a small dataset that labelled and provided to the learner leads to high model performance.
Active learning [28], also denoted as optimal experimental design, tackles the problem on how to select the instances for
this dataset by estimating the utility of instances.

Usually, this process is performed iteratively: By means of the current model and a measure of informativeness, the ac-
quisition function, a fixed number of instances from a pool of unlabelled data is selected. These instances are labelled and
used for refining the model. In stream-based or sequential active learning [29, 30] one instance at a time is sequentially
presented to the the learner and it needs to decide whether to label this instance or to ignore it. In pool-based active
learning [31], instead of receiving one instance at a time, the learner has to select from a larger set one or more instances
for labelling. This thesis focuses on the latter use of active learning where one instance is selected at a time. There, the
instance is chosen that maximises the acquisition function α(x)

x∗ = argmax
x

α(x).

To selecting instances optimally for maximizing an objective, one would have to do an extensive search in form of
planning in the space over labels of instances [32]. As this procedure is infeasible for continuous space and even shows
very high complexity in discrete space, different heuristics were proposed. These heuristic acquisition functions measure
the effects of querying instances only for the next time step. In the following an overview over different acquisition
functions is given.

Uncertainty Sampling
As probably most simple and common [28] approach, uncertainty sampling selects the instances that the learner is most
uncertain about. The intuition behind this method is that a learner profits most by receiving samples of which it is most
unsure about the corresponding target value. For measuring the uncertainty, naturally a probabilistic model can be used
and the unlabeled instance is chosen for which the model has highest output variance in its prediction. It is common to
use entropy [26] as uncertainty measure and select the instance having maximal entropy:

αUS(x) = −
∫

y

p(y | x) log p(y | x)

There are also extensions for deterministic models, e. g. by using a committee of models [33] and select the instance of
maximum disagreement between the models.
Compared to other acquisition functions, uncertainty sampling is simple from a computational viewpoint. A drawback of
using this measure is that it likely fails in case of stochastic systems. There, the model will remain uncertain for instances
having labels with high randomness. It will query these instances over and over again, even if the model cannot be
improved anymore for these predictions. This problem is also faced in literature regarding intrinsic motivation (see
section 3.3) and there known under the term noisy-TV problem [34].
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Expected Model Change
Expected Model Change is a strategy that selects the the instance that would lead to the greatest change to the model.
One example of this framework is Expected Gradient Length [35] which can be used if gradient-based training of model
parameters is used. The underlying idea of this method is that the change of the model can be measured by the length
of the training gradient. The learner should therefore query that instance x that – if labelled and added to the learner –
results in the training gradient of largest magnitude. Since we do not know the target value in advance, the expectation
over targets of the gradient length has to be taken. The acquisition function can then be formulated as

αEMC(x) = −
∫

y

p(y | x)‖∇lθ (D ∪ 〈x , y〉)‖

where ∇lθ is the gradient of the learner’s objective function l(·) with respect to the model parameters θ and D the
training data set.
The intuition behind this approach is that it chooses instances that likely influence most the model and have the highest
impact on the parameters.

Expected Error Reduction
The acquisition function of expected error reduction measures how much the total prediction error of a model is reduced
by adding an instance. The induced goal is to select instances that most reduce the error of the updated model. The
future error of the model trained by the augmented set is estimated and the instance with expected minimal future error
is chosen. Since the labels of the future observations are unknown, like in expected model change, the expected error
over future models is considered. The acquisition function for expected error reduction is given by

αEER(x) = Ey∼p(y | x)
∑

x∗∈Dtest

Ey∗∼p(y∗ | x∗)E ŷ∗∼p+〈x ,y〉( ŷ∗ | x∗)
�

(y∗ − ŷ∗)2
�

where Dtest denotes a set of test instances and p+〈x ,y〉 is the probability distribution of the model p retrained using the
augmented training set Dtrain ∪ {(x , y)}. If we want to select instances greedily, this method is usually the most precise
formulation of our intention for instance selection. In most cases, unfortunately, this method is infeasible as it requires
estimating the expected future error (which is an expectation over the model) and model retraining for each candidate.

Expected Variance Reduction
Minimizing the expected total error directly as in Expected Error Reduction is expensive and not even the expectation
over the model for a candidate can usually not be evaluated in closed form. One can still try to reduce the generalization
error indirectly by minimizing the variance of the model. Geman et al. [36, 28] showed that one can decompose the
learner’s expected future squared error in regression problems as follows:

Ey∼pE ŷ∼D
�

( ŷ − y | x)2�= Ep

�

(y −Ep [y | x])2
�

︸ ︷︷ ︸

noise

+(ED [ ŷ]−Ep [y | x])2
︸ ︷︷ ︸

bias

+ED
�

( ŷ −ED [ ŷ])2
�

︸ ︷︷ ︸

variance

where ED is the expectation over the training data set D, ŷ is the predicted model output for instance x , and y is the
true value for x . The noise term describes the variance of the true label y given the instance x . The bias term represents
the error of the model class itself. Both noise and bias are independent from the learner as noise does not depend on
the model and the bias is constant for a specific model class. The only remaining term of the learners loss that the
learner influences is the variance term. Minimizing the variance of the learner is therefore shown to decrease the future
generalization error of the model. A motivated acquisition function to maximise is therefore the negative variance of the
model:

αEVR(x) = var (M |D ∪ {x})

that denotes the variance of the modelM learned using the augmented data set D∪{x}. In the case of linear regression,
the expected variance can be evaluated in closed form as it does not depend on the observation y of input x . In other
cases like neural networks, there exist approximations similar to the fisher information (see section 2.5) as presented in
[37, 38] which offer a closed-form formulation of αEVR(x). This acquisition function can thus be evaluated efficiently in
comparison to Expected Error Reduction.
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Connections to our approach
The problem considered in this thesis, to select actions for learning a to learn a model in the best possible way, can be
formulated as an active learning problem: ”Which state-action pairs should be labelled with their next-states to get a
rich dynamics model?” However, in contrast to the presented frame of active learning, only a part of the inputs can be
controlled (the actions) while the states depend on past executions. Therefore, planning is required to reach interesting
state regions and direct application of the presented acquisition functions is not possible. The observation that one can
define an instance to be a full sequence of actions to execute, enables framing the problem of exploration as an active
learning problem as presented here – but with the cost of making acquisition functions much harder to evaluate due to
the long-time dependencies of the model. To make computation feasible, we will introduce an additional approximation
in our method.

