
Sequential Bayesian optimal

experimental design for

non-linear dynamics
Sequential Bayesian optimal experimental design for non-linear dynamics
Master thesis by Markus Semmler
Date of submission: August 23, 2020

1. Review: Boris Belousov
2. Review: Hany Abdulsamad
3. Review: Michael Lutter
4. Review: Prof. Dr. Jan Peters
Darmstadt

Erklärung zur Abschlussarbeit

gemäß ğ22 Abs. 7 und ğ23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Markus Semmler, die vorliegende Masterarbeit ohne Hilfe Dritter

und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,

die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (ğ38 Abs. 2 APB) ein Täuschungsversuch

vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch

verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte

elektronische Fassung gemäß ğ23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische

Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 23. August 2020

Markus Semmler

Abstract

This work compares Bayesian models, namely an ensemble with a Bayesian neural network

(BNN) and evaluates their performance on different dynamical systems. The environments

Pendulum-v0, CartPole-v0, Qube-v0 and MountainCarContinuous-v0 were used for this

evaluation. All of these examined systems are one-dimensional. After this, a comparative

analysis of experimental design objectives is given and how different methods can estimate

them. Two objectives are identified selected for the sequential settings. One objective is

the predictive variance, and the other is based on the mutual neural information estimator

[1]. Both of them are investigated and therefore plugged into three different optimization

problems, one based on discrete optimization, one based on disciplined convex-concave

programming (DCCP), and finally merely by using an interior point solver. The learned

models are compared on different out-of-sample trajectories to identify the quality of the

predictions. It is concluded that the disciplined convex concave programming scheme [2]

can efficiently exploit the convexity of the predictive variance. Albeit some good results

were obtained, the methods are very sensible to hyper parameter configurations and this

topic needs further research. The density of the state space data is evaluated on the

two-dimensional Pendulum-v0 environment for the discrete and DCCP algorithm. The

resulting predictive models get evaluated exhaustively on trajectories from the validation

set. Combining these results with the mutual information estimators yields the full explo-

ration algorithms. They get compared on all environments and additionally are evaluated

in a control setting on Pendulum-v0 and CartPole-v0. For the MountainCarContinuous-v0

environment it fails to explore the complete state space. The Qube-v0 is generally hard

to solve in model predictive control and thus not considered in the control setup. At the

end of the thesis the results are reviewed and an overview of possible further research

directions is given. Overall the thesis shows how BNN can be used in active learning,

and which properties of the objective might be leveraged to yield an efficient calculation

scheme.

Acknowledgments

I want to acknowledge my advisors for supporting me from a technical perspective and

that they spend their time on this project. Furthermore I want to thank my family and

friends for being patient with me during the thesis.

Contents

1. Introduction 2

1.1. Related Work . 3

2. Foundations 4

2.1. Supervised learning of forward model . 4

2.1.1. Sequential data as supervised data 5

2.2. Bayesian inference for supervised data . 5

2.2.1. Probabilistic inference . 6

2.2.1.1. Maximum a-posteriori estimation 7

2.2.1.2. Approximate variational inference 7

2.2.2. Bayesian linear regression . 8

2.2.2.1. Nested optimization problems 9

2.2.3. Bayesian neural networks . 10

2.2.3.1. Bayesian version of standard neural networks 11

2.2.4. Approximation methods for the posterior 12

2.2.4.1. Variational mean-field Bayesian neural networks 12

2.2.4.1.1. Reparameterization tricks 12

2.2.4.1.2. Expressiveness 13

2.2.5. Randomized map sample ensemble 13

2.2.6. Skip connections in neural networks 14

2.3. Sources of uncertainty . 15

2.3.1. Model Uncertainty . 15

2.3.2. Aleotoric and Epistemic uncertainty 15

2.3.2.1. Different measures of uncertainty 17

2.3.3. Sequential uncertainty . 17

2.3.3.1. Finite horizon uncertainty 18

2.3.3.2. Connected and separated state-space regions 18

2.4. Optimization . 18

2.4.1. Sequential quadratic programming 19

2.4.1.1. Gauss-Newton approximation to the Hessian 20

2.4.2. Convex Programming . 20

2.4.3. Discrete Programming . 20

2.4.4. Convex Concave Programming . 21

2.4.4.1. Relaxing the original problem by regularization 22

2.4.5. Quadratically constrained quadratic optimization problem 22

2.5. Bayesian optimal experimental design . 23

2.5.1. Predictive Variance . 24

2.5.2. Mutual information . 24

2.5.2.1. Barber & Agakov variational bound 25

2.5.2.2. Mutual neural information estimation 26

2.5.2.3. Variational estimators . 26

3. Sequential optimal experimental design 28

3.1. Binary Exploration . 29

3.2. Convex-Concave Exploration . 30

3.2.1. Forming the complete optimization problem 31

3.2.2. Adding regularization to the concave objective. 32

4. Experiments 34

4.1. Bayesian linear regression and information gain estimators 34

4.2. Environments . 35

4.2.1. Pendulum . 35

4.2.2. MountainCar . 36

4.2.3. CartPole . 36

4.2.4. Qube . 36

4.3. Model learning of p(st+1|st, at) . 37

4.3.1. Model learning for BNN . 38

4.3.2. Model learning for RMS Ensemble 41

4.3.3. Selecting the optimal run . 43

4.3.4. Comparing the predictions of both models 44

4.4. Exploration . 45

4.4.1. Binary Exploration . 45

4.4.1.1. Predictive Variance . 45

4.4.1.2. MINE . 47

4.4.2. DCCP Exploration . 49

4.5. Control . 51

5. Results 52

5.1. Exploration policies . 52

5.2. MINE and variational posterior . 52

5.3. BNN model better suited . 53

5.4. Horizon for MountainCarContinuous-v0 53

6. Outlook 54

6.1. Semi definite programming relaxation . 54

6.2. Exploit submodularity and smooth actions 54

6.3. Extend to multiple action dimensions . 55

A. Appendix 59

A.1. Supervised Model Learning . 59

A.1.1. Training runs . 60

A.1.2. Predicted Trajectories . 62

A.1.2.1. MountainCarContinuous-v0 62

A.1.2.2. CartPole-v0 . 66

A.1.2.3. Qube-v0 . 70

A.2. Active Model Learning . 74

A.2.1. Training runs . 74

A.2.2. Predicted Trajectories . 75

A.2.2.1. MountainCarContinuous-v0 75

A.2.2.2. CartPole-v0 . 79

A.2.2.3. Qube-v0 . 83

1

1. Introduction

In our current and future society robots represent an integral part of our life. Several

subsidiary industries in service, emergency but also entertainment have emerged through

the advances Recently robot learning, deep learning and more importantly the intersection

of these topics made significant progress. Nevertheless the most crucial areas for our

future life stay in active research. One important question arises on how to decide on

an data exploration strategy. This is true for sequential decision problem as wells as for

really large datasets. Albeit this exploration strategy might work on smaller environments,

some setups are even impossible to explore without some prior information about the

dynamics. These type of problems are sometimes referred as active learning. In contrast

to structure learning approaches, where the goal is to find a network architecture, which

learns the given data pretty well. However active learning chooses data points so that the

given architecture is learned optimally. The latter is inherently better suited for really big

datasets and streaming applications, where it might be not feasible to use all data points.

But this affects the model from an operational perspective as it reduces the energy costs

needed for finding the correct model configurations.

This work reviews the terms of Bayesian inference and three different Bayesian models.

They all have in common that their predictive variance is convex in the inputs. While this

would be not problematic when one tries to minimize it, it poses a challenge when the

objective has to be maximized. By using a recently introduced quadratic optimizer [2]

this maximization problem can be solved. Related to this is the work from [3], but instead

of using a linear model different neural network models get compared. One is based on

using an ensemble [4] and the other applies the mean-field assumption in variational

inference and subsequently reparameterizes the gradient [5]. Afterwards a theoretical

overview of the underlying optimization problems is given under the assumption of a

convex variance. Therefore a binary formulation is contributed by this thesis. Furthermore

these problem are listed in advanced complexity ending with a quadratically constrained

quadratic programs (QCQP) [6]. After the comparison these methods get applied to

four one-dimensional action space environments. For the Pendulum-v0 a more in-depth

2

analysis is performed, which also looks at the state distribution. Some combinations

perform pretty well and it turns out that it sometimes depends on the environment which

method performs good. Despite the results, there needs to be further research to be done,

e.g. maybe on could transfer the submodularity results from discrete mutual information

problems to these relaxed versions, e.g. they might correspond to symmetries in this

continuous space.

Possible applications reach from exploring planar environments, over selecting the most

valuable data points from a data set up to the automatic positioning of measurement

devices. Consider a plane where for each state and action a next state is given. This state

space is two-dimensional and hence the forward model efficiently stores the information

which parts of the plane were already explored.. Extracting data points from a dataset

are possible applications, where one selects the nearest data points based on an optimal

design. This thesis consists of a foundational section, which covers the fundamentals and

connects it with related work. Several estimators for design objectives of experimental

design are discussed and compared. At the end of the foundational section, the combined

exploration algorithms get proposed. Afterwards an evaluation of different estimators is

presented and the two most promising objectives, namely predictive variance and MINE,

are evaluated in sequential explorative fashion

1.1. Related Work

This type of algorithm is strongly related to the work of [3], with the difference of using a

more complex model and a different optimizer. [7] uses Gaussian processes instead of

Bayesian neural networks or linear regression. Active learning is closely related to curiosity

driven exploration in reinforcement learning. While the former uses a forward model for

uncertainty, the latter use reward shaping to make the model curious about it’s data. The

work [8] is an example of a curiosity driven exploration agent. Usually reinforcement

learning explores around a goal trajectory, but also algorithms which incorporate the

forward model exist. One example is presented in [9], where the forward model is used

inside of the agent. Recently there have been an introduction of a new optimizer [2],

which can be generally used for such problems. While these references are considered to

be directly related, there are more background references introduced in the text. They

form the basis for the algorithm as a whole, but are direct part of this research area.

3

2. Foundations

This chapter introduces the fundamentals needed for the proposed algorithms later on.

This thesis consists of three parts: First of all, the performance of Bayesian neural networks

(BNN) and RMS ensemble get evaluated on an extracted dataset from the environment.

Afterward, different objectives and estimators used in Bayesian optimal experimental

design (BOED) get compared and described. In the third part, an assumption about

the form of the design objectives gets leveraged to generate a fast optimizer, related to

the iterative linear quadratic regulator (iLQR). Two types of learning get distinguished,

namely supervised learning and active learning.

At the beginning of this section, the terms of supervised learning get recapped. Addition-

ally, three practical Bayesian models for obtaining uncertainty estimates get described.

Furthermore, the different types of uncertainty are categorized and described from the

sequential control perspective this work faces. Afterward, the control perspective gets

refined and explained in terms of mathematical optimization. The section closes with a

comparison of the predictive variance to the mutual information, and how the mutual

information can be estimated.

2.1. Supervised learning of forward model

In supervised learning, the incentive is to try to fit a model to data, usually parameterized

by parameters θ. The general setup consists of a dataset and a loss function evaluated

over that dataset. It can is expressed in terms of two components:

D = {(x1, y1), . . . , (xN , yN)} E [L(θ)]

A dataset with tuples of input data xi and corresponding output yi as well as the loss

function L over parameters θ. The incentive lies in finding parameters θ, minimizing the

expected loss function L over the complete data set. However, in sequential control, the

4

output is parameterized as the next state and the input as the current state action tuple. All

data samples are grouped into the two data matrices X ∈ R
Nxdx and Y ∈ R

Nxdy . Despite

the so-called training set, one usually has an additional validation set to prevent overfitting.

