
An Empirical Analysis of
Measure-Valued Derivatives for Policy Gradients

João Carvalho1, Davide Tateo1, Fabio Muratore1,2, Jan Peters1,3
Intelligent Autonomous Systems

Technische Universität Darmstadt, Darmstadt, Germany
{joao,davide,fabio}@robot-learning.de, jan.peters@tu-darmstadt.de

Abstract—Reinforcement learning methods for robotics are
increasingly successful due to the constant development of better
policy gradient techniques. A precise (low variance) and accurate
(low bias) gradient estimator is crucial to face increasingly
complex tasks. Traditional policy gradient algorithms use the
likelihood-ratio trick, which is known to produce unbiased but
high variance estimates. More modern approaches exploit the
reparametrization trick, which gives lower variance gradient es-
timates but requires differentiable value function approximators.
In this work, we study a different type of stochastic gradient
estimator: the Measure-Valued Derivative. This estimator is
unbiased, has low variance, and can be used with differentiable
and non-differentiable function approximators. We empirically
evaluate this estimator in the actor-critic policy gradient setting
and show that it can reach comparable performance with meth-
ods based on the likelihood-ratio or reparametrization tricks,
both in low and high-dimensional action spaces.

I. INTRODUCTION

Complex robotics tasks, such as locomotion and manipu-
lation, can be formulated as Reinforcement Learning (RL)
problems in continuous state and action spaces [1]. The
RL objective is commonly an expectation dependent on a
parameterized control policy, whose optimization is done by
computing a gradient w.r.t. the policy parameters to steadily
move them in the gradient ascent direction [2] – known as the
policy gradient. If the control policy is stochastic, this method
can be viewed as computing the gradient of an expectation
w.r.t. a distribution containing the policy parameters, both in
the actor-only version [3], as well as in the actor-critic one [4].

If the gradient of the expectation of a function w.r.t. the
distribution parameters cannot be found analytically, there are
three main approaches to obtain an unbiased estimate: the
likelihood-ratio, also called Score-function (SF); the Pathwise
Derivative, commonly known as the Reparametrization trick
(Rep-trick); and the Measure-Valued Derivative (MVD) [5].

In policy gradients, the gradient estimation problem has
been solved extensively using the SF, which is known to pro-

1 Technische Universität Darmstadt, Darmstadt, Germany
2 Honda Research Institute Europe, Offenbach am Main, Germany
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany
This project has received funding from the German Federal Ministry

of Education and Research (BMBF) project 16SV798 (KoBo34), and the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No. #640554 (SKILLS4ROBOTS) and No. #713010 (GOAL-
Robots). Fabio Muratore gratefully acknowledges the financial support from
Honda Research Institute Europe.

duce high-variance estimates, particularly if used in trajectory-
based formulations, since its variance grows linearly with the
number of steps in the trajectory [6]. Thus, many methods
require a baseline for variance reduction [7], and the optimal
one needs to be computed for every single case [8]. Frequently
used baseline heuristics are the mean of the returns or the state
value function. REINFORCE is an example of a SF based
method [3].

Generally, the Rep-trick [9] is a low variance gradient
estimator that can be used in distributions of continuous and
discrete random variables. For the latter, the Gumbel-softmax
trick allows the backpropagation of gradients [10]. Moreover,
it requires the function we are optimizing to be differentiable,
which excludes non-differentiable approximators, such as re-
gression trees [11]. Although the Rep-trick often produces
low variance estimates, this property does not hold for all
function classes, in particular those whose derivative has a high
Lipschitz constant [12]. An example of an algorithm using this
estimator is the Soft Actor-Critic (SAC) [13].

MVD is another method to compute unbiased gradient
estimates, which has close connections to Finite-difference
(FD), and it is not used often in the Machine Learning (ML)
community. Similarly to the SF it applies to both discrete
and continuous distributions, but it generally has low variance
and avoids computing an extra baseline for variance reduction.
Contrary to the Rep-trick, it is not restricted to differentiable
functions, which makes it applicable to more function classes.
Few works have studied its application to RL [6], [14].

In this paper, we analyze the properties of MVD in actor-
critic policy gradient algorithms for on and off-policy RL. We
compare the estimation errors produced by the three different
estimators in Linear-Quadratic Regulator (LQR) problems, for
which we know the true value function and policy gradient.
We show that replacing the Rep-trick with MVD in an off-
policy deep RL algorithm leads to similar performance results,
even in complex environments with high-dimensional state and
action spaces. To argue that MVDs can be generally used
with broader classes of critic approximators, where the Rep-
trick is not available, we construct an example of an on-policy
procedure that uses a Q-function fitted with Extra-Trees [11]
– a non-differentiable model. The results suggest that this
type of estimator can be used to compute policy gradients
in continuous state and action spaces.

Supplementary material with experiment details and
a link to a repository to reproduce the results from
this paper is available at https://www.ias.informatik.tu-
darmstadt.de/uploads/Team/JoaoCarvalho/mvd rl-supp.pdf.

II. RELATED WORK

Policy gradient methods can be derived through the trajec-
tory, also called actor-only, or actor-critic formulations [2].
In the former, the expected return from a state-action pair is
estimated with samples from the trajectory rollout, as done
in REINFORCE [3] and GPOMDP [7]. In stochastic environ-
ments this results in high variance gradient estimates and poor
convergence. Instead, an actor-critic agent performs updates
by estimating the returns using a state-action value function
approximator. These methods have lower variance and show
more stable learning. Several actor-critic algorithms have been
presented in the recent years, particularly using deep neural
networks as function approximators, including Trust Region
Policy Optimization (TRPO) [15], Deep Deterministic Policy
Gradient (DDPG) [16], Twin Delayed DDPG (TD3) [17] and
SAC [13]. The connection between trajectory and actor-critic
methods was established in the policy gradient theorem in its
stochastic [4] and deterministic versions [18].

Most policy gradient methods optimize stochastic policies
using the SF or Rep-trick, while MVDs have not yet been
extensively explored in the ML and RL communities. A
modified version of the policy gradient theorem using MVDs,
also referred to as weak derivatives, was first introduced in [6].
The authors derive an unbiased estimator and provide an
extensive theoretical analysis of its properties, including the
variance and computational complexity. However, the practical
implementation of the algorithm has to perform two rollouts
starting from the same state to obtain an unbiased estimate
of the state-action value function. Applying this approach to
a real-world scenario, where we cannot reset a system to an
arbitrary continuous state, is impossible. Furthermore, it makes
use of Monte Carlo rollouts to estimate the return from a state-
action pair, discarding all the collected data after an update,
which leads to inefficient use of samples. Other works used
MVDs to solve Constrained Markov Decision Processes [14],
[19], also assuming that the environment can be reset to any
state. To the best of our knowledge, there is no actor-critic
algorithm based on MVDs that replicates a RL scenario.

III. BACKGROUND

A. Reinforcement Learning and Policy Gradients

Let a Markov Decision Process (MDP) be defined as a
tuple M = (S,A,R,P, γ, µ0), where S is a continuous
state space s ∈ S, A is a continuous action space a ∈ A,
P : S ×A× S → R is a transition probability function, with
P(s′|s,a) the density of landing in state s′ when taking action
a in state s, R : S×A → R is a reward function, γ ∈ [0, 1) is
a discount factor, and µ0 : S → R the initial state distribution.
A policy π is a mapping from states to actions. If deterministic,
it defines what action to take in each state a = π(s), while a
stochastic one assigns a probability distribution over possible

actions a ∼ π(·|s). The discounted state visitation under a
policy π is defined as dπγ (s) =

∑∞
t=0 γ

tP (st = s|s0, π),
where s0 is the initial state, and P : S → R the prob-
ability of being in state s at time step t given the initial
state and the policy. The discounted state distribution is then
given by µπγ (s) = (1 − γ)dπγ (s). The state-action value
function – Q-function – is the discounted sum of rewards
collected from a given state-action pair following the policy
π, Qπ(s,a) = Eπ,P [

∑∞
t=0 γ

tr(st,at)|s0 = s,a0 = a], and
the state value function is its expectation w.r.t. the policy
V π(s) = Ea∼π [Qπ(s,a)]. The advantage function is given as
the difference between the two Aπ(s,a) = Qπ(s,a)−V π(s).
In general, the goal of a RL agent is to maximize the expected
sum of discounted rewards from any initial state

J(π) = Es0∼µ0
[V π(s0)] = Eτ∼µ0,π,P

[∞∑
t=0

γtrt

]
, (1)

where τ is a state-action trajectory (s0,a0, s1,a1, . . .), deter-
mined by the policy and the environment dynamics.

