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Abstract— Learning priors on trajectory distributions can
help accelerate robot motion planning optimization. Given pre-
viously successful plans, learning trajectory generative models
as priors for a new planning problem is highly desirable.
Prior works propose several ways on utilizing this prior to
bootstrapping the motion planning problem. Either sampling
the prior for initializations or using the prior distribution in a
maximum-a-posterior formulation for trajectory optimization.
In this work, we propose learning diffusion models as priors.
We then can sample directly from the posterior trajectory
distribution conditioned on task goals, by leveraging the inverse
denoising process of diffusion models. Furthermore, diffusion
has been recently shown to effectively encode data multi-
modality in high-dimensional settings, which is particularly
well-suited for large trajectory dataset. To demonstrate our
method efficacy, we compare our proposed method - Motion
Planning Diffusion - against several baselines in simulated
planar robot and 7-dof robot arm manipulator environments.
To assess the generalization capabilities of our method, we
test it in environments with previously unseen obstacles. Our
experiments show that diffusion models are strong priors
to encode high-dimensional trajectory distributions of robot
motions. https://sites.google.com/view/mp-diffusion

I. INTRODUCTION

Motion planning is a crucial component of autonomous
robot systems [1], [2], [3], [4]. It addresses the problem of
finding a feasible, smooth, and collision-free path between a
start and a goal point in a robot’s configuration space, which
can subsequently be executed by a lower-level controller [5].

Commonly used approaches for motion planning are either
sampling [6], [7], [8], [9] or optimization based [2], [10],
[11], [3]. Sampling-based methods possess a completeness
property, assuring a global optimum given infinite compute
time [9]. However, in practice, they often suffer from sam-
ple inefficiency and tend to produce non-smooth trajecto-
ries [12]. On the other hand, optimization-based planners
optimize initial trajectories via either preconditioned gradient
descent [2], [10], [11]; or stochastic update rules [3], [13] and
can integrate desired properties such as smoothness as costs
to be optimized. Nevertheless, optimization-based planners
depend on a good initialization and can get trapped in local
minima due to the non-convexity of complex problems.
Specifically, they commonly require a good initialization
prior and well-tuned hyperparameters to work well [11], [13].

Recently, learning-based methods have shown promising
potential to improve classical motion planning [14], e.g, by
utilizing experience from previously successful plans [15],
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Fig. 1: Execution of motions in the real-world Panda Shelf environment.
The motion in blue and red start and end at the same configurations, but it is
possible to see two modes resulting from sampling trajectories with MPD.
This environment includes obstacles (represented as boxes in the digital
twin), which are not present in the environment used for training (Fig. 2d).

[16], [13] or incorporating priors from human demonstra-
tions [17], [18], [19]. In particular, sampling from learned
prior distributions, conditioned on contexts such as start/goal
configurations and environmental variables, can provide good
initializations for motion planners [13], [20], [21].

Following the imitation learning perspective [22], in this
work, we learn the prior model from expert data and
incorporate it into optimization-based motion planning. In
particular, instead of explicitly sampling from a prior dis-
tribution as motion planning initialization, we propose to
merge the prior sampling and motion optimization into one
algorithm, by leveraging recent formulations in diffusion-
based generative models [23], [24]. This type of implicit
model has shown impressive results in modeling multimodal
and high-dimensional data, such as image generation [25],
[24], [26], [27] , having superior generative performance
(with/out context guidance) compared to previous generative
models [28], [29]. Indeed, these diffusion model properties
are particularly well-suited for learning from demonstrations
in robotics manipulation settings, where state space dimen-
sions are usually large in manipulators (e.g. full state of
position and velocity of Franka Emika Panda arm has 14 di-
mensions) and there exist thousands of trajectory samples in
the expert dataset. Furthermore, as shown later, the diffusion
sampling process works well with gradients from standard
motion planning costs, allowing for better and more diverse
multimodal trajectory solutions.

Our main contributions are: (1) we learn a trajectory gen-
erative model with a diffusion model using expert trajectories
generated with an optimal motion planning algorithm; (2)
we formulate the motion planning problem as planning-as-
inference by sampling from a posterior distribution lever-
aging guidance in diffusion models; (3) to validate our
approach we present results in several environments with
increasing difficulty; (4) we empirically demonstrate that
learning and sampling from the diffusion model speeds up
motion planning without an informed prior and is better than
a commonly used generative model.



II. RELATED WORKS

There exists a huge body of literature on learning to
plan for robotics. In this section, we focus on discussing
related works that combine recent learning methods with
classic motion planning approaches (sec. II-A). Additionally,
we provide a short background on applications of diffusion
models [25], [24] in robotics (sec. II-B).

A. Learning to plan for motion planning

We survey learning methods for both sampling and
optimization-based planners. Addressing the sample-
inefficiency of sampling-based planners such as Probabilistic
Road Maps (PRM) [6] and Rapid Exploring Random Trees
(RRT) [7], several works have proposed learning conditional
sampling distributions using the environment and task
information as context variables. For instance, [15] learns
to generate collision-free samples using a Conditional
Variational AutoEncoder (CVAE) conditioned on an
occupancy map. Interestingly, [30] proposes Motion
Planning Transformers, which determines informative
regions for sampling new nodes for RRT-like methods.
Other works [16], [31], [32] learn a conditioned one-step
neural planner and promote diverse solutions by adding
dropout ensuring stochasticity. In contrast to these methods,
we learn a trajectory distribution model to easily introduce
trajectory time-correlated constraints such as smoothness,
which is important in robot motions.

