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Reinforcement Learning for Parameterized Motor Primitives

Jan Peters and Stefan Schaal

Abstract— One of the major challenges in both action genera-
tion for robotics and in the understanding of human motor con-
trol is to learn the “building blocks of movement generation”,
called motor primitives. Motor primitives, as used in this paper,
are parameterized control policies such as splines or nonlinear
differential equations with desired attractor properties. While
a lot of progress has been made in teaching parameterized
motor primitives using supervised or imitation learning, the self-
improvement by interaction of the system with the environment
remains a challenging problem.

In this paper, we evaluate different reinforcement learning
approaches for improving the performance of parameterized
motor primitives. For pursuing this goal, we highlight the
difficulties with current reinforcement learning methods, and
outline both established and novel algorithms for the gradient-
based improvement of parameterized policies. We compare
these algorithms in the context of motor primitive learning, and
show that our most modern algorithm, the Episodic Natural
Actor-Critic outperforms previous algorithms by at least an
order of magnitude. We demonstrate the efficiency of this
reinforcement learning method in the application of learning
to hit a baseball with an anthropomorphic robot arm.

I. INTRODUCTION

In order to ever leave the well-structured environments of
factory floors and research labs, future robots will require
the ability to aquire novel behaviors and motor skills as
well as to improve existing ones based on rewards and
costs. Similarly, the understanding of human motor control
would benefit significantly if we can synthesize simulated
human behavior and its underlying cost functions based on
insight from machine learning and biological inspirations.
Reinforcement learning is probably the most general frame-
work in which such learning problems of computational
motor control can be phrased. However, in order to bring
reinforcement learning into the domain of human movement
learning, two deciding components need to be added to the
standard framework of reinforcement learning: first, we need
a domain-specific policy representation for motor skills, and,
second, we need reinforcement learning algorithms which
work efficiently with this representation while scaling into
the domain of high-dimensional mechanical systems such as
humanoid robots.

Traditional representations of motor behaviors in robotics
are mostly based on desired trajectories generated from
spline interpolations between points, i.e., spline nodes, which
are part of a longer sequence of intermediate target points
on the way to a final movement goal. While such a repre-
sentation is easy to understand, the resulting control policies,

Jan Peters and Stefan Schaal are with the Department of
Computer Science, University of Southern California, Los Angeles,
CA 90089, USA (phone: 213-740-6717; fax: 213-740-1510; email:
{jrpeters,sschaal}@usc.edu).

generated from a tracking controller of the spline trajectories,
have a variety of significant disadvantages, including that
they are time-indexed and thus not robust towards unforeseen
disturbances, that they do not easily generalize to new bahav-
ioral sitations without complete recomputing of the spline,
and that they cannot easily be coordinated with other events
in the environment, e.g., synchronized with other sensory
variables like visual perception during catching a ball. In the
literature, a variety of other approaches for parameterizing
motor primitives have been suggested to overcome these
problems (see [1], [2] for more information). One of these
[1], [2] proposed to use parameterized nonlinear dynamical
systems as motor primitives, where the attractor properties of
these dynamical systems defined the desired behavior. The
resulting framework was particularly well suited for super-
vised imitation learning in robotics, exemplified by examples
from humanoid robotics where a full-body humanoid learned
tennis swings or complex polyrhythmic drumming pattern.
One goal of this paper is to the application of reinforcement
learning to both traditional spline-based representations as
well as the more novel dynamic system based approach.

However, despite that reinforcement learning is the most
general framework for discussing the learning of motor
primitives for robotics, most of the methods proposed in
the reinforcement learning community are not applicable
to high-dimensional systems such as humanoid robots as
these methods do not scale beyond systems with more than
three or four degrees of freedom and/or cannot deal with
parameterized policies. Policy gradient methods are a notable
exception to this statement. Starting with the pioneering work
of Gullapali, Franklin and Benbrahim [3], [4] in the early
1990s, these methods have been applied to a variety of robot
learning problems ranging from simple control tasks (e.g.,
balancing a ball-on a beam [5] , and pole-balancing [6]) to
complex learning tasks involving many degrees of freedom
such as learning of complex motor skills [4], [7], [8] and
locomotion [9]–[15].