3.2 Dual Control and Bayesian Reinforcement Learning

For controlling an unknown system optimally, a controller has to pursue two goals [39]. First, it has to control the system
as best as the current knowledge permits (exploitation). Second, the controller needs to get more information about
the system in order to control the system better in future steps (exploration). This problem was named dual control by
Feldbaum [40], nowadays also known under the term Bayesian reinforcement learning (BRL or Bayesian RL) [41, 42].
The main difficulty of dual control problems is that the two goals are conflicting. For exploration it is necessary to disturb
the model evoking unexpected system while for controlling, the system has to be kept under control.

Traditional non-dual controllers are based on the certainty equivalence principle. This means, the system parameters are
estimated and only the means of the estimation are used for control as if they were the true ones. If using this approach
directly, learning happens only accidentally when the system behaviour differs from the controller’s expectation as there
is no intentional exploration. For these controllers, exploration can still be evoked by introducing perturbation signals. If
they are chosen small, the controller explores locally around the optimal trajectory. As controls are still not systematically
chosen, these controllers are termed non-dual and learning is named passive [39].

While traditional adaptive controllers only need to consider past observations, an optimal dual controller has to incor-
porate expectations about future observations into planning. Feldbaum formulated the problem of dual control and its
solution based on dynamic programming by combining the physical state and system parameters into an augmented
dynamics description [40] and apply belief space planning. As dynamics are highly non-linear even in case of linear sys-
tems, the optimal solution is computationally very expensive and only tractable in few very special cases, e. g. [43]. Over
the time many approximations of the dual control problem have been formulated, yielding suboptimal dual controllers.

The most-popular traditional approximation for the dual control problem is to revert to non-dual controllers as those
acting under certainty equivalence with added perturbations [39]. Another approach aims at minimizing the loss func-
tion only one step ahead under certain constraints, such as limiting the minimum control signal [44] or the variance
[45]. Also, some approximations were presented in the literature that make modifications of the loss function. In these
approaches, terms reflecting the quality of parameter estimates were added to the loss function. Wittenmark and Elevitch
[46] add a local measure of future system parameter variance as term to the loss function. As evaluating this term is
difficult, they make a linearisation around the certainty equivalence solution and and use the local-linear approximation
for optimization. Milito et al. [47] introduce an innovation term to the loss function measuring the information that
observations contain about the system parameters. Both presented approaches that modify the loss function, however,
have the assumption that the system is linear which limits their application quite heavily. A more detailed overview of
traditional dual control methods is given by Wittenmark and can be found by the interested reader in [39].

Newer Bayesian reinforcement learning methods aim at introducing exploration more naturally by maintaining a prob-
abilistic belief over the system knowledge. Bayesian reinforcement learning methods, in general, can be divided into
model-based and model-free methods. Unfortunately, most model-based methods target discrete models, as these are
much simpler than continuous problems. Examples for model-based discrete methods are Bayesian Exploration Ex-
ploitation Tradeoff in LEarning (BEETLE) [48], tree-search methods such as Bayesian Sparse Sampling (BSS) [49] or
Bayes-adaptive Monte-Carlo planning (BAMCP) [50] that can be read about in [41]. One approach that can also applied
to continuous systems is Bayesian dynamic programming [51] which is inspired by Thompson sampling (see section 3.4).
There, a model is sampled from a posterior distribution over parameters and this model is solved to select actions. In
[42], Klenske and Hennig present a tractable analytic approximation to solve the Bayesian reinforcement learning prob-
lem. They compute a solution based on the certainty equivalence principle and construct a local quadratic approximation
around this trajectory of the effects due to future observations. Subsequently, they optimize the information gain without
moving too far from the certainty equivalence solution. Their method still has high computational cost but is tractable
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and seems to provide good results. With POLO [52], Lowrey et al. propose a method for tackling the dual control problem
in case of having access to the correct dynamics model of the system where only the rewards are unknown. This method
combines local trajectory optimization in form of MPC with approximate value function learning to control the system to
potential rewarding state regions. An ensemble of models is hereby used to model the value function and states causing
most lack of agreement within the ensemble is regarded as promising which encourages exploration. The assumption of
a given dynamics model is quite strong, however, for the case that it was given, this method was shown to speed up the
learning process and allow for better policies than local solutions.

Model-free Bayesian reinforcement learning methods can be divided into value function methods and policy search meth-
ods. In these, a Bayesian belief over value function or policies, respectively, is constructed directly without learning an
explicit model. The exploration is directed by the variety of rewards and the agent seeks to explore regions where it
expects to receive high rewards. A detailed overview over these methods is given in [41].

The work in [53] propose a way to balance exploration and exploitation by maintaining separate exploration and ex-
ploitation policies and alternating them during execution. In their approach they assume the exploration policy (e. g.
demonstrations with added random perturbations) given and update only the exploitation policy during executions. In
the work presented in [54] the authors show a way to omit the need to perform explicit exploration entirely, however
also by using demonstrations by a teacher. Using the demonstrations, they learn a model of the system and execute only
”exploitation policies” based on the model to learn a suitable policy.

Another way to solve the dual control problem is to use traditional reinforcement learning methods with adding explo-
ration bonuses to the reward. Comparable with [46, 47], terms measuring the exploratory success are added to the loss
function and the augmented system is solved using regular reinforcement learning methods. This concept is inspired
by observations of human behaviour from the field of psychology, i. e. intrinsic motivation and curiosity. Through the
additivity of the reward function, the problems of exploration and exploitation are separated and can be regarded inde-
pendently. The whole research in this area focuses then on finding convenient measures of measuring exploration and
even can be done without the goal of controlling the system to a certain goal. Due to the importance of exploration in
this theses, the next section (3.3) is dedicated to these methods.