Contrary to sampling-based planners, trajectory optimiza-
tion methods directly optimize whole trajectories, aiming
for smoothness while satisfying other objective constraints.
However, they typically heavily depend on initialization
and suffer from local minima, e.g. speeding up through
obstacles, and thus learning better initial distributions can
speed up and improve the success rate of these methods.
Several works use Learning from Demonstration (LfD) (i.e.,
Behavioral Cloning) to encode trajectory priors [18], [17],
[19]. They fit a Gaussian Mixture Model (GMM) given a set
of demonstrations and then use these as priors for motion
optimization. However, GMM fitting typically cannot capture
well multi-modal trajectories in high-dimensional spaces. For
better learning the multi-modality of expert trajectories, [13]
learned Energy-Based Models (EBMs) that capture expert
data objectives. They formulate the trajectory optimization
problem via planning-as-inference to incorporate the EBM
priors as planning costs. In contrast to incorporating prior as
cost, we directly learn a trajectory generator using diffusion
models to assist the optimization, where sampling high-
dimensional trajectories are difficult for EBMs [33].

B. Diffusion models for robotics

Few works have explored using score-based and diffusion
models in robotics. At task planning levels, [34] recently
proposes DALL-E-BOT, which generates a text description
from a scene image and then prompts the text-to-image
generator DALL-E [28] for a “goal scene”, thus identifying
the desired poses. [35] proposes StructDiffusion for arranging
objects based on language commands, by predicting the
object arrangements using a language-conditioned diffusion

model. On learning fine-grained trajectory structure, recently,
diffusion models have been used to generate human-like
motions [36]. In our previous work [37], we showed a simple
example of how to use conditioned score-based models to
generate trajectories for different environments. Mostly sim-
ilar to our work, [20] used diffusion to learn cost functions
for jointly optimizing motion and grasping poses in SE(3).
[38] introduced the Diffuser, a trajectory generative model
used for planning in Offline RL and long-horizon tasks.
[39] proposes the Decision Diffuser learned over position-
only trajectories that can be conditioned with classifier-
free guidance skill generation or constraint satisfaction. In
contrast to these works, we bring diffusion models closer to
motion planners, by incorporating diffusion models as priors
combined with differentiable cost likelihoods and also by
learning higher trajectory derivatives. We show that, via our
formulation, we can directly sample optimal trajectories from
the posterior by following the reverse diffusion sampling
process, contrasting to sampling from the optimized proposal
distribution as in [13].

III. MOTION PLANNING DIFFUSION

In this section, we describe our method - Motion Planning
Diffusion (MPD). First, we introduce the motion planning-
as-inference perspective, laying the ground for incorporating
diffusion into motion planning. We then explain how to learn
trajectory distributions with diffusion models. Finally, with
MPD, we show how to sample from the trajectory posterior
via the reverse diffusion process while incorporating the cost
likelihood representing other motion planning objectives.

A. Motion Planning

Let s = [q⊺, q̇⊺]⊺ ⊆ Rd encode the state of a robot,
where q is the robot’s configuration position (e.g. the joint
space), q̇ is the robot’s configuration velocity, d is state
space dimension. Let O represent a task (or objective)
the robot has to perform in its environment. A trajectory
τ ≜ (s0, . . . , sH−1) ∈ RH×d represented as waypoints is a
sequence of states in discrete-time with horizon H . In this
work, we consider only states and assume a controller brings
the robot from state si to si+1, e.g., using a PD or inverse
dynamics controller.

In motion planning, O typically represents a task that
encodes a collision-free path between start and goal states.
This objective is commonly represented with a set of costs
ci(τ ), which encode the robot’s start and goal configurations,
the trajectory’s smoothness, and the collision-free constraint.
Optimization-based motion planning formulates the motion
planning problem as a trajectory optimization one [13]

τ ∗ = argmin
τ

∑
i

λici(τ ), (1)

where λi > 0 are different weights for the costs. Common
approaches for solving this problem are either preconditioned
gradient methods [2], [11], which rely on carefully designed
first-order differentiable cost functions; or stochastic meth-
ods [3], [13], which evaluate the sampled trajectories and
update the sampling distribution by weighing the particles
on arbitrary non-smooth and non-convex costs.



B. Motion Planning as Inference

The connection between trajectory optimization and prob-
abilistic inference is well established [40], [41], [42], [43],
[44], [45]. In the planning-as-inference framework, the goal
is to sample from the posterior distribution of trajectories
given the task objective

p(τ |O) ∝ p(O|τ )p(τ ),

where p(τ ) can be interpreted as a prior over trajectories in
the environment, and p(O|τ ) is the likelihood of achieving
the task goals. A common assumption is that the likelihood
factorizes into independent components [13]

p(O|τ ) ∝
∏
i

pi(oi|τ )λi (2)

with λi > 0 as temperatures of planning objective distribu-
tions [46]. Assuming pi belongs to the exponential family,
we can arbitrarily write pi(oi|τ ) ∝ exp(−ci(τ )). Then,
performing Maximum-a-Posteriori (MAP) on the trajectory
posterior

τ ∗ = argmax
τ

log p(O|τ )p(τ )

= argmax
τ

log
∏
i

pi(oi|τ )λi + log p(τ )

= argmin
τ

∑
i

λici(τ )− log p(τ ) (3)

is equivalent to the motion planning problem (1) minus the
log of the prior. Contrary to classical optimization-based
motion planning, formulating motion planning as an infer-
ence problem has several advantages. Notably, the inference
framework provides a principal way to introduce informative
priors to planning problems, e.g., Gaussian Process Motion
Planning (GPMP) [47], [11] utilizes a Gaussian Process (GP)
to encode dynamic feasibility and smoothness as trajectory
priors. In this work, we leverage this advantage to incorporate
the learned diffusion prior encoded the expert data.