In high-dimensional and continuous action spaces, instead
of constructing value functions and retrieving optimal actions
afterwards, a policy with parameters θ is updated iteratively
with a gradient ascent step on (1), θ ← θ + α∇θJ(πθ). The
on-policy policy gradient theorem [4] establishes this gradient
for stochastic policies as

∇θJ(πθ) = Es∼µπγ

[∫
∇θπ(a|s;θ)Qπ(s,a) da

]
, (2)

which can be extended to the off-policy [20] and deterministic
policy [18] settings. Note that the integral in (2) is not an
expectation.

B. Monte Carlo Gradient Estimators

The optimization goal of several problems in ML, e.g.
Variational Inference (VI), is often posed as an expectation
of a function f w.r.t. a distribution p parameterized by ω

J(ω) = Ep(x;ω) [f(x)] =

∫
p(x;ω)f(x) dx, (3)

where f : Rn → R is an arbitrary function of x ∈ Rn,
p : Rn × Rm → R is the distribution of x, and ω ∈ Rm
are the parameters encoding the distribution, also known as
distributional parameters. For instance, in amortized VI [9], f
is the Evidence Lower Bound (ELBO) and p the approximate
posterior distribution. If p(x;ω) is a multivariate Gaussian dis-
tribution over x, then ω aggregates the mean and covariance.

A gradient ascent algorithm is a common choice to find the
parameters ω that maximize (3). For that we need to compute
the gradient

∇ωJ(ω) =

∫
∇ωp(x;ω)f(x) dx, (4)

where for clarity of explanation we assume interchangeability
of differentiation and integration (see [5] for cases where it
does not apply). Since the derivative of a distribution is in
general not a distribution itself, the integral in (4) is not an

https://www.ias.informatik.tu-darmstadt.de/uploads/Team/JoaoCarvalho/mvd_rl-supp.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/JoaoCarvalho/mvd_rl-supp.pdf

expectation and thus not solvable directly by Monte Carlo
(MC) sampling.

If f also depends on ω, the product rule gives ∇ωJ(ω) =∫
∇ωp(x;ω)f(x;ω) dx+

∫
p(x;ω)∇ωf(x;ω) dx. The sec-

ond term in the sum is an expectation, and can thus be
computed by sampling. Hence, to keep the notation simple,
we assume f does not depend on ω, as its extension is trivial.

In many problems we do not have access to the true function
f , e.g. value functions in RL, and need to use approximators f̂ ,
which introduce bias and variance. Therefore we are typically
interested in finding unbiased estimators for (4), to prevent the
accumulation of the estimation errors already given by f̂ .

Let ĝi ∈ Rm define one unbiased gradient estimate of
(4). Then a MC estimation of the gradient using M samples
is obtained as ∇ωJ(ω) ≈ 1/M

∑M
i=1 ĝi. A straightforward

variance reduction technique common to any method is to
use more samples, as the variance reduces with O

(
M−1

)
.

However, this increases the computational complexity.
Next, we summarize the three known ways to build an

unbiased estimator for (4). See [5] for a throughout analysis.

a) Reparametrization trick (Rep-trick) [9]: A random
variable x is reparametrizable if it can be obtained by con-
structing a deterministic path from a base random variable
ε by applying a deterministic function g with parameters
ω, such that x = g(ε;ω). By the change of variables we
have ∇ωJ(ω) =

∫
p(ε)∇ωf(g(ε;ω)) dε. A single gradient

estimate is given as ĝRep
i = ∇xf(x = g(εi;ω))∇ωg(εi;ω),

with εi ∼ p(ε). This estimator requires f to be differentiable
w.r.t. x, to be able to compute its derivative, and typically leads
to low-variance estimates. However, it can have high variance
if f is rough [21].

b) Score-function (SF) [22]: From the derivative of
the logarithm identity we rewrite (4) as ∇ωJ(ω) =∫
p(x;ω)∇ω log p(x;ω)f(x) dx. A single gradient estimate

is given as ĝSF
i = ∇ω log p(xi;ω)f(xi), with xi ∼ p(x;ω).

Contrary to the Rep-trick, it does not need the derivative of f ,
but just that we can query it. It is common for the estimates
to have large variance, especially in a stochastic process, as
it grows linearly with the number of steps [19]. In practice,
the variance is reduced by subtracting a baseline to f , keeping
the estimator unbiased. Several policy gradient algorithms are
based on this estimator [3], [7], [23].

c) Measure-Valued Derivative (MVD) [24]: Even
though the derivative of a distribution is not in general a
distribution, it is a difference between distributions up to
a normalizing constant [24]. The main idea behind MVD
is to write the derivative w.r.t. a single distributional pa-
rameter ωk ∈ R as a difference between two distributions,
i.e. ∇ωkp(x;ω) = cωk

(
p+ωk(x;ω)− p−ωk(x;ω)

)
, where cωk

is a normalizing constant that can depend on ωk, and p+ωk
and p−ωk are two distributions referred to as the positive and
negative components, respectively. The MVD is described by
the triplet

(
cωk , p

+
ωk

(x;ω), p−ωk(x;ω)
)
. The decomposition is

not unique, and different configurations of the triplet can be
obtained, which leads to estimators with different properties.

For common distributions, such as the Gaussian, Poisson,
or Gamma, decompositions have already been analytically
derived in [25]. Table I shows a common one used for the
mean and standard deviation of the Gaussian distribution.

Expanding (4) with the MVD decomposition we ob-
tain ∇ωkJ(ω) =

∫
cωk

(
p+ωk(x;ω)− p−ωk(x;ω)

)
f(x) dx.

A single gradient estimate for ωk is given by ĝMVD
k,i =

cωk (f(x+;ω)− f(x−;ω)), with x+ ∼ p+ωk(x;ω) and x− ∼
p−ωk(x;ω). I.e., the derivative is the difference between the
function f evaluated at different points sampled according to
the decomposition, and scaled with the normalization constant.
For example, to compute the derivative of a one-dimensional
Gaussian N (x;µ, σ) w.r.t. its standard deviation, we can
sample the positive part from a Double-sided Maxwell and
the negative one from a Gaussian. The gradient w.r.t. all
parameters is just the concatenation of the derivatives w.r.t. all
single parameters ωk. Computing one gradient estimate for
all parameters ω is in the order of O(2|ω|) queries to f , in
contrast to the SF and Rep-trick O(1) complexity.

Let ĝMVD
k be the estimator of ∇ωkEp(x;ω) [f(x)], with

variance given by [5]

Vp(x;ω)

[
ĝMVD
k

]
= Vp+ωk (x;ω) [f(x)] + Vp−ωk (x;ω) [f(x)]

− 2Covp+ωk (x;ω)p−ωk (x
′;ω) [f(x), f(x′)] ,

which depends on the chosen decomposition and how corre-
lated are the function evaluations at the positive and negative
samples. A typical choice for variance reduction is to obtain a
decomposition such that the positive and negative distributions
are orthogonal [26], such as for the Gaussian mean in Table I.
Moreover, if f(x) and f(x′) are positively correlated, then the
covariance term is positive and the variance is further reduced.
This last term is possibly reduced through coupling, which
works by constructing a variate from the negative component
x′ by applying a transformation to the sample from the positive
component (or vice-versa), e.g. by using common random
numbers, such that they share the same source of randomness.
A simple example is when computing the gradient w.r.t. the
mean of a Gaussian: first we sample a variate from the Weibull
distribution W(

√
2, 2) to construct the positive component

with µ + σW(
√

2, 2), and then reuse the same variate to
also construct the negative component [27]. Even though this
does not guarantee that the function evaluations are positively
correlated, it tends to work well in practice [5].