Throughout the notation for states and normal data tuples is used exchangeable in the

sense that xi = si+1 and y
T

i = (sTi , a
T

i). Some chapters feel more natural in one notation

and others in the other. The representation as a dataset X and Y assumes implicitly that

the sequential samples are not dependent on each other. In any way, this assumption

is reasonable for Markov decision processes, but might not exactly be true under more

exceptional circumstances.

2.1.1. Sequential data as supervised data

A stochastic (Markovian) environment consisting of an (implicit) initial state distribution

µ(s1) and a (implicit) transition distribution p(st+1|st, at). Usually the control policy

π(at|st) is independent from the environment and hence needs to be inferred from a

specific goal g or an optimization objective J , see [10]. Forward-sampling from the

implicit likelihood model yields a trajectory ξt = {s1, a1, . . . , at−1, st} whereas ξ = ξT is a

complete trajectory of length T . For each trajectory exists a state S and action A matrix

with Si = si and Ai = ai. The likelihood of a complete trajectory is

p(ξ) = µ(S1)p(S2:T |A,S1)π(A|S1:T−1) = µ(s1)

[︄
T−1∏︂

t=1

p(st+1|st, at)π(at|st)
]︄

.

The validation set with whom the reference network was trained was generated by setting

π(at|st) = U(alow, ahigh) to the uniform distribution, which is independent of the state

st. By additionally sampling the initial s1 state uniformely from the complete state

space µ(s1) = U(S), a state-action space filling dataset is generated. For a reduction in

complexity in the following paragraphs, this is adapted and expressed equivalently as

µ(s1) ∝ 1 and π(at|st) ∝ 1.

2.2. Bayesian inference for supervised data

This section summarizes the Bayesian models used throught. The general framework

of Bayesian optimization consists in having a (informative) prior p(θ) = p(θ|D) over

5

parameters as well as a data-likelihood p(y|x, θ). Both together can be used to calculate

the posterior

p(θ|X,Y) =
p(Y|X, θ)p(θ)

∫︁
p(Y|X, θ′)p(θ′)dθ′ =

p(Y|X, θ)p(θ)
p(Y|X)

by dividing their product through the evidence p(y|x). There are direct training schemes,

e.g. in Bayesian linear regression (see section 2.2.2), compared to variational inference

scheme, e.g. in Bayesian neural networks (see section 2.2.3). They are explained in

more detail in the corresponding section. Often in these settings one is familiar with the

posterior predictive distribution

p̂(y|x) =
∫︂

p(y|x, θ)p(θ|x, y)dθ

and is equivalent to the posterior marginalized likelihood. These Bayesian terms are use

in two fashions throughout, between the reader should diversify, in the sense that one

time it used for learning a Bayesian implicit model for the real-world data. Whereas the

so generated model gets subsequently plugged into the optimization for the information

gain of this exact distribution. The used estimators for the gradient is introduced in the

section of nested inner optimization problems, see section 2.2.2.1, whereas the general

framework of optimal experimental design is introduced in section 2.5. For some easier

model one can obtain the posterior in closed form but for most neural models there is

no closed form distribution for the posterior and one then receives one can’t obtain the

closed form posterior but instead approximates the posterior p(θ|x, y) by a variational

distribution q(θ). There are various methods, for example Hamiltonian Monte Carlo, mean

field variational inference and laplace approximation to infer the posterior.

2.2.1. Probabilistic inference

This section introduces the two concepts for inferring the optimal parameters used through-

out. If the full distribution of the posterior can not be calculated in closed two solutions

to that problem are: On one hand the usage of (multiple) point estimates of θ1, . . . , θJ
are explained like in maximum a-posteriori or MCMC methods and on the other hand

additional assumption on the posterior distribution are considered. A prominent example

for such an assumption is called the mean-field assumption used throughout variational

inference. See section 2.2.1 for more detail on variational inference. Throughout this

6

chapter the transformation θT = (θT1 , . . . , θ
T

N) is used to transform the parameters θ in the

estimation. As an immediate result the likelihood and prior can be factorized as

p(Y|X, θ)p(θ) =
∏︂

i

p(yi|xi, θi)p(θi)

over the data. This induces that different parameters are used for each training sample.

There are cases where there is no real distribution on θ for the transformation presented

above it holds that θi = θi′ .

2.2.1.1. Maximum a-posteriori estimation

The first is called maximum a-posterior estimation, which is deeply related to maximum

likelihood. Maximum likelihood maximization just assumes there is a uninformative

uniform prior on θ ∼ 1. However the details of maximum likelihood are not presented

here but can be looked up at [11]. In maximum a -posteriori estimation he main idea is

to solve the optimization problem

θ∗ = argmax
θ
p(θ|X,Y) ∝ p(Y|X, θ)p(θ)

built out of the product of likelihood and prior probability. Usually optimization is made in

the log-space, e.g. replace p(θ|X,Y) by log p(θ|X,Y). Especially for distributions from the

exponential family like the Gaussian, Bernoulli or Beta this makes sense as it cancels the

exponential function in the probability density function (pdf). It is used in the estimation

of th optimal parameters for the RMS-ensemble see section .

2.2.1.2. Approximate variational inference

In variational inference the goal is to fit a parametric distribution q to an arbitrary real

distribution p. There are multiple possibilites for the choice p [5, 12, 13]. Usually this

is achieved by minimizing the KL-divergence between both q and p, but other distance
measures can be used like the Wasserstein distance in GAN’s [14] or the f-divergence. At

this point posterior inference is described but the other application of variational inference

to bounding the mutual information is given in section 2.5.2.3

7

Most commonly and widely used is approximate posterior inference and consists of fitting a

variational distribution q(θ) to the true posterior p(θ|D). As presented in [13] the objective

can be reformulated

KL(q(θ)|p(θ|Y,X)) = E [log q(θ)− log p(θ|X,Y)]

= log p(Y|X)− E [log p(θ,Y|X)− log q(θ)]

= log p(Y|X)− E [log p(Y|X, θ)]−KL(q(θ)|p(θ))
⏞ ⏟⏟ ⏞

ELBOYX(q(θ))

in terms of a constant part called the evidence log p(Y|X), which only depends on the

observed data. The other term is called the evidence lower bound (ELBO), which can

be written in terms of the likelihood and the KL between prior and variational posterior.

Combining the introduced concepts with the constant nature of the evidence p(D) the
original problem of minimizing the KL-divergence 2.1 can be rewritten as

argmin
q

KL(q(θ)|p(θ|Y,X)) = argmax
q

ELBOYX(θ) (2.1)

maximization of the evidence lower bound [13]. This framework enables the usage of

an approximating family (sometime also called hypothesis space) H with p(θ|D) /∈ H
not being contained in it. This case is interesting, because for the opposite case p(θ|D) ∈
H it holds that minq KL(q(θ)|p(θ|D)) = 0, which reduces the optimization problem

from equation 2.1 to maximum likelihood, e.g. maxELBO(q) = maxE [log p(D|θ)]. It

is noteworthy at this point that all expectations in this paragraph are from θ ∼ q(·)
the variational distribution. A common example of an assumption is the mean-field

assumption, which basically treats each parameters with an independet distribution, e.g.

q(θ) =
∏︁

i q(θi).

2.2.2. Bayesian linear regression

Bayesian linear regression uses as a hypothesis space the classes of linear predictors, e.g.

the likelihood is written as p(y|x, θ) = N (y|θTx, σ2I) and the row-independent matrix

normal prior on p(θ) = N (θ|µ,Σ). By using the stacked matrices X and y the posterior

p(θ|X,y) = N (θ|µ∗,Σ∗) is given by

µ∗ = µ∗X = Σ∗(
1

σ2
XTy +Σ−1µ) Σ∗ = ΣXX =∗ (

1

σ2
XTX+Σ−1)−1

is written in dependence of the regularized pseudo-inverse of the data input matrix X.

The formulas are easily derivable by linear algebra and have an interesting application

8

in active learning [3]. An online version of Bayesian linear regression is retrieved by

sequentially replacing the prior with the approximated conjugate posterior. This is better

known as Bayesian online updating and produces a series of distributions converging to

the true posterior.

2.2.2.1. Nested optimization problems

Multiple optimization problems are solved and the solution of one serves as an input of the

other. Overall two problems of this type arise throughout the thesis. The purpose of this

section is to explain the different types used, how they interact and which approximations

are made to make the problem feasible. First of all the Bayesian neural network is trained

on standard state action transition dynamics via variational inference. This approximated

network is subsequently plugged into the estimator of the information gain or the predictive

variance. The other problem arises when in the exeperimental design the updated prior

is considered. This paragraph focus on the latter and describes implied properties. By

definition

X∗ = argmin
x

LV (X, q∗(X)) q∗(X) = argmin
q(X)

LT (q(X))

this is a nested optimization problem as explained in more depth in [15]. These types

of problems occur in several areas like multi-objective optimization, active learning,

game-theoretic and self-play. For convenience the case of Bayesian linear regression is

investigated more deeply and thus we take the negative log-likelihood as training loss e.g.

LT (µ∗,Σ∗) = − log p(y|X, θ)− p(θ) and solve the right subproblem

Σ∗(X) =
1

σ2
XTX+Σ−1

µ∗ = (Σ∗(X))−1 (
1

σ2
XTXµ+Σ−1µ) = (Σ∗(X))−1

Σ∗(X)µ = µ

in terms of X. At this point Σ∗ is differentiable worth X. However due to the propagation

of the mean y = Xµ the learned mean doesn’t change µ∗ = µ, which gets independent

of X by that. Interestingly new input data points with mean propagated outputs only

influence the variance. However it is possible to inject noise into the mean using the

reparameterization trick using setting y = X(µ+
√
Σε). Returning to the discussion no

noise is injected in the mean and by exploiting the independence of µ from X one can

differentiate through both optimization problems and solutions. It is noted that when the

9

negative predictive variance

LV (X) = −
∑︂

i

(xi − µ∗)T (Σ∗(X))−1 (xi − µ∗)

∝ −
∑︂

i

(xi − 2µ)T (Σ∗(X))−1 xi

is used as the validation objective LV it can be differentiated by X. By using gradient

descent on the validation loss one can obtain the corrected hypergradient. In the experi-

ments section we make some experiments based on this and the mutual information. It

is noteworthy at this point that this discussion is only included for showing the subtle

differences between using an updated posterior or the current prior. Although the right

subproblem has a closed form solution under Bayesian linear regression, more complex

models have to use estimators like presented in [15] for the hypergradient ∇LV (X). The
most basic estimator iteratively solves both problems without differentiating through them.

However the most complex estimator needs an approximation of the inverse Hessian. The

prior is usually set by the previous data matrix with the regular update formulas.