Connections to our approach
The objective to gain new knowledge in dual control enforces exploratory behaviour of the controller. Therefore, in
principle, one should be able to solve the pure exploration problem by applying a method of dual control (or Bayesian
reinforcement learning) by using a constant value as reward. This setting then is equal to problems where (very) sparse
rewards are provided and the proposed methods usually fail. As presented in this section, the dual control problem cannot
be solved exactly but approximations are necessary that focus on controlling the system using current knowledge and
explore locally around the exploitation trajectories, e. g. [41, 42]. An exception is formed by the methods which adapt the
objective function and consequently develop strategies for tackling the exploration problem independently. The classical
methods [46, 47] that solve the dual control problem this way, however, are only applicable to linear systems that makes
us target our attention to intrinsic motivation curiosity methods which are presented in the following section.

3.3 Exploration and Curiosity

It is important to implement autonomous agents some form of exploratory behaviour to gather knowledge about the
system - to the end of learning a model of the environment or to learn a policy for solving a specific task. In this section,
we will review literature that approached the this problem. After giving an overview over research in the field of control,
we will focus on curiosity as conception modelling intrinsic motivation, a concept originating from psychology. Within the
past years, this concept was transferred to the field of reinforcement learning to evoke exploratory behaviour in agents.
While most research focuses on the application with model-free reinforcement learning methods we will also consider
the few cases where model-based reinforcement learning was applied.

3.3.1 The Control Perspective: Optimal Input Design

In fact, the problem of choosing actions that are most beneficial to obtain a good knowledge about a system was known
long before the introduction of the concept of curiosity into the field of machine learning. In control literature this
problem is known as optimal input design and deals with the selection of input signals for learning a rich model of the
system based on the system outputs. In early work, methods focused on minimizing a measure of the covariance of the
system parameters to estimate, e. g. [55, 56]. Later, also measures of the quality of transfer function estimates (e. g.
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[57]) and robust performance criteria (e. g. [58]) were introduced. Moore [59] introduced the concept of persistent
excitation for choosing input signals that guarantee convergence rates for learning robust least squares models. Aoki
[60] proposed a method for selecting input signals that minimise the estimation error of system parameters in case of
noisy measurements. In this work, he derived a closed form solution for maximizing the Fisher information based on
eigenvalues of an observation matrix. In the branch of optimal input design, near optimal approaches and bounds could
be given, but these methods are usually restricted to very simple models like linear ones. A comprehensive detailed
review of optimal input design methods was given by Gevers and Bombois in [61].

3.3.2 Introduction to Intrinsic Motivation / Curiosity: Links to Psychology

Curiosity and motivation has already been a research topic for philosophers and psychologist for a long time. One can
observe that human beings, especially children, engage in activities of various types without receiving external rewards.
In psychology, one differentiates between intrinsic and extrinsic motivation [5, 62]. A human is called extrinsically mo-
tivated if he pursues an activity to achieve a specific outcome which may be an external reward. Intrinsic motivation,
on the other hand, denotes the motivation for doing an activity for its inherent satisfaction rather than for any other
consequences. These activities often involve the motivation to discover new experiences that is denoted as curiosity [4].
It is assumed that intrinsic motivation is a drive for learning skills, knowledge and competences that might come handy
for pursuing rewards in the future [63]. Performing an action without receiving an immediate reward but which is still
useful for the human, e. g. learning, is usually not considered as intrinsic motivation in psychology. These forms of moti-
vation are known as internalized forms of extrinsic motivation [64].

In the field of machine learning, the idea of inherent interest in performing an activity was adopted and is known
under the term intrinsic motivation. However, in the machine learning setup it is not clear [65] what it exactly means
that an idea is inherently interesting or enjoyable [5] for an autonomous agent. The idea is mostly realized in form
of internalized extrinsic motivation by using rewards representing a measure of interestingness of an activity. Intrinsic
motivation in machine learning serves mainly the purpose of directed exploration and is referred to as curiosity. It is
mainly applied if rewards are extremely sparse or for model learning.

3.3.3 Curiosity in Model-free Reinforcement Learning

The first attempts to approach the problem of exploration in more complex models by applying the psychological concept
of intrinsic motivation in machine learning were made by Schmidhuber [6]. His basic idea was to make use of reinforce-
ment learning and provide a high reward to the agent whenever there occurs a large mismatch between its expectations
of the adaptive world model and reality. To maximise the reward, the agent would then try to execute actions that lead
to observations being most inconsistent with its model which leads to exploration behavior. The work in [7] implements
a similar approach where an agent learns skills which are internally represented as a collection of so-called options. The
agent has internal models of these option and tries to predict the outcome when executing them. As intrinsic reward, the
error of the model by executing an option is chosen which makes the agent trying to choose options where the internal
model is still non-reliable.

A problem with this formulation is the application in stochastic environments: In this case, the agent’s controller will
finally focus on parts of environment’s dynamics that are random and thus inherently unpredictable. This problem is
referred to as noisy-TV problem [34] as it may occur if the agent observes a TV emitting unpredictable content without
doing anything. The underlying problem here is that the agent is reinforced in unpredictable situations although his
model cannot be improved. To circumvent this problem, in [66] it was tried to learn a mapping from action sequences
to expectations of future model improvements. In this approach, only action sequences that are probable to improve
the model are encouraged. The encouragement is achieved by providing rewards for model changes or improvements
measuring the learning process. Unfortunately, for more complicated models, e. g. deep neural networks, there don’t
seem to be computationally feasible mechanisms for measuring learning progress [9].

Another way to measure informativeness of an action is to provide exploration bonuses if novel states are reached.
Bayesian exploration bonuses [67] measure novelty of state-action pairs as the number of times an agent has executed
the action in that state. This approach approximates a Bayesian optimal solution and offers strong formal guarantees but
requires an enumerable representation of the environment that renders it impractical for large-scale tasks. Other count-
based exploration strategies can be found in [68, 69, 70] where different decreasing functions of the state visitation
counts are proposed for computing exploration bonuses in enumerable environments. Attempts to extend count-based
novelty measures to the continuous domain were made in [68] by generating pseudo counts using a density model over
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state-action pairs.