If p(x;ω) is a multivariate distribution with independent
dimensions it factorizes as p(x;ω) =

∏n
i=1 p(xi; ξi), with

xi ∈ R and ξi a subset of ω. For instance, if p(x;ω) is a
Gaussian with diagonal covariance, then ξi = {µi, σi}. The
derivative w.r.t. one parameter ωk ∈ ξk is given by

∂

∂ωk
p(x;ω) =

k−1∏
i=1

p(xi; ξi)
∂

∂ωk
p(xk; ξk)

n∏
j=k+1

p(xj ; ξj)

=cωk
(
p+ωk(xk; ξk)− p−ωk(xk; ξk)

) n∏
i=1,i6=k

p(xi; ξi)

=cωk
(
p+ωk(x;ω)− p−ωk(x;ω)

)
,

MVD Gaussian distribution N (x;µ, σ) , ωk = {µ, σ} Univariate distributions
∂
∂ωk
N cωk p+ωk (x;ωk) p−ωk (x;ωk) Gaussian N (x ∈ R;µ, σ) 1√

2πσ
exp− 1

2

(
x−µ
σ

)2
∂
∂µ
N 1

σ
√
2π

W(x− µ;
√
2σ, 2) W(µ− x;

√
2σ, 2) Weibull W

(
x ∈ R+;λ, k

)
k
λ

(
x
λ

)k−1
exp−

(
x
λ

)k
∂
∂σ
N 1

σ
M(x;µ, σ) N (x;µ, σ) Double-sided M (x ∈ R;µ, σ) 1√

2πσ3 (x− µ)2 exp− 1
2

(
x−µ
σ

)2
Maxwell

TABLE I: MVD decomposition for the derivative of the Gaussian distribution w.r.t. to the mean and standard deviation (left)
and the univariate distributions from the decomposition (right).

where p+ωk(x;ω) is the original multivariate distribution with
the k-th component replaced by the positive part of the de-
composition of the univariate marginal p(xk; ξk) w.r.t. ωk. The
negative component p−ωk(x;ω) is built similarly. A practical
algorithm to sample from p+ωk(x;ω) first samples from the
initial multivariate distribution p(x;ω) and then replaces the
k-th component with a sample from the marginal p+ωk(xk; ξk).
E.g., for the derivative w.r.t. the mean of the multivariate
Gaussian with diagonal covariance, a sample from p+ωk(x;ω)
includes sampling first from the original multivariate Gaussian
and then replacing the k-entry with a sample from a Weibull.

MVDs are closely related with Finite-difference (FD) meth-
ods, as both use perturbations per parameter dimension and
take the difference between function evaluations to compute
a gradient estimate. To produce an estimator of (4) for each
parameter, FD methods construct two distributions by perturb-
ing the distributional parameter ωk by small amounts ±∆,
and then sample from the resulting modified distributions.
Although the bias disappears for ∆ → 0, the variance
grows with O

(
∆−2

)
, making the estimator unreliable [28].

Instead, MVDs can be seen as a principled way to choose the
distributions to sample from. Note that the FD is applied to
the distributional parameters in (3) and not to the deterministic
function f , and thus different from computing gradients to
optimize f only.

Illustrative Example: Fig. 1 shows the result of opti-
mizing the expectation of common test functions under a 2-

Quadratic Himmelblau Styblinski

MVD RepTrick SF(a) Quadratic

Quadratic Himmelblau Styblinski

MVD RepTrick SF(b) Himmelblau

Quadratic Himmelblau Styblinski

MVD RepTrick SF (c) Styblinski
MVD RepTrick SF

Fig. 1: Sample run of the unbiased stochastic gradient es-
timators in optimization test functions for a fixed number
of iterations. The lines show the means of the distributions,
and the ellipses one standard deviation at the beginning (red
diamond) and end (circle). Coloring: lower values in red,
higher values in grey.

dimensional Gaussian distribution with diagonal covariance,
using gradient ascent with the three referred methods. The SF
uses the optimal baseline for black-box optimization based
on the Policy Gradients with Parameter based Exploration
(PGPE) algorithm [29] to further reduce variance. Rep-trick
and MVD consistently move towards the global maximum in
all test functions, while the SF shows unstable behaviors. The
comparison with the FD method is not included since it is
biased for finite ∆, and for ∆→ 0 it showed large variance.

C. Parametrization of distributional parameters

Distributional parameters ω(θ) can be parameterized fur-
ther by other parameters θ. Consider for instance that the
distribution p represents a Gaussian stochastic policy with
fixed covariance, and mean as the output of a neural network
with state as input and parameters θ ∈ RM , p(a|s;ω(θ)) =
N (a|s;ω = {µ(s;θ)},Σ), with a ∈ RDa and s ∈ RDs .
Hence, |ω| = Da. Applying the chain rule, the gradient of (3)
w.r.t. θ becomes

∇θJ (ω(θ)) =

∫
∇ωp(x;ω)f(x) dx∇θω(θ), (5)

which allows us to decompose the gradient in two parts – the
gradient w.r.t. the distributional parameters ω and the gradient
w.r.t. the parameters θ. In the previous example we obtain
∇θp(a|s;ω(θ)) = ∇µN (a|s;µ,Σ)∇θµ(s;θ). In practice,
we can have a large neural network encoding the mean, but a
tractable action space if Da �M . Despite the complexity of
MVDs, this fact still makes them tractable for policies with a
large number of parameters, but considerable action space.

IV. ACTOR-CRITIC POLICY GRADIENT WITH MVDS

The integral in (2) is an application of (4) to RL, as
both are solving the same problem of computing an unbiased
stochastic gradient estimate. Hence, given the properties of
MVD, especially its low variance, we propose to analyze it
in this setting. In RL it is common to only have access to
an approximation of the true Q-function, which introduces
extra bias and variance. Therefore, it is crucial to have a low
variance estimator for the gradient of the expected return.

A straight forward application of MVDs would be to
perform black-box optimization to optimize the distributional
parameters of an upper-level policy that models the distri-
bution of a (typically deterministic) lower-level policy with
parameters θ ∈ RM [2]. In this case, |ω| ≥ O(M), and the

Policy gradient theorem ∇ωkJ(ω) = Es∼µπγ
[∫
∇ωkπ(a|s;ω)Qπ(s,a) da

]
Score-Function ∇ωkJ(ω) = Es∼µπγ , a∼π(·|s;ω) [∇ωk log π(a|s;ω)Qπ(s,a)]

Reparametrization Trick ∇ωkJ(ω) = Es∼µπγ , ε∼pε [∇aQπ(s,a = h(s, ε;ω))∇ωkh(s, ε;ω)]

Measure-Valued Derivative ∇ωkJ(ω) = Es∼µπγ

[
cωk

(
E
a∼π+

ωk
(·|s;ω)

[Qπ(s,a)]− E
a∼π−ωk (·|s;ω)

[Qπ(s,a)]

)]
TABLE II: Policy gradient theorem with the different unbiased stochastic gradient estimators.

computational complexity discourages its application if M is
large. In contrast, the SF complexity would be O(1).

MVDs are also applicable in step-based actor-critic policy
gradient methods with stochastic policies. If an approximator
for the critic is fitted from collected samples, policy updates
are done without further interaction with the system, with
queries to compute the gradient update done to the Q-function
approximator and not estimated from the real environment.
This is in contrast with previous work in [6], where the policy
gradient contribution for each state is computed by building an
unbiased estimate of the Q-function for two different actions,
by performing MC rollouts. We stress that this assumes we
can perform two rollouts from the same state. While it can be
true when using a simulator, this is not generally applicable
to RL, where we assume the agent cannot reset to an arbitrary
state, especially in real-world environments. Furthermore, if
the model of the environment is available, planning algorithms
can be more efficient than RL in solving a task. Hence,
applying MVDs in actor-critic settings could be an interesting
research direction.

