
Relative Entropy Policy Search

Jan Peters, Katharina Mülling, Yasemin Altun
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

{jrpeters,muelling,altun}@tuebingen.mpg.de

Abstract

Policy search is a successful approach to reinforcement
learning. However, policy improvements often result
in the loss of information. Hence, it has been marred
by premature convergence and implausible solutions.
As first suggested in the context of covariant policy
gradients (Bagnell and Schneider 2003), many of these
problems may be addressed by constraining the infor-
mation loss. In this paper, we continue this path of rea-
soning and suggest the Relative Entropy Policy Search
(REPS) method. The resulting method differs signif-
icantly from previous policy gradient approaches and
yields an exact update step. It works well on typical
reinforcement learning benchmark problems.

Introduction
Policy search is a reinforcement learning approach that
attempts to learn improved policies based on informa-
tion observed in past trials or from observations of
another agent’s actions (Bagnell and Schneider 2003).
However, policy search, as most reinforcement learning
approaches, is usually phrased in an optimal control
framework where it directly optimizes the expected re-
turn. As there is no notion of the sampled data or a
sampling policy in this problem statement, there is a
disconnect between finding an optimal policy and stay-
ing close to the observed data. In an online setting,
many methods can deal with this problem by stay-
ing close to the previous policy (e.g., policy gradient
methods allow only small incremental policy updates).
Hence, approaches that allow stepping further away
from the data are problematic, particularly, off-policy
approaches Directly optimizing a policy will automati-
cally result in a loss of data as an improved policy needs
to forget experience to avoid the mistakes of the past
and to aim on the observed successes. However, choos-
ing an improved policy purely based on its return favors
biased solutions that eliminate states in which only bad
actions have been tried out. This problem is known as
optimization bias (Mannor et al. 2007). Optimization
biases may appear in most on- and off-policy reinforce-
ment learning methods due to undersampling (e.g., if

Copyright c© 2012, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

we cannot sample all state-actions pairs prescribed by
a policy, we will overfit the taken actions), model errors
or even the policy update step itself.

Policy updates may often result in a loss of essential
information due to the policy improvement step. For
example, a policy update that eliminates most explo-
ration by taking the best observed action often yields
fast but premature convergence to a suboptimal pol-
icy. This problem was observed by Kakade (2002) in
the context of policy gradients. There, it can be at-
tributed to the fact that the policy parameter update
δθ was maximizing it collinearity δθT∇θJ to the policy
gradient while only regularized by fixing the Euclidean
length of the parameter update δθT δθ = ε to a step-size
ε. Kakade (2002) concluded that the identity metric of
the distance measure was the problem, and that the
usage of the Fisher information metric F (θ) in a con-
straint δθTF (θ)δθ = ε leads to a better, more natural
gradient. Bagnell and Schneider (2003) clarified that
the constraint introduced in (Kakade 2002) can be seen
as a Taylor expansion of the loss of information or rel-
ative entropy between the path distributions generated
by the original and the updated policy. Bagnell and
Schneider’s (2003) clarification serves as a key insight
to this paper.

In this paper, we propose a new method based on
this insight, that allows us to estimate new policies
given a data distribution both for off-policy or on-
policy reinforcement learning. We start from the op-
timal control problem statement subject to the con-
straint that the loss in information is bounded by
a maximal step size. Note that the methods pro-
posed in (Bagnell and Schneider 2003; Kakade 2002;
Peters and Schaal 2008) used a small fixed step size
instead. As we do not work in a parametrized policy
gradient framework, we can directly compute a policy
update based on all information observed from previous
policies or exploratory sampling distributions. All suf-
ficient statistics can be determined by optimizing the
dual function that yields the equivalent of a value func-
tion of a policy for a data set. We show that the
method outperforms the previous policy gradient al-
gorithms (Peters and Schaal 2008) as well as SARSA
(Sutton and Barto 1998).