The advantages of policy gradient methods for param-
eterized motor primitives are numerous. Among the most
important ones are that the policy representation can be
chosen such that it is meaningful for the task, i.e., we
can use a suitable motor primitive representation, and that
domain knowledge can be incorporated, which often leads
to fewer parameters in the learning process in comparison
to traditional value-function based approaches. Moreover,
there exists a variety of different algorithms for policy
gradient estimation in the literature, which have a rather
strong theoretical underpinning. Additionally, policy gradient
methods can be used model-free and therefore also be applied
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to problems without analytically known task and reward
models.

Nevertheless, many recent publications on applications of
policy gradient methods in robotics overlooked the newest
developments in policy gradient theory and its original roots
in the literature. Thus, a large number of heuristic applica-
tions of policy gradients can be found, where the success
of the projects mainly relied on ingenious initializations and
manual parameter tuning of algorithms. A closer inspection
often reveals that the chosen methods might be highly biased,
or even generate infeasible policies under less fortunate
parameter settings, which could lead to unsafe operation of a
robot. The main goal of this paper is to review which policy
gradient methods are applicable to robotics and which issues
matter, while also introducing some new policy gradient
learning algorithms that seem to have superior performance
over previously suggested methods. The remainder of this
paper will proceed as follows: firstly, we will introduce the
general assumptions of reinforcement learning, discuss motor
primitives in this framework and pose the problem state-
ment of this paper. Secondly, we will discuss the different
approaches to policy gradient estimation and discuss their
applicability to reinforcement learning of motor primitives.
We focus on the most useful methods and discuss several
algorithms in-depth. The presented algorithms in this paper
are highly optimized versions of both novel and previous
policy gradient algorithms. Thirdly, we show how these
methods can be applied to motor skill learning in robotics
and show learning results with a seven degrees of freedom,
anthropomorphic SARCOS Master ARM.

A. General Assumptions and Notations

Most robotics domains require the state space and the ac-
tion spaces to be continuous and high-dimensional such that
learning methods based on discretizations are not applicable
for higher dimensional systems. However, as the policy is
usually implemented on a digital computer, we assume that
we can model the control system in a discrete-time manner
and we will denote the current time step by k. In order to take
possible stochasticity of the plant into account, we denote it
using a probability distribution xk+1 ∼ p (xk+1 |xk,uk ) as
model where uk ∈ R

M denotes the current action, and xk,
xk+1 ∈ R

N denote the current and next state, respectively.
We furthermore assume that actions are generated by a
policy uk ∼ πθ (uk |xk ) which is modeled as a probability
distribution in order to incorporate exploratory actions; for
some special problems, the optimal solution to a control
problem is actually a stochastic controller [16]. The policy
is assumed to be parameterized by some policy parameters
θ ∈ R

K .The sequence of states and actions forms a trajectory
(also called history or roll-out) denoted by τ = [x0:H ,u0:H ]
where H denotes the horizon which can be infinite. At each
instant of time, the learning system receives a reward denoted
by r (xk,uk) ∈ R.

B. Motor Primitive Policies

In this section, we first discuss how motor plans can
be represented and then how we can bring these into the
standard reinforcement learning framework. For this purpose,
we consider two forms of motor plans, i.e., (1) spline-based
trajectory plans and (2)nonlinear dynamic motor primitives
introduced in [1]. Spline-based trajectory planning is well-
known in the robotics literature, see e.g., [17], [18]. A
desired trajectory is represented by piecewise connected
polynomials, i.e., we have yi (t) = θ0i + θ1it+ θ2it

2 + θ3it
3

in t ∈ [ti, ti+1] under the constraints that both yi (ti+1) =
yi+1 (ti+1) and ẏi (ti+1) = ẏi+1 (ti+1). A given tracking
controller, e.g., a PD control law or an inverse dynamics
controller, ensures that the trajectory is tracked well. For
nonlinear dynamic motor primitives, we use the approach
developed in [1] where movement plans (qd, q̇d) for each
degree of freedom (DOF) of the robot are represented in
terms of the time evolution of the nonlinear dynamical
systems

q̈d,k = h(qd,k, zk, gk, τ, θk) (1)

where (qd,k, q̇d,k) denote the desired position and velocity of
a joint, zk the internal state of the dynamic system, gk the
goal (or point attractor) state of each DOF, τ the movement
duration shared by all DOFs, and θk the open parameters
of the function h. The equations used in order to create
Equation (1) are given in Appendix A. The original work
in [1] demonstrated how the parameters θk can be learned to
match a template trajectory by means of supervised learning
– this scenario is, for instance, useful as the first step of an
imitation learning system. Here we will add the ability of
self-improvement of the movement primitives in Eq.(1) by
means of reinforcement learning, which is the crucial second
step in imitation learning. The system in Eq.(1) is a point-
to-point movement, i.e., this task is rather well suited for the
introduced episodic reinforcement learning methods.