Given a stochastic policy π(a|s;ω = g(s;θ)), where ω are
distributional parameters resulting from applying a function g
with parameters θ to the state s, for instance neural networks
that output the mean and covariance of a Gaussian distribution,
the gradient w.r.t. θ can be easily computed if g is a continuous
deterministic function, as in (5). From now on, we only
consider the gradient w.r.t. ω.

The policy gradient theorem [4] for a single parameter ωk
can thus be written with the three different estimators as shown
in Table II. The MVD formulation of the policy gradient shows
that to compute the gradient of one distributional parameter
we can sample from the discounted state distribution by inter-
acting with the environment, and then evaluate the Q-function
at actions sampled from the positive and negative components
of the policy decomposition conditioned on the sampled states,
π+
ωk

(·|s;ω) and π−ωk(·|s;ω), respectively. Importantly, the Q-
function estimate is the one from the policy π and not from the
ones resulting from the positive or negative decompositions.
We need a model for Q that we can query without MC
sampling because we have to evaluate it for two actions
starting from the same state. The function approximator for
Q can be a differentiable one, such as a neural network, as
done in DDPG or SAC, or a non-differentiable one, such as a
regression tree.

Due to the high variance of the SF estimator, the Q-function
is replaced by the advantage function, which includes the value
function as a baseline for variance reduction, while keeping
the estimator unbiased. The benefit of MVD over SF is that
they do not need to estimate an extra value function, which can
be an extra source of bias and variance. Nevertheless, methods
such as Generalized Advantage Estimation (GAE) [30] esti-
mate the advantage function by only approximating the state
value function, although introducing bias.

V. GRADIENT ANALYSIS IN THE LQR

The LQR is a well-studied problem in control theory. Here
we consider the discounted infinite-horizon discrete-time LQR
under a Gaussian stochastic policy a ∼ N (·| −Ks,Σ),
where K is a learnable feedback gain matrix, and Σ a fixed
covariance. As the value function expression is known and
can be computed by numerically solving the Algebraic Riccati
Equation, as well as the gradient (2) w.r.t. K, the LQR is a
good baseline for policy gradient algorithms.

In this analysis we construct LQRs, with different state and
action dimensions, with dynamics such that the uncontrolled
systems are unstable, and then select a suboptimal initial gain
Kinit such that the closed-loop is stable. All environments
have a fixed initial state. We analyze the policy gradient with
the estimators from Table II, computed at the initial gain
matrix and state. In the SF the Q-function is replaced by the
advantage function for variance reduction. The expectation of
the on-policy state distribution is sampled directly from the
environment, but the expectation over actions uses critics Q
and V as the true value functions from the LQR. This is an
idealized scenario to analyze the estimators’ variances when
there are no errors in the function approximator.

We compare two sources of error. The relative absolute
error relates the norms of the estimated ĝ and true gradient
g as (|‖ĝ‖ − ‖g‖|) /‖g‖, i.e. 0 indicates they have the same
magnitude, and the cosine distance as the error in the gradient
direction as 1 − ĝᵀg/(‖ĝ‖‖g‖), i.e. 0 indicates collinearity.
An ideal estimator has both measures close to zero.

The errors are analyzed along two dimensions – the number
of trajectories and the number of actions sampled to solve the
action expectations. Using MVD the gradient w.r.t. the mean
needs two function evaluations per action dimension. For a fair
comparison, the Rep-trick and SF sample the same number of
actions the MVD needs for the gradient of all parameters.
This way the computation complexity is not exactly the same,

since for the Rep-trick we still need to compute the gradient
of Q and for SF the log-probability derivative, but gives a fair
comparison than just using one MC estimate. The results are
shown in Fig. 2. As expected, with the number of trajectories
fixed, increasing the number of sampled actions decreases the
estimators’ errors. The Rep-trick achieves the best results in

both magnitude and direction in all environments, and the
MVD is slightly better than the SF. In our experiments we
observed this holds for higher dimensions as well. This reveals
that even though the SF complexity is O(1), in practice we
need roughly the same number of samples as MVD to obtain a
low error gradient estimate. A more in-depth analysis of this

10−2

10−1
1 trajectories1 trajectories1 trajectories

Relative abs. error

10−5

Cosine distance

2 14 26 38 50
Actions per state

10−2

10 trajectories10 trajectories10 trajectories

2 14 26 38 50
Actions per state

10−6

(a) LQR 2 states 1 action

10−2

10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−3

10−1

Cosine distance

4 28 52 76 100
Actions per state

10−2

10−1

10 trajectories10 trajectories10 trajectories

4 28 52 76 100
Actions per state

10−4

10−2

(b) LQR 2 states 2 actions

10−2

10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−3

Cosine distance

8 56 104 152 200
Actions per state

10−2

10−1
10 trajectories10 trajectories10 trajectories

8 56 104 152 200
Actions per state

10−4

(c) LQR 4 states 4 actions
MVD RepTrick SF

Fig. 2: Gradient errors in magnitude and direction in different LQRs, per number of trajectories and sampled actions. Depicted
are the mean and the 95% confidence interval of 25 random seeds.

10−210−1 100 101 102 103

Error frequency

10−1

100

101

102

Relative abs. error

10−210−1 100 101 102 103

Error frequency

10−5

10−4

10−3

10−1

100

Cosine distance

(a) LQR 2 states 1 actions

10−210−1 100 101 102 103

Error frequency

10−1

100

101

102

Relative abs. error

10−210−1 100 101 102 103

Error frequency

10−5

10−4

10−3

10−1

100

Cosine distance

(b) LQR 2 states 2 actions

10−210−1 100 101 102 103

Error frequency

10−1

100

101

102

Relative abs. error

10−210−1 100 101 102 103

Error frequency

10−5

10−4

10−3

10−1

100

Cosine distance

(c) LQR 4 states 4 actions
MVD RepTrick SF α = 0.0001 α = 0.001 α = 0.01 α = 0.1

Fig. 3: Gradient errors in magnitude and direction in different LQRs, with increasing error noise and frequency. The different
linestyles correspond to different error amplitudes α. The results are estimated using 10 trajectories and 20|A| actions per state
for each LQR. For MVD and SF the amplitudes 0.0001 and 0.001 show identical results and thus the lines are superposed.
Depicted is the mean over 25 random seeds.

−103

J
(π

)

α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001
MVD SF RepTrick

0 5

Steps×104

−103

J
(π

)

α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 5

Steps×104
0 5

Steps×104

(a) LQR 2 states 1 actions

−104

−103
α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001

MVD SF RepTrick

0 2

Steps×105

−104

−103
α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 2

Steps×105
0 2

Steps×105

(b) LQR 2 states 2 actions

−105

−104

α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001
MVD SF RepTrick

0 1

Steps×106

−105

−104

α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 1

Steps×106
0 1

Steps×106

(c) LQR 4 states 4 actions
MVD SF RepTrick f = 1.0 f = 10.0 f = 100.0

Fig. 4: Learning curves of expected return per collected transitions, for different error amplitudes and frequencies. The gradients
are estimated using 1 trajectory and 2|A| actions per state for each LQR. Depicted are the mean and the 95% confidence interval
of 25 random seeds. The lines for different frequencies and the confidence intervals appear superposed in some plots.

fact is left for future work. Knowing that the Q-function is
quadratic in the action, the results are in line with the example
from Fig. 1a, where all estimators perform well.

Next, we consider a scenario where the true Q-function
is not available and has to be estimated. Instead of fitting
a state-action value function, we model the approximator
with a local approximation error on top of the true value as
Q̂(s,a) = Q(s,a) +αQ(s,a) cos(2πfpᵀa+φ). I.e., we use
an additive sinusoidal error proportional to the true estimate,
where α represents the fraction of the true Q amplitude, f
is the error frequency, p is a random vector whose entries
sum to 1, and φ ∼ U [0, 2π] a phase shift. p and φ introduce
randomness to remove correlation between action dimensions.
Fig. 3 depicts the gradient errors in magnitude and direction
as a function of the error frequency and amplitude, which
reveals two insights. The error frequency does not affect the
gradient estimation of SF or MVD, which are only affected
by the amplitude, as can be seen by the horizontal blue and
green lines. On the contrary the Rep-trick is heavily affected
by both variables. This result matches the theory, since under
a Gaussian distribution the variance of the Rep-trick is upper-
bounded by the Lipschitz constant of the derivative of Q [5].
Fig. 4 shows the expected discounted return per steps taken in
the environment with different amplitudes and frequencies of
errors. As expected, the SF and MVD do not suffer from errors
in the estimation and converge towards the optimal policy in
the presence of high-frequency error terms. The Rep-trick on
the other hand either shows slower convergence or fails to
converge due to the poor gradient estimates.