C. Diffusion Models as Trajectory Generative Models

Let us consider the unconditional diffusion model on
trajectories. Diffusion models transform a trajectory from
the data distribution τ0 ∼ q(τ0) into white Gaus-
sian noise by running a Markovian forward diffusion
process q(τt|τt−1, t) = N

(
τt;

√
1− βtτt−1, βtI

)
, where

t = 1, . . . , N is the diffusion time step (not the trajectory
index), N is the number of diffusion steps, and βt is the
noise scale at time step t. Common schedules for β are linear,
cosine or exponential [24], [48]. Assuming the data τ0 lives
in Euclidean space, the distribution of the diffusion process
at time step t is Gaussian and can be written in closed-form
as q(τt|τ0, t) = N (τt;

√
ᾱtτ0, (1− ᾱt)I), with αt = 1−βt

and ᾱt =
∏t

i=1 αi. This allows sampling τt without running
the forward diffusion process [24].

The inverse (denoising) process transforms Gaussian
noise back to the data distribution through a series
of denoising steps p(τt−1|τt, t). Diffusion models
approximate this posterior distribution with a parametrized
Gaussian pθ(τt−1|τt, t) = N (τt−1;µt = µθ(τt, t),Σt).

For simplicity, only the mean of the inverse
process is learned, and the covariance is set to
Σt = σ2

t I = β̃tI, with β̃t = βt(1− ᾱt−1)/(1− ᾱt).
[24] proposed that instead of learning the posterior
mean directly, the noise ε can be learned instead, since
µθ(τt, t) =

1√
αt

(
τt − 1−αt√

1−ᾱt
εθ(τt, t)

)
, via a simplified

loss function

L(θ) = Et,ε,τ0

[
∥ε− εθ(τt, t)∥22

]
,

with t ∼ U(1, N), ε ∼ N (0, I), τ0 ∼ q(τ0), and
τt =

√
ᾱtτ0 +

√
1− ᾱtε.

Following [38], we encode the diffusion model over tra-
jectories with a temporal U-Net, which has proven to be a
reasonable architecture for diffusion models over trajectories.
Please consult [38] for details on the network architecture.
D. Optimal sampling with guidance

We describe how to directly sample from the posterior
p(τ |O) using diffusion models, which is equivalent to sam-
pling from the prior while biasing the trajectories towards the
task likelihood. Note that τ results from the last step of the
denoising process τ ≡ τ0. By definition of the Markovian
reverse diffusion p(τ0|O) = p(τN |O)

∏N
t=1 p(τt−1|τt, t,O),

where p(τN |O) is standard Gaussian noise by definition.
Hence, to sample from p(τ0|O), we iteratively sample from
the task-conditioned posterior

p(τt−1|τt, t,O) ∝ p(τt−1|τt, t)p(O|τt−1), (4)

where p(O|τt−1) = p(O|τt, τt−1, t), i.e. we drop the condi-
tioning on τt and t because the task is only conditioned on
the current sample τt−1, and pθ(τt−1|τt, t) is modeled with
a diffusion model parametrized by θ.

To sample from the task-conditioned posterior
p(τt−1|τt, t,O), we will use a similar technique as in
classifier guidance, since the posterior cannot be sampled in
closed form [23], [49]. Considering the learned denoising
prior model over trajectories is Gaussian, its logarithm
evaluates to

log pθ(τt−1|τt, t) = logN (τt;µt = µθ(τt, t),Σt) (5)

∝ −1

2
(τt−1 − µt)

⊺Σ−1
t (τt−1 − µt).

By definition of the noise schedule βt, as the denois-
ing step approaches zero, so does the noise covariance
limt→0 ∥Σt∥ = 0. Therefore, pθ(τt−1|τt, t) concentrates all
the mass close to the mean µt, and therefore the task log-
likelihood is approximated with a first-order Taylor expan-
sion around µt

log p(O|τt−1) ≈ log p(O|τt−1 = µt) + (τt−1 − µt)g, (6)

with g = ∇τt−1
log p(O|τt−1)|τt−1=µt

. Combining (5)
and (6) we obtain

log p(τt−1|τt, t,O)

∝ −1

2
(τt−1 − µt)

⊺Σ−1
t (τt−1 − µt) + (τt−1 − µt)g

∝ −1

2
(τt−1 − µt −Σtg)

⊺Σ−1
t (τt−1 − µt −Σtg)

= log p(z), with p(z) = N (z;µt +Σtg,Σt) .