In order to make the reinforcement framework feasible for
learning motor primitives, we need to add exploration to the
respective motor primitive framework, i.e., we need to add
a small perturbation εd,k ∼ N (0, σ2) with exploration rate
σ2 to each motor primitive output so that ¨̂qd,k = q̈d,k + εd,k

where ¨̂qd,k denotes the target output. By doing so, we obtain
a stochastic policy

π(¨̂qd,k|qd,k, zk, gk, τ, θk) =
1√

2πσ2
exp

(

− (¨̂qd,k − q̈d,k)2

2σ2

)

.

(2)
This policy will be used throughout the paper. It is partic-
ularly practical as the exploration can be easily controlled
through only one variable sigma.

C. Problem Statement

The general goal of policy optimization in reinforcement
learning is to optimize the policy parameters θ ∈ R

K so that
the expected return

J (θ) = E

{

∑H

k=0
akrk

}
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is optimized where ak denote time-step dependent weighting
factors, often set to ak = γk for discounted reinforcement
learning (where γ is in [0, 1]) or ak = 1/H for the average
reward case. For robotics, we require that any change to the
policy parameterization has to be smooth as drastic changes
can be hazardous for the robot, and for its environnment
as useful initializations of the policy based on domain
knowledge would otherwise vanish after a single update step.
For these reasons, policy gradient methods which follow the
steepest descent on the expected return are the method of
choice. These methods update the policy parameterization
according to the gradient update rule

θh+1 = θh + αh ∇θJ |θ=θh
,

where αh ∈ R
+ denotes a learning rate. If the gradient

estimate is unbiased and learning rates fulfill
∑

∞

h=0 αh > 0
and

∑

∞

h=0 α
2
h = 0, the learning process is guaranteed to

converge to at least a local minimum.

II. POLICY GRADIENT METHODS FOR PARAMETERIZED

MOTOR PRIMITIVES

The main problem in policy gradient methods is to obtain a
good estimator of the policy gradient ∇θJ |θ=θh

. Tradition-
ally, people have used deterministic model-based methods
for obtaining the gradient [19]–[21]. However, in order to
become autonomous we cannot expect to be able to model
every detail of the robot and environment. Therefore, we need
to estimate the policy gradient simply from data generated
during the execution of a task, i.e., without the need for a
model. In this section, we will study different approaches
and discuss which of these are useful in robotics.

A. General Approaches to Policy Gradient Estimation

The literature on policy gradient methods has yielded a
variety of estimation methods over the last years. The most
prominent approaches, which have been applied to robotics
are finite-difference and likelihood ratio methods, more well-
known as REINFORCE methods in reinforcement learning.

1) Finite-difference Methods: Finite-difference methods
are among the oldest policy gradient approaches; they origi-
nated from the stochastic simulation community and are quite
straightforward to understand. The policy parameterization is
varied by small increments ∆θi and for each policy parame-
ter variation θh+∆θi roll-outs are performed which generate
estimates ∆Ĵj ≈ J(θh + ∆θi)− Jref of the expected return.
There are different ways of choosing the reference value
Jref, e.g. forward-difference estimators with Jref = J(θh) and
central-difference estimators with Jref = J(θh − ∆θi). The
policy gradient estimate gFD ≈ ∇θJ |θ=θh

can be estimated
by regression yielding

gFD =
(

∆ΘT∆Θ
)

−1

∆ΘT∆Ĵ,

where ∆Θ = [∆θ1, . . . ,∆θI ]
T and ∆Ĵ =

[∆Ĵ1, . . . ,∆ĴI ]
T denote the I samples. This approach

can been highly efficient in simulation optimization of
deterministic systems [22] or when a common history of

random numbers [23] is being used (the later is known as
PEGASUS in reinforcement learning [24]), and can get
close to a convergence rate of O

(

I−1/2
)

[23]. However,
when used on a real system, the uncertainities degrade the
performance resulting in convergence rates ranging between
O
(

I−1/4
)

to O
(

I−2/5
)

depending on the chosen reference
value [23]. An implementation of this algorithm is shown
in Table I.