From these experiments we observe that even though the
Rep-trick provides the most precise and accurate gradient un-
der a true value function, this does not always hold, especially
in the case where there is an action correlated error in the
approximation.

VI. MVDS IN OFF-POLICY POLICY GRADIENT
FOR DEEP REINFORCEMENT LEARNING

In the following, we illustrate how MVDs can be used in a
deep RL algorithm, by using the off-policy actor-critic method
SAC. The optimization objective is similar to the off-policy
gradient [20] but with a soft Q-function, which includes an

entropy regularization term. This additional term encourages
exploration by preventing the policy from becoming too de-
terministic during learning. The surrogate objective optimized
by SAC is

Jπ(ω) = Es∼dβ ,a∼π(·|s;ω) [Qπ(s,a;φ)− α log π(a|s;ω)] ,

where dβ is an off-policy state distribution, the Q-function is
a neural network parameterized by φ, α weighs the entropy
regularization term, and ω are the distributional parameters of
π. For simplicity, we omit the parameterization of ω as its
extension is done as in (5).

SAC estimates the gradient w.r.t. ω with the Rep-trick.
Instead, we modify it by computing the gradient using MVD.
Defining f(s,a;φ,ω) = Qπ(s,a;φ) − α log π(a|s;ω), the
resulting off-policy policy gradient w.r.t. a parameter ωk
becomes

∇ωkJπ(ω) = Es∼dβ
[
cωk

(
Ea∼π+

ωk
(·|s;ω) [f(s,a;φ,ω)]

−Ea∼π−ωk (·|s;ω) [f(s,a;φ,ω)]
)

−Ea∼π(·|s;ω) [∇ωα log π(a|s;ω)]
]
,

where π+
ωk

and π−ωk are the positive and negative components
of the policy decomposition. We denote this modification as
Soft Actor-Critic with MVD (SAC-MVD). Unlike in SAC, we
do not require the Q-function to be differentiable, allowing the
use of any type of function approximators.

Experimental Results

We benchmark the performance of SAC with the different
gradient estimators in high-dimensional continuous control
tasks, based on the PyBullet simulator [31]. We compare the
original SAC with: SAC-MVD with one MC sample; SAC-SF
- a version of SAC using the SF; SAC-SF-extra-samples - same
as SAC-SF but with the same number of queries as SAC-MVD
per gradient estimate; SAC-extra-samples - same as SAC but
with the same number of gradient estimates as SAC-SF-extra-
samples; DDPG [16] and TD3 [17] - two state-of-the-art off-
policy algorithms, which are used as baseline comparisons. All
variations of SAC use the same hyperparameters and neural
network architectures for the value function and policy as in
the original work [13].

0.0 0.5 1.0

Steps ×106

0

1

2

A
ve

ra
ge

R
ew

ar
d

×103 Ant

0.0 0.5 1.0

Steps ×106

0

2

×103 HalfCheetah

0.0 0.5 1.0

Steps ×106

0

1

2

×103 Hopper

0.0 0.5 1.0

Steps ×106

0.0

0.5

1.0

×103 Walker2D

SAC-MVD SAC SAC-extra-samples SAC-SF SAC-SF-extra-samples DDPG TD3

Fig. 5: Policy evaluation results during training on different tasks in deep RL. Depicted are the average reward per samples
collected and the 95% confidence interval of 25 random seeds.

The average reward curves obtained during training are
shown in Fig. 5. The original version of SAC and SAC-
MVD show similar performance, and increasing the num-
ber of samples does not improve the results, as SAC-extra-
samples performs equally well. This empirically shows that
the MVD estimator and the Rep-trick are equally good to
provide precise and accurate gradient estimates in these high-
dimensional tasks. SAC-SF and SAC-SF-extra-samples fail to
solve most of the tasks, since no baseline was used for variance
reduction. This can be done with GAE or by estimating an
extra value function. However, that can introduce more bias
in the estimation. Therefore, we chose to not use a baseline
for this experiment to compare directly all estimators in the
base case.

The results of our experiments reveal that the Rep-trick
is not fundamental to replicate the performance of SAC,
and suggest that the superior performances of this algorithm
depend on other aspects, such as the entropy regularization,
the state-dependent covariance, and the squashed Gaussian
policy. Additionally, it is worth remembering that MVDs are
applicable to function classes where the Rep-trick is not, which
allows to explore other function approximator classes and still
use the benefits of SAC.

VII. MVDS IN ON-POLICY POLICY GRADIENT
FOR NON-DIFFERENTIABLE APPROXIMATORS

In this section we present the results of the on-policy
gradient with MVDs when using a non-differentiable Q-
function approximator. The goal is to show that when the
Rep-trick is not applicable, MVD-based methods can obtain
comparable or better results than SF ones.

For the Q-function approximator we use Extra-Trees, a
type of regression tree, due to their interpretability, low vari-
ance and bias properties, and better computational complexity
compared to other tree methods [11]. Algorithm 1 shows
a pseudo-code for the method we use – Tree-MVD-Policy
Gradient (Tree-MVD). Fitting the Q-function in line 6 is
done by applying Bellman Equation, Qπ(s,a) = r(s, a) +
γEs′,a′ [Qπ(s′,a′)], with bootstrapping for a fixed amount
of iterations, where s, a and s′ are samples collected on-
policy and from a replay buffer, as is common in recent RL
algorithms [32]. The latter helps in the generalization out of
the current on-policy samples. The expectation over the next-
action is solved with a single sample. This procedure is an
extension of Expected SARSA [33].

Experimental Results

We evaluate this method in four environments with con-
tinuous state and action spaces. The first two tasks are the
Pendulum-v0 and LunarLanderContinuous-v2 from OpenAI
Gym [34], which are common baselines for continuous con-
trol. The remaining two are the Corridor and Room, which
are depicted in Fig. 6. In both environments the agent starts
at the green dot and the goal is to move towards the red
area, where the episode terminates (or when a fixed amount of

Algorithm 1: Tree-MVD-Policy Gradient (Tree-MVD)
Input: Stochastic policy π(a|ω(s;θ)); E epochs; R replay buffer

samples; P policy updates; B batch size policy update; N
Monte Carlo samples; learning rate α

Result: Optimized policy parameters θ∗
1 B ← start a replay buffer
2 for e = 0 . . .E − 1 do // epochs
3 Dπ ← collect data on-policy in the environment
4 DB ← get R samples from B
5 B ← B ∪ Dπ augment the replay buffer
6 Fit Qπ using Extra-Trees with Dπ ∪ DB
7 for p = 0 . . .P − 1 do // policy updates
8 S ← Sample B states from Dπ
9 for s ∈ S do

10 for k = 0 . . .K − 1 do // dist params

11 ĝk = cωk
1
N

(∑N
i=1Q

π(s,a+
i)−Qπ(s,a

−
i)
)

12 a+
i ∼ π

+
ωk (·|ω(s;θ)), a

−
i ∼ π

−
ωk (·|ω(s;θ))

13 end
14 ĝMVD

s = [ĝ0, . . . , ĝK−1]
ᵀ

15 ĝs = ∇θω(s;θ)ĝMVD
s // grad estimate

16 end
17 ĝ = average

([
ĝ1, . . . , ĝ|S|

])
18 θ ← θ + αĝ
19 end
20 end

steps is reached). The state is the (x, y) position of the agent
and the action the velocity vector, with bounded norm

√
2.

(a) Corridor (b) Room

Fig. 6: Corridor and Room en-
vironments.