Algorithm 1: Motion Planning Diffusion
———TRAINING———
Input: Collision-free trajectories D, Diffusion model

εθ, learning rate α, noise schedule terms ᾱt

1 while training is not finished do
▷ sample a batch of trajectories

2 τ0 ∼ D , ε ∼ N (0, I) , t ∼ U(1, N)
▷ compute the diffusion loss function

3 τt =
√
ᾱtτ0 +

√
1− ᾱtε

4 L(θ) = ∥ε− εθ(τt, t)∥22
▷ gradient update

5 θ = θ + α∇θL(θ)

———INFERENCE———
Input: Pre-trained diffusion model εθ, start and goal

states (ss, sg), motion planning costs ci,
temperatures λi, scheduling terms (αt, ᾱt, σt)

▷ sample a batch of trajectories

6 τN ∼ N (0, I)
▷ hard set start and goal states

7 τN [0] = ss, τN [H − 1] = sg
8 for t = N, . . . , 1 do

▷ compute the diffusion prior mean

9 µt =
1√
αt

(
τt − 1−αt√

1−ᾱt
εθ(τt, t)

)
▷ compute weighted gradient of costs

10 g = −
∑

i λi∇τt−1ci(τt−1)
▷ move trajectories to low cost regions

11 τt−1 = µt + g + σtz, z ∼ N (0, I)
12 τt−1[0] = ss, τt−1[H − 1] = sg

Output: optimized batch of trajectories τ0

Hence, sampling from the task-conditioned posterior is
equivalent to sampling from a Gaussian distribution with
mean and covariance as p(z). In the motion planning-as-
inference case, we have from (2)

g = ∇τt−1 log p(O|τt−1) = −
∑
i

λi∇τt−1ci(τt−1),

where the costs are differentiable w.r.t. the trajectory, e.g.,
smoothness or differentiable signed distance functions.

There are direct benefits to this formulation. While
smoothly sampling trajectories from the diffusion prior, we
can bias the samples towards regions that increase the task
likelihoods, thus resulting in decreasing overall cost objective
in (3). In motion planning, these likelihoods can be collision-
free regions, goal sets, and joint limits of the configuration
space. In practice, to keep the influence of the task likelihood,
we typically drop the covariance Σt scaling (cf. line 11 in
Algorithm 1), since it approaches zero when t approaches
0. This choice is equivalent to scaling λi = λ̃i/σt with
time-dependent variances σt, where λ̃i are the constant
hyperparameters, which can be interpreted as increasing
likelihood relevancy when σt → 0. Algorithm 1 depicts the
pseudo-code for training and inference of diffusion models
for motion planning.

E. Motion planning costs

We briefly describe the standard motion planning costs
used in the objective (3). Note that for cost functions defined

on waypoints, the total cost for a trajectory is the sum of
waypoint costs, i.e. c(τ ) =

∑
i

∑H−1
j=0 ci(τ [j]).

Start and Goal States Cost. For the diffusion model,
the start (ss) and goal (sg) state distribution is represented
as a Dirac delta, i.e., one factor of (2) for the start state
equates to p(τ [0] = ss|τ ) = δτ [0]=ss

(τ ). In practice,
this is implemented by hard setting the initial and final
configurations of the trajectory as in lines 7 and 12 of
Algorithm 1 [38]. If the generative model does not support
Dirac delta distributions, this cost can also be formulated as a
quadratic cost, e.g. for the start state css

(τ ) = ∥ss−τ [0]∥22.
Collision Cost. Similar to GPMP [11], we populate K col-

lision spheres on the robot body. Given differentiable forward
kinematics implemented in PyTorch [50], with the kinematics
Jacobian computed by auto-differentiation, the obstacle cost
for any configuration q is cobs(q) =

1
K

∑K
j=1 c(x(q, Sj))

with x(q, Sj) is the forward kinematics position of the
jth-collision sphere. For gradient-based motion optimizers,
we design the cost using the differentiable signed-distance
function d(·) from the sphere center to the closest obstacle
surface (minus the sphere radius) in the task space with a

ϵ > 0 margin c(x) =

{
−d(x) + ϵ if d(x) ≤ ϵ

0 if d(x) > ϵ
.

Self-collision Cost. We group the collision spheres that
belong to the same robot links. Then, we compute the pair-
wise link sphere distances. The self-collision cost is the
average of the computed pair-wise distances.

Joint Limits Cost. We enforce joint limits (and velocity
limits) by computing the L2 norm joint violations as costs,
with a ϵ > 0 margin on each dimension i

climits(qi) =

∥qmin + ϵ− qi∥22 if qi < qmin + ϵ

0 if qmin + ϵ ≤ qi ≤ qmax − ϵ

∥qmax − ϵ− qi∥22 else
.

End-effector Cost. The distance on SE(3) state space
defines the end-effector cost. Given two points T1 = [R1,p1]
and T2 = [R2,p2] in SE(3), consisting of a translational and
rotational part, we choose the following distance on SE(3)
dSE(3)(T1,T2) = ∥p1 − p2∥22 + ∥LogMap(R⊺

1R2)∥, where
LogMap(·) is the operator that maps an element of SO(3) to
its tangent space [51]. Then, given the current end-effector
pose T (q) computed via forward kinematics and the goal
pose Tg , the end-effector cost is

cee(q) = dSE(3)(T (q),Tg). (7)

Gaussian Process Cost. The uncontrolled trajectory
distribution can be represented as the zero-mean GP
prior [52], [11] qF (τ ) = N (τ ;0,K), with a constant
time discretization ∆t, and time-correlated covariance matrix
K = [K(i, j)]

∣∣
ij,0≤i,j≤H−1

, K(i, j) ∈ Rd×d. We can fac-
torize the GP prior by following [52], i.e.,

qF (τ ) ∝ exp
(
− 1

2
∥τ∥2K−1

)
∝

H−1∏
t=0

qt(st, st+1),

with each binary GP factor defined as

qt(st, st+1) ∝ exp
{
− 1

2
∥Φt,t+1st − st+1∥2Q−1

t,t+1

}
,



with Φt,t+1 the state transition matrix, and Qt,t+1 the
covariance between time steps t and t+ 1. In this work, we
assume a holonomic system model and the state transition
and covariance matrices are

Φt,t+1 =
[
I ∆tI
0 I

]
, Qt,t+1 =

[
1
3
∆t3Qc

1
2
∆t2Qc

1
2
∆t2Qc ∆tQc

]
respectively, with Qc the power-spectral density matrix. Via
the planning-as-inference perspective, the GP cost is

cGP(τ ) = − log qF (τ ) =
1

2

H∑
t=0

∥Φt,t+1st − st+1∥2Q−1
t,t+1

.