Due to the simplicity of this approach, such methods have
been successfully applied to robot motor skill learning in
numerous applications [8], [11], [13]. However, the straight-
forward application is not without peril as the generation of
the ∆θj requires proper knowledge on the system, as badly
chosen ∆θj can destabilize the policy so that the system
becomes instable and the gradient estimation process is prone
to fail. Practical problems often require that each element of
the vector ∆θj has a different order of magnitude, making
the generation particularly difficult. Therefore, this approach
can only applied under strict supervision of human.

2) Likelihood Ratio Methods / REINFORCE: Likelihood
ratio methods are driven by an important different insight.
Assume that trajectories τ are generated from a system
by roll-outs, i.e., τ ∼ pθ (τ) = p (τ | θ) with rewards
r(τ) =

∑H
k=0 akrk. In this case, the policy gradient can

be estimated using the likelihood ratio (see e.g. [23], [25])
or REINFORCE [26] trick, i.e., by

∇θJ (θ) =

∫

T

∇θpθ (τ) r(τ)dτ = E {∇θ log pθ (τ) r(τ)} ,

as
∫

T
∇θpθ (τ) r(τ)dτ =

∫

T
pθ (τ)∇θ log pθ (τ) r(τ)dτ . Im-

portantly, the derivative ∇θ log pθ (τ) can be computed
without knowleged of the generating distribution pθ (τ) as
pθ (τ) = p(x0)

∏H
k=0 p (xk+1 |xk,uk )πθ (uk |xk ) implies

that

∇θ log pθ (τ) =
∑H

k=0
∇θ log πθ (uk |xk ) ,

i.e., the derivatives through the control system do not have
to be computed1. As

∫

T
∇θpθ (τ) dτ = 0, a constant baseline

1This result makes an important difference: in stochastic system opti-
mization, finite difference estimators are often prefered as the derivative
through system is required but not known. In policy search, we always
know the derivative of the policy with respect to its parameters and therefore
we can make use of the theoretical advantages of likelihood ratio gradient
estimators.

TABLE I

FINITE DIFFERENCE GRADIENT ESTIMATOR.

input: policy parameterization θh.
1 repeat
2 generate policy variation ∆θ1.

3 estimate Ĵj ≈ J(θh + ∆θi) =
D

PH
k=0 akrk

E

from roll-out.

4 estimate Ĵref, e.g., Ĵref = J(θh − ∆θi) from roll-out.
5 compute ∆Ĵj ≈ J(θh + ∆θi) − Jref.

6 compute gradient gFD =
`

∆ΘT ∆Θ
´−1

∆ΘT ∆Ĵ.
7 until gradient estimate gFD converged.
return: gradient estimate gFD.
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can be inserted resulting into the gradient estimator

∇θJ (θ) = E {∇θ log pθ (τ) (r(τ) − b)} ,
where b ∈ R can be chosen arbitrarily [26] but usually with
the goal to minimize the variance of the gradient estimator.
Therefore, the general path likelihood ratio estimator or
episodic REINFORCE gradient estimator is given by

gRF =

〈(

∑H

k=0
∇θ log πθ (uk |xk )

)(

∑H

l=0
alrl − b

)〉

,

where 〈·〉 denotes the average over trajectories [26]. This type
of method is guaranteed to converge to the true gradient at
the fastest theoretically possible pace of O

(

I−1/2
)

where I
denotes the number of roll-outs [23] even if the data is gen-
erated from a highly stochastic system. An implementation
of this algorithm will be shown in Table II together with the
estimator for the optimal baseline.

Besides the theoretically faster convergence rate, likeli-
hood ratio gradient methods have a variety of advantages in
comparison to finite difference methods. As the generation of
policy parameter variations is no longer needed, the compli-
cated control of these variables can no longer endanger the
gradient estimation process. Furthermore, in practice, already
a single roll-out can suffice for an unbiased gradient estimate
[22], [27] viable for a good policy update step, thus reducing
the amount of roll-outs needed. Finally, this approach has
yielded the most real-world robot motor learning results [3],
[4], [7], [9], [12], [14], [15]. In the subsequent two sections,
we will strive to explain and improve this type of gradient
estimator.

B. ‘Vanilla’ Policy Gradient Approaches

Despite the fast asymptotic convergence speed of the
gradient estimate, the variance of the likelihood-ratio gradient
estimator can be problematic in practice. For this reason, we
will discuss several advances in likelihood ratio policy gradi-
ent optimization, i.e., the policy gradient theorem/GPOMDP
and optimal baselines2.

