
Bimanual Robotic Manipulation
through Imitation with Deep
Generative Models and
Expressive Representations
Bimanuale Robotikmanipulation durch Imitation mit tiefen generativen Modellen und
ausdrucksstarken Repräsentationen
Master thesis by Nick Striebel
Date of submission: March 27, 2025

1. Review: João Carvalho, Ph.D.
2. Review: Niklas Funk
3. Review: Michael Drolet
4. Review: Prof. Jan Peters, Ph.D.
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Nick Striebel, dass ich die vorliegende Masterarbeit gemäß
§ 22 Abs. 7 APB TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angege-
benen Quellen und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten
Literatur und anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt.
Die von mir bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich
benutzte Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet
und gesondert aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Mannheim, den 27. März 2025
N. Striebel

N
.

Shitl

Abstract

Bimanual robots are essential for solving many real-world tasks typically performed by
humans, as numerous manipulation tasks require coordinated actions from two arms.
Recently, Imitation Learning has gained renewed attention in robotics due to powerful
deep generative machine learning models. These models effectively handle large datasets
and address multimodality - two inherent characteristics of human demonstrations, which
often contain significant variability and noise.

This thesis presents a structured and extensible framework for defining and generating
diverse bimanual manipulation tasks using key point definitions in task space. Leveraging
this framework, Behavioral Cloning policies are learned from demonstrated data. Specifi-
cally, state-of-the-art deep generative methods, Diffusion and Flow Matching, are utilized.
Moreover, Flow Matching is extended to the novel pose-based method ActionFlow [1],
introducing explicit object-attention mechanisms and invariance regarding spatial trans-
formations. Extending ActionFlow to a bimanual setting, an aspect previously unexplored,
represents a significant portion of this work.

Simulation experiments across environments of varying complexity reveal that ActionFlow
achieves superior performance, especially in low-data regimes, tasks with high complexity,
long horizons, and special accuracy requirements. This advantage is attributed to Action-
Flow’s structured pose-based representation. Additionally, empirical evidence explicitly
highlights the practical benefits of ActionFlow’s invariance to global transformations in
bimanual tasks.

Overall, this thesis advances deep generative methods for robot imitation learning, pro-
viding novel insights and robust methodologies particularly suited to bimanual robotic
setups.

i

Zusammenfassung

Bimanuelle Roboter sind entscheidend für das Lösen vieler realer Aufgaben, die typischer-
weise von Menschen ausgeführt werden, da zahlreiche Manipulationsaufgaben koordi-
nierte Aktionen beider Arme erfordern. In den letzten Jahren hat das Imitationslernen in
der Robotik aufgrund leistungsstarker tiefer generativer Modelle neue Aufmerksamkeit
erfahren. Diese Modelle ermöglichen den effektiven Umgang mit großen Datensätzen
und adressieren die Multimodalität menschlicher Demonstrationen, die oft durch starke
Variabilität und Rauschen geprägt sind.

Diese Arbeit stellt ein strukturiertes und erweiterbares Framework vor, um vielfältige
bimanuelle Manipulationsaufgaben basierend auf Schlüsselpunkt-Definitionen im Auf-
gabenraum zu generieren. Aufbauend auf diesem Framework werden Strategien mittels
Verhaltenklonens (Behavioral Cloning) aus den gesammelten Demonstrationsdaten er-
lernt. Im Besonderen werden dabei moderne generative Verfahren wie Diffusion und
Flow Matching eingesetzt. Zudem wird Flow Matching zur posenbasierten Methode
ActionFlow [1] erweitert, die explizite Aufmerksamkeitsmechanismen zwischen Objekten
enthält und gegenüber räumlichen Transformationen invariant ist. Die Erweiterung von
ActionFlow auf bimanuelle Szenarien - ein bisher nicht behandelter Aspekt - stellt einen
bedeutenden Teil dieser Arbeit dar.

Simulationen mit Aufgaben unterschiedlicher Komplexität zeigen, dass ActionFlow eine
höhere Performanz erzielt, insbesondere bei geringen Datenmengen, Aufgaben mit hoher
Komplexität, langen Zeithorizonten und besonderen Anforderungen an die Genauigkeit.
Dieser Vorteil wird insbesondere auf die strukturierte, posenbasierte Repräsentation von
ActionFlow zurückgeführt. Darüber hinaus wird der praktische Nutzen der Invarianz von
ActionFlow gegenüber globalen Transformationen für bimanuelle Aufgaben empirisch
verdeutlicht.