In essence, this cost promotes dynamic feasibility and
smoothness. More details on GP priors can be found in [52].

Note that we can introduce further costs, such as manip-
ulability, depending on task requirements.

IV. EXPERIMENTS

To verify the advantages of our approach, we perform
experiments to answer the following questions: (1) Can the
diffusion model learn collision-free high-dimensional and
highly-multimodal trajectory distributions? (2) How does
the diffusion model prior compares to a commonly used
Conditional Variational AutoEncoder (CVAE) as a trajectory
generative model? (3) Can our approach generate collision-
free trajectories in the presence of obstacles not seen during
training? (4) Does merging sampling from the prior while bi-
asing samples with cost gradients improve results, compared
to other generative models that first sample from the prior
and then optimize the likelihood? (5) Is the diffusion model
a good prior for optimization-based planning algorithms?

A. Experimental Setup

Environments. We consider different environments re-
flecting increasing difficulty, as depicted in Fig. 2. Point-
Mass2D Dense is a 2D planar navigation environment with
randomly placed spheres and boxes that a point mass robot
has to navigate. PointMass3D Maze Boxes is a 3D maze
environment with boxes and narrow passages. Panda Spheres
has a 7-dof Franka Emika Panda robot and uniformly random
spheres in its workspace, which benchmarks planners in
higher-dimensional and non-trivial collision-free configura-
tion space manifold. Panda Shelf has a 7-dof Panda robot
placed on a working bench and with a nearby shelf, which
replicates realistic tasks as a proof-of-concept of our method.
The trajectory generative models (diffusion and CVAE) are
trained with expert data generated from these environments.
To test the generalization capabilities of the learning-based
methods, all environments are extended with additional
sphere and box obstacles that are not present during training
- identified with the suffix “Extra Obstacles”.

Tasks. In all environments, the task is to find a collision-
free and smooth trajectory starting and finishing at random
configuration-space positions qstart and qgoal, which do not
result in a task-space collision. In the real-world Panda
Shelf environment, besides finding a collision-free path, we
additionally add an extra cost to maintain the end-effector
orientation constant along the trajectory. Using (7), the

trajectory cost is cEE(τ ) =
∑H−1

k=0 dSE(3) ((T (q[k]),Tg[k])),
where T (q[k]) is the end-effector pose at waypoint k and
Tg[k] the desired one. Since we only want to enforce the
orientations, we only set the desired goal orientation and
copy the desired end-effector position from the waypoint
position, i.e., T (q[k]) = [Rk,pk], Tg[k] = [Rg,pk].

Algorithms and Baselines. We denote the diffusion model
trained over collision-free trajectories as DIFFUSIONPRIOR,
and our proposed approach of sampling with cost guidance
(sec. III-D) as MPD. These methods are compared against
a set of baselines to showcase different properties. A simple
baseline is a sample-based method RRTConnect [8]. We
modify this algorithm in several ways to fully use the GPU
parallelization capabilities: at the start of optimization, we
pre-compute a buffer of collision-free configurations (the
computation time of this operation is negligible due to
parallelization); a sample is removed from the buffer when
added to the search tree; the buffer is refilled when there are
no samples left; and computing the nearest neighbor node is
done in parallel using the GPU. These improvements lead to
very fast planning for RRTConnect.

On the choice of the optimization-based planner, we use
GPMP (i.e., GPMP2 in [11]) without an informative prior -
a constant-velocity straight line connecting the start and goal
configurations. On conditional trajectory generative model as
a baseline, we learn a Conditional Variational AutoEncoder
(CVAE) [53], [15], denoted as CVAEPrior. For a fair compar-
ison, the encoder and decoder networks are the same as the
encoding and decoding parts of the U-Net diffusion model.
The conditioning variable is the start and goal configurations.
These are stacked with the learned trajectory representation
of the encoder and then passed through a neural network
to encode a Gaussian posterior in the latent space. We
ran a hyperparameter search on the latent space dimension,
learning rate, and the KL regularization multiplier and chose
the model with the best validation loss on the same dataset
used to train the diffusion model. We analyze sampling
from this prior first and afterward optimize the trajectory
cost likelihood - this method is named CVAEPosterior. The
number of optimization steps is equivalent to the one MPD
uses. We use the same cost temperatures λi for both MPD
and CVAEPosterior. Finally, the learned diffusion and CVAE
models can be used as a prior for GPMP, as well as a simple
RRTConnect prior, which can be a way to provide an initial
trajectory for optimization-based motion planning [2]. These
are referred to as [Prior]-GPMP. If RRTConnect is used as
a prior, we smoothen that solution using B-splines before
passing it to GPMP.

Metrics. A set of commonly used metrics for planning
evaluation are used. For all metrics, we report the mean
and standard deviation of motion planning results of 100
random contexts (start and goal configuration-free positions)
when sampling 100 trajectories per context. Note that for
algorithms that use RRTConnect, the trajectories for each
context are sampled sequentially since GPU batch paral-
lelization is not trivial for these methods. To assess the speed
of RRTConnect in generating a single collision-free path, the
reported times can be divided by 100, making the algorithm,



(a) PointMass2D Dense (b) PointMass3D Maze Boxes (c) Panda Spheres (d) Panda Shelf

Fig. 2: The environments considered in our experiments include robot navigation tasks of a point mass in 2D and 3D, and a 7-dof Franka Emika Panda
manipulator. In (a) and (b), the green and red dots are the initial and goal states, respectively, and the blue line is the result of RRT Connect.