2.2.3. Bayesian neural networks

A Bayesian neural network is an extension to standard neural networks. Typical default

neural networks consists of an activation function φ(x) combined with a multivariate

extension of the linear regression model seen in section 2.2.2. Additionally a prior is

placed on the weights in a Bayesian neural network to constrain the weight space and

allow for (approximated) posterior inference, see section 2.2.1 for more details about

variational inference itself. This work focuses on fully connected feed forward neural

networks with L different layers. It is straightforward to describe it more formally

a0 = x vi =WT

i ai−1 + bi ai = φ(vi) i ∈ {1, . . . , L}

with a recursive relationship. This whole construct is rather unhandy to write out in

full detail and thus another layer of abstraction gets introduced. Moreover an abstract

function can be designed by abbreviating θT = {vec(W1)
T, . . . , vec(WL)

T} and to write

fθ(x) = aL, e.g. set the output of the function approximator equal to the output of the

last layer. More intuitively the network can be desribed in terms of neurons see also figure

2.1 if you favor this type of description.

10

2.2.3.1. Bayesian version of standard neural networks

With that in mind the likelihood can be states as p(y|fθ(x), σ2) and the prior as p(θ). In
Bayesian inference the goal is obtaining either samples, a closed form solution or an

approximated variational posterior of the true posterior p(θ|x, y). At this point is necessary
to introduce shortly kernel density estimation and how it is used to represent the data

likelihood of Bayesian neural network (BNN) and the randomized map sampling (RMS)

ensemble. Kernel density estimation is used to obtain the approximated marginal likelihod

p(y|x) = E
θ∼p(·)

[︁
p(y|fθ(x), σ2)

]︁
≈ 1

J
ÿ

J∑︂

j=1

p(y|fθj (x), σ2) = p(y|x, θ1, . . . , θJ) (2.2)

which is finite by nature. In terms of section 2.2.1 it is used as p(D|θ). While this might

seem wrong at first glance, it can be interpreted by setting θ = (θ1, . . . , θJ) the prior

doesn’t change in number of parameters and the likelihood can again be written in the

form p(y|x, θ). Motivated by this discussion it is totally fine to replace p(y|x, θ) with an

approximated version of p(y|x). Is it noteworthy that in the limit J → ∞ this assumption

does not hold and this would correspond to an infinite Bayesian ensemble. By exactly

examining the likelihood term at the right of equation 2.2 one notices that either a

Gaussian prior can be used to generate θj see section 2.2.1 or the method of the RMS

ensemble see section 2.2.5.

x1 w1

x2 w2 Σ φ(·)
Activation

a

Output

x3 w3

Weights

Bias

b

Inputs

(a) Sources of uncertainty

x1

x2

x3

x4

Σ

Σ

Σ

Σ

Σ

Σ y1

Σ y2

Σ y3

(b) Architecture of a neural network

Figure 2.1.: Neural network represented as nodes
On the left side a neuron of a neural network is shown. In a Bayesian setting additionally

a prior is given over the weights w and bias b. On the right side a complete neural network

architecture is shown. It consists of multiple neurons.

11

2.2.4. Approximation methods for the posterior

The next section covers the relevant topics for the former method based on the mean-

field assumption. Besides the approaches mentioned and discussed here, there are also

other inference schemes like Hamiltonian Monte Carlo, Posterior sampling or Laplace

approximation to the posterior. This work focuses on gradient-based methods and the

general objective for training looks like

L(θ) = 1

N

N∑︂

i=1

log p(yi|fθ(xi), σ2) + Ω(θ)

with the log likelihood subtracted by some regularization term Ω(θ). Two variants of

this loss are used to optimize either the BNN or the RMS-ensemble. The former method

approximates the posterior with an isotropic Gaussian, which is better known as the mean-

field assumption in variational inference see section 2.2.1 for more details. This method

uses the negative KL-divergence between the prior and the posterior as a regularization

term Ω(θ). Nevertheless there is an inherent approximation error to the true posterior

resulting from a misconfiguration of the hypothesis space by the mean-field assumption.

The latter method uses multiple independent networks and a different loss for each

network. It simply uses the log probability of the prior as a regularization term

2.2.4.1. Variational mean-field Bayesian neural networks

This method is motivated by using the techniques from section 2.2.1 together with path

wise gradients. The uncertainty is injected in parameter space by sampling a value from

an approximation of the posterior distribution and gets propagated to the output. By using

the reparameterization trick the gradient can be propagated back into the approximation

of the posterior and the parameters can be learned using standard gradient descent or

more advanced optimizers on the ELBO objective. The general form is given by

2.2.4.1.1. Reparameterization tricks Before being able to use this model in the opti-

mization objective introduced in equation 2.1 two problems arise arise. The first one is

rather simple and is the fact that the gradient has to be propagated through the distribu-

tion into the hyperparameters. It turns out that by applying th reparameterization trick

these hyperparameters can be trained directly via stochastic subgradient descent or more

sophisticated methods like Nesterov momentum, RMSProp or ADAM. It can be be applied

12

by replacing a variable x from a Gaussian distribution x ∼ N (·|µ, σ) with the pathwise

reparameterization x(µ, σ) = µ + σε. By this transformation the variable and thus the

gradient is just depending on noise ε ∼ N (·|0, I) from a standard Gaussian. This trick is

needed in either case, whether the noise is injected in weight space or activation space.

In weight space the noise gets injected before the samples are multiplied by the weight

matricesWi. With this method the sampled weights have very high dimensions, especially

for a neural network. All activations of a neural network have a lower dimension than all

weights and thus results in higher variance, when sampling from weight space instead of

activation space [16]. The activation space transformation is given by

vi ∼ N
(︃

·|MT

i x,
√︂

V T

i (ai−1 ⊙ ai−1)

)︃

Wi ∼ N (·|Mi, Vi)

a distribution of much smaller dimension than the right one. From here the default

reparameterization trick can be used. Up to certain special cases where access to the

weight space noise is needed, the activation space sampling shows better performance [5].

The later introduced algorithm switches between both modes when training the network

and when estimating the mutual information.

2.2.4.1.2. Expressiveness As the weights from the variational posterior are assumed

to be independent this results in a convex variance [17, 18]. The authors propose to use

a different inference schemes like HMC or to change the model to a Gaussian process or

an ensemble. However this work focuses on gradient based optimization techniques and a

solution approach based on sequential quadratic programming is presented later on.

2.2.5. Randomized map sample ensemble

As an alternative model randomized map sampling is used in an ensemble [4] is used.

While their work was motivated by previous work on linear regression models [19] see

also section 2.2.2. In [4] they not the difference between the data likelihood and the

parameter likelihood. Recalling the terms from section 2.2 is is noteworthy that this was

the data likelihood p(D|θ) a s opposed to the parameter likelihood pθ(D|θ). While it is

possible for some models to derive them, for the case of neural networks this can not be

derived in closed form [4]. Instead the authors propose to use several networks in control

13

terms fi(x) a modified loss, e.g. they propose to use

−Lj =
1

N

N∑︂

i=1

∥yi − fθ(xi)∥2 + ∥
√︁

Σanc(θj − θj,anc)∥2

a slightly varied the loss for each member j of the ensemble. Each neural network in the

ensemble represents one sample from the posterior distribution. Note that the left hand

side of the equation shows a negative loss −L, because the mean squared error is used

instead of log likelihood. Both objective have to be optimized Compared to section 2.2.1

a pattern underlying both method exists. This work uses the following loss

Lj =
1

N

N∑︂

i=1

log p(yi|fθ(xi), σ2) + Ω(θ) Ω(θ) = logN (θ|θj,anc,Σanc)

in order to make a coherent framework with Bayesian neural networks. The parameter

J is used to define the number of ensemble members in the RMS-ensemble, whileas in

BNN’s it represents the number of samples used to propagate through the network for the

kernel density estimation.

2.2.6. Skip connections in neural networks

Recall that when a sequential control setting is used one has yt = st+1 and xTt = (sT, aT).
In robotics and deep learning it is convenient to use skip connections. The technique is

practically realized by plugging the abbreviation for the residual ∆st = st+1 − st as the
output of the network yt = ∆st. After this transformation a parameterized distribution

p(∆st|st, at) gets obtained and can be used to obtain the next state using the simple

relation st+1 = st +∆st. This work uses skip connections only for the ensemble and not

for the BNN. A clear advantage is that whenever the action space is box-constrained the

residual is as well constrained. Noteworthy is also the fact that the weights of the neural

network model can be chosen much smaller, e.g. the prior has to be set to smaller values

to work.

14

2.3. Sources of uncertainty

This section covers the main types of uncertainties present in learning a model based

upon data. There are different measures of uncertainty whereas usually the entropy H

or the variance V is used [20, 21]. One of the most basic types is the model uncertainty

itself. It is introduced by choosing a hypothesis space H which can not model the target

distribution with high confidence. More related to a model from the hypothesis space

are aleotoric and epistemic uncertainty [20]. While the first one is inherent to the data

generating process, e.g. in cases where the data generating process is not deterministic.

Both of them have their roots in quantifying uncertainty and distinguishing different

causes for the noise. A decomposition for both measure has been proposed in [21] and is

recapped in section 2.3.2. Another form of uncertainty is given by the factorization. Each

point of the trajectory is viewed independently and thus a factorization over the time is

performed. This introduces another error, e.g. areas where the model fails to be represent

the correct uncertainty.

2.3.1. Model Uncertainty

Most basically there is uncertainty when the model can’t approximate the real hypothesis

arbitrarily well. While this can have many reasons for neural networks it is most likely the

architecture producing this problem. The model uncertainty or otherwise called expected

approximation error of the hypothesis space is the minimum distance

∆y = min
f

E [|y − f(x)|]

between the learned and the real solution. For neural networks this approximation error

is rather small. It gets introduced by a finite sized hidden layer in the neural network. If

the number of neurons in a neural network with one hidden layer go to infinity it can be

shown that the hypothesis space is dense in the space of continuous functions. By this

analogy the approximation error is equivalent to the size of the smallest closed set which

contains besides the data and at least one hypothesis.

2.3.2. Aleotoric and Epistemic uncertainty

Aleotoric uncertainty is the uncertainty present in the data or the underlying stochastic

process. There are data processes or distributions which have inherent noise, e.g. for one

15

Sequential

Uncertainty

Aleotoric

Hetero
scedastic

Homo
scedastic

Epistemic

Factorization

Error

ModelLinearization

Regions

Connected

Separated

Figure 2.2.: Sources of sequential uncertainty
A categorization of uncertainty. Note that approximation errors induced by the model are

also considered as uncertainty. It should be clear that in the case of an approximation

error of the model, the model is unconsciously uncertain. This work is about eliminating

conscious uncertainty. Aleotoric and epistemic uncertainty fall into this category, but only

the latter can be reduced by gathering more/better data. Specific to sequential settings

are the region based uncertainty, these include the finite horizon uncertainty and the one

introduced by separated state regions.

input x two different outputs y1 ̸= y2 can be obtained. This is uncertainty where the model

can’t get more certain by increasing the amount of data available. Two decompositions are

relevant for this work. They deliver also the motivation for the objectives used later on in

section 2.5. For more details on these types of variances a good reference is presented in

[21]. Aleotoric uncertainty gets further refined as having heteroscedastic or homoscedastic

variance. The first corresponds to a different uncertainty for each sample, whereas the

latter corresponds to homoscedastic variance. In all experiments a homoscedastic variance

is assumed and thus the variance of the likelihood stays fix.

16

2.3.2.1. Different measures of uncertainty

The first occurs when using the entropy H as a measure of uncertainty [21]. Later on the

resulting epistemic uncertainty from this decomposition is used for learning. The authors

decompose the total uncertainty into an aleotoric part, which is defined in terms of the

entropy H. The counterpart of the decomposition is the epistemic uncertainty. Epistemic

uncertainty can be reduced by increasing the amount of data. It naturally corresponds to

uncertainty in the model itself, e.g. at initialization time the model is rather uncertain.