Background & Notation
We consider the regular reinforcememt learning setting
(Sutton and Barto 1998; Sutton et al. 2000) of a sta-
tionary Markov decision process (MDP) with n states s
and m actions a. When an agent is in state s, he draws
an action a ∼ π(a|s) from a stochastic policy π. Sub-
sequently, the agent transfers from state s to s′ with
transition probability p(s′|s, a) = Pass′ , and receives a
reward r(s, a) = Ras ∈ R. As a result from these state
transfers, the agent may converge to a stationary state
distribution µπ(s) for which

∀s′ :
∑

s,a
µπ(s)π(a|s)p(s′|s, a) = µπ(s′) (1)

holds under mild conditions, see (Sutton et al. 2000).
The goal of the agent is to find a policy π that maxi-
mizes the expected return

J(π) =
∑

s,a
µπ(s)π(a|s)r(s, a), (2)

subject to the constraints of Eq.(1) and that both µπ

and π are probability distributions. This problem is
called the optimal control problem; however, it does not
include any notion of data as discussed in the previous
section. In some cases, only some features of the full
state s are relevant for the agent. In this case, we only
require stationary feature vectors∑

s,a,s′
µπ(s)π(a|s)p(s′|s, a)φs′ =

∑
s′
µπ(s′)φs′ . (3)

Note that when using Cartesian unit vectors us′ of
length n as features φs′ = us′ , Eq.(3) will become
Eq.(1). Using features instead of states relaxes the sta-
tionarity condition considerably and often allows a sig-
nificant speed-up while only resulting in approximate
solutions and being highly dependable on the choice of
the features. Good features may be RBF features and
tile codes, see (Sutton and Barto 1998).

Relative Entropy Policy Search
We will first motivate our approach and, subsequently,
give several practical implementations that will be ap-
plied in the evaluations.

Motivation
Relative entropy policy search (REPS) aims at finding
the optimal policy that maximizes the expected return
based on all observed series of states, actions and re-
wards. At the same time, we intend to bound the loss
of information measured using relative entropy between
the observed data distribution q(s, a) and the data dis-
tribution pπ(s, a) = µπ(s)π(a|s) generated by the new
policy π. Ideally, we want to make use of every sample
(s, a, s′, r) independently, hence, we express the infor-
mation loss bound as

D(pπ||q) =
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

≤ ε, (4)

where D(pπ||q) denotes the Kullback-Leibler diver-
gence, q(s, a) denotes the observed state-action distri-
bution, and ε is our maximal information loss.

Problem Statement. The goal of relative entropy
policy search is to obtain policies that maximize the
expected reward J(π) while the information loss is
bounded, i.e.,

max
π,µπ

J(π) =
∑
s,a

µπ(s)π(a|s)Ras , (5)

s.t. ε ≥
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

, (6)

∑
s′

µπ(s′)φs′ =
∑
s,a,s′

µπ(s)π(a|s)Pass′φs′ , (7)

1 =
∑
s,a

µπ(s)π(a|s). (8)

Both µπ and π are probability distributions and the fea-
tures φs′ of the MDP are stationary under policy π.

Without the information loss bound constraint in
Eq.(6), there is no notion of sampled data and we obtain
the stochastic control problem where differentiation of
the Langrangian also yields the classical Bellman equa-
tion φTs θ = Ras − λ +

∑
s′ Pass′φTs′θ. In this equation,

φTs θ = Vθ(s) is known today as value function while the
Langrangian multipliers θ become parameters and λ the
average return. While such MDPs may be solved by
linear programming (Puterman 2005), approaches that
employ sampled experience cannot be derived properly
from these equations. The key difference to past opti-
mal control approaches lies in the addition of the con-
straint in Eq. (6).

As discussed in the introduction, natural policy gra-
dient may be derived from a similar problem statement.
However, the natural policy gradient requires that ε is
small, it can only be properly derived for the path space
formulation and it can only be derived from a local, sec-
ond order Taylor approximation of the problem. Step-
ping away further from the sampling distribution q will
violate these assumptions and, hence, natural policy
gradients are inevitably on-policy1.

The ε can be chosen freely where larger values lead to
bigger steps while excessively large values can destroy
the policy. Its size depends on the problem as well as
on the amount of available samples.

Relative Entropy Policy Search Method

As shown in the appendix, we can obtain a reinforce-
ment learning algorithm straightforwardly.