In the last years, exploration bonuses were applied to more complicated non-tabluar environments like video games by
making use of deep learning. In [8] a dynamics model is learned based on a state representation obtained by an au-
toencoder on raw pixel data. The misprediction error of the dynamics model is used as measure of novelty that acts as
exploration bonus for model-free reinforcement learning. The work in [9] builds on this approach but tries to circumvent
the noisy-TV problem that is focusing on random parts in observations e. g. animations of background in a video game.
In this approach a state representation is learned using a self-supervised inverse dynamics model. This model only cap-
tures information that is influenced by actions which makes the controller more robust against distracting objects. The
prediction error of the dynamics model in this improved visual feature space is then used as reward for the agent.

In [71] the noisy-TV problem is tackled by exploration bonuses based on randomly generated prediction problems. More
precisely, the novelty is measured by predicting the output of a fixed and randomly initialized neural network given the
following state. It is expected that predictions of the output of the random network is less accurate for novel states that
for ones often visited previously which then can be used as measure of novelty. This approach led to impressive results
on difficult video game tasks as Montezuma’s revenge.

VIME [72] models novelty as the predicted information gain of the belief over dynamics. This reward leads the agent
going to states causing large updates to the dynamics model distribution and thus seeming surprising. To make compu-
tation of the intrinsic reward practical, the information gain is approximated using variational inference . The agent’s
dynamic is represented by a bayesian neural network.

3.3.4 Curiosity in Model-based Reinforcement Learning

The previously described methods all employ a reactive exploration strategy. There, the agent accidentally observes novel
state-action regions (e. g. by means of prediction error) and only then decides to obtain more information about this re-
gion by obtaining a high reward. After exploring this region, the agent finally again has to unlearn the high reward of
this region which makes the approaches not very sample-efficient. This problem was already spotted in [10] and called
over-commitment. In this work, the problem was approached by using model-based reinforcement learning. An ensem-
ble of neural networks was used as probabilistic model and trajectories were optimized to maximise an approximation of
information gain using model-free reinforcement learning in the simulated model environment.

The work in [73] also proposes a more directed form of exploration using model-based reinforcement learning. In this
work, an autoencoder on the visited state-action pairs is learned jointly with the system model in form of a neural net-
work. The reconstruction error for state-action pairs serves as uncertainty measure which is motivated by the observation
that autoencoders make lower error for the data it was trained on. For exploration, the state-action pairs leading to max-
imal reconstruction error in the autoencoder are chosen which representing the highest uncertainty of the current model.
Our approach is quite similar to both approaches but uses Bayesian linear regression for learning the model which leads
to a more natural representation of model uncertainty.

Another very related approach can be found in [74]. In this work, observations are used to learn a Bayesian model and
actions are selected via value iteration to optimize various active learning acquisition functions, i. e. predicted information
gain, predicted model change, predicted model improvement. In this approach, however, only discrete models were
considered.

3.3.5 Further Measures for Specific Tasks

Finally, we take a breve look at further measures for exploration which only are applicable for learning a policy to solve
a specific task. In the work of [75], one makes use of sensitivity analysis to find the actions that the current guess of the
policy is most sensitive to. These actions are assumed to be particularly informative for refining the policy. In [76] the
authors present an approach that makes use of deep generative models. In this approach, they consider the Jacobian of
the likelihood to detect non-smooth transitions in latent space which indicate large changes in the movements. These
non-smooth transitions indicate where the environment is not accurate modelled yet and new demonstrations for these
areas are requested in form of demonstrations.
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Data: statistical model for approximating objective function f
Result: predicted maximum of statistical model given data Dn
initialize D0 = {}
for i = 1,2, . . . do

select x i by optimizing acquisition function α: x i ← arg max
x∈X

α(x;Dn−1)

query objective function f to obtain yn
augment data: Dn←Dn−1 ∪ {(xn, yn)}
update statistical model using Dn

Algorithm 1: Bayesian Optimization algorithm

3.4 Bayesian Optimization

Bayesian Optimization [77, 18, 78, 79] is a sequential model-based approach for solving continuous optimization prob-
lems globally in settings where the true objective function f is unknown. Bayesian Optimization is different from other
procedures of global optimization in that it constructs a probabilistic model f̂ for f and then makes use of the model
to decide at which point to evaluate f next. For each decision, the information of previous iterations is still considered
in form of the probabilistic model which makes this method very efficient in terms of function evaluations. Bayesian
Optimization is therefore especially useful when evaluations of f are expensive.

Put formally, it finds the optimizer

x∗ = arg min
x∈X

f (x)

where f is the unknown, possibly noisy objective function and X a compact set. Although we assume f to be un-
known, we need to be able to evaluate it at arbitrary query points x producing stochastic unbiased outputs y ∈ R, i. e.
E [y | f (x)] = f (x). In other words, we can only observe f through unbiased noisy point-wise observations y . After N
queries, the algorithm makes a final recommendation representing the best estimate of the optimizer.

For finding the minimum, we describe our prior belief over the objective functions in form of a probabilistic model f̂ and
sequentially refine this model as data is observed. In each iteration, the next location for evaluation x is chosen such that
it maximises an acquisition function α : X → R which measures the utility of a data point x with regard to the current
belief of the objective function. All evaluations are collected in a set Dn = (x i , yi)i=1,...,n. A sketch of the algorithm is
shown in algorithm 1.

Several acquisition functions have been proposed that are briefly presented in the following.

Thompson Sampling
In Thompson sampling [80], a function is sampled from the posterior belief over objective functions and this function
is maximised. The point with the highest simulated reward is chosen as next candidate for querying the true objective
function. The method can be formulated as

αTS (x) = f (x)

where f ∼ f̂ | D.

This method is one of the oldest and simplest acquisition functions. Empirical evaluations have shown good performance
however it tends to explore aggressively, especially in high dimensional spaces [78].