The full decomposition of total variance into aleotoric and epistemic uncertainty is given

by

MI(y, θ)
⏞ ⏟⏟ ⏞

epistemic

= H [p(y|x)]
⏞ ⏟⏟ ⏞

total

− E
θ∼q(·)

[H [p(y|x, θ)]]
⏞ ⏟⏟ ⏞

aleotoric

themutual information between output y and parameters θ [21]. The decomposition shows

which parts are optimized for optaining optimal experimental designs. This definition

clearly motivates the usage of the later on. Using the same scheme the aleotoric uncertainty

can be set to the expected variance over θ as compared to the direct variance over θ. The
total variance is given by V [p(y|x)]. Schematically equivalent to the decomposition for

the mutual information the epistemic uncertainty under variance

V [p(y|x, θ)]
⏞ ⏟⏟ ⏞

epistemic

= V [p(y|x)]
⏞ ⏟⏟ ⏞

total

− E
θ∼q(θ)

[V [p(y|x, θ)]]
⏞ ⏟⏟ ⏞

aleotoric

can be written as the difference between total and aleotoric uncertainty. It is noteworthy

that one recovers the predictive variance as the epistemic part, see section 2.5.1. This

section shortly summarized the motivation for the later used objectives mutual information

and predictive variance. These types of uncertainty talk about independent data point. In

most real world settings this is usually not the case as they are sequentially dependent.

The next section describes these sequential uncertainties.

2.3.3. Sequential uncertainty

Sequential uncertainty occurs when a model is used recursively and can be described

by two effects. Consider a forward model p(st+1|st, at) which is used to predict multiple

time steps into the future, e.g. the output state st+1 serves as an input to the model. The

17

input uncertainty is directly propagated to the output uncertainty. By this phenomena

the model gets increasingly more uncertain when extrapolated into the future. Besides

this naive addition of sequential uncertainty two other factors are considered.

2.3.3.1. Finite horizon uncertainty

First there is the fixed horizon T over which the model looks into the future. As finitely

many parts get aggregated over time it can not reach all sections of the state space by

nature. So it can only be certain around some bounded neighborhood of the current

position.

2.3.3.2. Connected and separated state-space regions

This type of uncertainty occurs when a subspace of the state space is separated into two

parts. A state space S is separated if there exist two points s1, s
′
1 such that the infinite

application of the set operator

T k(s) = T k−1(s) ∪ {fθ(s′, a) : s′ ∈ T k−1(s) ∧ a ∈ A(s′)} T 0(s) = {s}
yields two different sets with T ∞(s) ∩ T ∞(s′) = ∅. The action space A(s) depends on
the current state in general but in the used environments later the action space is constant

for all states, e.g. A(s) = A. Whenever the state space S is bounded this means induces

that T ∞(s) is closed. However when the state space is not bounded this could possible

yield a non closed set. That’s why only bounded state spaces are allowed in this thesis.

2.4. Optimization

This section the three different schemes used to solve the underlying optimization problems.

Strong evidence is given on the used optimization schemes, which can be divided into a

discrete, a disciplined convex-concave and a log-barrier formulation. The most general

form of optimization problems from which all of them descent in some scene is

min
x

g(x)

s.t. f(x) = 0

xmin ≤ x ≤ xmax

18

given with an additional state constraint. While the state constraint xmin ≤ x ≤ xmax is not

necessary it is often imposed by the environment. At this point we make the assumption

that g(x) is concave which is correct for the negative predictive variance. For the mutual

information we empirically verified that at least in the case of Bayesian linear regression

the optimal values lie at the boundary.

2.4.1. Sequential quadratic programming

This section outlines how to transform a problem of the first type into one solvable by the

disciplied convex and convex-concave program solvers. For the discrete as well as the point

method there is no need to make such an approximation. By applying a second-order

Taylor approximation to the Lagrangian of the problem

ĝ(∆x) =
1

2
∆xT

[︄

∇2g(x∗) +
∑︂

i

ηi∇2fi(x
∗)

]︄

⏞ ⏟⏟ ⏞

Q

∆x+∇g(x∗)T
⏞ ⏟⏟ ⏞

c

∆x+ g(x∗)
⏞ ⏟⏟ ⏞

d

a quadratic approximation to the real function is made. Note that the quadratic matrix not

only depends on the Hessian of g(x) but also on the Hessian of the constraints f(x). This
is due to the KKT-optimality conditions met in an optimum, and thus. The same technique

is applied using a first-order approximation to the constraints f(x) around x∗ results in

f̂(∆x) = Jf (x
∗)

⏞ ⏟⏟ ⏞

F

∆x+ f(x∗)
⏞ ⏟⏟ ⏞

h

with ∆x = x − x∗. At this point it is noteworthy that the variable getting optimized

transitions from x to ∆x. By repeatingly solving for ∆x, updating the parameters x̂ =
x+∆x, reapproximating and solving by the above introduced concept, one results in a

powerful optimization scheme called sequential quadratic programming. It is used in

section 2.4.2 and 2.4.4. It is noteworthy that if there is no constraint on the input space,

e.g. ∥x∥∞ ≤ xmax the objective can be replaced by the symmetric matrix 1
2(Q+QT) and

the resulting optimization problem has the same optimum values. The resulting objective

and constraints are

ĝ(∆x) =
1

2
∆xTQ∆x+ cT∆x+ d f̂(∆x) = F∆x+ h

represented by their parts. Sometimes this transformation is required as this is the case

for the disciplined concave convex program solver. The interior point method and discrete

19

solver use generally no quadratic approximation, so this is only the case for DCP and

DCCP programming.

2.4.1.1. Gauss-Newton approximation to the Hessian

Typically a Gauss-Newton approximation to the true Hessian is used. This ensures positive

definiteness of the estimated Hessian. Additionally it is far easier to calculate as it depends

only on first order gradient information e.g. as E
[︁
∇g(x)∇g(x)T

]︁
. In the context of a

convex function it totally makes sense to approximate it using the Gauss-Newton matrix.

For more information on this topic see [].

2.4.2. Convex Programming

The quadratic g(x) is convex, when the matrix Q is positive definite. There are solvers out

there which can easily solve this kind of optimization problem. They might can be solved

by sequential quadratic programming and can be written

min
x

g(x)

s.t. f(x) = 0

xmin ≤ x ≤ xmax

as the standard optimization problem. These type of problems can be solved with linear

constraints or also non-linear constraints. In the latter case, the constraints get linearized

after each solution update step. In control there is the iterative linear quadratic regulator

[22], which uses a closed form solution instead of gradient updates.

2.4.3. Discrete Programming

Whenever g(x) is concave the solutions for the optimal actions lie at the input space

boundaries. In general this is the case for a concave function if [xmin, xmax] ⊆ {x : f(x) ≤
0}. As we have 1-dimensional actions this clearly motivates the approach of solving the

following problem

20

min
x

g(x)

s.t. f(x) = 0

xmin,i = xi ∨ xi = xmax,i

in a discrete fashion. However by using this approach two problems exist. Albeit the

solutions are indeed discrete and lie at the boundary, in practice solutions from the interior

are also required. Especially if the solutions serve as the data points for the supervised

learning of the forward model. We tried using a filter at this point to smooth out the

actions, but this showed bad results in general. The other problem is that trying out

all solution is inherently slow and in higher dimensions sophisticated approximations

and procedures are needed, e.g. branch-and-bound. Due to these facts this approach is

not a good choice at least for continuous control problems, however it is concluded as a

comparison in the latter experiments.

2.4.4. Convex Concave Programming

At this point we make the assumption that g(x) is concave which is correct for the negative

predictive variance. For the mutual information we empirically verified that at least in

the case of Bayesian linear regression the optimal values lie at the boundary. Again a

quadratic objective g(x) is used as well as a additional convex term r(x). While in general

arbitrary convex r(x) can be used, in control often a quadratic regularization function is

used. The essence of the so called epigraph transformation lies in replacing the concave

function g(x)

min
x

t+ λr(x)

s.t. g(x) ≤ t

f(x) = 0

xmin ≤ x ≤ xmax

(2.3)

with a variable t [2]. By this transformation the objective gets optimized over both x and

t and is convex in both variables. However there is an additional non-linear constraint

introduced. As it can be inverted, e.g. −g(x) ≥ −t it can be either viewed as a convex or

a concave constraint. Nevertheless the disciplined convex concave programming approach

approximates the concave constraint by a linear constraint in multiple iterations and solves

21

it by the same techniques presented in section 2.4.2. This results in an effective scheme

for solving these types of optimization problems. Besides choosing the actions with the

most information gain there are various other important applications.

2.4.4.1. Relaxing the original problem by regularization

By adding regularization to the original objective the problem can be relaxed such that

solutions from the complete interval might occur as a result. The final solution depends

heavily on the regularization parameter λ. The resulting problem can be states as

min
x

g(x) + λr(x)

s.t. f(x) = 0

xmin ≤ x ≤ xmax

the following problem. From this approximation two further solution methods can be

derived. Consider a quadratic of the form g(x) = xTQx+ cTx+ d, which is the most basic

formulation. One has to consider different versions of a quadratic program. Most basically

a quadratic program with linear constraints can be written as

min
x

g(x) = xTQx+ cTx+ d

s.t. Fx ≤ f

∥x∥∞ ≤ xmax

Three main cases can occur for Q namely that Q is positive definite, negative definite or in

the worst case indefinite.There are the semi-definite case, but we will not consider them,

as they can be regularized by using shrinkage estimators. The next section covers the

easiest problems of them when there is a convex program which follows the disciplined

convex programming rules [23].

2.4.5. Quadratically constrained quadratic optimization problem

More difficult to solve are quadratically constrained quadratic optimization problems.

They are based on the epigraph transformed problem of the convex-concave section but

22

with general quadratics r(x) and g(x), e.g. Q beeing only symmetric. The resulting form

is

min
x

r(x)

s.t. g(x) = 0

f(x) = 0

∥x∥∞ ≤ xmax

given by the standard form. In general these type of problems are NP-complete and

inherently difficult to solve [6]. However there are solvers using heuristics like the

semidefinite-relaxation and suggest-and-improve framework [6]. Albeit the approximated

problem is of this form, we reduce it further using the Gauss-Newton approximation of

the Hessian to get a concave representation of g(x). This approximation transforms this

type of problem into a convex concave program.

2.5. Bayesian optimal experimental design

Bayesian optimal experimental design (BOED) is about designing an experiment, from

which data is acquired to further improve the underlying model. There is a design d = x
an objective function Ψ. The goal is to find a design which maximizes, or by flipping

the objective function minimizes the objective function. Several slightly different design

criterion’s have been proposed. They can be namely divided into A/E/I/V/G-optimality.

However this work views takes a look at V-optimality and the expected information gain

as an objective function in this framework. Both have inherent problems, when applied to

reinforcement learning. The used notation corresponds in the control setting to d = (S1,A)
and y = S2:T . It is noteworthy that the sequential fashion of the design d can be further

exploited and thus the computational burden can be drastically reduced. Usually the first

initial state is fixed as well, e.g. S1, the design is further reduced to d = A and the initial

state is treated as a random variable. However to simplify the notation it is described

for d = x and y or in the case of sequential fashion d = At and y = St+1, whereas St is

either given by the environment or a propagated constraint of the sequential optimization

problem.

