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Abstract— Iterative trajectory optimization techniques for
non-linear dynamical systems are among the most powerful and
sample-efficient methods of model-based reinforcement learning
and approximate optimal control. By leveraging time-variant
local linear-quadratic approximations of system dynamics and
reward, such methods can find both a target-optimal trajectory
and time-variant optimal feedback controllers. However, the
local linear-quadratic assumptions are a major source of opti-
mization bias that leads to catastrophic greedy updates, raising
the issue of proper regularization. Moreover, the approximate
models’ disregard for any physical state-action limits of the
system causes further aggravation of the problem, as the
optimization moves towards unreachable areas of the state-
action space. In this paper, we address the issue of constrained
systems in the scenario of online-fitted stochastic linear dy-
namics. We propose modeling state and action physical limits
as probabilistic chance constraints linear in both state and
action and introduce a new trajectory optimization technique
that integrates these probabilistic constraints by optimizing a
relaxed quadratic program. Our empirical evaluations show a
significant improvement in learning robustness, which enables
our approach to perform more effective updates and avoid
premature convergence observed in state-of-the-art algorithms.

I. INTRODUCTION

Model-based reinforcement learning has played an impor-
tant role in the latest surge of popular research interest in
learning-control of autonomous systems [1]. More specifi-
cally, trajectory-centric optimization techniques of non-linear
dynamics have proven to be extremely sample efficient in
comparison to model-free policy search approaches [2]–[4].

With the notable exception of [5], model-based trajec-
tory optimization techniques [6], [7] are closely related to
differential dynamic programming methods (DDP), initially
presented in [8] and further generalized in [9]. DDP is a
powerful approach for generating optimal trajectories with
optimal time-variant feedback controllers. By relying on
linear-quadratic approximations of the dynamics and reward
around a nominal trajectory, DDP-based methods can lever-
age the local approximations to iteratively optimize both the
trajectory and tracking feedback controllers in closed-form
via dynamic programming [10]. This view of control has a
computational advantage over direct optimization techniques
such as collocation methods, which solve large optimization
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problems directly in the trajectory space and generally result
only in open-loop control sequences [11].

However, despite the overwhelming success of DDP, it still
suffers from multiple shortcomings. On the one hand, the
greedy exploitation of poor local approximations of dynam-
ics is a major problem that leads to premature convergence.
This issue has been effectively addressed in recent research
by proposing different schemes of regularization [2], [6], [7].
On the other hand, state and action constraints present a
serious challenge, as they introduce hard non-linearities, that
cannot be straightforwardly incorporated into the dynamic
programming framework. The effect of constraints becomes
more severe in settings where a global model is not available
for automatic differentiation, hence requiring the linear ap-
proximation of the dynamics to be fitted online from samples.

We view these issues of DDP as interlocked. The inability
of time-variant local linear models to consider state and
action constraints results in updates that exploit unreachable
parts of the state-actions space, leading to catastrophically
poor linear-quadratic approximations in regions subject to
hard non-linearities. Moreover, considering constraints be-
comes more challenging in scenarios with stochastic dynam-
ics, in that the true state of the system is hidden and only
available through sufficient statistics. Another crucial aspect
in a stochastic setting is the infinite support of the noisy
measurements, which results in the constraints being active
over the whole state-action space.

To address these issues, we propose an augmented view
of DDP that introduces the physical limits as probabilistic
chance constraints linear in state and action. When con-
sidering time-variant linear-Gaussian approximations of the
dynamic, we can relax the generally non-convex chance
constraints by applying Boole’s inequality. This relaxation
allows us to formulate an additional quadratic program
that forces the optimized nominal trajectory to stay in a
feasible state-action region with high probability, all while
considering the feedback gains optimized by DDP.

Several approaches to trajectory optimization for non-
linear systems address the problem of constrained dynamics
on different levels. In the domain of deterministic environ-
ments, Tassa et al. considered action box-constraints in [12],
while the authors in [13] introduce soft state-action limits
via a Lagrange function augmentation. More sophisticated
integration of constraints is presented in [14], in which the
authors formulate a quadratic program to determine the active
set of constraints at every iteration. In a stochastic setting,
the work by Van Den Berg et. al [15] introduces probabilistic
constraints as direct penalty terms on the cost function.