Proposed Solution. The optimal policy for Problem
is given by

π(a|s) =
q(s, a) exp

(
1
η δθ(s, a)

)
∑
b q(s, b) exp

(
1
η δθ(s, b)

) , (9)

1Note that there exist sample re-use strategies for larger
step away from q using importance sampling, see (Sut-
ton and Barto 1998; Peshkin and Shelton 2002; Hachiya,
Akiyama, Sugiyama and Peters 2008), or off-policy ap-
proaches such as Q-Learning (which is known to have prob-
lems in approximate, feature-based learning).

Relative Entropy Policy Search

input: features φ(s), maximal information loss ε.

for each policy update

Sampling: Obtain samples (si, ai, s
′
i, ri), e.g.,

by observing another policy or being on-policy.

Counting: Count samples to obtain the

sampling distribution q(s, a) = 1
N

∑N
i=1 Iisa.

Critic: Evaluate policy for η and θ.

Define Bellman Error Function:
δθ(s, a) = Ras +

∑
s′ Pass′φTs′θ − φTs θ

Compute Dual Function:

g(θ, η) = η log
(∑

s,a q(s, a)eε+
1
η δθ(s,a)

)
Compute the Dual Function’s Derivative :

∂θg =
∑
s,a q(s,a)e

ε+ 1
η
δθ(s,a)

(
∑
s′ P

a
ss′φs′−φs)∑

s,a q(s,a)e
ε+ 1

η
δθ(s,a)

∂ηg = log
(∑

s,a q(s, a)eε+
1
η δθ(s,a)

)
−

∑
s,a q(s,a)e

ε+ 1
η
δθ(s,a) 1

η δθ(s,a)∑
s,a q(s,a)e

ε+ 1
η
δθ(s,a)

Optimize: (θ∗, η∗) = fmin BFGS(g, ∂g, [θ0, η0])

Determine Value Function: Vθ∗(s) = φTs θ
∗

Actor: Compute new policy π(a|s).
π(a|s) =

q(s,a) exp(1
η∗ δθ∗ (s,a))∑

b q(s,b) exp(1
η∗ δθ∗ (s,b))

,

Output: Policy π(a|s).

Table 1: Algorithmic description of Relative Entropy
Policy Search. This algorithm reflects the proposed so-
lution clearly. Note that Iisa is an indicator function
such that Iisa = 1 if s = si and a = ai while Iisa = 0
otherwise. In Table 2, we show a possible application
of this method in policy iteration.

where δθ(s, a) = Ras+
∑
s′ Pass′Vθ(s′)−Vθ(s) denotes the

Bellman error. Here, the value function Vs(θ) = θTφs
is determined by minimizing

g(θ, η) = η log

(∑
s,a
q(s, a)exp

(
ε+

1

η
δθ(s, a)

))
, (10)

with respect to θ and η.

The value function Vθ(s) = φTs θ appears naturally
in the derivation of this formulation (see Appendix).
The new error function for the critic in Eq.(10) dif-
fers substantially from traditional temporal difference
errors, residual gradient errors and monte-carlo rollout
fittings (Sutton and Barto 1998; Sutton et al. 2000).
The presented solution is derived for arbitrary station-
ary features and is therefore sound with function ap-
proximation. The derived policy is similar to the Gibbs
policy used in policy gradient approaches (Sutton et al.
2000) and in SARSA (Sutton and Barto 1998).

In order to turn proposed solution into algorithms,
we need to efficiently determine the solution (θ∗, η∗) of
the dual function g. Eq. (10) can be rewritten as

min
θ,η̃

g(θ, η̃) = η̃−1 log
∑
s,a

exp (log q(s, a) + ε+ η̃δθ(s, a)) ,

which is known to be convex (Boyd and Vandenberghe
2004) as δθ(s, a) is linear in θ. Given that g is con-
vex and smoothly differentiable, we can determine the
optimal solution g(θ∗, η∗) efficiently with any stan-
dard optimizer such as Broyden–Fletcher–Goldfarb–
Shannon (BFGS) method (denoted in this paper by
fmin BFGS(g,∂g,[θ0, η0]) with ∂g = [∂θg, ∂ηg]). The
resulting method is given in Table 1.