23

2.5.1. Predictive Variance

The first main objective is better known in the optimal experimental design literature as

V-optimality and the objective to maximize can be written as

Ψ(d) = V
θ∼p(·|D)

[fθ(d)]

and involves sampling from the predictive model and the prior, while using these particles

to estimate the variance of the model. Some problems with this objective occur, at least in

the setting of Bayesian linear regression and their neural network version, see section 2.2.

To solve a convex maximization problem the solver from

2.5.2. Mutual information

The mutual information is usually viewed between between outputs y and parameters θ.
It is non-negative and symmetric but doesn’t fulfill the triangle inequality. Hence it can not

be considered as a proper metric. A different objective called the variation of information

additionally fulfills the triangle inequality and is thus a metric. The mutual information

can be expressed in different ways however it’s raw extended formula is given by

Ψ(d) = MI(y, θ) = E
y,θ∼p(·|d)

[︃

log
p(y|d, θ)
p(y|d)

]︃

= E
y,θ∼p(·|d)

[︃

log
p(θ|y, d)
p(θ)

]︃

= EIG(d)

with its direct relation to the expected information gain. It is noteworthy at this point that

the MI is given in terms outcome y and parameters θ, whereas the expected information

gain is given in terms of the design d. See section 2.5 for more details on the connections of

design, parameters and outcome. Besides that a notion of normalized mutual information

is used in some problems like clustering. There is a deep connection to the entropy

MI(y, θ) = H(y)−H(y|θ) and as stated earlier it fulfills MI(y, θ) ≥ 0 as well as MI(y, θ) =
MI(θ, y). A straight forward approach is using a nested Monte Carlo estimator

Ψ(d) = MI(y, θ) ≈ 1

N

N∑︂

n=1

log p(yn|θn,0, d)
1

M

∑︁M
m=1 log p(yn|θn,m, d)

(2.4)

24

for explicitly evaluating the mutual information withM =
√
N . However the problem

lies in the sample size which is exponential in the dimension of the parameters θ [24].

Besides the exact estimator from equation 2.4 there are different approximations to the

mutual information [25]. The first estimator inspected is called mutual neural information

estimation (MINE). Afterwards the modified estimator called information noise contrastive

estimation (INCE) from [26] is presented. Finally various estimators from [12] are

described. This work focuses on lower bounds to the mutual information, but also other

bounds can be considered. All methods get described and compared to each other and

the predictive variance. They share the same underlying theoretical aspects and are based

on the Barber-Agakov lower bound.

2.5.2.1. Barber & Agakov variational bound

In the Barber-Agakov lower bound the posterior p(θ|y, d) is approximated by a variational

distribution q(θ|y, d). It is noteworthy that there is also an Barber-Agakov upper bound

on the mutual information, but it is not so relevant for this work. Coming back to the

lower bound, it can be derived by adding the variational distribution and separating the

expected information gain

Ψ(d) = MI(y, θ) = E
y,θ∼p(·|d)

[︃

log
p(θ|y, d)
p(θ)

]︃

= E
y,θ∼p(·|d)

[︃

log
q(θ|y, d)
p(θ)

]︃

+ E
y,θ∼p(·|d)

[︃

log
p(θ|y, d)
q(θ|y, d)

]︃

≥ E
y,θ∼p(·|d)

[︃

log
q(θ|y, d)
p(θ)

]︃

(2.5)

into a term comparable to the original objective and the difference between the true

expected information gain and the variational information gain. By exploiting the posi-

tiveness of the divergence a lower bound can be obtained [25]. Even though the lower

bound involves a distribution it gets used to recover the distribution-free as well as the

distribution-based lower bounds used later on. In the variational estimators from [12]

a neural network is used to represent the variational distribution directly q(θ|y, d). This
stands in contrast to the estimators based on a critic network Tψ(y, θ) not representing
any kind of distribution. At first glance their connection is not visible, but it is based on a

energy-based variational family [25]. This family

q(θ|y, d) = p(θ)

Z(y)
eTψ(y,θ) Z(y) = E

p(θ)

[︂

eTψ(y,θ)
]︂

25

reveals how all estimators rely on some form of distribution. A ton of different estimators

can be derived by using these representations. In [25] the complete connections between

the estimators are presented. Coming back the variational family can be plugged into

the Barber-Agakov lower bound to receive an unormalized version. By applying Jensen’s

inequality it is easy to derive

Ψ(d) = MI(y, θ) ≥ E
p(y,θ|d)

[Tψ(y, θ)]− log E
p(y|d)p(θ)

[︂

eTψ(y,θ)
]︂

the Donsker-Varadhon lower bound [25]. This bound is the basis for the MINE-f bound

and the INCE estimator introduced in the following sections. For more details on the

mutual information see also [27, 25, 12].

2.5.2.2. Mutual neural information estimation

Most prominent usage of neural networks in an estimator is done by the mine estimator

[28], which is a combination of the Donsker-Varadhan lower bound and a neural network.

Instead being a real upper or lower bound to the mutual information it is only correlated

with the estimator. However a slightly modified version was presented in [1], which results

in a real lower bound to the mutual information. The equation for this estimator is given

by

Ψ(d) = MI(y, θ) ≥ Ψ(d, ψ) = E
p(y,θ|d)

[Tψ(y, θ)]− e−1
E

p(y|d)p(θ)

[︂

eTψ(y,θ)
]︂

difference between the mean under the joint and the exponential mean under the

marginals. There are various concerns on the limitations when a distribution-free and

high-confidence lower bound is used as an estimator for the mutual information [27].

More specifically the authors conclude that these estimators are upper bounded in terms

of the sample size O(lnK). Interpreting this results yield in an exponential number of

samples to accurately approximate the mutual information. Nevertheless the existence

of this upper bound there might be problems with small information gains and thus

accurately estimate able.

2.5.2.3. Variational estimators

In [12] several variational estimators are compared. This work focuses on the variational

posterior approximation. It is based on the bound from Barber-Agakov lower bound from

26

equation 2.5. By using a MCMC estimate on the expectation

MI(y, θ) ≥ E
y,θ∼p(·|d)

[︃

log
q(θ|y, d)
p(θ)

]︃

≈ 1

K

K∑︂

i=1

log
q(θi|yi, d)
p(θi)

a lower bound called variational posterior. It might be used for implicit models where

only samples from p(y|d, θ) can be generated. As in the previous estimators: By using the

reparameterization trick from section 2.2.4.1.1 the gradient can be backpropagated into

the design d. Their work considers also more sophisticated estimators based on the NMC

estimator and an estimator based on two amortized networks. However these are not

lower bounds and thus not further considered here.

27

3. Sequential optimal experimental design

While the optimal experimental design is viewed from a non-sequential perspective, there

are two notions how it is sequential. Foremost continuously updating the prior with the

learned posterior is a form of sequential updating. In the final algorithm it iterates between

phases of exploration, e.g. where trajectories are recorded and phases of learning the new

posterior. However if a trajectory is viewed with states S and actionsA the trajectory itself

is sequential. This section describes this sequential nature and how it gets solved inside of

the optimization objective. It gets viewed from a control perspective and makes heave use

of the optimization problems described in section 2.4. The general form of optimization

problem is given

min
A

Ψ(S1:T−1,A)

s.t. st+1 = f(st, at)

amin ≤ at ≤ amax

s1 = s0.

(3.1)

by the following sequential environment. In section 4.2 the environments are explained in

more depth. This work focuses only on 1-dimensional action spaces, but the methodology

can be extended to the multidimensional case. However scaling the BNN and the estimators

is a major challenge to accommodate for when multiple action dimensions are considered.

In equation 3.1 a factorization over the trajectory formalized as

Ψ(S1:T−1,A) =

T−1∑︂

t=1

Ψt(st, at)

can be used to make the problem tractable. Although this problem is comparable to

normal control methods like model predictive control (MPC) or (iterative) linear quadratic

regulator (iLQR), it can not be plugged into such a method as these methods solve for

optimas where ∇atΨt(st, at) = 0. By the discussion from section 2.4 the optimas lie

28

at the boundaries of the action space where it might hold that ∇atΨt(st, at) ̸= 0. This
happens for example whenever each Ψt(st, at) is concave. Most importantly it enables the

use of shooting techniques. Multiple shooting exploits the forward model to unroll the

trajectory and subsequently optimize the actions. Usually the first state s1 is defined by the

environment. By using the forward model st+1 = f(st, at) the trajectory ξ can be unrolled

and more importantly all other states S2:T are determined by the learned forward model.

This type of data depends on a learned forward model and thus is different from the real

result. Either one can differentiate through the constraints and solve this optimization

problem completely, e.g. in log-barrier methods for non-linear optimization. However this

work uses shooting to make the points independent and glue them together with linear

constraints. By unrolling the trajectory the dynamics model can be linearized around

the current trajectory and on top of that the objective can be quadratized. In iLQR the

dynamics get linearized as well and this method is thus strongly related to iLQR with the

focus on convex maximization. This work doesn’t repeat the details about iLQR and MPC

and more on the exploration methods.

3.1. Binary Exploration

The most basic algorithm for this type of exploration is very simplistic. Recall section 2.4.3

where the optimal solutions lie at the boundary. As this work considers only 1-dimensional

action spaces this method is tractable for short horizons T . When scaling up either the

action space dimensionality or the horizon this method gets intractable. Short horizons

induce also simpler environments. This algorithm gets only evaluated on the Pendulum

environment, as the other environments already need big horizons for goal directed

control. Nevertheless it uses brute force evaluation to find the best exploration sequence.

There might be a more sophisticated tree search producing better results. The complete

method is formulated in algorithm 1. In control it’s not beneficial to only execute the

actions with the most system excitation. While the result of this method is discrete it can

be smoothed out by exponential smoothing. However this filtering is extremely difficult to

tune, depends highly on the problem and adds a lag to the action execution. Even if there

is a more efficient selection scheme of the actions, transforming the discrete actions to

continuous ones is a major challenge.

29

Algorithm 1: A = discrete_exploration(f,Ψ, s1, Ā, T)

// Get all 2T permutations

p = permutations([amin, amax], T);
v = float[2T];

// Evaluate objective for all permutations

for i ∈ {1, . . . , 2T } do

A = p[i];
S = unroll(f, s1,A);
v[i] = Ψ(S1:T−1,A);

end

// Find the best permutation and pass back

i = argmin v;
Result: A = p[i]

3.2. Convex-Concave Exploration

This section lists the proposed algorithm used in the learning process. It is assumed

that Ψt(st, at) is concave in at and this assumption is exploited throughout. While this

assumption is not necessary for the following derivation, it is valid at least for the predictive

variance. However it motivates the quadratic approximation used for the objective and

explains the performance. Each objective part Ψt(st, at) ≈ gt(st, at) is approximated by a

quadratic function using a modified 2nd-order Taylor approximation

Ψt(st, at) ≈ gt(st, at) = (∆xt)
TQt(∆xt)

T + qTt (∆xt) + ct

withQt symmetric and negative definite with xTt = (sTt , a
T
t). Instead of using the complete

Hessian in the approximation, this work uses a Gauss-Newton approximation to the real

Hessian. See section 2.4.1 for more details on the usage. It is noteworthy at this point

that the Hessian of the dynamics constraints is left out of the objective. The boundary

conditions for the actions motivates the regularization of Q as it’s Hessian is the identity.