Furthermore, probabilistic constraints are considered in
the context of linear optimal control. In [16] the authors
optimally handle probabilistic constraints by ellipsoidal re-
laxation for finite-horizon open-loop scenarios, while in [17]
a similar problem is tackled by applying Boole’s inequality.
In [18] Vitus et al. propose an algorithm to extend the work
in [17] and [16] by considering closed-loop uncertainty and
optimizing the risk allocation. Finally, in [19] the problem
of infeasible initial solutions is addressed by progressively
introducing the constraint into the objective.

We situate our contribution in the class of differential dy-
namic programming for stochastic non-linear systems subject
to probabilistic constraints in state and action. We empirically
show that our proposed approach can deal with highly non-
linear constrained dynamic environments, leading to better
overall performance and a robust learning process by virtue
of improved online-fitted local approximations.

II. CHANCE-CONSTRAINED OPTIMIZATION

Chance constraints arise naturally in different fields of
optimization when considering stochastic systems. For an
overview, we refer to [20]. Dealing with such probabilistic
constraints proves to be challenging, as they are often non-
convex and hard to evaluate without resolving to compu-
tationally expensive sampling techniques. These difficulties
have motivated further research into tractable forms of
chance constraints, which led to several convex approxima-
tions [21]. This work will focus on using Boole’s inequality
for constraint relaxation. A detailed description in the context
of trajectories will follow in Section II-B.

A. Problem Formulation
Consider the constrained optimal control problem with

probabilistic state and action constraints and unknown
stochastic time-discrete transition dynamics

max
A

J(s,A),

s.t. st+1 ∼ P(st+1|st,at),

Pr(s0:T ∈ S) ≥ 1− θ,
Pr(a0:T−1 ∈ A) ≥ 1− ϑ,

where S and A are the feasible state and action spaces
respectively. The probability levels θ, ϑ are hyperparameters
that influence the risk behavior in terms of violating the
constraints. The goal of this constrained optimization is
to maximize the objective by finding the optimal action
sequence A. In general, we consider the expected cumulative
reward for a trajectory of length T in the quadratic form

J(s,A) = −E
[ T−1∑

t=0

(st − sg,t)ᵀM t(st − sg,t) + aᵀ
tDtat

+ (sT − sg,T )ᵀMT (sT − sg,T )
]
, (1)

where M and D are positive-definite weight matrices of
appropriate dimensions and sg is the target state. Note
that a quadratic objective is not necessarily required, and
non-quadratic objectives can be locally approximated by
quadratic forms.

B. Relaxation of Chance Constraints

Chance constraints can be conservatively relaxed by apply-
ing Boole’s inequality [22]–[24]. For the purpose of brevity,
only upper-bound state constraints are considered. How-
ever, the same relaxation procedure can be straightforwardly
applied to obtain a lower-bound and to relax the action
constraints. Generally, the state-linear joint chance constraint
for a whole trajectory is formulated as

Pr(s0:T ∈ S) = Pr(

T⋂
t=0

st ∈ S) ≥ 1− θ,

= Pr(

T⋂
t=0

hᵀ
t st ≤ bt) ≥ 1− θ. (2)

where ht and bt parameterize the half-plane defined by the
constraints. Consequently, the probability of a trajectory to
be within a feasible set is constrained to be higher than a
probability 1 − θ. In the framework of stochastic program-
ming, it is usually beneficial to reformulate Equation (2) into
separate inequalities over individual constraints [20], which
is achieved by transforming the intersection operator into a
union operator according to rules of probability.

Pr(

T⋂
t=0

hᵀ
t st ≤ bt) = 1− Pr(

T⋃
t=0

hᵀ
t st > bt),

≥ 1−
T∑

t=0

1− Pr(hᵀ
t st ≤ bt). (3)

The sum in Inequality (3) can now be treated as a collection
of single probabilities per time-step

T∑
t=0

1− Pr(hᵀ
t st ≤ bt) ≤ θ,

Pr(hᵀ
t st ≤ bt) ≥ 1− θt, (4)

where
∑T

t=0 θt = θ. By assuming a Gaussian probability
density, a common assumption in control applications, Equa-
tion (4) is rewritten using the cumulative density function

1

2

[
1 + erf

(
bt − hᵀ

tµst√
2hᵀ

t Σst
ht

)]
≥ 1− θt,

bt − hᵀ
tµst −

√
2hᵀ

t Σst
ht erf−1(1− 2θt) ≥ 0, (5)

where µst and Σst are the state mean and covariance re-
spectively. Moreover, due to properties of the error function,
the inequality

∑T
t=0 θt ≤ θ < 0.5 is conservatively enforced

by setting θt = θ/T and requiring θ < 0.5, as in [24].