TABLE I: Motion planning generation benchmarks in the environments of the training set, and additional environments with extra obstacles. ↑ means
higher is better. ↓ means lower is better. Values highlighted in bold are discussed in the main text. Legend: RRTC – RRTConnect, CPrior – CVAE Prior,
DPrior – Diffusion Prior, CPost – CVAE Posterior Optimization, MPD – Motion Planning Diffusion

PointMass2D Dense PointMass2D Dense - Extra Obstacles

T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑ T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑

RRTC 4.7 ± 2.5 100.0 ± .0 .0 ± .0 1.9 ± .5 8.0 ± 3.5 100.0 ± .0 .0 ± .0 2.2 ± .6
CPrior .02 ± .2 46.0 ± 49.5 11.8 ± 12.5 1.5 ± .4 .0 ± .0 .02 ± .2 14.0 ± 34.7 24.3 ± 14.7 1.6 ± .4 .0 ± .0
DPrior .3 ± .0 98.0 ± 14.0 5.5 ± 06.2 1.6 ± .5 1.3 ± 1.0 .3 ± .0 60.0 ± 49.0 16.0 ± 10.5 1.5 ± .5 1.3 ± 1.0
GPMP 26.5 ± .2 52.0 ± 49.7 1.7 ± 1.3 1.4 ± .4 .03 ± .03 26.5 ± .2 49.0 ± 50.0 1.1 ± 1.5 1.4 ± .4 .03 ± .04
RRTC-GPMP 38.43 ± 30.9 100.0 ± .0 .0 ± 0.0 1.94 ± .5 2.2 ± .9 42.5 ± 7.2 100.0 ± .0 0.0 ± 0.1 2.0 ± .5 2.7 ± .9
CPrior-GPMP 25.3 ± .2 71.0 ± 45.4 0.9 ± 01.8 1.4 ± .5 .01 ± .02 26.0 ± .2 53.0 ± 49.9 01.1 ± 01.7 1.5 ± .5 .02 ± .03
DPrior-GPMP 26.0 ± .3 99.0 ± 10.0 .3 ± .6 1.6 ± .5 1.4 ± 1.1 27.0 ± .3 92.0 ± 27.1 .7 ± .8 1.6 ± .5 1.4 ± .9
CPost .1 ± .1 88.0 ± 32.5 .3 ± .7 1.5 ± .4 .01 ± .02 .1 ± .1 78.0 ± 41.4 .5 ± .7 1.62 ± .5 .01 ± .02
MPD .3 ± .0 99.0 ± 10. .6 ± 1.2 1.7 ± .5 1.4 ± 1.0 .3 ± .0 79.0 ± 40.7 10.3 ± 8.5 1.7 ± .4 1.4 ± 1.0

PointMass3D Maze Boxes PointMass3D Maze Boxes - Extra Obstacles

T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑ T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑

RRTC 27.4 ± 26.1 100.0 ± .0 .0 ± .0 3.7 ± 1.8 32.0 ± 27.4 100.0 ± .0 .0 ± .0 4.0 ± 1.7
CPrior .02 ± .1 8.0 ± 27.1 29.1 ± 15.1 2.3 ± .8 .01 ± .02 .02 ± .1 4.0 ± 19.6 27.9 ± 14. 2.2 ± .8 .01 ± .02
DPrior .3 ± .0 54.0 ± 49.8 15.5 ± 11.7 2.1 ± .7 4.1 ± 3.9 .3 ± .0 51.0 ± 50.0 14.8 ± 8.4 2.2 ± .8 4.1 ± 4.1
GPMP 47.4 ± .1 16.0 ± 36.7 32.3 ± 16.6 1.5 ± .5 .01 ± .0 48.5 ± .1 19.0 ± 39.2 31.2 ± 17.9 1.4 ± .4 .01 ± .0
RRTC-GPMP 114.6 ± 56.9 100.0 ± .0 2.2 ± 1.3 4.1 ± 1.6 5.5 ± 3.0 111.2 ± 52.4 100.0 ± .0 2.4 ± 1.1 3.9 ± 1.4 5.59 ± 3.1
CPrior-GPMP 47.5 ± .3 8.0 ± 27.1 27.7 ± 15.3 2.2 ± .8 .01 ± .03 47.9 ± .3 11.0 ± 31.3 29.0 ± 16.3 2.1 ± .7 .01 ± .03
DPrior-GPMP 48.3 ± .2 39.0 ± 48.8 14.4 ± 7.7 2.2 ± .8 4.3 ± 4.1 49.0 ± .2 43.0 ± 49.5 15.1 ± 8.5 2.1 ± .8 4.2 ± 3.9
CPost .1 ± .2 50.0 ± 50.0 01.4 ± 01.4 2.3 ± .7 .02 ± .03 .1 ± .2 52.0 ± 50.0 01.3 ± 01.5 2.2 ± .7 .02 ± .03
MPD .3 ± .01 85.0 ± 35.7 2.0 ± 1.8 2.4 ± .7 4.2 ± 4.0 .3 ± .01 82.0 ± 38.4 3.1 ± 2.1 2.4 ± .8 4.2 ± 4.1

Panda Spheres Panda Spheres - Extra Obstacles

T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑ T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑

RRTC 42.9 ± 18.8 100.0 ± .0 .04 ± .08 12.1 ± 2.8 90.2 ± 103.6 100.0 ± .0 0.05 ± 0.05 13.2 ± 3.8
CPrior .02 ± .1 36.0 ± 48.0 14.9 ± 15.0 5.4 ± 1.0 .02 ± .00 .02 ± .1 10.0 ± 30.0 35.2 ± 24.6 5.4 ± 1.2 .01 ± .01
DPrior .3 ± .0 88.0 ± 32.5 11.5 ± 6.0 7.8 ± 1.4 17.3 ± 5.0 .3 ± .0 78.0 ± 41.4 23.9 ± 7.4 7.5 ± 1.6 18.0 ± 4.2
GPMP 194.4 ± .1 42.0 ± 49.4 4.1 ± 4.8 5.1 ± 1.2 .02 ± .05 194.5 ± .2 28.0 ± 44.9 9.6 ± 8.2 5.1 ± 1.3 .03 ± .12
RRTC-GPMP 230.4 ± 14.4 100.0 ± .0 02.4 ± 02.7 7.9 ± 1.4 18.7 ± 5.6 253.6 ± 58.7 96.0 ± 19.6 4.1 ± 2.8 8.0 ± 1.4 20.6 ± 7.2
CPrior-GPMP 191.6 ± .3 34.0 ± 47.4 5.2 ± 5.7 5.1 ± .9 .03 ± .06 194.2 ± .1 18.0 ± 38.4 12.3 ± 10.3 5.1 ± 1.1 .04 ± .06
DPrior-GPMP 192.3 ± .1 100.0 ± .0 4.0 ± 2.6 6.8 ± 1.2 15.6 ± 3.5 192.1 ± .1 82.0 ± 38.4 7.8 ± 3.8 7.1 ± 1.0 16.0 ± 3.6
CPost .8 ± .1 70.0 ± 45.8 .7 ± 1.0 8.0 ± 1.3 .03 ± .04 .8 ± .1 45.0 ± 49.8 1.5 ± 1.7 8.0 ± 1.2 .1 ± .1
MPD 1.1 ± .01 100.0 ± .0 1.2 ± .8 9.9 ± 1.2 17.4 ± 3.9 1.1 ± .01 93.0 ± 25.5 12.5 ± 7.6 10.0 ± 1.2 18.0 ± 4.

Panda Shelf Panda Shelf - Extra Obstacles

T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑ T[s] ↓ S[%] ↑ I[%] ↓ PL ↓ VAR ↑

RRTC 29.9 ± 8.3 100.0 ± .0 0.04 ± 0.11 11.2 ± 2.4 31.5 ± 9.4 99.0 ± 10.0 2.2 ± 4.5 11.5 ± 2.9
CPrior .03 ± .2 92. ± 27.1 1.8 ± 6.5 4.8 ± .9 .02 ± .0 .03 ± .1 68.0 ± 46.7 8.3 ± 14.1 4.6 ± .8 .01 ± .00
DPrior .3 ± .0 100.0 ± .0 3.6 ± 4.8 7.6 ± 1.2 14.5 ± 3.4 .3 ± .0 100.0 ± .0 5.9 ± 7.3 7.6 ± 1.3 14.3 ± 3.7
GPMP 192.1 ± .1 88.0 ± 32.5 .5 ± 1.6 5.1 ± 1.3 .01 ± .02 193.1 ± .13 82. ± 38.42 2.0 ± 5.1 5.1 ± 1.4 .01 ± .01
RRTC-GPMP 218.3 ± 7.0 100.0 ± .0 .4 ± .9 8.1 ± 1.1 16.7 ± 3.8 228.2 ± 20.1 98.0 ± 14.0 1.5 ± 2.1 7.9 ± 1.5 18.3 ± 6.0
CPrior-GPMP 192.9 ± .1 94.0 ± 23.8 .6 ± 2.6 4.4 ± .9 .01 ± .00 194.3 ± .2 60. ± 49.0 3.3 ± 5.7 4.5 ± .8 .03 ± .04
DPrior-GPMP 192.3 ± .1 100.0 ± .0 0.9 ± 1.1 7.1 ± 1.1 13.8 ± 2.9 192.6 ± .1 98.0 ± 14.0 2.3 ± 2.4 6.9 ± 1.2 14.0 ± 3.1
CPost .8 ± .1 93.0 ± 25.5 0.1 ± 0.4 7.4 ± 1.2 .02 ± .04 .8 ± .1 83.0 ± 37.6 0.5 ± 1.1 10.8 ± 6.8 2.4 ± 5.2
MPD 1.0 ± .01 100.0 ± .0 0.6 ± 0.9 9.3 ± 1.0 14.8 ± 3.2 1.0 ± .01 99.0 ± 10.0 4.1 ± 4.9 9.4 ± 1.1 15.1 ± 3.5

on average, faster than one second. Time (T) - is the planner’s
computational time to generate/optimize the required number
of trajectories. Success (S) - is the success rate, which is 1
if at least one of the trajectories in the batch is collision-
free, and 0 otherwise. Intensity (I) - is the percentage of the
waypoints that are in collision, which assesses the ability to
generate almost-collision-free trajectories. Path Length (PL)
- is the trajectory length. Waypoint variance (VAR) - is the

sum (along the trajectory dimension) of the pairwise L2-
distance variance between waypoints at corresponding time
steps. This metric measures how multimodal (spread) the
generated trajectories are.