In practice it is difficult to determine the exact Lagrange multipliers, but this work simply

sets it to a fixed value. As evidence suggests for BNN’s the negative predictive variance is

approximately concave (for shallow networks) and thus we Qt is negative definite. If the

function is highly non concave, this approximation might produce bad results. Note that

30

this section always talks in terms of minimizing a function as otherwise the terms convex

and concave can be mixed up too easily. For each timestep t we have a concave objective

gt(at), which we want to minimize. As gt is concave the minimum only exists if the action

space is bounded (e.g. alow ≤ at ≤ ahigh) and closed, or short compact. Hence the wanted

minimum a∗t is either alow or ahigh (in multidimensional case all combinations off edges

(active constraints), which means if there is no tunnel between these edges [29], each

of them is a local optima and we have O(2d) local optima) and more importantly it does

not fulfill the constraint ∇gt(a∗t) = 0. All xt in gt(xt, at) are uniquely determined by the

initial state x1 and the actions A1:t−1 through the dynamic constraints xt+1 = f(xt, at).

3.2.1. Forming the complete optimization problem

Besides the quadratic approximation to the objective there are non-linear dynamics

constraints remaining in the problem. These constraints can be easily linearized by a 1-st

order Taylor approximation

f(st, at) ≈ At∆st +Bt∆at + ht

and integrated into the constrains as well. Obviously the linearized dynamics and the ap-

proximated quadratic objective have small approximation errors only in the neighborhood

of the current trajectory. To mitigate this problem an additional parameter δ is introduced
to account for the change in actions. The idea is to repeat this procedure δ iterations while

constraining the size of the action update. This methodology can be compared to trust

region methods see also [10, 30]. The complete optimization problem linearized around

a trajectory ξ is formulated as

min
A

T−1∑︂

t=1

(∆xt)
TQt(∆xt)

T + qTt (∆xt) + ct

s.t. st+1 = At∆st +Bt∆at + ht

at = āt +∆at

amax ≥ max(at, δ∆at)

amin ≤ min(at, δ∆at)

s1 = s0

xTt = (sTt , a
T

t)

this sequential optimization problem with variables S and A. Note that this algorithm

cares only about the received actions and not the states. Recall the shooting techniques

31

were a trajectory is unrolled before the optimization, by that the next states are determined

by the solution A and the current state of the environment. The outline of the problem is

given in algorithm 2.

Algorithm 2: A = dccp_exploration(f,Ψ, s1, Ā, T, δ)

// Repeat δ iterations

for k ∈ {1, . . . , δ} do

// Approximate quadratic optimization problem around ξ
S = unroll(f, s1, Ā);
At, Bt, ht = linearize(f,S1:T−1, Ā);
Qt, qt, ct = quadratic(Ψ,S1:T−1, Ā);

// Solve for action update ∆A and update current actions Ā

∆A = solve_dccp(Qt, qt, ct, At, Bt, ht,S, Ā);
Ā = Ā+∆A

end

// Pass back the result

Result: A = Ā

3.2.2. Adding regularization to the concave objective.

In control it is important to get actions at ∈ [alow, ahigh] from the complete interval. Usually

regularization techniques are employed to draw the optimized variables to zero. In terms

of reinforcement learning this can be interpreted as regularizing around the zero policy.

Despite these global regularization technique, also local regularization is used in control

namely slew rate penalty. It implies that the actions are not to far from each other and

thus some form of control stability is added. The idea is to add both contraints, e.g. the

32

slew rate penalty and the regularization, to the objective

min
A

T−1∑︂

t=1

λ∥at∥22 + µ∥at+1 − at∥22 + bt

s.t. bt ≥ g(st, at) = (∆xt)
TQt(∆xt)

T + qTt (∆xt) + ct

st+1 = At∆st +Bt∆at + ht

s1 = s0

at = āt +∆at

amax ≥ max(at, δ∆at)

amin ≤ min(at, δ∆at)

xTt = (sTt , a
T

t)

while simultaneously performing a epigraph transformation for each concave part gt(st, at)
using the variable bt. See section 2.4.4.1 for more details on this transformation. It doesn’t

change the solutions but makes the objective convex in it’s variables by adding a non-linear

(concave) constraint. This problem gets plugged into the DCCP solver, which in turn

upper bounds the concave constraint by a linear constraint. For more details on the used

optimizer see section 2.4.4.1 and [2].

33

4. Experiments

The experiment section compares different information gain estimators, in order to select

an appropriate one for the latter algorithms. On top of this the model learning capabilities

of different neural architectures get compared. Therefore datasets were extracted from

the environment using a Wiener process. The BNN and the RMS ensemble are compared.

Continuing from that the best model architecture is used to run the active learning part.

Active learning is achieved by taking the actions from an algorithm introduced in section

3.

4.1. Bayesian linear regression and information gain estimators

This section compares the estimates by using either Mine-f [28] or the variational posterior

approximation [12] to the real mutual information. The real mutual information is

calculated using a nested Monte Carlo estimator. Both variation posterior and mine-f

estimator are based on using a (normalized) variational distribtuion to lower bound

the mutual information. It was applied to Bayesian linear regression and approximately

calculates the mutual information. See figure 4.1 for a comparison between the original

mutual information and the ones gathered from this estimator. Albeit these approximations

go in the right direction. In fact they jump after each optimization step, and thus doesn’t

converge that stable. Both estimator seem to exhibit the same structural performance.

This work focuses on the mine-f estimator for the approximation, but also some cases with

the variational posterior are presented.

34

(a) Mine-f (b) Variational posterior (c) NMC

Figure 4.1.: Mutual Information
This compares the original mutual information of Bayesian linear regression calculated

using nested Monte Carlo (NMC) to both estimators. On the left the MINE estimator is

presented, whereas in the middle the variational posterior approximation is presented.

4.2. Environments

This section summarizes the used environments. They all have only one single action in

their dynamics models. However they share very different characteristics what exactly

the action manipulates. All spaces are actually bounded and by normalization they get

manipulated to be from the interval [−1, 1].

4.2.1. Pendulum

The easiest environment is the pendulum. It consists of a three dimensional state space

as well as a one-dimensional action space. The standard environment from gym is used,

whereas the dynamics are integrated by Euler’s method. Usually the goal is to either do a

swing up or follow a reference trajectory. The state space consists of the angle and the

angle velocity, whereas the angle is represented in sin and cos space. A state tuple can

thus be described as (cos(θ), sin(θ), θ̇) The only action is applied on the acceleration of the

angle θ. The crux lies in bringing the pendulum up, because one from a hanging position

a swinging motion is needed.

35

4.2.2. MountainCar

The mountaincar environment consists of a cart placed in a valley surrounded by two

mountains. Ultimately the goal of the agent is to surpass the right peak and reach the goal

behind. This environment has the smallest state space, e.g. it has a cart position x as well

as a cart velocity ẋ. One configuration of the state space can be described as the tuple

(x, ẋ). While the cart can not go right directly, it has to fulfill a swinging motion using the

left mountain to surpass the right one. In some sense this is similar to the Pendulm, if the

goal is to swing it around.

4.2.3. CartPole

The cartpole environment consists of a cart placed on a horizontal rail, in contrast to

MountainCar where the cart move on a slope. Attached to the cart is a free moving

pendulum similar to the Pendulum environment. The state space is thus a concatenation

of the state space of the Pendulum and the MountainCar and a single configuration is

given by (cos(θ), sin(θ), x, θ̇, ẋ) and contains five dimensions. The action accelerates the

cart, which implicitly can move the Pendulum on it and subsequently stabilize it. This

environment uses a Runge-Kutta integration method instead of the default Euler method.

4.2.4. Qube

By far the most advanced environment in this comparison is qube. It uses the environment

from the quanser library released by the IAS lab. Basically it consists of two sticks attached

to each other. One of them moves horizontally and the other is attached to this end by

90 degrees and thus moves vertically. The horizontal stick is attached to a qube and a

motor. The goal of this environment is to swing up the vertical pendulum and stabilize it

by only controlling the horizontal stick directly. One configuration of the state space is

given by (cos(θh), sin(θh), cos(θv), sin(θv), θḣ, θv̇). The angle θh describes the angle of the

horizontal stick relative to the qube and analogous the angle θv describes the angle of the

stick relative to the plane.ÿ

36

Figure 4.2.: BNN - Hidden Dimension
This compares the different runs with varying hidden dimensions. It can be ssen that

the hidden dimension has a minor influence on the progress. Generally the smallest size

which can fit the data should be chosen.

4.3. Model learning of p(st+1|st, at)

Prior to the active learning set up a comparison of the Bayesian neural network from

section 2.2.3 are compared to the ensemble from section 2.2.5. The data is extracted from

the environment, by sampling the actions from a Wiener process and is normalized before

training. For angles only sin and cos features are used as described in the environments

section in more detail. The reason is that the angle normalization is not differentiable and

skip connections should be used with angles as otherwise there exist a convergent series

37

xk such that (cos(xk), sin(xk))
T converges, but x ̸= arctan(cos(x), sin(x)) holds.

4.3.1. Model learning for BNN

The base configuration for the BNN is given in figure 4.3, while it was found by manual

tuning of the parameters. This section compares the influence the hyper parameters have

got onto the performance. Is is noteworthy that the training procedure for the BNN is

relatively stable and produces a likelihood graph with minimal variance. If not stated

otherwise the variance is obtained by using five different random seeds.

Three different settings for the hidden dimensions are considered. There is a clear trade

off between having too much and not enough hidden dimensions. As can be verified in

the plots with a hidden dimension of 128 the learning process takes more epochs to start

in the beginning. Reducing the dimension improves training at the beginning, but in the

end a hidden dimension of 64 gives the best result between the learning progress and the

final performance. See figure 4.4 for the runs.

As for the hidden dimension three different settings for the learning rate were considered.

See figure 4.4 for the learning graphs. For the learning rates 0.0005 and 0.005 the log

likelihood looks good and stable and thus we conclude that both rates are appropriate.

However in practice the bigger learning rate 0.005 was used. If the learning rate gets

increased furthermore to 0.01 the training gets inherently unstable and from time to

BNN RMS

batch size 256 256

hidden dimension 64 64

hidden layers 2 2

prior sigma 0.1 0.1

learning rate 0.005 0.005

BNN RMS

k-step objective 5 2

num epochs 1000 1000

steps per epoch 10 10

num samples 32 32

skip connections False True

Figure 4.3.: Base conőguration for BNN and RMS
This table shows the default configuration used in training. The hyper parameter search

alters single parameters of this configuration.

38

Figure 4.4.: BNN - Learning Rate
Generally the learning rate should not be too big or too small. When it is too big the

learning gets unstable and the log likelihood has negative spikes. However if it too small

the optimizer takes longer to reach its optimum.

time a very bad update is performed on the network, which reduces the log likelihood

tremendously.

While the prior seems to be uninformative and thus the hyper parameters don’t change

that much during the training. As can be seen in figure 4.5 the only environment where it

makes a difference is the Pendulum-v0. In this environment a prior scale of 0.01 results in

faster learning at the beginning, but in the end a prior of 0.1 seems beneficial. Usually

in neural network training only data tuples are viewed. However with the Bayesian

39

Figure 4.5.: BNN - Prior
In the case of a BNN the prior does not have that much influence. The Bayesian community

calls this an uninformative prior and the influence of the prior on the posterior vanishes

over time.

framework introduced earlier the alternative

log p(S1:K ,A1:K−1) = log
K−1∏︂

k=1

p(sk+1|sk, ak) =
K−1∑︂

k=1

log p(sk+1|sk, ak)

likelihood can be used. In figure 4.6 it is clearly visible that a longer K generates better

learning graphs. This could also be verified looking at the predicted trajectories. They

seem to be much smoother, also in regions where it fails to predict the ground-truth.