C. Iterative Linear Quadratic Gaussian Control (iLQG)

We base our trajectory optimization technique on
DDP/iLQG methods. This section provides a short overview
on the principles of DDP [8] and iLQG [2]. For any arbitrary
time-index reward function Rt, the trajectory optimization
objective is the expected cumulative reward

J(s,A) = E

[
T−1∑
t=0

Rt(st,at) +RT (sT )

]
.



DDP and iLQG leverage the principle of dynamic program-
ming to simplify the optimization over a complete sequence
of actions a0:T−1 to an optimization over single actions at

for each time-step. For this purpose the time-indexed state-
value function is introduced

Vt(s)= max
at

Rt(st,at) +
∑
st+1

Vt+1(st+1)P(st+1|st,at)

,
over which the dynamic programming backward recur-
sion is performed. By assuming linear transitions dynam-
ics and a quadratic rewards along a nominal trajectory,
optimal feedback controllers can be derived in closed-
form. DDP and iLQG consider the perturbed state-action-
value function Qt(δs, δa) = Rt(st + δs,at + δa) −
Rt(st,at)+Vt+1 (P(st + δs,at + δa))−Vt+1 (P(st,at)),
resulting from a second order Taylor approximation

Qt(δs, δa) ≈ 1

2

 1
δs
δa

ᵀ  0 Qᵀ
s,t Qᵀ

a,t

Qs,t Qss,t Qsa,t

Qa,t Qas,t Qaa,t

 1
δs
δa

 .
The subscripts s and a stand for the first and second order
approximations. The entries of Qt(δs, δa) are given as

Qs,t = Rs,t + Pᵀ
s,tV s,t+1,

Qa,t = Ra,t + Pᵀ
a,tV s,t+1,

Qss,t = Rss,t + Pᵀ
s,tV ss,t+1Ps,t + V s,t+1Pss,t,

Qaa,t = Raa,t + Pᵀ
a,tV ss,t+1Pa,t + V s,t+1Paa,t,

Qas,t = Ras,t + Pᵀ
a,tV ss,t+1Ps,t + V s,t+1Pas,t.

The main difference of iLQG compared to DDP is in neglect-
ing the second order derivatives of the dynamics in iLQG.
Given these approximations the optimal feedback controller
is given as δa∗ = −Q−1

aa,t(Qa + Qas,tδs) = Ktδs + kt.
Inserting δa∗ into Qt(δs, δa) returns the update equations
of the state-value function per time-step

∆Vt = −1

2
Qa,tQ

−1
aa,tQa,t,

V s,t = Qs,t −Qa,tQ
−1
aa,tQas,t,

V ss,t = Qss,t −Qsa,tQ
−1
aa,tQas,t.

During the forward pass, new trajectories of the stochastic
non-linear dynamics are sampled by propagating the actions
through the real system

at = ar,t + kt +Kt(st − sr,t),
st+1 ∼ P(st+1|st,at), s0 = sr,0, (6)

where sr,t,ar,t denote the mean state and action at time t
from the last iteration and are also referred to as the nominal
or reference trajectory, here denoted by the subscript r.

Special care has to be taken during the backward pass
of DDP and iLQG to ensure that Qaa,t is negative-definite,
which has inspired different regularization schemes. In DDP,
this regularization is commonly applied to Qaa,t as Q̃aa,t =
Qaa,t − µI , with µ ≥ 0. However, other regularizations
directly affecting the value function have been shown to be
more effective [2], and will be used throughout this work.

D. Augmented Linearized Closed-Loop System

To formulate the chance-constrained optimization prob-
lem, we first introduce the notation and system description
of the online-fitted time-variant linear system. Following
[19], our approach optimizes the feedforward terms of the
control, while satisfying the constraints for the linearized
dynamics and maintains the feedback gains computed during
the backward pass of DDP/iLQG.