Probability of Improvement
This acquisition function [81] estimates the probability of improving (PI) upon the current best function value observation
y∗, i. e. measuring p( f (x) < y∗). This estimation is done by accumulating the posterior probability mass above y∗ at
x. Maximizing this acquisition function produces the candidate showing maximal probability of improvement. If the
posterior distribution of the belief f̂ is Gaussian with mean µ and variance σ (like in Bayesian Linear Regression or
Gaussian Processes), the acquisition function is given in closed-form by

αPI (x) = p( f̂ (x)< y∗)

= Φ
�

y∗ −µ(x)
σ(x)

�
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where Φ is the standard normal cumulative distribution function. This method may work well for optimization but
focuses often too much on exploitation [78].

Expected Improvement
The acquisition function of probability of improvement treats all improvements over the current best observation y∗

equal. One idea is to take into account also the amount of improvement and weight higher improvements more than
smaller ones. This idea brings us to the formulation of expected improvement (EI) over the current best estimate y∗. If
f̂ is Gaussian again, the formula for EI can also be provided in closed form as

αEI (x) = E
�

(y∗ − f̂ (x)) I( f̂ (x)< y∗)
�

= (y∗ −µ(x))Φ
�

y∗ −µ(x)
σ(x)

�

+σ(x)φ
�

y∗ −µ(x)
σ(x)

�

where I is the indicator function and φ is the standard normal probability density function.

Upper Confidence Bound
In upper confidence bound (UCB) [82], one negotiates exploration and exploitation by being optimistic in the face of
uncertainty [78]. More precisely, one selects the point that in the best case scenario (to a certain probability) maximises
the objective function. To formalize this idea, the quantiles of the distribution of f̂ are computed and the point with
highest quantile is queried. The acquisition function can be given by

αUCB (x) = µ(x) + βσ(x)

where β is a hyperparameter for selecting the quantile. For UCB one can derive formal bounds for the cumulative regret
that one can read more about in the work of [83].

Entropy Search
The motivation for entropy search (ES) [84] is to reduce uncertainty over a distribution over the optimum p(x∗ | D) that
can derived from f̂ . In active learning, the goal is then to select the point x that is expected to cause the largest reduction
in entropy to this distribution. The acquisition function can be formulated as

αES (x) =H (x?|D)−EyH (x?|D ∪ {(x, y)})

where H (x? | D) denotes the differential entropy of the distribution p(x? |D) derived from the surrogate objective model.
Evaluating this acquisition function is not tractable in continuous space as even computing the distribution p cannot be
done so approximations have to be made such as discretisation and sampling. There are also some different formulations
as in predictive entropy search [85] or max-value entropy search [86] which are more efficient and robust compared to
the original method.

Connections to our approach
The underlying problem in Bayesian Optimization is basically the same one as in active learning and dual control: We
have to decide for a point to query (corresponds to the action to execute) in order to gain maximal information about
the true minimum. A well-chosen selection must again show some trade-off between exploration and exploitation.
According to the exploration goal, one should opt for points with high uncertainty regarding the outcome to learn
something about the function to optimize in general. On the other hand, the choice should also reflect the goal of
exploitation as points should be selected that are probable to minimise the objective function. Like in the case of active
learning and dual control, the optimal solution could in principle be formulated as planning in a belief space [32].
Finding the exact optimal solution, however, is not tractable and most methods introduced in literature resort (again) to
surrogate objectives such as optimizing an acquisition function representing some greedier objective.

3.5 Empowerment

Empowerment [87, 88] is like curiosity a subconcept of intrinsic motivation. It describes the desire of humans to get into
conditions where they feel ”empowered” which means that they can actively control their future and have many differ-
ent future pathways to choose between. Applied to the concept of autonomous agents, an agent showing empowering
behaviour attempts to get into states from where it can easily reach many different states.

Empowerment can be formalized using concepts from information theory [87, 89]: The world is considered as
information-theoretic channel converting actions into future sensory states. For providing a definition, we first have
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Figure 3.1: This figures shows an example of empowerment, Klyubin’s Maze World [87]. In this example, an agent can
move within a discrete world by executing the actions stay, up, down, left, and right that make him move into
the denoted directions. In the world, there are walls (white) which block movements and make the agent stay
in the current field. For each position, the 1-step (left) and 5-step (right) empowerment value are shown which
measure the number of different states the agent can reach. 1-step empowerment only takes the next action
into account while 5-step empowerment considers the possible states after five subsequent actions. While in
case of 1-step empowerment, being close to a wall but not directly next to on one, does not limit the agent’s
options, 5-step empowerment captures differences in the number of options after taking several actions.

to introduce an information-theoretic measure called mutual information (MI). This measure is defined as the amount of
information (measured in bits), the received signal on the average contains about the transmitted signal. It is given by

I (x, y) = Ep(y|x)p(x)

�

log
�

p(x, y)
p(x)p(y)

��

where p(x) is the probability distribution of the transmitted signal and p(y | x) the distribution characterizing the chan-
nel. In case of the autonomous agent where the information channel models the conversion from actions in a certain
state into future states, we have p(x) := π(a | s) as policy and p(y | x) := p(s′ | s, a) as transition model where s is the
current state, s′ is the following state and a the action.

We can now formulate a measure for empowerment using channel capacity which is defined as the maximum mutual
information for the channel over all possible distributions of the transmitted signal:

E (s) =max
ω
I ω �a, s′|s�=max

ω
Ep(s′|a,s)ω(a|s)

�

log
�

p (a, s′|s)
ω(a|s)p (s′|s)

��

Put into words, this quantity measures how much information the agent can inject into the future states by means of his
actions. Using this formalization, an agent shows high empowerment if each of his actions brings him into different but
controllable states.

As introduced until now, only influences of the following action is considered. The extension to multiple actions is
straight-forward, but it comes with an increased cost of computation. An example of empowerment in a grid world
considering a different number of actions is shown in figure 3.1.