Insgesamt leistet diese Arbeit einen Beitrag zur Weiterentwicklung tiefer generativer Mo-
delle für robotisches Imitationslernen, indem sie neue Erkenntnisse und robuste Methoden
insbesondere für bimanuelle Robotersysteme bereitstellt.

ii

Acknowledgments

I want to express my sincere gratitude to my supervisor, João Carvalho, for his dedicated
guidance throughout this thesis and continuous support during my previous master’s
projects. Additionally, I am very grateful to my supervisors, Niklas Funk and Michael
Drolet, who significantly enriched this work with their valuable input, ideas, and feedback.

My deep appreciation also goes to Prof. Jan Peters for making this thesis possible, providing
continuous access to the Institute for Intelligent Autonomous Systems (IAS) research
laboratory throughout my entire master’s studies, and giving me access to state-of-the-art
robot and computer hardware.

Finally, I want to thank my family and friends for their constant support, encouragement,
and assistance.

iii

Software

The code developed during this thesis is hosted in a private GitHub repository. For access
and further inquiries, please get in touch with the author at nickstriebel@gmx.de.

iv

mailto:nickstriebel@gmx.de

Contents

Figures, Tables and Algorithms vii

Abbreviations ix

1. Introduction 1
1.1. Contribution and Thesis Structure . 2

2. Foundations 3
2.1. Robot Control . 3
2.2. Reinforcement Learning . 4
2.3. Imitation Learning . 6

3. Related Work 8
3.1. Algorithms . 8
3.2. Environments & Datasets . 10

4. Environment 12
4.1. Robot Control . 12
4.2. Action Space . 14
4.3. Observation Space . 15

5. Bimanual Tasks 16
5.1. Existing Bimanual Tasks . 16
5.2. New Bimanual Tasks . 17
5.3. Randomization and Task Variations . 19

6. Data Collection 20
6.1. Waypoint-Based Expert . 20
6.2. Data Storage and Processing . 21

v

7. Learning Framework 23
7.1. Algorithm Overview . 23
7.2. Learning Pipeline . 24

8. Algorithms 25
8.1. Common Policy Structure . 25
8.2. Diffusion Policy . 27
8.3. Flow Matching . 33
8.4. ActionFlow . 35
8.5. Pose-based Flow Matching without IPA . 46

9. Experiments 47
9.1. Sanity Check . 48
9.2. Sample Efficiency . 49
9.3. Invariance of ActionFlow . 50

10.Discussion and Outlook 52

References 55

A. Tasks in Detail I

B. Hyperparameters VII

C. Experimental Results in Detail X

vi

Figures, Tables and Algorithms

List of Figures

1.1. Bimanual Tasks . 2

5.1. Bimanual tasks of robosuite . 17
5.2. New Bimanual Tasks . 18

8.1. Multi-Step Inference Cycle . 26
8.2. Forward Diffusion Process. 27
8.3. Diffusion Model . 30
8.4. Multi-Head Attention . 31
8.5. Probability Flow in 1D . 33
8.6. Linear vs. Exponential Schedule in Flow Matching 35
8.7. Flow in R3 × SO(3) . 37
8.8. ActionFlow Model . 42
8.9. Invariant Point Attention . 45
8.10.Pose-based Attention Block without IPA . 46

9.1. Success Rates of the Sanity Check Experiments 48
9.2. Success Rates for Varying Numbers of Demonstrations 50
9.3. Success Rates for the Invariance Experiment 51

A.1. Peg-In-Hole Task . I
A.2. Lift Task . II
A.3. Handover Task . III
A.4. Transport Task . III
A.5. Place-Ball Task . IV
A.6. Pick-Place Task . V

vii

A.7. Quad-Insert task . VI
A.8. Hinged-Bin Task . VI

B.1. Transformer Blocks in Comparison . VIII
B.2. Cosine Learning Rate Schedule . IX

List of Tables

5.1. Task Categorization . 19

B.1. Datasets and Training Overview . IX

C.1. Results of the Sanity Check Experiment . X
C.2. Results of the Sample Efficiency Experiment XI
C.3. Results of the Invariance Experiment . XII

List of Algorithms

6.1. Waypoint Expert Rollout . 22

8.1. Diffusion Model Training . 29
8.2. Diffusion Model Inference . 29
8.3. Flow Matching Training . 35
8.4. Flow Matching Inference . 35
8.5. Training step of a Pose Based Flow Model 40
8.6. Inference step of a Pose-Based Flow Model 40