2Note that the theory of the compatible function approximation [16] is
omitted at this point as it does not contribute to practical algorithms in this
context. For a thorough discussion of this topic see [7], [28].

TABLE II

GENERAL LIKELIHOOD RATIO POLICY GRADIENT ESTIMATOR

“EPISODIC REINFORCE” WITH AN OPTIMAL BASELINE.

input: policy parameterization θh.
1 repeat
2 perform a trial and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 estimate optimal baseline

bh =

fi

“

P

H

k=0
∇θ

h
log πθ(uk|xk )

”

2 P

H

l=0
alrl

fl

fi

“

P

H

k=0
∇θ

h
log πθ(uk|xk )

”

2
fl

5 estimate the gradient element

gh =
D“

PH
k=0 ∇θh

log πθ (uk |xk )
” “

PH
l=0 alrl − bh

”E

.

4 end for.
7 until gradient estimate gFD = [g1, . . . , gh] converged.
return: gradient estimate gFD = [g1, . . . , gh].

1) Policy gradient theorem/GPOMDP: The trivial obser-
vation that future actions do not depend on past rewards (un-
less the policy has been changed) can result in a significant
reduction of the variance of the policy gradient estimate. This
insight can be formalized as E {∇θ log πθ (ul |xl ) rk} = 0
for l > k which is straightforward to verify. This allows two
variations of the previous algorithm which are known as the
policy gradient theorem [16]

gPGT =

〈

∑H

k=0
∇θ log πθ (uk |xk )

(

∑H

l=k
alrl − bk

)〉

,

or G(PO)MD [27]

gGMDP =

〈

∑H

l=0

(

∑l

k=0
∇θ log πθ (uk |xk )

)

(alrl − bl)

〉

.

While these algorithms look different, they are exactly equiv-
alent in their gradient estimate3, i.e., gPGT = gGMPD, and
have been derived previously in the simulation optimization
community [29]. An implementation of this algorithm is
shown together with the optimal baseline in Table III.

However, in order to clarify the relationship to [16], [27],
we note that the term

∑H
l=kalrl in the policy gradient

theorem is equivalent to a monte-carlo estimate of the value
function Qθ

k:H (xk,uk) = E
{

∑H
l=k alrl

∣

∣

∣
xk,uk

}

and the

term
∑l

k=0 ∇θ log πθ (uk |xk ) becomes the log-derivative of
the distribution of states µk

θ (xk) at step k in expectation,

i.e., ∇θ logµθ (xk) = E
{

∑k
k=0 ∇θ log πθ (uk |xk )

∣

∣

∣
xk

}

.
When either of these two constructs can be easily obtained
by derivation or estimation, the variance of the gradient can
be reduced significantly.

Without a formal derivation of it, the policy gradient
theorem has been applied using estimated value functions
Qθ

k:H (xk,uk) instead of the term
∑H

l=k alrl and a baseline

bk = V θ
k:H (xk) = E

{

∑H
l=k alrl

∣

∣

∣
xk

}

[9], [30].

2) Optimal Baselines: Above, we have already introduced
the concept of a baseline which can decrease the variance of
a policy gradient estimate by orders of magnitude. Thus, an
optimal selection of such a baseline is essential. An optimal
baseline minimizes the variance σ2

h = Var {gh} of each
element gh of the gradient g without biasing the gradient
estimate, i.e., violating E{g} = ∇θJ . This can be phrased
as having a seperate baseline bh for every element of the
gradient4. Due to the requirement of unbiasedness of the
gradient estimate, we have σ2

h = E
{

g2
h

}

− (∇θh
J)

2 and
due to minbh

σ2
h ≥ E

{

minbh
g2

h

}

− (∇θh
J)

2, the optimal
baseline for each gradient element gh can always be given

3Note that [27] additionally add an eligibility trick for reweighting
trajectory pieces. This trick can be highly dangerous in robotics as can
be demonstrated that already in linear-quadratic regulation, this trick can
result into divergence as the optimial policy for small planning horizons
(i.e., small eligibility rates) is often instable.