The reward function is the
sum of a negative constant
for being in the white area
or hitting the wall, the neg-
ative euclidean distance be-
tween the current agent po-
sition and the goal, and a
positive reward for reach-
ing the red area. With these

two environments we want to argue that due to the task struc-
ture, using a non-smooth approximator, such as a regression
tree, is preferable to a smooth one, e.g. a neural network.

As a baseline comparison we choose the on-policy algo-
rithms Proximal Policy Optimization (PPO) and TRPO, which
use a neural network to approximate the value function and
GAE to estimate the advantage function. For all tasks we use
the same policy as in PPO [35] - a multivariate Gaussian
distribution with diagonal covariance, where the mean is the
output of a neural network and the log standard deviation
a learnable state-independent parameter. The best performing
hyperparameters for both methods were chosen with a grid
search. Importantly, for Tree-MVD we use only one MC
sample to solve the action expectations in the policy gradient.

Fig. 8 shows the average reward during training. The plots
suggest that the MVD-based method performs comparable or
better to the SF-based PPO. Fig. 7 presents the value functions
learned by each algorithm at different training epochs in
selected environments. In the Pendulum task (1st row), the
value function learned with Tree-MVD at epoch 15 is close
to the optimal one at epoch 60. This is in contrast to the
one learned with PPO for the same epoch (2nd row), which

θ

θ̇

V π - Epoch 0

θ

θ̇

V π - Epoch 15

θ

θ̇

V π - Epoch 60

(a) Pendulum Tree-MVD

θ

θ̇

V π - Epoch 0

θ

θ̇

V π - Epoch 15

θ

θ̇

V π - Epoch 60

(b) Pendulum PPO

x

y

V π - Epoch 0

x

y

V π - Epoch 15

x

y

V π - Epoch 59

(c) Corridor Tree-MVD

x

y

V π - Epoch 0

x

y

V π - Epoch 15

x

y

V π - Epoch 59

(d) Corridor PPO

x

y

V π - Epoch 0

x

y

V π - Epoch 15

x

y

V π - Epoch 59

(e) Room Tree-MVD

x

y

V π - Epoch 0

x

y

V π - Epoch 15

x

y

V π - Epoch 59

(f) Room PPO

Fig. 7: Value functions for Tree-MVD and PPO at the end
of different training epochs. In the Corridor and Room tasks
the lines depict agent trajectories during evaluation, where the
diamond is the starting state and the circle the ending state.
Coloring: lower values in blue, higher values in red.

can explain the difference in performance in Fig. 8. In the
Corridor and Room environments, we see the benefits of using
regression trees instead of neural networks when the tasks
exhibit a more structured representation. Compare the value
functions in the Corridor task for both algorithms (3rd and
4th rows). Regression trees provide a better approximation of
the optimal value function, are easier to interpret, and thus can
partly explain the slight increase in performance over PPO in
Fig. 8. The value functions found by Tree-MVD better match

0 2
×105

−1.5

−1.0

−0.5

A
ve

ra
ge

R
ew

ar
d

×103 Pendulum

0 2
×105

−4

−2

0

×102 LunarLander

0 1
Steps ×105

−3

−2

−1

0

A
ve

ra
ge

R
ew

ar
d

×104 Corridor

0 1
Steps ×105

−2

−1

0
×104 Room

Tree-MVD PPO TRPO

Fig. 8: Policy evaluation results during training on different
tasks with on-policy gradient algorithms. Depicted are the
average reward per samples collected and the 95% confidence
interval of 25 random seeds.

the environments and reward descriptions from Fig. 6, and
thus help accelerate learning. A version of Tree-MVD with
SF showed unstable behaviors due to the absence of a value
function estimator as baseline.

VIII. CONCLUSION

In this work we present MVDs as a complement to the
SF and Rep-trick estimators for actor-critic policy gradient
algorithms. We empirically show that methods based on this
estimator are a viable alternative to the commonly used ones,
and differently from [6], we avoid resetting the system to a
specific state, which is impractical in real systems, showing
how MVDs are applicable to the general RL framework.

Our experiments in step-based policy search highlight im-
portant facts about MVDs. In simple environments such as
the LQR and with an oracle Q-function, the MVD performs
better than the SF and worse than the Rep-trick. However,
in the presence of a local error, the MVD and SF estimates
are not affected by the error frequency, but only by the
amplitude. On the contrary, the Rep-trick is sensitive to both,
which suggests that it should not be used if the Q-function
approximator changes abruptly. SF-based methods need to
estimate an advantage function for variance reduction, while
MVD only needs the Q-function approximation. We can
use non-differentiable critics, in particular regression trees,
which in certain environments can lead to faster convergence
and compete with SF-based methods. The Rep-trick is not
applicable to the latter case. MVDs can be used for high-
dimensional action spaces in deep RL algorithms, and obtain
comparable results with the Rep-trick using only one gradient

estimate, which shows that the Rep-trick is not a crucial part
of the SAC algorithm.

Which stochastic gradient estimator to use is problem
dependent and an ongoing topic of research. The Rep-trick
has shown in the recent years to achieve good results in VI,
e.g. in Variational Autoencoders (VAEs) [9], and the SF in
policy gradient algorithms such as PPO [35]. MVDs are rarely
used in ML, however, they have been recently employed in
approximate bayesian inference [27].

An interesting future research direction is to investigate
how to reduce the computational complexity of MVDs e.g.,
by computing only the derivatives along certain parameter
dimensions and using a convex combination of all estimators.
This kind of estimator is still unbiased [5]. Moreover, a
theoretical analysis of bias and variance for MVD is needed
to improve our understanding of the estimators’ properties and
to determine in which kind of tasks one should be preferred
over the others.

Given the empirical results presented in our work, we
argue that the MVD estimator is a useful tool for developing
novel algorithms to solve challenging control problems in
Reinforcement Learning research.

REFERENCES

[1] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 3, 2004, pp.
2619–2624 Vol.3.

[2] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics.” Found. Trends Robotics, vol. 2, no. 1-2, pp. 1–142, 2013.

[3] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4,
p. 229–256, 1992.

[4] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems (NIPS),
1999, pp. 1057–1063.

[5] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo
gradient estimation in machine learning,” Journal of Machine Learning
Research, vol. 21, no. 132, pp. 1–62, 2020.

[6] S. Bhatt, A. Koppel, and V. Krishnamurthy, “Policy gradient using weak
derivatives for reinforcement learning,” in 2019 IEEE 58th Conference
on Decision and Control (CDC), 2019, pp. 5531–5537.

[7] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Artif. Int. Res., vol. 15, no. 1, p. 319–350, Nov. 2001.

[8] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Beijing, China, 2006.

[9] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[10] E. Jang, S. Gu, and B. Poole, “Categorical reparametrization with
gumbel-softmax,” in Proceedings International Conference on Learning
Representations 2017. OpenReviews.net, Apr. 2017.

[11] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, p. 3–42, Apr. 2006.

[12] P. Glasserman, Monte Carlo methods in financial engineering. New
York: Springer, 2004.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of International Conference on Machine Learning
(ICML), vol. 80, 2018, pp. 1856–1865.

[14] V. Krishnamurthy and F. V. Abad, “Real-time reinforcement learning of
constrained markov decision processes with weak derivatives,” 2011.

[15] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust re-
gion policy optimization,” in International Conference on International
Conference on Machine Learning (ICML), 2015, p. 1889–1897.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations,
(ICLR), 2016.

[17] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function ap-
proximation error in actor-critic methods,” in Proceedings of the 35th
International Conference on Machine Learning, vol. 80, 2018, pp. 1587–
1596.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of the
31st International Conference on International Conference on Machine
Learning (ICML), 2014, p. 387–395.

[19] V. Krishnamurthy, K. Martin, and F. V. Abad, “Implementation of
gradient estimation to a constrained markov decision problem,” in IEEE
International Conference on Decision and Control, vol. 5. IEEE, 2003,
pp. 4841–4846.

[20] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in
Proceedings of the 29th International Coference on International Con-
ference on Machine Learning, ser. ICML’12. Madison, WI, USA:
Omnipress, 2012, p. 179–186.