viii

Abbreviations

Notation Description

BC Behavior Cloning

BIL Bimanual Imitation Learning

CNN Convolutional Neural Network

GAIL Generative Adversarial Imitation Learning

i.i.d. independently and identically distributed

IL Imitation Learning

IPA Invariant Point Attention

IRL Inverse Reinforcement Learning

MDP Markov Decision Process

MHA Multi-Head Attention

MLP Multilayer perceptron

OSC Operational Space Control

ix

PD proportional-derivative

PID proportional–integral–derivative

RL Reinforcement Learning

SI International System of Units

SOTA state-of-the-art

x

1. Introduction

Robotics has dramatically evolved over recent decades, transforming from rudimentary
automated machines into sophisticated, adaptive systems capable of tackling increasingly
complex and nuanced tasks once thought exclusively manageable by humans. Among
these advancements, bimanual robotics - systems equipped with twomanipulators working
cooperatively - stands out as promising. They enable the execution of tasks unattainable
by single-arm robots. Applications range from precise assembly and medical surgery
to complex manufacturing and household chores, highlighting its substantial potential
impact on industry, healthcare, and everyday life.

However, despite these impressive capabilities, the manual programming of detailed
robotic actions remains prohibitively complex, cumbersome, and often impractical. Human
demonstrations inherently capture nuanced strategies and expert insights, offering a rich
source of learning data. Consequently, Imitation Learning (IL), which allows robots to
acquire complex behaviors directly from observing human or expert demonstrations, has
emerged. By leveraging existing expertise, IL significantly simplifies the learning process,
removing the need for explicitly defining detailed action sequences or intricate reward
structures, thus accelerating development and deployment cycles.

While traditional IL approaches, such as Behavior Cloning (BC), demonstrate considerable
potential, they often falter in scenarios that deviate from training data, limiting their
practical application. Researchers have approached advanced learning paradigms, includ-
ing deep generative models, to address these limitations. These models promise better
performance and significantly enhanced generalization and adaptability.

This thesis explores deep generative models specifically applied to the Bimanual Imitation
Learning (BIL) field. It evaluates cutting-edge algorithms, tests their limitations, and
introduces novel modifications designed to substantially boost their robustness, flexibility,
and applicability. Through comprehensive experimentation within a structured, modular,
and easily extensible learning framework, this work opens pathways toward more versatile,
precise, and human-like robotic manipulation.

1

Figure 1.1.: A selection of bimanual tasks in the developed framework.

1.1. Contribution and Thesis Structure

Chapter 2 covers the foundations of this work and introduces the reader to the relevant
notations.

Based on the current state of research and the available sources (Chapter 3), this work
is motivated by the need for a structured and flexible approach to BIL and is a twofold
contribution:

Development of a Modular (Bimanual) Imitation Learning Framework. The first part
of this work (Chapters 4 to 7) focuses on designing a modular framework for BIL. The
framework is intended to facilitate the seamless implementation of new environments,
simplify data collection, and support the evaluation of various imitation learning algo-
rithms. Researchers can efficiently experiment with different setups and methodologies,
as the framework prioritizes modularity and flexibility.

Application of the Framework. In the second part (Chapters 8 and 9), the developed
framework is utilized and validated by demonstrating its capabilities with existing methods.
Furthermore, it is the foundation for extending ActionFlow [1] to the domain of bimanual -
and potentially n-arm - manipulation. ActionFlow is tested against its proposed properties
and current state-of-the-art (SOTA) approaches.

This structured approach provides a robust infrastructure for experimentation in imitation
learning and contributes to advancing bimanual manipulation research.

Chapter 10 concludes the work with a final summary and an outlook.

2

2. Foundations

This chapter explores the theoretical fundamentals for subsequent discussions. The reader
should note that this chapter only covers the basics, introducing the topic and relevant
notation. Deeper insights are given as needed in the following chapters. One important
aspect is robot control, a crucial element in robotics that requires accuracy and precision.
The key focus is Imitation Learning (IL), which allows robots to learn from demonstrations.
Although IL can function independently of Reinforcement Learning (RL), understanding
particular RL concepts is beneficial. This chapter provides a brief overview of some of the
relevant keys.

2.1. Robot Control

Effective robot control is essential for performing precise tasks. Achieving the necessary
accuracy at a low level of control is challenging due to various physical factors. For
instance, gravitation must be compensated, and unknown friction within the joints and
motors, such as temperature drifts, can complicate achieving smooth and precise control.
SOTA controllers must also provide safety properties, like compliance in contact-rich
environments.

Generally, two primary approaches to robot control can be distinguished: Control in the
joint space and control in the task space. Joint space control involves directly managing
the individual angles or positions of each joint in the robot. While this method offers
direct control over the robot’s internal configuration, it can be challenging to interpret
and manage. Alternatively, Operational Space Control (OSC) focuses more intuitively on
controlling the robot’s end effector (e.g., a robotic arm’s gripper or tool) in the task space.
The key advantage of this approach is its easy-to-understand and interpretable movement
specification. A linear movement in space is specified via a linear trajectory rather than
a complex composition of individual joint trajectories. In addition, the control input is

3

decoupled from the robot’s architecture, allowing it to be applied across different robotic
platforms.