Empowerment was used as reward in reinforcement learning to represent a form of intrinsic motivation e. g. [89, 90].
Within this thesis, empowerment is considered as extension for future work. After having learned a model, an agent
could seek to get into a ”powerful” state to be prepared to solve a variety of following tasks efficiently.
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4 Model-based Reinforcement Learning for System
Identification

In this chapter we introduce a novel approach for exploration to the end of learning a model. This approach makes use
of a Bayesian model and planning methods to make decisions that are expected to improve the agent’s model.

4.1 Problem Formulation

Consider a dynamical system with state space S ⊂ Rn and action space A ⊂ Rk. Denote a probabilistic model of the
dynamics that an agent has about this system by M . The probabilistic nature of the model enables us to evaluate the
strength of belief in predictions. The problem that the agent has to solve is to decide for a sequence of actions a0, . . . , aT−1
which, executed open-loop on the real system, provides the observations X1 = {st , at → st+1}t=0,...,T−1 most informative
for learning the dynamics. Having already a collection of transition observations X0, the actions should be chosen such
that the model learned with the joint data set X =X0 ∪X1 is expected to be maximally rich.

This problem can be seen as an active learning problem with the query point being a sequence of actions. This observation
enables us to tackle the problem by using active learning approaches from section 3.1 like uncertainty sampling and
expected variance reduction for solving the exploration problem.

4.2 Model Variance Measures

To measure the utility of transitions for evaluating active learning utility functions, one has to reason about the variance
of our predictor model. There are two possible ways to measure this quantity.

4.2.1 Variance of Model Parameters

This variance formulation can be applied in case of Bayesian parametric models M that maintain a distribution over
parameters θ . The variance of the dynamics model can then be defined as the variance of the probability distribution
pM (θ | X ) over the parameters trained of the model on the data:

var(M |X ) = Σθ = V pM (θ | X )

Usually, the model consists of multiple parameters thus the covariance Σθ of the parameter is a matrix. As we need a
scalar model as measure to optimize, a better measure of model uncertainty is given by the entropy H(θ | X ) of the
parameter distribution. If the model parameters are Gaussian distributed, the entropy is given by

H(θ | X ) = 1
2

ln(|Σθ |) +
k
2

ln(2πe). (4.1)

Further, if the parameters are independently distributed, the covariance Σθ is a diagonal matrix and the entropy is given
by

H(θ | X ) = 1
2

∑

i

ln(|σθi
|) + k

2
ln(2πe)

∝
∑

i

ln(|σθi
|).

The latter formula can be seen as approximation of the entropy objective. In computationally complex cases, it might be
advantageous to choose this approximate quantity as measure.
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4.2.2 Variance of Predictive Distribution

In system identification of deterministic environments, our goal is usually to obtain a predictor that precisely models
dynamics and thus is certain in its predictions. The entropy of the model parameters does not compulsorily reflect this
measure as the model parameters can influence predictions to different extends. Another formulation is therefore to eval-
uate the variance of the predictive distribution directly. As the predictive distribution is dependent on state and action,
we have to take the expectation over these variables. Usually, we don’t know these distributions as they depend on the
application. In this case we can opt for uniform distributions to make all state-action combinations are equally important.

Given the probabilistic transition function p(s′ | s, a) of the modelM , we can compute the expected (average) variance
of the predictive distribution (given a fixed data set X ) by

varV(M |X ) = Es,aVp[s
′ | s, a].

This quantity is usually not solvable in closed form but we can approximate it using a set of N (e. g. uniformly-distributed)
samples of state-action pairs:

varV(M |X )≈
1
2

N
∑

i=1

Vp[s
′ | si , ai] (4.2)

MacKay [37] proposed using a fixed set of reference samples to measure the expected change in variance over them.
This, however, was found to lead to local maxima at the reference points. In [91] it was therefore suggested to iteratively
draw new reference point samples in each iteration.
Like in the model parameter variance case of the variance, to get a scalar objective, it is advantageous to resort again to
entropy as variance measure:

varH(M |X )≈
1
2

N
∑

i=1

Hp[s
′ | si , ai]

Using predictive distribution variance for measuring utility has the advantage in comparison to model parameter variance
that it compensates for parameter influences. A drawback is that it can usually only be evaluated approximately by
sampling and therefore can become expensive when using this quantity as optimization objective.

4.3 Maximal Variance Reduction

When using the acquisition function for maximal variance reduction, one considers the expected variance of the future
model and selects instances to minimise this quantity. This acquisition function was shown to lead to good results but
it is quite expensive in computation [28]. Only the case where one considers solely effects due to the next action and
ignores the further future, can be solved exactly. For the general case, one has to make approximations.

If we denote the probabilistic model transition function with p, the objective to minimize the expected variance of the
future model can be formulated as

min
a0, . . . , aT−1

E
p

var(M |X0 ∪ {st , at → st+1}t=0,...,T−1) (4.3)

where the transitions follow the current model. In this formulation, st are random variables for t = 1, . . . , T − 1 which
follow st+1 ∼ p(st+1 | st ; at). var(M |X ) is a measure for the variance of the model as defined in formula (4.1) or (4.2).
The covariance matrix Σθ | X in dependence on the observations is given in equation (2.1) for the case of Bayesian linear
regression.

The objective in (4.3) can in general not be evaluated in closed form as random state variables st are pushed through the
(usually non-linear) probabilistic model p. One exception is the case of horizon T = 1 where one action is selected to
improve the model greedily only for the next time step without further planning. To solve the general case, one would
have to resort to approximate inference methods such as sampling or variational inference like applied in algorithm
PILCO [92]. These approaches, however, are very costly for planning so we opt for a simpler approximation.
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Data: number of episodes N , horizon T , initial modelM0
Result: optimized modelMN
for i← 1 to N do

find actions a0:T−1 that optimize (4.5) or (4.4) given the current modelMi;
execute a0:T−1 in the environment and observe s0:T ;
update the modelMi+1 via (2.1) usingMi as the prior and (a0:T−1, s0:T ) in the likelihood;

Algorithm 2: Receding Horizon Curiosity

We adopt a rather crude approximation known as the maximum likelihood observations assumption [93], which amounts
to propagating only the mean of the state distribution. The optimization problem can then be formulated as

min
a0, . . . , aT−1

var(M |X0 ∪ {ŝt , at → ŝt+1}t=0,...,T−1)

s.t. ŝt+1 = Ep [st+1 | ŝt , at] , t = 1, . . . , T − 1,

ŝ0 = s0

(4.4)

where we replaced random variables st by their expectation ŝt .
The crudeness of the approximation is offset by the computational advantage: More frequent replanning enabled by ne-
glecting the expensive state uncertainty propagation allows the agent to efficiently compensate for unforeseen deviations
from the planned trajectory.