4A single baseline for all parameters can also be obtained and is more
common in the reinforcement learning literature [26], [31]–[35]. However,
such a baseline is of course suboptimal.
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by

bh =

〈

(

∑H
k=0 ∇θh

log πθ (uk |xk )
)2
∑H

l=0 alrl

〉

〈

(

∑H
k=0 ∇θh

log πθ (uk |xk )
)2
〉

for the general likelihood ratio gradient estimator, i.e.,
Episodic REINFORCE. The algorithmic form of the optimal
baseline is shown in Table II in line 4. If the sums in the
baselines are modified appropriately, we can obtain the opti-
mal baseline for the policy gradient theorem or G(PO)MPD.
We only show G(PO)MDP in this paper in Table III as the
policy gradient theorem is numerically equivalent.

The optimal baseline which does not bias the gradient
in Episodic REINFORCE can only be a single number for
all trajectories and in G(PO)MPD it can also depend on
the time-step [36]. However, in the policy gradient theorem
it can depend on the current state and, therefore, if a
good parameterization for the baseline is known, e.g., in a
generalized linear form b (xk) = φ (xk)

T
ω, this can signifi-

cantly improve the gradient estimation process. However, the
selection of the basis functions φ (xk) can be difficult and
often impractical in robotics. See [26], [31]–[35] for more
information on this topic.

C. Natural Actor-Critic Approaches

One of the main reasons for using policy gradient methods
is that we intend to do just a small change ∆θ to the policy
πθ while improving the policy. However, the meaning of
small is ambiguous. When using the Euclidian metric of
√

∆θT∆θ, then the gradient is different for every parameter-
ization θ of the policy πθ even if these parameterization are
related to each other by a linear transformation [37]. This
poses the question of how we can measure the closeness
between the current policy and the updated policy based
upon the distribution of the paths generated by each of
these. In statistics, a variety of distance measures for the
closeness of two distributions (e.g., pθ (τ) and pθ+∆θ (τ))

TABLE III

SPECIALIZED LIKELIHOOD RATIO POLICY GRADIENT ESTIMATOR

“G(PO)MDP”/POLICY GRADIENT WITH AN OPTIMAL BASELINE.

input: policy parameterization θh.
1 repeat
2 perform trials and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 for each time step k
estimate baseline for time step k by

bh
k

=

fi

“

P

k

κ=0
∇θ

h
log πθ(uκ|xκ )

”

2

akrk

fl

fi

“

P

k
κ=0

∇θ
h

log πθ(uκ|xκ )
”

2
fl

5 end for.
6 estimate the gradient element

gh =
D

PH
l=0

“

Pl
k=0 ∇θh

log πθ (uk |xk )
”

`

alrl − bh
l

´

E

.

7 end for.
8 until gradient estimate gFD = [g1, . . . , gh] converged.
return: gradient estimate gFD = [g1, . . . , gh].

have been suggested, e.g., the Kullback-Leibler divergence5

dKL (pθ, pθ+∆θ), the Hellinger distance dHD and others [39].
Many of these distances (e.g., the previously mentioned
ones) can be approximated by the same second order Taylor
expansion, i.e., by

dKL (pθ, pθ+∆θ) ≈ ∆θTFθ ∆θ,

where Fθ =
∫

T
pθ (τ)∇ log pθ (τ)∇ log pθ (τ)T dτ =

〈

∇ log pθ (τ)∇ log pθ (τ)T
〉

is known as the Fisher-
information matrix. Let us now assume that we restrict the
change of our policy to the length of our step-size αn, i.e.,
we have a restricted step-size gradient descent approach well-
known in the optimization literature [40], and given by

∆θ = argmax
∆θ̃

αn∆θ̃
T∇θJ

∆θ̃
T
Fθ ∆θ̃

= αnF−1
θ ∇θJ,

where ∇θJ denotes the ‘vanilla’ policy gradient from Sec-
tion II-B. This update step can be interpreted as follows:
determine the maximal improvement ∆θ̃ of the policy for a
constant fixed change of the policy ∆θ̃

T
Fθ∆θ̃.

This type of approach is known as Natural Policy Gradi-
ents and has its separate origin in supervised learning [41]. It
was first suggested in the context of reinforcement learning
by Kakade [37] and has been explored in greater depth in
[7], [28], [36], [42]. The strongest theoretical advantage of
this approach is that its performance no longer depends on
the parameterization of the policy and it is therefore safe to
use for arbitrary policies6. In practice, the learning process
converges significantly faster in most practical cases.

1) Episodic Natural Actor-Critic: One of the fastest
general algorithms for estimating natural policy gradients
which does not need complex parameterized baselines is

5While being ‘the natural way to think about closeness in probability
distributions’ [38], this measure is technically not a metric as it is not
commutative.