40

4.3.2. Model learning for RMS Ensemble

This section examines the performance of the ensemble. As for the BNN a base config-

uration is altered, which is given in figure 4.3. The plots corresponding to the hidden

dimension and the learning rate are added to the appendix, e.g. figure A.1 and A.2,

because they share a similar characteristic as the BNN. The prior was alternated between

0.01, 0.1 and 1.0. It is noteworthy, whenever the prior of the ensemble is too big this

could result in divergent behavior. However skip connections were used and thus the

targets are much smaller, which implies that the weights and thus the prior should be

Figure 4.6.: BNN - K-step objective
For the BNN a longer K-step objective yields better and more importantly smoother results.

The model seems to smooth out errors in the future, even if it fails for some steps.

41

Figure 4.7.: RMS - Prior
On the ensemble the prior has a bigger influence. Choosing a prior with big scales yields

in diverging behavior. Hence a smaller prior should be chosen.

chosen much smaller. Not using skip connections drastically reduced the performance.

Another important factor is determined by the number consecutive steps in training.

Training the ensemble with a multiple steps likelihood converges much slower. This

effect is contrary to the BNN, where increasing the steps in the likelihood improves the

convergence speed. When compared to figure 4.6. Modifying the learning rate exhibits

the expected behavior in the context of neural networks. The same holds for the hidden

dimension and in this context a bigger network size yields slower convergence at the

beginning but a larger capacity at the end.

42

4.3.3. Selecting the optimal run

For the learning part, the best network configuration for each environment is selected auto-

matically. The selection scheme used for selecting the best hyper parameter configuration

uses a simple exponential average

v̂e+1 = γv̂e + ve+1

to smooth out the log likelihood and fold it into one value. After this transformation the

best configuration can be selected by taking the maximum. One might also use the integral

Figure 4.8.: RMS - K-step objective
As compared to the BNN, the RMS ensemble is much more sensitive to the number of

steps in the objective. This effect doesn’t increase the performance, instead the optimizer

takes more iterations to solve this problem.

43

Figure 4.9.: Supervised trained models for Pendulum-v0
BNN and RMS ensemble get evaluated on the validation set trajectories. The trajectories

stay the same for all comparisons. It is noteworthy how the BNN achieves a slightly better

accuracy.

underneath the curve but in experiments this rule selected semi optimal configurations.

4.3.4. Comparing the predictions of both models

In figure 4.9 the predictive performance of both models, namely the ensemble and the BNN,

gets evaluated. The two upper trajectories are represented very well by both networks,

whereas the BNN seems to have a slight advantage over the ensemble. Both trajectories

at the bottom are harder to predict by the models. Nevertheless the BNN outperforms

44

the ensemble at the bottom right trajectory. The same analytical results are obtained for

MountainCar. However in more complex environments, like CartPole-v0 and Qube-v0 the

ensemble seems to be superior over the BNN. The predicted trajectories are presented in

section A.1.2. Due to this observation the BNN seems to have a scaling disadvantage, but

excels at smaller environments.

4.4. Exploration

This section shows the performance of the algorithms from section 3. The best run config-

uration is determined by the selection rule from 4.3.3. For the pendulum environment the

explored state-space gets compared to the states generated by using a Wiener process.

First of all the binary exploration from section 3.1 gets evaluated.

4.4.1. Binary Exploration

The most basic algorithm for performing this kind of exploration is binary exploration

from section 3.1. It gets evaluated using two different objectives, e.g. predictive variance

and mine-f estimator from section 2.5.1 and 2.5.2.2, respectively. It is noteworthy, that

the other estimators are either computationally very expensive, e.g. INCE , or exhibits

really large values, e.g. VPOST 2.5.2.3, as evaluated in the first experiments section 4.1.

4.4.1.1. Predictive Variance

This section evaluates how the methods perform using the predictive variance. The

predictive variance can be obtained for either the BNN or the RMS ensemble and it’s

estimation quality depends on the number of samples. As evidence suggest and explained

in [18] the variance of shallow Bayesian neural networks is convex. This is exploited in

the DCCP algorithm.

While this method finds the global optimum, it is very slow when big horizons T are

used. See section 3.1 for details about the method. For all environments a short horizon

of T = 10 was used. The log likelihood curves are presented in figure 4.10. For the

environments with swinging components the method increases fairly well. Note that for

MountainCarContinuous-v0 the training gets instable. Due to the short horizon T = 10,
it is very unlikely that the cart reaches the right goal state. As a result the carts keeps

45

Figure 4.10.: BNN - Binary exploration
The log likelihood graphs for discrete exploration on all environments. Due to the short

horizons the MountainCarContinuous-v0 environment does converge at first place, but

degrades in performance afterwards.

exploring in between both peaks and the data points in this area are much more dense

compared to the outer regions.

In figure 4.11 the explored state space is displayed. A horizon of T = 10 is used and only

discrete actions are applied. It is noteworthy, that the BNN covers the point (0, 0) very
well, but fails to represent the extreme edge cases. For the RMS it also arrives the center,

but also gathers some points from the velocity edge cases. However the circles are much

more circular and follow a certain pattern. This stands in contrast to the BNN, where the

points are distributed more uniformly.

46

Figure 4.11.: State space for binary exploration with predictive variance.
This plot shows the state space for binary exploration. The predictive variance is used as

an objective, whereas each trajectory is printed in a different color.

4.4.1.2. MINE

Instead of using the predictive variance to predict the information gain, a different estima-

tor called the mine estimator is used. The performance gets compared to the variational

Figure 4.12.: State space for binary exploration with MINE-f.
This plot shows the state space for binary exploration using the MINE-f objective. Each

trajectory is printed in a different color.

47

posterior in section 4.1. It used an additional amortized neural network, to perform an

approximation to this quantity. The obtained trajectories, for all methods including the

ones from the predictive variance, are presented in figure 4.13 and compared to the

ground truth. Although an additional estimator is used the distribution of the state space

shows the same characteristic: In figure 4.12 the state space for the BNN with MINE is

much better than the combination of the RMS ensemble and the MINE estimator. However

it seems that using a MINE estimator is beneficial over the predictive variance. In latter

experiments the overall performance of both estimators depends on the problem and thus

Figure 4.13.: Learned models for discrete exploration
A comparison of the models from the discrete exploration. All combinations of BNN and

RMS ensemble together with the predictive variance objective and MINE-f are evaluated

on the validation trajectories.

48

(a) BNN-PV (b) BNN-MINE

Figure 4.14.: State space for DCCP exploration
This plot shows the state space for DCCP exploration. For both plot a BNN was used,

whereas each trajectory is printed in a different color. On the left side is the predictive

variance and on the right the MINE-f objective.

the right one has to be chosen problem specific.

4.4.2. DCCP Exploration

The following section evaluated the methods using the relaxed optimization problem

from section 3.2. They are executed on all presented environments and the resulting

models are compared on some trajectories from the validation set. It is noted that the

RMS ensemble is left out from this evaluation as it fails to share the same distributional

behavior in binary exploration in contrast to the BNN, see section 4.4.1. By this argument

this section compares the performance of the estimators in conjunction with the BNN. It

was empirically verified, that a set of point estimates in conjunction with the estimators of

the mutual information yields bad results.

The predicted trajectories on the Pendulum-v0 can be viewed in figure 4.15. For the

Pendulum-v0 the predictive variance and the MINE estimator yield better predictive

results than the variational posterior. However for the upper right trajectory from 4.15 the

variational posterior method gets a prediction which is not valid in the middle, but at the

the end. Nevertheless it is concluded that the variational posterior and the MINE objective

49

Figure 4.15.: Learned models for DCCP exploration
This plot shows the learned models for the Pendulum-v0. As explained in the section,

only the BNN is further considered. Three objectives are considered, namely predictive

variance (PV), MINE-f and variational posterior (VPOST) are presented.

deliver comparable exploration results. The trajectories from the other environment are

presented in section A.2.2. Especially in the environment MountainCarContinuous-v0

the MINE objective delivers better results. in contrast to the predictive variance, where

it fails predict the end of the trajectory. Albeit the differences are not so extreme, the

same behavior can be examined for the CartPole-v0 environment. Last but not least both

method perform equally well on the Qube-v0.

For the environments Pendulum-v0 and CartPole-v0 the BNN is evaluated using three

different objectives. These objectives include the predictive variance, MINE-f estimator

50

Figure 4.16.: Control using the learned models
The reward graphs of the environments Pendulum-v0 and CartPole-v0. The reward is

displayed for the BNN with PV, MINE and VPOST. Note that the reward was evaluated

after 5 epochs of active learning. They all share the same overall performance in control.

and the variational posterior approximation. All of these combinations are tested in a

control setting in section 4.5.

4.5. Control

The generated models are used in a control setting on all environments except

MountainCarContinuous-v0 and Qube-v0. For Qube-v0 the problem lies in the hardness

of model predictive control (MPC) itself and with the supervised trained model, it was

difficult to get the controller running. For the MountainCarContinuous-v0 environment

long horizons are needed, where the iLQR optimizer fails. Hence only Pendulum-v0 and

CartPole-v0 are considered in a control setting. After a model is learned, the reward is

evaluated over 5 different seeds. After five epochs of learning the distribution of rewards

gets evaluated, and the rewards for multiple epochs are plotted in figure 4.16. All control

signals were generated using the library from [31]. Further tuning in the exploration

process, might also solve Qube-v0 and MountainCarContinuous-v0. However these parts

were left out from this thesis.

51

5. Results

This section summarizes the main results made during the experiments and the foun-

dational analysis of the methodology. First of all the shape of the exploration policy is

examined in-depth. Afterwards that both mutual information estimators are compared

and it is discussed, which one to choose. Finally a comparison between BNN and RMS is

given, and it is explained that the BNN is better suited for sample based estimators of the

mutual information.

5.1. Exploration policies

For some environments the exploration policy does the same thing as a goal directed

method. As only one-dimensional environments were used, this can not be generalized

to multiple action dimensions easily. The effect is most prominent on the MountainCar

environment, where optimal exploration ends up in the goal state. The other three

environments contain a circular pendulum and are easier to explore, e.g. the horizons

can be set much shorter.

5.2. MINE and variational posterior

Two estimator for the mutual information, namely the MINE estimator and the variational

posterior are compared. They both utilize an amortized network in their estimation

scheme. As presented in figure 4.15 and section 4.1, both estimators show equally good

performance. In contrast to the variational posterior, the MINE estimator additionally

needs samples from the marginal density. Despite this computational burden, the MINE

estimator gives more stable results in the case of Bayesian linear regression. Overall this

work favors the MINE-f estimator, because it better fits into the DCCP framework.

52

5.3. BNN model better suited

Although the ensemble shows good performance and acceptable variance estimates, the

number of samples is fixed and they cannot be easily resampled as each ensemble member

is a point estimate of the target function. This stands in contrast to the BNN, which is able

to change the number of samples dynamically. For the predictive variance both models

are equally well suited, while the BNN is better suited for sample-based estimation of the

mutual information. By this argument, only the BNN was examined exhaustively in the

experiments section. It was shown that the RMS ensemble fails to exhibit the same state

distribution as the BNN.