Planning using the objective of maximal variance reduction requires differentiation through a matrix inversion due to the
dependence of Σ∗ on the kernel matrix inverse (2.1). Combined with the chain-like structure of state-action dynamics,
gradient computation becomes quite expensive for larger models (e. g. T > 100, M > 40) which makes the uncertainty
approach presented in the following section more appealing for these cases.

4.4 Uncertainty Sampling

Uncertainty sampling queries the instances that the model is most uncertain about. In our planning case, we optimize
the rollout of T actions such that the trajectory has maximal entropy according to the model. Let p(s′ | s, a) denote the
prediction of the probabilistic modelM trained on the previous observed data X . The objective can then be formulated
as

max
a0, . . . , aT−1

∑

t=1,...,T

Est−1∼p(st−1 | at−2,...,a0)Vp[st | st−1; at−1].

Like in the case of maximal variance reduction, for evaluating the objective exactly, we would have to propagate the
distribution over states through the model. Thus, we solve again only an approximate version of this problem:

max
a0, . . . , aT−1

∑

t=1,...,T

Vp[st | ŝt−1, at−1]

s.t. ŝt = Ep[st | ŝt−1, at−1], t = 1, . . . , T
(4.5)

The uncertainty sampling objective is usually much easier to solve than maximal variance reduction. In case of Bayesian
linear regression models, for uncertainty sampling the used parameter variance matrix Σ∗ remains constant thus doesn’t
depend on the states and actions to optimize for.

4.5 Optimization Procedure

Both optimization problems in (4.4) or (4.5) offer both objectives and constraints in closed form which are differentiable.
Therefore, they can be solved using the multiple shooting method described in section 2.2. The complete exploration
algorithm which we refer to as Receding Horizon Curiosity is summarized in algorithm 2.
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5 Experiments
In this chapter we show experiments where we compare our proposed exploration algorithm, Receding Horizon Cu-
riosity, against state-of-the art exploration methods. The method is compared to random actions, a model-free intrinsic
motivation approaches with exploration bonuses as rewards, and to the model-based active exploration (MAX) algorithm.

5.1 Evaluated Algorithms

Receding Horizon Curiosity (RHC)
For Receding Horizon Curiosity, the optimization steps as presented in algorithm 2 were executed. The uncertainty
sampling (RHC US) objective was considered for all experiments, while the method in the expected variance reduction
(RHC EVR) formulation could only be applied to low-dimensional models. Planning was done by means of multiple
shooting using the casadi framework [13].

Model-free Reinforcement Learning with Exploration Bonus (SAC)
Model-free reinforcement learning algorithms using popular exploration bonuses for exploration were applied to the
environments. As underlying model-free reinforcement learning algorithm, the sample-efficient soft actor critic (SAC)
[94] was put to use. For running the algorithm, the implementation by stable-baselines [95] was taken. As rewards, two
common curiosity measures were used:
Firstly, the squared prediction error

rpe(st , at) = (st+1 −Ep[st+1 | st , at])

of model p trained on the data of the past episodes is considered as reward.
Secondly, as measure of information gain, the reduction of entropy

rpe(st , at) =H(θ | Xt)−H(θ | Xt+1)

was used as reward whereXt denotes the set of all observations until step t,H is the entropy and θ the model parameters.
We further tested DDPG [96] as model-free reinforcement learning algorithm on exploration bonus rewards but found
only negligible differences to SAC in performance thus we omitted this algorithm from the evaluation. SAC was executed
using the following hyper parameters: γ= 0.99, τ= 0.005, the learning rate was set to 0.003, the buffer size to 0.0004,
and a batch size of 64 was used.

Model-based Active Exploration (MAX)
We further applied the recently proposed model-based active exploration (MAX) algorithm [10] to the environments for
learning a Bayesian linear regression model. This algorithm applies model-free reinforcement learning in a learned MDP
instead of the true environment to obtain an exploratory policy and is therefore more sample-efficient. As rewards, it
uses a measure of disagreement of a neural network ensemble.

Random (RAND)
In the environments, uniformly-random actions within the allowed bounds were applied. This method shows no directed
way of exploration.

5.2 Experimental Setup

The experiments were carried out as follows: For RHC, according to algorithm 2 in each episode a sequence of action was
computed and executed open-loop in the environment. As planning for the expected variance reduction objective is only
tractable for small models, this objective formulation of RHC could only be considered in the mountaincar environment.
In the case of MAX and SAC, the respective policies were applied in the environment. After each episode, a Bayesian linear
regression model with random Fourier features was retrained using all observations of past episodes. After exploration,
the models of each stage were evaluated. First, the mean likelihood of a trajectory test set under the learned model was
computed. This test set consisted of trajectories based on uniformly-random sampled starting states to which a sequence
of uniformly sampled actions was applied. Second, an environment-specific task was tried to be solved using the learned
model. A sequence of actions for solving the task was planned using the multiple shooting method with the learned
model, executed in the environment and the total cost of the trajectory calculated.
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5.3 Environments

In the following, we present the environments that the algorithms were applied to for investigating their performance.

5.3.1 Mountain Car

The continuous mountain car in the openai gym implementation [97]. In this environment
a car is positioned on a one-dimensional track in a valley between two mountains. One has
to control the car by applying accelerations to drive up the mountain. As the car is under-
powered, one needs to build up momentum by driving back and forth to accomplish the
task.