[21] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation
using stochastic computation graphs,” in Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NIPS),
2015, p. 3528–3536.

[22] P. W. Glynn, “Likelilood ratio gradient estimation: An overview,” in
Proceedings of the 19th Conference on Winter Simulation, 1987, p.
366–375.

[23] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput., vol. 71,
no. 7–9, p. 1180–1190, Mar. 2008.

[24] G. C. Pflug, “Sampling derivatives of probabilities,” Computing, vol. 42,
no. 4, pp. 315–328, 1989.

[25] B. Heidergott, G. Pflug, and F. J. Vazquez-Abad, “Measure-valued
differentiation for stochastic systems: from simple distributions to
markov chains,” 2003. [Online]. Available: https://personal.vu.nl/b.f.
heidergott/mvd.pdf

[26] B. Heidergott, F. Vázquez-Abad, and M. Gerad, “Measure valued differ-
entiation for stochastic processes: The finite horizon case,” Technology
Analysis and Strategic Management, 2000.

[27] M. Rosca, M. Figurnov, S. Mohamed, and A. Mnih, “Measure-valued
derivatives for approximate bayesian inference,” in 4th workshop on
Bayesian Deep Learning, 2019.

[28] G. C. Pflug, Optimization of Stochastic Models. Springer, 1996.
[29] F. Sehnke, C. Osendorfer, T. Rückstiess, A. Graves, J. Peters, and

J. Schmidhuber, “Parameter-exploring policy gradients,” Neural Net-
works, vol. 21, no. 4, pp. 551–559, May 2010.

[30] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2016.

[31] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016, cite arxiv:1606.01540.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms.” CoRR, vol. abs/1707.06347,
2017.

https://personal.vu.nl/b.f.heidergott/mvd.pdf
https://personal.vu.nl/b.f.heidergott/mvd.pdf
http://pybullet.org

An Empirical Analysis of
Measure-Valued Derivatives for Policy Gradients

João Carvalho1, Davide Tateo1, Fabio Muratore1,2, Jan Peters1,3
Intelligent Autonomous Systems

Technische Universität Darmstadt, Darmstadt, Germany
{joao,davide,fabio}@robot-learning.de, jan.peters@tu-darmstadt.de

SUPPLEMENTARY MATERIAL
I. CODE TO REPLICATE THE EXPERIMENTS

The code is written in Python and makes use of PyTorch for automatic differentiation and the MushroomRL library
for algorithm implementation and benchmarking https://github.com/MushroomRL/mushroom-rl. The code to reproduce the
experiments is available at https://git.ias.informatik.tu-darmstadt.de/carvalho/mvd-rl.

II. OPTIMIZATION TEST FUNCTIONS

In Fig. 1 we maximize Ep(x;ω) [f(x)] via gradient ascent, where f are three 2-dimensional test functions and p(x;ω) is
a multivariate Gaussian distribution with diagonal covariance p(x;ω) = N (x;ω = {µ,Σ}), with x ∈ R2 and ω ∈ R4. The
covariance is parameterized by the logarithm of standard deviation. The learning rate is kept constant and equal to 5× 10−4

for all functions and estimators. The MVD uses one gradient estimate between parameter updates, while the SF and Rep-trick
use the mean of eight estimates, which is the number of queries to f done with MVD for one estimate. The SF uses the
optimal baseline for black-box optimization as computed by the PGPE algorithm.

Quadratic function
f : R2 → R
f(x) = −xᵀx
Starting distribution: N

(
x;µ = (−5,−5),Σ = diag

(
22, 22

))
Himmelblau function
f : R2 → R
f(x, y) = −(x2 + y − 11)2 − (x+ y2 − 7)2

Starting distribution: N
(
x;µ = (0,−6),Σ = diag

(
22, 22

))
Styblinski function
f : R2 → R
f(x) = − 1

2

∑2
i=1

(
x4i − 16x2i + 5xi

)
Starting distribution: N

(
x;µ = (0, 0),Σ = diag

(
22, 22

))
III. LINEAR-QUADRATIC REGULATOR

The discounted infinite-horizon discrete-time LQR problem is defined as

arg max
st,at

J =

∞∑
t=0

−γt (sᵀtQst + aᵀ
tRat)

s.t. st+1 = Ast + Bat.

The optimal control policy for this problem is a linear-in-the-state time-independent feedback controller at = −Koptst. In
the experiments we compute the gradient w.r.t. K of a stochastic policy a ∼ N (·| −Kst,Σ), with fixed diagonal covariance
0.12 in all action dimensions.

1 Technische Universität Darmstadt, Darmstadt, Germany
2 Honda Research Institute Europe, Offenbach am Main, Germany
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany
This project has received funding from the German Federal Ministry of Education and Research (BMBF) project 16SV798 (KoBo34), and the European

Union’s Horizon 2020 research and innovation programme under grant agreement No. #640554 (SKILLS4ROBOTS) and No. #713010 (GOAL-Robots). Fabio
Muratore gratefully acknowledges the financial support from Honda Research Institute Europe.

https://github.com/MushroomRL/mushroom-rl
https://git.ias.informatik.tu-darmstadt.de/carvalho/mvd-rl

We build four environments with different dimensions of states and actions with (|S|, |A|): (2, 1), (2, 2), (4, 4) and (6, 6).
The matrices A, B, Q and R can be found in the accompanying code. The dynamics matrices A and B are non-diagonal,
which makes the LQR more difficult to solve. The matrix A is chosen such that the system is unstable when at = 0. The initial
gain matrix Kinit is chosen by sampling from a Gaussian distribution with mean Kopt and problem-dependent covariance,
such that the closed-loop system is stable. The initial state for each environment is 9 for each dimension. For instance, in
LQRs (2, 1) and (2, 2) the initial state is s0 = (9, 9)

ᵀ. The discount factor is γ = 0.99. To simulate infinite horizons, trajectory
rollouts have T = 1000 steps. The policy gradients are computed from s0 and Kinit. The discounted state distribution is
obtained by sampling trajectories and multiplying each state at time t with γt.

The experiments of Fig. 2 use the true Q and V functions computed with Kinit. Figures 3 and 4 simulate an error in the
Q-function estimator with an added local sinusoidal term to the true state-action value function. This approximator is modelled
as Q̂(s,a) = Q(s,a) + αQ(s,a) cos(2πfpᵀa + φ). f is the error frequency, p is a random vector whose entries sum to 1,
and φ ∼ U [0, 2π] a phase shift. p and φ introduce randomness to remove correlation between action dimensions. The factor
α represents an error proportional to the true value, and the cosine term models adding a (high) frequency error component.
These frequency components can appear in function approximators, especially if they overfit to the data. This is a simplified
error model that uses only one frequency component, but it is useful to understand the sensitivity of the gradient estimators to
local errors in function approximators.

Figures 9 and 10 complement the results of Fig. 2 with more trajectories, and a 6-dimensional LQR.
In Fig. 4 the initial policy is the same as in Fig. 2. The policy update uses the Adam optimizer and the following learning

rates (|S|, |A|): (2, 1) : 5 × 10−2; (2, 2) : 1 × 10−2; (4, 4) : 3 × 10−3; (6, 6) : 5 × 10−3. Fig. 11 complements the results
without added noise (α = 0), and a 6-dimensional LQR.

10−2

10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−6

10−4

Cosine distance

10−2

5 trajectories5 trajectories5 trajectories

10−7

10−5

10−2

10 trajectories10 trajectories10 trajectories

10−7

10−5

2 14 26 38 50

Actions per state

10−2

25 trajectories25 trajectories25 trajectories

2 14 26 38 50

Actions per state

10−7

10−5

(a) LQR 2 states 1 actions

10−2

10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−3

10−1

Cosine distance

10−2

10−1

5 trajectories5 trajectories5 trajectories

10−4

10−2

10−2

10−1

10 trajectories10 trajectories10 trajectories

10−4

10−2

4 28 52 76 100

Actions per state

10−2

10−1

25 trajectories25 trajectories25 trajectories

4 28 52 76 100

Actions per state

10−5

10−3

(b) LQR 2 states 2 actions
MVD RepTrick SF

Fig. 9: Gradient errors in magnitude and direction in the LQRs (2 states, 1 action) and (2 states, 2 actions), per number of
trajectories and sampled actions. Depicted are the mean and the 95% confidence interval of 25 random seeds.