Sample-based Policy Iteration with REPS

If the REPS algorithm is used in a policy iteration sce-
nario, one can re-use parts of the sampling distribution
q(s, a). As we know that q(s, a) = µπl(s)πl(a|s) where
πl denotes the last policy in a policy iteration scenario,
we can also write our new policy as

πl+1(a|s) =
πl(a|s) exp

(
1
η δθ(s, a)

)
∑
b πl(a|s) exp

(
1
η δθ(s, b)

) .
As a result, we can also evaluate our policy at states
where no actions have been taken. Setting πl to good
locations allows encoding prior knowledge on the policy.
This update has the intuitive interpretation that an in-
crease in log-probability of an action is determined by
the Bellman error minus a baseline similar to its mean,
i.e., log πl+1(a|s) = log πl(a|s) + 1

η δθ(s, a)− b(s).
Obviously, the algorithm as presented in the previ-

ous section would be handicapped by maintaining a
high accuracy model of the Markov decision problem
(Ras ,Pass′). Model estimation would require covering
prohibitively many states and actions, and it is hard to
obtain an error-free model from data (Deisenroth 2009;
Sutton and Barto 1998). Furthermore, in most interest-
ing control problems, we do not intend to visit all states
and take all actions — hence, the number of samples
N may often be smaller than the number of all state-
action pairs mn. Thus, in order to become model-free,
we need to rephrase the algorithm in terms of sample
averages instead of the system model.

The next step is hence to replace the summations over
states s, s′, and actions a by summations over samples
(si, ai, s

′
i, ri). It turns out that this step can be accom-

plished straightforwardly as all components of REPS
can be expressed using sample-based replacements such

as
∑
s,a q(s, a)f(s, a) = 1

N

∑N
i=1 f(si, ai). As the Bell-

man error δθ(si, ai) only needs to be maintained for
the executed actions, we can also approximate it using
sample averages.

Using these two insights, we can design a general-
ized policy iteration algorithm that is based on samples
while using the main insights of Relative Entropy Policy

Policy Iteration with REPS

input: features φ(s), maximal information loss ε,
initial policy π0(a|s).

for each policy update k

Sampling: Obtain N samples (si, ai, s
′
i, ri) using

current policy πk(a|s) in an on-policy setting.

Critic: Evaluate policy for η and θ.

for every sample i = 0 to N do:

nδ(si, ai) = nδ(si, ai) + (ri + φTs′i
θ − φTsiθ)

nΛ(si, ai) = nΛ(si, ai) + (φs′i − φsi)
d(si, ai) = d(si, ai) + 1

Bellman Error Function: δθ(s, a) = nδ(s,a)
d(s,a)

Feature Difference: Λ(s, a) = nΛ(s,a)
d(s,a)

Compute Dual Function:

g(θ, η) = η log
(

1
N

∑N
i=1 e

ε+ 1
η δθ(si,ai)

)
Compute the Dual Function’s Derivative :

∂θg =
∑N
i=1 e

ε+ 1
η
δθ(si,ai)Λ(si,ai)∑N

i=1 e
ε+ 1

η
δθ(si,ai)

∂ηg = log
(∑N

i=1 e
ε+ 1

η δθ(si,ai)
)

−
∑N
i=1 e

ε+ 1
η
δθ(si,ai) 1

η δθ(si,ai)∑N
i=1 e

ε+ 1
η
δθ(si,ai)

Optimize: (θ∗, η∗) = fmin BFGS(g, ∂g, [θ0, η0])

Determine Value Function: Vθ∗(s) = φTs θ
∗

Actor: Compute new policy πk+1(a|s).
πk+1(a|s) =

πk(a|s) exp(1
η∗ δθ∗ (s,a))∑

b πk(a|s) exp(1
η∗ δθ∗ (s,b))

,

Output: Optimal policy π∗(a|s).

Table 2: Algorithmic description of Policy Iteration
based on Relative Entropy Policy Search. This version
of the algorithm extends the one in Table 1 for practi-
cal application. Note that N is not a fixed number but
may change after every iteration.

Search. The resulting method is shown in Table 2. Note
that Table 2 does not include sample re-use in REPS
policy iteration. However, this step may be included
straightforwardly as we can mix data from previous it-
erations with the current one by using all data in the
critic and the sum of all previous policies in the actor
update. While such remixing will require more policy
update steps, it may improve robustness and allow up-
dates after fewer sampled actions.