6There is a variety of interesting properties to the natural policy gradient
methods which are explored in [7].

TABLE IV

EPISODIC NATURAL ACTOR CRITIC

input: policy parameterization θh.
1 repeat
2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ log πθ (uk |xk ).

4 Fisher matrix Fθ =

fi

“

PH
k=0 ψk

” “

PH
l=0 ψl

”T
fl

.

Vanilla gradient g =
D“

PH
k=0 ψk

” “

PH
l=0 alrl

”E

.

5 Eligbility φ =
D“

PH
k=0 ψk

”E

.

6 Average reward r̄ =
D

PH
l=0 alrl

E

.

Obtain natural gradient by computing

7 Baseline b = Q
“

r̄ − φT F
−1
θ

g
”

with Q = M−1
“

1 + φT
`

MFθ − φφT
´−1

φ
”

8 Natural gradient gNG = F
−1
θ

(g − φb) .
9 until gradient estimate gNG = [g1, . . . , gh] converged.
return: gradient estimate gNG = [g1, . . . , gh].
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the episodic natural actor critic. This algorithm, originally
derived in [7], [28], [36], can be considered the ‘natural’
version of reinforce with a baseline optimal for this gradient
estimator. However, for steepest descent with respect to a
metric, the baseline also needs to minimize the variance with
respect to the same metric. In this case, we can minimize the
whole covariance matrix of the natural gradient estimate ∆θ̂
given by

Σ = Cov
{

∆θ̂
}

Fθ

= E

{

(

∆θ̂ − F
−1

θ gLR (b)
)T

Fθ

(

∆θ̂ − F
−1

θ gLR (b)
)

}

,

with gLR (b) = 〈∇ log pθ (τ) (r (τ) − b)〉 being the REIN-
FORCE gradient with baseline b. As outlined in [7], [28],
[36], it can be shown that the minimum-variance unbiased
natural gradient estimator can be determined as shown in
Table IV.

2) Episodic Natural Actor Critic with a Time-Variant
Baseline: The episodic natural actor critic described in the
previous section suffers from drawback: it does not make
use of intermediate data just like REINFORCE. For policy
gradients, the way out was G(PO)MDP which left out terms
which would average out in expectation. In the same manner,
we can make the argument for a time-dependent baseline
which then allows us to reformulate the Episodic Natural
Actor Critic. This results in the algorithm shown in Table
V. The advantage of this type of algorithms is two-fold: the
variance of the gradient estimate is often lower and it can
take time-variant rewards significantly better into account.

III. EXPERIMENTS & RESULTS

In the previous section, we outlined the five first-order,
model-free policy gradient algorithms which are most rel-
evant for robotics (further ones exist but are do not scale
into high-dimensional robot domains). In this section, we
will demonstrate how these different algorithms compare

TABLE V

EPISODIC NATURAL ACTOR CRITIC WITH A TIME-VARIANT BASELINE

input: policy parameterization θh.
1 repeat
2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ log πθ (uk |xk ).

4 Fisher matrix Fθ =
D

PH
k=0

“

Pk
l=0 ψl

”

ψT
k

E

.

Vanilla gradient g =
D

PH
k=0

“

Pk
l=0 ψl

”

akrk

E

,

5 Eligbility matrix Φ = [φ1, φ2, . . . , φK ]

with φh =
D“

Ph
k=0 ψk

”E

.

6 Average reward vector r̄ = [r̄1, r̄2, . . . , r̄K ]
with r̄h = 〈ahrh〉.

Obtain natural gradient by computing

7 Baseline b = Q
“

r̄ − ΦT F
−1
θ

g
”

with Q = M−1
“

IK + ΦT
`

MFθ − ΦΦT
´−1

Φ
”

.

8 Natural gradient gNG = F
−1
θ

(g − Φb) .
9 until gradient estimate gNG = [g1, . . . , gh] converged.
return: gradient estimate gNG = [g1, . . . , gh].
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Fig. 1. This figure shows different experiments with motor task learning.
In (a,b), we see how the learning system creates minimum motor command
goal-achieving plans using both (a) splines and (b) motor primitives. For this
problem, the natural actor-critic methods beat all other methods by several
orders of magnitude. In (c,d), the plan has to achieve an intermediary goal.
While the natural actor-critic methods still outperform previous methods, the
gap is lower as the learning problem is easier. Note that these are double
logarithmic plots.

in practice in different areas relevant to robotics. For this
pupose, we will show experiments on both simulated plants
as well as on real robots and we will compare the algorithms
for the optimization of control laws and for learning of motor
skills.