10−2

10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−4

10−2

Cosine distance

10−2

10−1

5 trajectories5 trajectories5 trajectories

10−4

10−2

10−2

10−1

10 trajectories10 trajectories10 trajectories

10−5

10−3

8 56 104 152 200

Actions per state

10−3

10−2

25 trajectories25 trajectories25 trajectories

8 56 104 152 200

Actions per state

10−5

10−3

(a) LQR 4 states 4 actions

10−1

3× 10−2

4× 10−2

6× 10−2

2× 10−1

1 trajectories1 trajectories1 trajectories
Relative abs. error

10−3

10−2

10−1

Cosine distance

3× 10−2

4× 10−2

6× 10−2

5 trajectories5 trajectories5 trajectories

10−4

10−3

10−2

2× 10−2

3× 10−2

4× 10−2

6× 10−2

10 trajectories10 trajectories10 trajectories

10−4

10−3

10−2

12 84 156 228 300

Actions per state

2× 10−2

3× 10−2

4× 10−2

25 trajectories25 trajectories25 trajectories

12 84 156 228 300

Actions per state

10−4

10−3

(b) LQR 6 states 6 actions

MVD RepTrick SF

Fig. 10: Gradient errors in magnitude and direction in the LQRs (4 states, 4 actions) and (6 states, 6 actions), per number of
trajectories and sampled actions. Depicted are the mean and the 95% confidence interval of 25 random seeds.

−103

J
(π

)

α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0
MVD SF RepTrick

−103
α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001

0 5

Steps×104

−103
α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 5

Steps×104
0 5

Steps×104

(a) LQR 2 states 1 actions

−104

−103

J
(π

)

α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0
MVD SF RepTrick

−104

−103
α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001

0 2

Steps×105

−104

−103
α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 2

Steps×105
0 2

Steps×105

(b) LQR 2 states 2 actions

−105

−104

J
(π

)

α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0
MVD SF RepTrick

−105

−104

α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001

0 1

Steps×106

−105

−104

α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 1

Steps×106
0 1

Steps×106

(c) LQR 4 states 4 actions

−104

J
(π

)

α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0α = 0.0
MVD SF RepTrick

−104

α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001α = 0.001

0 1

Steps×106

−104

α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01α = 0.01

0 1

Steps×106
0 1

Steps×106

(d) LQR 6 states 6 actions

MVD SF RepTrick f = 1.0 f = 10.0 f = 100.0

Fig. 11: Learning curves of the LQR tasks with an error in the Q-function approximator. Noise amplitudes (0.001, 0.01, 0.1,
1.0, 10.0), bottom to top.

IV. OFF-POLICY EXPERIMENTS

Off-policy experiments from Fig. 5 use the environments from the PyBullet simulator [31]. Fig. 12 shows additional results
in simpler tasks. Table III contain the used hyperparameters. The neural network architectures are from the original papers.

0.0 0.5 1.0

Steps ×105

0

5

A
ve

ra
ge

R
ew

ar
d

×102
InvertedPendulum

0.0 0.5 1.0

Steps ×105

−1

0

×103
InvertedPendulumSwingup

0.0 0.5 1.0

Steps ×105

−1.5

−1.0

−0.5

×103
Pendulum-v0

0.0 0.5 1.0

Steps ×105

−5

0
×102

Reacher

SAC-MVD SAC SAC-extra-samples SAC-SF SAC-SF-extra-samples DDPG TD3

Fig. 12: Policy evaluation results per samples collected during training on different tasks in deep RL. Depicted are the average
reward and the 95% confidence interval of 25 random seeds.

Pendulum-v0 InvertedPendulum-v0 Ant-v0, HalfCheetah-v0
InvertedPendulumSwingup-v0 Walker2d-v0, Hopper-v0
ReacherEnv-v0

SAC variants

horizon 200 1000 1000
γ 0.99 0.99 0.99
epochs 50 50 100
steps/epoch 1000 1000 10000
episodes evaluation 10 10 10
batch size 64 64 256
warmup transitions 128 128 10000
max replay size 500000 500000 500000
critic network [64, 64] ReLU [64, 64] ReLU [256, 256] ReLU
actor network [64, 64] ReLU [64, 64] ReLU [256, 256] ReLU
optimizer Adam Adam Adam
lr actor 1× 10−4 1× 10−4 1× 10−4

lr critic 3× 10−4 3× 10−4 3× 10−4

DDPG and TD3

batch size 64 64 256
warmup transitions 128 128 10000
max replay size 1000000 1000000 1000000
critic network [64, 64] ReLU [64, 64] ReLU [400, 300] ReLU
actor network [64, 64] ReLU [64, 64] ReLU [400, 300] ReLU
optimizer Adam Adam Adam
lr actor 1× 10−4 1× 10−4 1× 10−4

lr critic 1× 10−3 1× 10−3 1× 10−3

TABLE III: Hyperparameters for the off-policy experiments.

V. ON-POLICY EXPERIMENTS

For TRPO and PPO the policy is a Gaussian distribution with diagonal covariance, where the mean is the output of a
neural network, and the log-standard deviation is a state independent learnable parameter, as in the original papers. Tree-MVD
optimizes the same policy but applies a tanh operator to the sampled actions, as done in SAC. Applying this operator to
MVDs is straight forward.

Tables IV and V contain the hyperparameters used in the experiments. The neural network architectures are taken from the
original works.

Pendulum-v0 LunarLanderContinuous-v2 Room Corridor

horizon 200 1000 300 300
γ 0.99 0.99 0.99
epochs 100 100 60 60
steps/epoch 3000 3000 2000 2000
episodes evaluation 10 10 10 10
iters bellman equation 100 50 25 25
tree estimators 100 50 25 25
min samples split node 2 2 8 8
min samples leaf node 1 1 4 4
max replay size 500000 500000 500000 500000
replay batch size 25000 25000 10000 10000
actor update epochs 4 4 4 4
actor batch size 256 128 128 128
actor network [32, 32] ReLU [32, 32] ReLU [32, 32] ReLU [32, 32] ReLU
optimizer Adam Adam Adam Adam
actor learning rate 3× 10−4 3× 10−4 1× 10−4 1× 10−4

initial σ 1 1 1 1

TABLE IV: Hyperparameters for the on-policy experiments with Tree-MVD.

Pendulum-v0 LunarLanderContinuous-v2 Room Corridor

horizon 200 1000 300 300
γ 0.99 0.99 0.99
epochs 100 100 60 60
steps/epoch 3000 3000 2000 2000
episodes evaluation 10 10 10 10
critic update epochs 10 10 10 10
critic batch size 64 64 64 64
critic network [32, 32] ReLU [32, 32] ReLU [128, 128] ReLU [128, 128] ReLU
critic learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

actor update epochs 8 4 4 4
actor batch size 256 256 128 128
actor network [32, 32] ReLU [32, 32] ReLU [32, 32] ReLU [32, 32] ReLU
optimizer Adam Adam Adam Adam
actor learning rate 3× 10−4 3× 10−4 1× 10−4 1× 10−4

initial σ 1 1 1 1

PPO ε = 0.2, λ(GAE) = 0.95
TRPO maxKL = 0.01, λ(GAE) = 0.95, epochs line search = 10, epochs conj gradient = 100

TABLE V: Hyperparameters for the on-policy experiments with PPO and TRPO.

	Introduction
	Related Work
	Background
	Reinforcement Learning and Policy Gradients
	Monte Carlo Gradient Estimators
	Parametrization of distributional parameters

	Actor-Critic policy gradient with MVDs
	Gradient Analysis in the LQR
	MVDs in Off-Policy Policy Gradient
	MVDs in On-Policy Policy Gradient
	Conclusion
	References
	Code to replicate the experiments
	Optimization Test Functions
	
	Off-Policy Experiments
	On-Policy Experiments