Experiments
In the following section, we test our Sample-based Pol-
icy Iteration with Relative Entropy Policy Search ap-
proach using first several example problems from the
literature and, subsequently, on the Mountain Car stan-
dard evaluation. Subsequently, we show first steps to-

wards a robot application currently under development.

Example Problems

We compare our approach both to ‘vanilla’ policy gradi-
ent methods and natural policy gradients (Bagnell and
Schneider 2003; Peters and Schaal 2008) using several
toy problems. As such, we have chosen (i) the Two-
State Problem (Bagnell and Schneider 2003), (ii) the
Single Chain Problem (Furmston and Barber 2010),
and (iii) the Double Chain Problem (Furmston and Bar-
ber 2010). In all of these problems, the optimal policy
can be observed straightforwardly by a human observer
but they pose a major challenge for ‘vanilla’ policy gra-
dient approaches.

Two State Problem. The two state problem has
two states and two actions. If it takes the action that
has the same number as its current state, it will remain
in this state. If it takes the action that has the others
state’s number, it will transfer to that one. State trans-
fers are punished while staying in ones’ state will give an
immediate reward that equals the number of the state.
This problem is a derivate of the one in (Bagnell and
Schneider 2003). The optimal policy can be observed
straightforwardly: always take action 2. See Fig. 1 (a)
for more information.

Single Chain Problem. The Single Chain Problem
can be seen as an extension of the Two State Problem.
Here, the actor may return to state 1 at any point in
time by taking action 2 and receiving a reward of 2.
However, if he keeps using action 1 all the time, he will
not receive any rewards until he reaches state 5 where
he obtains the reward of 10 and may remain in state 5.
The version presented here was inspired by Furmston
& Barbar (2010). See Fig. 1 (b) for more information.

Double Chain Problem. The Double Chain Prob-
lem concatinates two single chain problems into one big
one were state 1 is shared. As before, returning to state
1 will yield a reward 2 and requires taking action 2. If
in state 1, action 2 will lead to state 6 and also yield a
reward of 2. An action 1 yields a reward 5 in state 9
and a reward 10 in state 5. In all other states, action
1 will yield 0 reward. Note that this problem differs
from (Furmston and Barber 2010) significantly. We
have made it purposefully harder for any incremental
method in order to highligh the advantage of the pre-
sented approach. See Fig. 1 (c) for more information.

We used unit features for all methods. For the
two policy gradient approaches a Gibbs policy was
employed (Sutton et al. 2000; Bagnell and Schnei-
der 2003). On all three problems, we let our pol-
icy run until the state distribution has converged to
the stationary distribution. For small problems like
the presented ones, this usually takes less than 200
steps. Subsequently, we update the policy and resam-
ple. We take highly optimized vanilla policy gradients
with minimum-variance baselines (Peters and Schaal
2008) and the Natural Actor-Critic with unit basis func-

1 2r(1,1)=1 r(2,2)=1

r(1,2)=0

r(2,1)=0

1 2 3 4 5

r(s,2)=2 for all states s

r(1,1)=0 r(1,1)=0 r(1,1)=0 r(1,1)=0
r(5,2)=10

r(1,2)=2

1

2 3 4 5

r(s,2)=2 for all states s

r(1,1)=0

r(2,1)=0 r(3,1)=0 r(4,1)=0

r(5,1)=10

6 7 8 9

r(1,2)=2

r(2,1)=0 r(3,1)=0 r(4,1)=0

r(9,1)=5

0 20 40 60 80 100
Policy Updates

0.5

1.0

1.5

2.0

E
x
p
e
ct

e
d
 R

e
tu

rn

Two State Problem

REPS
Natural Policy Gradient
Policy Gradient

0 20 40 60 80 100
Policy Updates

0

2

4

6

8

10

12

E
x
p
e
ct

e
d
 R

e
tu

rn

Single Chain Problem

REPS
Natural Policy Gradient
Policy Gradient

0 20 40 60 80 100
Policy Updates

0

2

4

6

8

10

12

E
x
p
e
ct

e
d
 R

e
tu

rn

Single Chain Problem

REPS
Natural Policy Gradient
Policy Gradient

(a) Two State Problem (b) Single Chain Problem (c) Double Chain Problem
(Bagnell and Schneider 2003) (Furmston & Barbar 2010) (Furmston & Barbar 2010)