The power of the engine was set to 10−3 and no speed limit was applied. Observations were of the form (x , ẋ) with x
being the position of the car. At each start of the episode the car was set into the center of the valley with zero velocity.
In exploration trials the episode was ended when the car reached the bounds of the environment or the number of 150
steps was reached. The evaluation task consisted of planning to drive to a goal on a mountain by using a cost for the last
step of 10(x − xgoal)2 + 0.01a where a is the acceleration. For the model, the number of features was set to 20. Due to
the rather low dimensionality, both objectives of minimal future model variance and maximal trajectory entropy could
be realized.

5.3.2 Pendulum

The inverted pendulum from the dm control suite [98]. The torque-limited ac-
tuator is 1/6-th as strong as required to lift the mass directly from the motion-
less starting state so that several swings are required to swing it up and bal-
ance.

Observations were of the form
�

cos(θ ), sin(θ ), θ̇
�

where θ is the angle of the pendulum. In
the beginning of each episode, the pendulum was set hanging down without velocity. Each
episode consisted of 100 steps of 80 ms each. The evaluation task was to swing up the pendu-

lum using a cost of 100cos(θ ) + 0.1 sin(θ ) + 0.1θ̇ + 0.001a for each step. For the model, the number of features was set
to 90. As for this model, planning for maximal variance reduction was no longer feasible, only uncertainty sampling was
considered as objective in RHC.

5.3.3 Cartpole

The cartpole from the dm control suite [98]. A pole is attached by an un-actuated joint to a
cart, which moves along a frictionless track. The system is controlled by applying a force to
the cart.

Observations of the cartpole were given as
�

x , cos(θ ), sin(θ ), ẋ , θ̇
�

. The system was simulated
with 50 Hz. Each episode started with the cartpole centered on the track without velocity and
the pole hanging downwards. The episodes were ended if the cartpole was driven against the
bounds or the a maximum step of 100 was reached. The evaluation task was to swing up the

pole by providing a cost of 100x + 100cos(θ ) + 0.1 sin(θ ) + 0.1 ẋ + 0.1θ̇ + 0.1a in each step. For the model, the number
of features was set to 80.

5.4 Results

The results of the experiments are shown in Fig. 5.1. In each environment, RHC was the only algorithm that ap-
proximately reached within 20 episodes the lowest possible model log-likelihood as roughly indicated by the model
performance using random transition samples. Both SAC variants almost performed to the same extend as RAND which
can be explained by their over-commitment behaviour. High rewards are obtained for nearly all executed actions in the
beginning which need to be unlearned over time moving to more distant areas. MAX did not suffer from this problem as
it applies an active way of exploration, and therefore performed better than SAC and random exploration. In the moun-
taincar experiments, one can observe that RHC MVR is slightly superior to RHC US which is matches our intuition from
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Figure 5.1: Evaluation of models learned with different exploration methods. In the figures on the left, the log like-
lihood of random 10-step trajectories was evaluated on the learned models. The median with 1st and 9th
deciles over 20 different exploration runs are shown. The grey dashed lines indicate the likelihood obtained
by a model trained on 104 uniform transition samples from the full state-action space and therefore approxi-
mates the lowest possible log-likelihood for this model class. Both RHC MVR (only mountaincar) and RHC US
led within few episodes to models that reach this lower bound. In the figures on the right, the accumulative
costs for solving tasks based on the learned models are shown.
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Figure 5.2: Exploration of RHC on the pendulum. Episodes 2, 3 and 6 – from left to right – are shown. The background
indicates the entropy of predictions for applying zero action in the given state, assessed by the model trained
on the observations from past episodes. Warm colors indicate high entropy (uncertainty). RHC tries to find a
trajectory of maximum uncertainty which is consistent with the dynamics provided by model. In episode 6 the
pendulum does a full swing-up to get into regions where the model is still inaccurately modelled.

the theoretical viewpoint. Regarding the evaluations for solving tasks, models learned by RHC can mostly successfully
plan to solve the task. The other methods show higher varying model performance. Examples for trajectories generated
by RHC under the uncertainty sampling objective are shown in Fig. 5.2.
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6 Conclusion and Outlook
In this thesis we investigated the problem of exploration for learning forward models of the environment. To this end, we
reviewed existing work on exploration strategies and optimal decision making for information gain from various subfields
of machine learning. By applying insights from the field of active learning, we formulated two optimisation objectives to
plan trajectories of maximal utility for the model. For making these problems tractable, we proposed an approximation
which led to a novel algorithm for exploration. This algorithm was named Receding Horizon Curiosity (RHC) and can be
used with either of the two objectives. While the objective of maximum variance reduction is superior to the one of un-
certainty sampling from a theoretical viewpoint, the former is much harder to solve and thus can only be applied to very
small problems. We compared our new method to state-of-the-art exploration algorithms, i. e. model-free reinforcement
learning with exploration bonuses and the recently proposed model-based active exploration algorithm (MAX). Empiri-
cally, we found that RHC reached higher model likelihoods within few episodes and produced more reliably models for
solving tasks. Additionally, it ran much faster than the main competitive algorithm, MAX.

One downside of our proposed algorithm in its current form is that it is limited to rather small models. As we do planning
in form of multiple shooting, derivatives of the model need to be computed and Hessians approximated. An interesting
future direction is to investigate how to incorporate models that scale well, e. g. Bayesian neural networks, and how to
apply planning in this case.

Another interesting branch for future work is to investigate further approximations for the original optimisation problem
that we presented in chapter 4. For obtaining a tractable planning problem, in this thesis we adopted a rather crude
approximation using a maximum likelihood assumption. In this approximation, only the mean of the state distribution
is propagated through the probabilistic model. Other approximate inference methods such as sampling and variational
inference might be used to obtain better solutions but probably will increase the cost of computational complexity.

Finally, in our proposed algorithm, there is no stopping criterion. Even if the model cannot further be improved, an agent
would still try to get to the state which is most informative in relation to other states. A better objective to prepare for
upcoming tasks would be to then move to a state where it is able to quickly solve a variety of upcoming tasks. This
behaviour is known as empowerment and a formalisation of that concept was briefly introduced in section 3.5. An
interesting future direction would be to investigate how to combine both exploration and empowerment in a meaningful
way.
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