Given N trajectories from the non-linear system as de-
scribed in Equation (6), we fit linear-Gaussian models to the
sampled data via regularized linear regression. Consequently
we obtain the transition and control matrices At,Bt, as well
as the bias vector ct for each time-step. The resulting time-
variant linear dynamics st+1 = Atst+Btat+ct+wt, with
wt ∼ N (0,Σt), and the controller at = Kt(st − sr,t) +
kt +ar,t are used to formulate the closed-loop linear system
st+1 = Âtst +Btkt + dt +wt, where Ât = At +BtKt

and dt = ct −BtKtsr,t +Btar,t.
To represent the closed-loop system over an entire trajec-

tory we use the augmented notation

s̃=


s0
s1
...
sT

,k̃=


k0
k1
...

kT−1

,w̃=


w0

w1

...
wT−1

,Ã =


I

Â0

...
ÂT−1 · · · Â0

,

B̃=


0 0 . . . 0
B0 0 . . . 0

Â1B0 B1 . . . 0
...

...
. . .

...
ÂT−1 · · · Â1B0 ÂT−1 · · · Â2B1 . . . BT−1

,

d̃=


d0
d1
...

dT−1

,G̃=


0 0 . . . 0
I 0 . . . 0

Â1 I . . . 0
...

...
. . .

...
ÂT−1 · · · Â1 ÂT−1 · · · Â2 · · · I

,
The augmented weighting matrices for the quadratic ob-

jective take the form

M̃ = diag(M0, . . . ,MT ), D̃ = diag(D0, . . . ,DT−1),

M̃C = diag(M0 +Kᵀ
0D0K0, . . . ,

MT−1 +Kᵀ
T−1DT−1KT−1,MT ),

K̃ = diag(K0, . . . ,KT−1),

and the closed-loop linearized stochastic dynamics is written
in terms of the augmented notation as

s̃ = Ãs0 + B̃k̃ + G̃w̃ + G̃d̃, (7)

which in turn can be decomposed to the mean and covari-
ance of a Gaussian state density

µs̃ = Ãs0 + B̃k̃ + G̃d̃,

Σ̃s̃ = ÃΣs0Ã
ᵀ

+ G̃Σ̃w̃G̃
ᵀ
,

where Σ̃w̃ are the stacked estimates of the covariance for
each time-step, taken under the N samples drawn during the



last forward pass. Furthermore, given the feedback gains, we
compute the action covariance along the trajectory

Σ̃ã = K̃ÃΣs0
Ã

ᵀ
K̃

ᵀ
+ K̃G̃Σ̃w̃G̃

ᵀ
K̃

ᵀ
.

E. Augmented Objective and Relaxed Chance Constraints

We simplify Objective (1) by using the stacked notation
and the closed-loop matrices from Section II-D

J(s̃, ã) = −E[s̃ᵀM̃C s̃] + E[2s̃ᵀgM̃s̃]− E[s̃ᵀgM̃s̃g]...

...+ E[2s̃ᵀrK̃
ᵀ
D̃K̃s̃]− E[2ãᵀ

rD̃K̃s̃]− E[2k̃
ᵀ
D̃K̃s̃]...

...− E[s̃ᵀrK̃
ᵀ
D̃K̃s̃r] + E[2ãᵀ

rD̃K̃s̃r] + E[2k̃
ᵀ
D̃K̃s̃r]...

...− E[ãᵀ
rD̃ãr]− E[2k̃

ᵀ
D̃ãr]− E[k̃

ᵀ
D̃k̃].

Given that the expectations are of linear-quadratic quantities
under Gaussian densities, it is possible to evaluate this
objective in closed-form. This objective depends only on the
forward terms k̃ and can be reformulated as J̃(k̃).

Following the relaxation presented in Section II-B and
using the stacked notation we can write the upper and lower
state-linear chance constraints as

b̃u − h̃
ᵀ
uµs̃ −

√
2h̃

ᵀ
uΣ̃s̃h̃u � erf−1(1− 2θ̃u) ≥ 0, (8)

−b̃l + h̃
ᵀ
l µs̃ +

√
2h̃

ᵀ
l Σ̃s̃h̃l � erf−1(2θ̃l − 1) ≥ 0, (9)

where h̃ and b̃ parameterize the upper and lower half-
planes of the state constraints and θ̃u and θ̃l denote the
probability values per time-step, all stacked and indexed by
u and l respectively. Analogously, the action constraints of
the closed-loop system can be formulated

z̃u − f̃
ᵀ
u(K̃(µs̃ − s̃r) + ãr + k̃)− λu ≥ 0, (10)