Figure 1: Three different methods are compared on three toy examples. The vanilla policy gradients are significantly
outperformed due to their slow convergence as already discussed by Bagnell and Schneider (2003) for the Two State
Problem. Policy iteration based on Relative Entropy Policy Search (REPS) exhibited the best performance.

tions as additional function approximation (Peters and
Schaal 2008). Instead of a small fixed learning rate,
we use an additional momentum term in order to im-
prove the performance. We tuned all meta-parameters
of the gradient methods to maximum performance. We
start with the same random initial policies for all al-
gorithms and average over 150 learning runs. Nev-
ertheless, similar as in (Bagnell and Schneider 2003;
Peters and Schaal 2008), we directly observe that
natural gradient outperforms the vanilla policy gra-
dient. Furthermore, we also observe that our REPS
policy iteration yields a significantly higher perfor-
mance. A comparison with PoWER (Kober and Pe-
ters 2009) was not necessary as the episodic form of
REPS appears to be equivalent to the applicable ver-
sion of PoWER. The performance of all three meth-
ods for all three problems is shown in Fig. 1 (a-c).

0 20 40 60 80 100 120
Policy Updates

1200

1000

800

600

400

200

0

200

E
x
p
e
ct

e
d
 R

e
tu

rn

Mountain Car Problem

REPS
SARSA

Figure 2: Performance on the
mountain-car problem.

Mountain-
Car
Problem

The mountain car
problem (Sutton
and Barto 1998)
is a well-known
problem in rein-
forcement learn-
ing.

We adapt the
code from (Her-

nandez 2010) and employ the same tile-coding features
for both SARSA and REPS. We implement our algo-

rithm in the same settings and are able to show that
REPS policy iteration also outperforms SARSA. While
SARSA is superficially quite similar to the presented
method, it differs significantly in two parts, i.e., the
critic of SARSA converges slower, and the additional
multiplication by the previous policy results in a faster
pruning of taken bad actions in the REPS approach.
As a result, REPS is significantly faster than SARSA
as can be observed in Fig. 2.

Primitive Selection in Robot Table Tennis

Table tennis is a hard benchmark problem for
robot learning that includes most difficulties of

Figure 3: Simulated setup for learning
robot table tennis.

complex skill.
The setup
is shown in
Fig. 3. A key
problem in
a skill learn-
ing system
with mul-
tiple motor
primitives
(e.g., many
different fore-
hands, backhands, smashes, etc.) is the selection of
task-appropriate primitives triggered by an external
stimulus. Here, we have generated a large set of motor
primitives that are triggered by a gating network
that selects and generalizes among them similar to a
mixture of experts. REPS improves the gating network
by reinforcement learning where any successful hit
results as a reward of +1 and for failures no reward

is given. REPS appears to be sensitive to good initial
sampling policies. The results vary considerably with
initial policy performance. When the system starts
with an initial policy that has a success rate of ∼24%,
it may quickly converge prematurely yielding a success
rate of ∼39%. If provided a better initialization, it can
reach success rates of up to ∼59%.

Discussion & Conclusion
In this paper, we have introduced a new reinforcement
learning method called Relative Entropy Policy Search.
It is derived from a principle as previous covariant pol-
icy gradient methods (Bagnell and Schneider 2003), i.e.,
attaining maximal expected reward while bounding the
amount of information loss. Unlike parametric gradi-
ent method, it allows an exact policy update and may
use data generated while following an unknown pol-
icy to generate a new, better policy. It resembles the
well-known reinforcement learning method SARSA to
an extent; however, it can be shown to outperform it
as the critic operates on a different, more sound cost
function than traditional temporal difference learning,
and as its weighted “soft-max” policy update will pro-
mote successful actions faster than the standard soft-
max. We have shown that the method performs effi-
ciently when used in a policy iteration setup. REPS
is sound with function approximation and can be ker-
nelized straightforwardly which offers interesting pos-
sibilities for new algorithms. The relation to PoWER
(Kober and Peters 2009) and Reward-Weighted Regres-
sion is not yet fully understood as these methods mini-
mize D(pπ(τ)||r(τ)q(τ)) which is superficially similar to
maximizing Ep{r(τ)} subject to D(pπ(τ)||q(τ)). Both
methods end up with very similar update equations for
the episodic case. Application of REPS for reinforce-
ment learning of motor primitive selection for robot ta-
ble tennis has been successful in simulation.