A. Comparing Policy Gradient Methods

Initially, we compare the different policy gradient methods
in motor primitive planning tasks using both spline-based
and dynamical system based desired trajectories. In Figure
1 (a) and (b), we show a comparison of the presented
algorithms for a simple, single DOF task with a reward of
rk(x0:N , u0:N) =

∑N
i=0 c1q̇

2
d,k,i + c2(qd;k;N − gk)2; where

c1 = 1, c2 = 1000 for both splines and dynamic motor
primitives. In Figure 1 (c) and (d) we show the same with an
additional punishment term for going through a intermediate
point pF at time F , i.e., rk(x0:N , u0:N ) =

∑N
i=0 c̃1q̇

2
d,k,i +

c̃2(qd;k;N −gk)2+ c̃2(qd;F ;N −pF )2. It is quite clear from the
results that the natural actor-critic methods outperform both
the vanilla policy gradient methods as well as the likelihood
ratio methods. Finite difference gradient methods behave
differently from the likelihood ratio methods as there is no
stochasticity in the system, resulting in a cleaner gradient
but also in local minima not present for likelihood ratio
methods where the exploratory actions are stochastic. From
this comparison, we can conclude that natural actor-critic
methods are the best suited for motor primitive learning.
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Fig. 2. This figure shows (a) the performance of a baseball swing task
when using the motor primitives for learning. In (b), the learning system is
initialized by imitation learning, in (c) it is initially failing at reproducing the
motor behavior, and (d) after several hundred episodes exhibiting a nicely
learned batting.

B. Robot Application: Motor Primitive Learning for Base-
ball

We also evaluated the same setup in a challenging robot
task, i.e., the planning of these motor primitives for a seven
DOF robot task using our SARCOS Master Arm. The task
of the robot is to hit the ball properly so that it flies as far
as possible; this game is also known as T-Ball. The state of
the robot is given by its joint angles and velocities while the
action are the joint accelerations. The reward is extracted
using color segment tracking with a NewtonLabs vision
system. Initially, we teach a rudimentary stroke by supervised
learning as can be seen in Figure 2 (b); however, it fails to
reproduce the behavior as shown in (c); subsequently, we
improve the performance using the episodic Natural Actor-
Critic which yields the performance shown in (a) and the
behavior in (d). After approximately 200-300 trials, the ball
can be hit properly by the robot.

IV. CONCLUSION

We have presented an extensive survey of policy gradient
methods. While some developments needed to be omitted
as they are only applicable for very low-dimensional state-
spaces, this paper represents the state of the art in policy
gradient methods and can deliver a solid base for future
applications of policy gradient methods in robotics. All three
major ways of estimating first order gradients, i.e., finite-
difference gradients, vanilla policy gradients and natural
policy gradients are discussed in this paper and practical
algorithms are given. The experiments presented here show
that the time-variant episodic natural actor critic is the pre-
ferred method when applicable; however, if a policy cannot
be differentiated with respect to its parameters, the finite
difference methods may be the only method applicable. The
example of motor primitive learning for baseball underlines
the efficiency of natural gradient methods.

APPENDIX

A. Motor Primitive Equations

The motor primitives from [1], [2] in their most recent
reformualtion are given by a canonical system

τ−1v̇ = αv (βv (g − x) − v) , (3)

τ−1ẋ = v, (4)

which represents the phase of the motor process. It has a
goal g, a time constant τ and some parameters αv,βv which
are chosen so that the system is stable. Additionally, we have
a transformed system

τ−1ż = αz (βz (s− x) − v) + f (x, v, g) , (5)

τ−1ẏ = z, (6)

τ−1ṡ = αs (g − s) , (7)

which has the same time-constant τ as the canonical system,
appropriately set parameters αz ,βz ,αs, and a transformation
function f (x, v, g). The transformation function transforms
the output of the canonical system so that the transformed
system can represent complex nonlinear patterns and is given
by

f (x, v, g) =

∑N
i=1 ψi (x) θiv
∑N

i=1 ψi (x)
, (8)

where θi are adjustable parameters and it has localization
weights defined by

ψi (x) = exp

(

−hi

(

x− x0

g − x0

− ci

)2
)

(9)

with offset x0, centers ci and width hi.
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