−z̃l + f̃
ᵀ
l (K̃(µs̃ − s̃r) + ãr + k̃) + λl ≥ 0, (11)

where λu =

√
2f̃

ᵀ
uΣ̃ãf̃u � erf−1(1 − 2ϑ̃u) and λl =√

2f̃
ᵀ
l Σ̃ãf̃ l�erf−1(2ϑ̃l−1) , f̃ and z̃ are the stacked half-

plane parameters of the action constraints and ϑ̃u, ϑ̃l are the
stacked upper and lower bound probabilities per time-step.
The operator � denotes the element-wise multiplication.

F. Chance-Constrained Trajectory Optimization

Based on the formulations introduced in Section II-D
and Section II-E, it is possible to construct an optimization
problem around the reference trajectory to find a sequence
of feedforward terms k̃ that maintain the Constraints (8-11).

The resulting optimization is a quadratic program with
linear constraints in k̃. Thus, the probabilistic problem re-
duces to a deterministic one, which can be solved efficiently
with many numerical solvers, for example, qpOASES [25]
within the CasADi framework [26]. The complete dynamic
programming and optimization loop is described in Algo-
rithm 1 and is summarized as follows: During an initial
forward pass, we obtain N trajectory samples, around which
the dynamics is linearized for each time-step. The linearized
dynamics is used to perform the backward pass of iLQG
and obtain the feedback and feedforward controllers along

Algorithm 1 Chance-Constrained Trajectory Opt. (CCTO)

Input: θu,t, θl,t, ϑu,t, ϑl,t, α,N
Output: Kt, kt, sr,t, ar,t

1: a1:N
t , s1:Nt ← forwardPass(ar,t, sr,t, Kt, kt, α)

2: while not converged do
3: ar,t, sr,t ← meanTraj(a1:N

t , s1:Nt )
4: At, Bt, ct ← fitDynamics(a1:N

t , s1:Nt )
5: Kt, k

?
t ← backwardPass(At, Bt)

6: kt← solveQP(At,Bt, ct,Kt,k
?
t , θu,t, θl,t, ϑu,t, ϑl,t)

7: a1:N
t , s1:Nt ← forwardPass(ar,t, sr,t, Kt, kt, α)

8: end while

the reference trajectory. These controllers are then used
to formulate the closed-loop linearized system with the
stacked notation and to warm-start the quadratic program.
The solution of the constrained program returns the optimal
feedforward sequence kt, which is used to perform the next
forward pass and linearization. Following [2], we also use the
hyperparameter α that scales the feedforward control in order
to keep the next forward pass of the non-linear system in a
valid trust-region around the linear-quadratic approximations.

III. EMPIRICAL EVALUATION

We evaluate our approach on two highly non-linear dy-
namical tasks, the Furuta pendulum [27] and a Cart-Pole
environment. Both problems are under-actuated and have
state and actions constraints. We consider quadratic reward
functions for both experiments and set the probability values
for violating the constraints to θu = θl = ϑu = ϑl = 0.01.

a) Furuta Pendulum Swing-Up: In the Furuta pendu-
lum the state is represented by the angles of both links
and the corresponding angular velocities. Only the hori-
zontal link is actuated and is subject to both state and
the action constraints. To make the environment stochastic,
we introduce both action and process noise. We run our
experiment under identical conditions for CCTO and iLQG.
We fix the feedforward scalar α to 0.05 for both algorithms
and perform 20 seeded trials, each with 45 iterations, 50
rollouts per iteration. The resulting performance curve of
both algorithms can be seen in Figure 1. Furthermore, we
present the planned nominal trajectories, as well as the
planned nominal actions of both algorithms for one trial.
The filled space is the area between the minimum and
maximum values of states and actions and should not be
confused with a probability distribution over trajectories.
The advantage of our approach is clear. CCTO reaches
better overall performance with a higher final reward and
smaller standard deviation, Table I. iLQG plans frequently
and consistently to violate the constraints, while CCTO keeps
the state and action trajectories within a feasible space. This
consideration leads to an improved approximation of the non-
linear system dynamic and allows CCTO to perform robust
improvement steps during the optimization. This result is
affirmed by the low regularization values of CCTO, Table II.

b) Cart-Pole Swing-Up: For the well-known Cart-Pole
environment, we consider constraints on the position of
the cart as well as on the action. To make the task more
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Fig. 1: Total-reward curve reflecting the performance of iLQG and CCTO for the Furuta pendulum swing-up task (left).
In addition, we show the space (min. and max.) of planned nominal trajectories of the constrained angle (middle) and the
corresponding executed actions (right), CCTO (blue), iLQG (red). CCTO obeys the physical limits of the system, while iLQG
drives the dynamics against the constraints (green). These violations lead to poor linear approximations of the dynamics and
an overall slightly lower mean and higher variance performance of iLQG.