References
Atkeson, C. G. 1993. Using local trajectory optimizers to
speed up global optimization in dynamic programming. In
NIPS, 663–670.

Bagnell, J., and Schneider, J. 2003. Covariant policy
search. In International Joint Conference on Artificial In-
telligence.

Boyd, S., and Vandenberghe, L. 2004. Convex Optimiza-
tion. Cambridge University Press.

de Farias, D. P., and Roy, B. V. 2003. The linear program-
ming approach to approximate dynamic programming. Op-
erations Research 51(6):850–856.

Deisenroth, M. 2009. Efficient Reinforcement Learning us-
ing Gaussian Processes. Ph.D. thesis, Karlsruhe Institute
of Technology, Karlsruhe, Germany.

Furmston, T., and Barber, D. 2010. Variational methods
for reinforcement learning. In AISTATS.

Hachiya, H.; Akiyama, T.; Sugiyama, M.; Peters, J.; 2008.
Adaptive importance sampling with automatic model se-
lection in value function approximation. In AAAI, 1351–
1356.

Hernandez, J. 2010. http://www.dia.fi.upm.es/ ja-
martin/download.htm.

Kakade, S. A. 2002. Natural policy gradient. In Advances
in Neural Information Processing Systems 14.

Kober, J.; Peters, J. 2009. Policy Search for Motor Primi-
tives in Robotics. In Advances in Neural Information Pro-
cessing Systems 22.

Mannor, S.; Simester, D.; Sun, P.; and Tsitsiklis, J. N.
2007. Biases and variance in value function estimates.
Management Science 53(2):308–322.

Peshkin, L., and Shelton, C. R. 2002. Learning from scarce
experience. In ICML, 498–505.

Peters, J., and Schaal, S. 2008. Natural actor critic. Neu-
rocomputing 71(7-9):1180–1190.

Puterman, M. L. 2005. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY:
John Wiley and Sons.

Sutton, R., and Barto, A. 1998. Reinforcement Learning.
MIT Press.

Sutton, R.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural In-
formation Processing Systems 12.

Derivation of REPS
We denote psa = µπ(s)π(a|s) and µπ(s) =

∑
a psa for

brevity of the derivations, and give the Lagrangian for
the program in Eqs.(5-8) by

L=

(∑
s,a

psaRas

)
+η

(
ε−

∑
s,a

psa log
psa
qsa

)

+
∑
s′

θT

(∑
s,a

psaPass′φs′−
∑
a′

ps′a′φs′

)
+λ

(
1−
∑
s,a

psa

)
,

=
∑
s,a

psa

(
Ras−η log

psa
qsa
−λ−θTs φs+

∑
s′

Pass′θTs′φs′
)

+ ηε+ λ, (11)

where η, θ and λ denote the Lagrangian multipliers.We
substitute Vs = θTφs. We differentiate

∂psaL = Ras − η log
psa
qsa

+ η − λ+
∑
s′P

a
ss′Vs′ − Vs = 0,

and obtain psa = qsae
1
η (Ras+

∑
s′ P

a
ss′Vs′−Vs)e1−λη .Given

that we require
∑
s,a psa = 1, it is necessary that

e1−λη =
(∑

s,a
qsae

1
η (Ras+

∑
s′ P

a
ss′Vs′−Vs)

)−1

, (12)

(hence, λ depends on θ), and we can compute

psa =
qsa exp

(
1
η (Ras +

∑
s′ Pass′Vs′ − Vs)

)
∑
s,a qsa exp

(
1
η (Ras +

∑
s′ Pass′Vs′ − Vs)

) (13)

We can extract a policy using π(a|s) = psa/
∑
a psa,

and hence optain Eq. (9). Reinserting these results
into Eq.(11), we obtain the dual function

g (θ, η, λ) = −η + ηε+ λ = −η log
(
e1−λη e−ε

)
,

which can be rewritten as Eq.(10) by inserting Eq.(12).