Dataset generation and training. To generate multimodal
and collision-free expert data trajectories in each environ-
ment, we sample 500 random start and goal context configu-
rations and 20 trajectories per context. We use RRTConnect
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Fig. 3: (a)-(d) Diffusion steps of MPD on a batch of 100 trajectories in the PointMass2D Dense - Extra Obstacles environment. Notice how noise
transforms into multimodal, smooth and collision-free trajectories. (e) Trajectories generated by CVAEPosterior. Obstacles in red were not present in the
training environment. Trajectories in orange are collision-free, black in collision. The start and goal configurations are in green and blue.

to get a rough initial solution, then smoothen it using a
B-spline, and run many optimization steps of Stochastic-
GPMP [13] to create collision-free and smooth trajectories,
similar as [54]. This process is costly but done offline once.
The data is split into training and validation datasets (5% of
the data). The input to the diffusion and CVAE models is
a trajectory of dimension H × d, with H the horizon and
d the state-space dimension, e.g., we used H = 64 and
d = 14 in the panda environments. The horizon value is a
hyperparameter, but 64 was sufficient for the motion planning
tasks we considered. The diffusion models are trained for
25 diffusion steps with exponential scheduling (we found it
to work better than linear scheduling [24]). The models are
trained using early stopping by inspecting the validation loss.

Implementation. For maximal parallelization, all envi-
ronments, algorithms, and costs were implemented in Py-
Torch [50] utilizing the GPU. The experiments were con-
ducted on a machine with an AMD EPYC 7453 28-Core
Processor and NVIDIA GeForce RTX 3090.
B. Results in Simulation

The summarized results from planning in simulated en-
vironments are detailed in Table I. To answer our first and
second questions, we look into the environments from the
training set and observe that DiffusionPrior can generate
more collision-free trajectories than the baseline CVAEPrior.
E.g., in the PointMass2D Dense environment, the success
rate is 98% vs. 46%. Moreover, the diffusion model can
produce more multimodal trajectories, as the variance col-
umn shows. Empirically, we observed that across different
planning problems, the CVAE models tended to generate
fewer modes than the ones from the diffusion.

To assess questions 3 and 4, we look into the environments
with the suffix “Extra Obstacles”, where new obstacles not
seen during training are placed randomly in the environment.
First, we observe that the success rate by sampling only
from the priors decreases, which is expected since they were
not trained in these environments. Note that in the Panda
Shelf environment, the success rate of DiffusionPrior does
not decrease from 100%, but the collision intensity increases
from 3.6% to 5.9%. Observing the success rates of MPD
and comparing them to CVAEPosterior, we see that using the
diffusion model in combination with the cost gradients yields
better results in terms of success rate and multimodality
(as the variance measures the spread of the distribution).
This phenomenon can be seen in Fig. 3, where we compare
the optimization with the diffusion and CVAE models. A
common criticism of diffusion models is their sampling time.

However, for motion planning, the computation times of both
methods for the Panda environments are comparable since
most of the cost is spent in the gradient computation of the
cost and not in the diffusion sampling.

Finally, we check if the diffusion samples act as a good
prior for GPMP. Across all environments, using the model
samples as initialization for GPMP generated higher success
rates and multimodal trajectories compared to running GPMP
with a constant velocity straight-line mean prior. The low
success rate of GPMP is more noticeable in environments
where the collision-free space manifold is very complex, as
in the PointMass2D Dense environment. The larger compute
times of algorithms using GPMP are due to running this
algorithm with a large batch of trajectories since at every
time-step it solves a trust region gradient.

The sampling times for RRTConnect include sequentially
sampling trajectories using the GPU since, as noted before,
parallelization of RRT-like algorithms for a batch is not triv-
ial. Even though RRTConnect also is a fast prior for GPMP,
it generally produces high-jerk trajectories with higher path
lengths, which would need more optimization steps of GPMP
to achieve the same level of the DiffusionPrior.
C. Results in the Real World Panda Shelf

We test our method in a real-world task where a robot
moves a bottle while avoiding obstacles not present in the
training set and maintaining a constant end-effector orienta-
tion. We approximate the new obstacles (cf. Fig. 1) as box
models. With the robot in gravity compensation mode, we
record 3 different initial configurations and one desired goal
configuration. For each start-goal pair, we sampled 10 trajec-
tories with the MPD, filtered the ones in collision, obtaining
25 collision-free trajectories, and without selecting them with
respect to any criteria, ran them in the real robot using a
joint impedance controller. We obtained 19/25 collision-
free trajectories, demonstrating our method’s efficacy of
generating diverse success solutions. We hypothesize that the
remaining 6 trajectories that collided with the new obstacles
are due to the approximated robot (spheres) collision model.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed using diffusion models as
priors for bootstrapping motion planning problems, via the
planning-as-inference perspective. We parameterize a trajec-
tory with waypoints and construct a generative model over
the whole trajectory. We train this model via supervised
learning on motion plans generated with an optimal planner.
At inference time, instead of sampling trajectories from the



prior to only initialize an optimization-based motion planner,
we propose to use the guidance properties of diffusion
models to concurrently sample from the prior and bias these
samples towards regions of low cost (high likelihood).

Our results show several benefits of diffusion models. Due
to their modeling capabilities, diffusion models are better pri-
ors for motion planning because they can encode multimodal
trajectories better than commonly used CVAEs. Sampling
from the learned prior while optimizing the likelihood leads
to improved results in finding collision-free trajectories.
Future work will include continuing to extend the usage
of diffusion models to encode different parametrizations of
trajectories for robotic movements.
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