Iteration 10 30 45
CCTO −6.8(±0.32) −1.3(±0.11) −0.65(±0.6)

iLQG −4.3(±0.46) −1.6(±0.39) −1.1(±0.53)

TABLE I: Mean total reward and standard deviation of
the Furuta swing-up task scaled by 1e−2.

Iteration 10 30 45
CCTO 0 2.5e−8 1e−4

iLQG 0 2.85e38 5e80

TABLE II: Mean regularization in the Furuta task over
all trials for different iterations. CCTO needs less regu-
larization due to avoidance of hard non-linearities.

challenging, we again apply action and process noise, enforce
harsh action constraints and limit the time horizon to 100
time steps, the equivalent of 2 seconds. We evaluate iLQG
and CCTO on 20 seeded trials, each with 55 iterations and 50
rollouts per iteration. We set the feedforward scaling param-
eter α to 0.1. Analogously to the last experiment, Figure 2
depicts the performance curve of iLQG and CCTO, as well
as the spaces of planned nominal trajectories for the cart’s
position and the corresponding actions. In this experiment,
iLQG moves very quickly towards a local optimum and
does not manage to swing the Cart-Pole up. In contrast,
CCTO performs the swing-up by finding a suitable nominal
trajectory in the feasible constrained space. Tables III and IV
reflect the performance discrepancy between both algorithms,
in terms of total rewards and needed regularization.

IV. CONCLUSION AND FUTURE RESEARCH

We have proposed a new trajectory optimization technique,
based on the framework of differential dynamic program-

Iteration 20 30 55
CCTO −2.3(±0.32) −1.2(±0.32) −0.31(±0.06)

iLQG −9.3(±0.10) −9.3(±0.10) −9.3(±0.10)

TABLE III: Mean total reward and standard deviation
of the Cart-Pole swing-up task scaled by 1e−2.

Iteration 20 30 55
CCTO 0 0 0

iLQG 5.7e39 1e80 1e80

TABLE IV: Mean regularization in the Cart-Pole task
over all trials for different iterations. CCTO needs less
regularization due to avoidance of hard non-linearities.

ming, that takes into consideration probabilistic chance con-
straints in stochastic environments with unknown non-linear
dynamics. We used Boole’s inequality to conservatively relax
the non-convex chance constraints, enabling us to formulate
a constrained quadratic program and optimize the nominal
trajectory to stay inside the feasible set defined by the
probabilistic linear state and action limits. We have pro-
vided a thorough derivation of our approach and empirically
demonstrated the advantage of enforcing physical limits on
two simulated highly dynamical and stochastic non-linear
systems. The results indicate that incorporating the chance
constraints leads to higher fidelity in the online-fitted local
linear-quadratic approximations, and consequently greatly in-
fluences the robustness of the iterative optimization process.
This observation is reflected in very low regularizations in
comparison to standard iLQG.

In future research, we will extend our optimization to
include not only the nominal trajectory but also the feedback
gains, and we will consider optimizing the probabilistic
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Fig. 2: Total-reward curve reflecting the performance of iLQG and CCTO for the Cart-Pole swing-up task (left). Furthermore,
we show the space (min. and max.) of planned nominal trajectories of the constrained position (middle) and the corresponding
executed actions (right), CCTO (blue), iLQG (red). CCTO obeys the physical limits of the system, while iLQG drives the
dynamics against the constraints (green). These violations, especially those of the action constraint cause iLQG to get stuck
in a poor local optimum, while CCTO is able to solve the task and perform the swing-up.

constraint bounds via risk allocation to achieve dynamic risk
measures across time and iterations. In addition, we plan
to move to the fully stochastic optimization framework of
maximum-entropy iLQG [6] to avoid regularization heuris-
tics of the DDP framework.
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