5.4. Horizon for MountainCarContinuous-v0

Sometimes the model fails to explore, as can be seen for the MountainCarContinuous-v0

environment. Investigation yields that the cart tries to explore the left area, e.g. it drives

the cart with full speed to the left. This happens, because control on this environment

needs big horizons. Simultaneously the introduced method yields better solution with

short optimization horizons. It is not easy how to trade off between these effect. This has to

be further researched and is an integral part for solving these types of environments. Skip

connections might be used, but these have to be integrated in the Bayesian framework.

53

6. Outlook

A short outlook is given on how to progress with this research. In general three pathways

are considered. The first one dives deeper into the underlying problem and is able to cope

with indefinite quadratic approximations and the control regularization. Alternatively the

submodularity property in the discrete case might be exploited to make a more efficient

selection scheme for the discrete actions. Last but not least the method could be extended

and tuned on multiple dimensions. Theoretically algorithm 2 could be extended to deal

with multiple actions.

6.1. Semi definite programming relaxation

Note that the second derivative of the convex/concave objective gets approximated by the

Gauss Newton matrix and is thus either positive or negative definite, respectively. However

if the full Hessian is approximated the resulting program is a quadratically constrained

quadratic program, see section 2.4.5. Under these circumstances a semidefinite relaxation

to the original problem can be made. Details about this can be found in [6]. It is noted

that this is only a different approach of solving the underlying problem. However it might

reduce the approximation error, introduced when using the Gauss Newton matrix instead

of the Hessian.

6.2. Exploit submodularity and smooth actions

While it is not directly clear how this can be applied over time with discrete variables. But

the submodularity of the mutual information might be exploited [32]. This would reduce

drastically the computational efforts, as computations can be reused. However this goes

beyond the scope of this thesis. Another interesting direction, would be to create a super

54

optimization problem. The upper level problem should take the discrete actions from the

lower level problem as input and smooth them out. The goal is to get actions from the

complete interval x ∈ [−1, 1]

6.3. Extend to multiple action dimensions

While only environments with one-dimensional actions are considered, the method might

be adapted to more complex environments with multiple continuous actions. This opti-

mization problem inherently suffers from the curse of dimensionality, in the sense that

there are exponential many local optima. Despite this fact it is not clear how these local

optimas can be compared or if they are comparable. It might be not bad, to have expo-

nentially many local optimas, if the gained solutions are well distributed and not from

one part of the input space.

55

Bibliography

[1] S. Kleinegesse and M. U. Gutmann, “Bayesian experimental design for implicit

models by mutual information neural estimation,” arXiv preprint arXiv:2002.08129,

2020.

[2] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave programming,”

2016.

[3] M. Schultheis, B. Belousov, H. Abdulsamad, and J. Peters, “Receding horizon curios-

ity,” in Conference on Robot Learning, pp. 1278–1288, 2020.

[4] T. Pearce, F. Leibfried, A. Brintrup, M. Zaki, and A. Neely, “Uncertainty in neural

networks: Approximately bayesian ensembling,” arXiv preprint arXiv:1810.05546,

2018.

[5] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local

reparameterization trick,” in Advances in neural information processing systems,

pp. 2575–2583, 2015.

[6] J. Park and S. Boyd, “General heuristics for nonconvex quadratically constrained

quadratic programming,” arXiv, pp. arXiv–1703, 2017.

[7] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively learning gaussian process

dynamics,” in Learning for Dynamics and Control, pp. 5–15, PMLR, 2020.

[8] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by

self-supervised prediction,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pp. 16–17, 2017.

[9] S. Levine and V. Koltun, “Guided policy search,” in International Conference on

Machine Learning, pp. 1–9, 2013.

[10] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,” in Conference on

Artificial Intelligence (AAAI), 2010.

56

[11] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[12] A. Foster, M. Jankowiak, E. Bingham, P. Horsfall, Y. W. Teh, T. Rainforth, and

N. Goodman, “Variational bayesian optimal experimental design,” in Advances in

Neural Information Processing Systems, pp. 14036–14047, 2019.

[13] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review

for statisticians,” Journal of the American statistical Association, vol. 112, no. 518,

pp. 859–877, 2017.

[14] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017.

[15] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of hyperparameters

by implicit differentiation,” in International Conference on Artificial Intelligence and

Statistics, pp. 1540–1552, 2020.

[16] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation

in machine learning,” arXiv preprint arXiv:1906.10652, 2019.

[17] A. Y. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner, “’in-between’uncertainty

in bayesian neural networks,” arXiv preprint arXiv:1906.11537, 2019.

[18] A. Y. K. Foong, D. R. Burt, Y. Li, and R. E. Turner, “On the expressiveness of approxi-

mate inference in bayesian neural networks,” 2019.

[19] I. Osband, B. Van Roy, D. J. Russo, and Z. Wen, “Deep exploration via randomized

value functions.,” Journal of Machine Learning Research, vol. 20, no. 124, pp. 1–62,

2019.

[20] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in machine

learning: A tutorial introduction,” arXiv preprint arXiv:1910.09457, 2019.

[21] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft, “Decomposition

of uncertainty in bayesian deep learning for efficient and risk-sensitive learning,” in

International Conference on Machine Learning, pp. 1184–1193, 2018.

[22] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear

biological movement systems.,”

[23] M. C. Grant, Disciplined convex programming. PhD thesis, Stanford University, 2004.

57

[24] T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood, “On nesting monte

carlo estimators,” in International Conference on Machine Learning, pp. 4267–4276,

2018.

[25] B. Poole, S. Ozair, A. v. d. Oord, A. A. Alemi, and G. Tucker, “On variational bounds of

mutual grant2004disciplinedinformation,” arXiv preprint arXiv:1905.06922, 2019.

[26] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predic-

tive coding,” arXiv preprint arXiv:1807.03748, 2018.

[27] D. McAllester and K. Stratos, “Formal limitations on the measurement of mutual in-

formation,” in International Conference on Artificial Intelligence and Statistics, pp. 875–

884, 2020.

[28] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and

R. D. Hjelm, “Mine: mutual information neural estimation,” arXiv preprint

arXiv:1801.04062, 2018.

[29] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson, “Loss surfaces,

mode connectivity, and fast ensembling of dnns,” in Advances in Neural Information

Processing Systems, pp. 8789–8798, 2018.

[30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International conference on machine learning, pp. 1889–1897, 2015.

[31] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable MPC for

End-to-end Planning and Control,” 2018.

[32] M. Queyranne, “Minimizing symmetric submodular functions,” Mathematical Pro-

gramming, vol. 82, no. 1-2, pp. 3–12, 1998.

58

A. Appendix

This section contains plots with predicted trajectories and also likelihood computation

graphs. They are considered as additional content, which are used in the main text.

A.1. Supervised Model Learning

All graphs regarding the supervised model learning are part of this section, in the sense

that the data was extracted by a Wiener process policy and stayed fixed throughout the

training. It is noteworthy that the trajectories from this set are used for validation and

testing of the active model learning part.

59

A.1.1. Training runs

Figure A.1.: RMS - Hidden Dimension

60

Figure A.2.: RMS - Learning Rate

61

A.1.2. Predicted Trajectories

A.1.2.1. MountainCarContinuous-v0

Figure A.3.: Trajectory 0 for MountainCarContinuous-v0

62

Figure A.4.: Trajectory 1 for MountainCarContinuous-v0

63

Figure A.5.: Trajectory 4 for MountainCarContinuous-v0

64

Figure A.6.: Trajectory 7 for MountainCarContinuous-v0

65

A.1.2.2. CartPole-v0

Figure A.7.: Trajectory 0 for CartPole-v0

66

Figure A.8.: Trajectory 1 for CartPole-v0

67

Figure A.9.: Trajectory 4 for CartPole-v0

68

Figure A.10.: Trajectory 7 for CartPole-v0

69

A.1.2.3. Qube-v0

Figure A.11.: Trajectory 0 for Qube-v0

70

Figure A.12.: Trajectory 1 for Qube-v0

71

Figure A.13.: Trajectory 4 for Qube-v0

72

Figure A.14.: Trajectory 7 for Qube-v0

73

A.2. Active Model Learning

This section contains the graphs from the active learning part. Evaluations of validation

trajectories using the predictive model are given.

A.2.1. Training runs

Figure A.15.: BNN - Active learning

74

A.2.2. Predicted Trajectories

A.2.2.1. MountainCarContinuous-v0

Figure A.16.: Trajectory 0 for MountainCarContinuous-v0

75

Figure A.17.: Trajectory 1 for MountainCarContinuous-v0

76

Figure A.18.: Trajectory 4 for MountainCarContinuous-v0

77

Figure A.19.: Trajectory 7 for MountainCarContinuous-v0

78

A.2.2.2. CartPole-v0

Figure A.20.: Trajectory 0 for CartPole-v0

79

Figure A.21.: Trajectory 1 for CartPole-v0

80

Figure A.22.: Trajectory 4 for CartPole-v0

81

Figure A.23.: Trajectory 7 for CartPole-v0

82

A.2.2.3. Qube-v0

Figure A.24.: Trajectory 0 for Qube-v0

83

Figure A.25.: Trajectory 1 for Qube-v0

84

Figure A.26.: Trajectory 4 for Qube-v0

85

Figure A.27.: Trajectory 7 for Qube-v0

86

	Introduction
	Related Work

	Foundations
	Supervised learning of forward model
	Sequential data as supervised data

	Bayesian inference for supervised data
	Probabilistic inference
	Maximum a-posteriori estimation
	Approximate variational inference

	Bayesian linear regression
	Nested optimization problems

	Bayesian neural networks
	Bayesian version of standard neural networks

	Approximation methods for the posterior
	Variational mean-field Bayesian neural networks
	Reparameterization tricks
	Expressiveness

	Randomized map sample ensemble
	Skip connections in neural networks

	Sources of uncertainty
	Model Uncertainty
	Aleotoric and Epistemic uncertainty
	Different measures of uncertainty

	Sequential uncertainty
	Finite horizon uncertainty
	Connected and separated state-space regions

	Optimization
	Sequential quadratic programming
	Gauss-Newton approximation to the Hessian

	Convex Programming
	Discrete Programming
	Convex Concave Programming
	Relaxing the original problem by regularization

	Quadratically constrained quadratic optimization problem

	Bayesian optimal experimental design
	Predictive Variance
	Mutual information
	Barber & Agakov variational bound
	Mutual neural information estimation
	Variational estimators

	Sequential optimal experimental design
	Binary Exploration
	Convex-Concave Exploration
	Forming the complete optimization problem
	Adding regularization to the concave objective.

	Experiments
	Bayesian linear regression and information gain estimators
	Environments
	Pendulum
	MountainCar
	CartPole
	Qube

	Model learning of p(st+1|st, at)
	Model learning for BNN
	Model learning for RMS Ensemble
	Selecting the optimal run
	Comparing the predictions of both models

	Exploration
	Binary Exploration
	Predictive Variance
	MINE

	DCCP Exploration

	Control

	Results
	Exploration policies
	MINE and variational posterior
	BNN model better suited
	Horizon for MountainCarContinuous-v0

	Outlook
	Semi definite programming relaxation
	Exploit submodularity and smooth actions
	Extend to multiple action dimensions

	Appendix
	Supervised Model Learning
	Training runs
	Predicted Trajectories
	MountainCarContinuous-v0
	CartPole-v0
	Qube-v0

	Active Model Learning
	Training runs
	Predicted Trajectories
	MountainCarContinuous-v0
	CartPole-v0
	Qube-v0