2.1.1. Operational Space Control

With OSC [2], [3], it is possible to execute forces in the coordinate system of the actual
task, e.g., the world frame. Position and orientation of the robot end effector x ∈ Rn results
from the forward kinematics x = fkinematics (q) of the robot with its joint coordinates q.
Given the joint velocities q̇, accelerations q̈ and the Jacobian J (q) = dfkinematics (q) /dq
the velocity and acceleration in task space can be derived as

ẋ = J (q) q̇ , ẍ = J (q) q̈+ J̇ (q) q̇ .

OSC allows to translate an arbitrary control signal u in the task space to the corresponding
joint forces τ [3]:

τ = JT (q)u . (2.1)

In robotics, u is typically the output of a PID- or proportional-derivative (PD)-controller [4],
whereas the first provides higher accuracy, while the latter implements a compliant
behavior. Further compliance and control can be achieved by attaching an admittance
controller [5].

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm where an agent interacts with an
environment to achieve a goal by learning from the consequences of its actions. Unlike
supervised learning, where a model is trained on a fixed dataset of labeled examples, RL
relies on feedback from a reward function guiding the agent toward optimal behavior. RL
involves three key components: the agent, the environment, and the reward signal. The
agent takes action in the environment, and the environment responds by transitioning
to a new state and providing feedback through a reward. Over time, the agent builds a
policy that maps states to actions, maximizing its long-term reward.

4

2.2.1. Task Formulation

Many algorithms model the environment or task as a Markov Decision Process (MDP) [6].
A MDP consists of a state space s ∈ S, an action space a ∈ A, a transition probability
distribution

p : S ×A× S → [0, 1] , st+1 ∼ p (· | st, at) ,

an initial state distribution

µ0 : S → [0, 1] , s0 ∼ µ0 ,

and a reward function
r : S ×A× S → R . (2.2)

Thereby, the index t donates the current time step. The Markov property [6] assumes that
the current state st contains all relevant information about the environment and its past:

p (st+1 | s0:t, a0:t) = p (st+1 | st, at) .

While this assumption might not match reality perfectly, it has proven to work in many
cases.

With this setup, the goal of RL is to find an optimal agent, in the form of a policy π, which
outputs an action a based on the current observation o ∈ O. The observation space O
depends on the used sensors and the current state: S sensors−−−−−→ O. Generally, the policy π
can be described as a conditional distribution

π : O ×A → [0, 1] , a ∼ π (· |o) .

Finding the optimal policy is equivalent to maximizing the cumulated reward Jπ:

π∗ = argmax
π

Jπ , Jπ = E
µ0,p,π

[︄∑︂
t

γt r (st, at, st+1)

]︄
. (2.3)

Here, the discounting factor γ ∈ [0, 1] secures finite reward sums.

2.2.2. Difficulties in Reinforcement Learning

Equation (2.3) shows the importance of the reward function r: Its shape implies the ideal
behavior. Learning the balance between exploration (trying new actions) and exploitation

5

(choosing actions known to yield high rewards) is a critical aspect: If the agent acts too
greedily at the start, it may not solve the task, but too much exploration results in an
unstable learning process. Overcoming these difficulties can be challenging: Depending
on the complexity of the task, defining a reward that induces the desired behavior can be
arbitrarily complex, and fine-tuning the exploration-exploitation trade-off can be very time-
consuming. Furthermore, optimal expert behaviors might have taken years to develop.
Cloning such a policy is much easier than learning it from scratch. All this motivates the
approach of IL.

2.3. Imitation Learning

IL tries to mimic some expert behavior. It does not need an explicit reward function.
Learning from expert demonstrations gives the agent guidance, drastically increasing the
learning speed. This comes at the cost of lousy generalization for unseen states: The
agent does not know how to return to the experts’ trajectory and requires new data in
these scenarios. This section provides a collection of various IL approaches. However,
it only captures the very basics. The different approaches are classified into the classes
Behavior Cloning and Inverse Reinforcement Learning. This work focuses on the first class.
The fundamental working principle is explained in the following section.

2.3.1. Behavior Cloning

BC poses the earliest [7] and purest from of IL. Referring to the MDP setup of RL, the
expert demonstrations are given as a set of observation-action traces

o0 → a0 → o1 → a1 → o2 → a2 → · · · ,

and are called expert trajectories τE. BC splits up these trajectories into observation-action
pairs (oi, ai) and treads these pairs to be independently and identically distributed (i.i.d.).
With this setup, the BC objective is to learn a policy πθ that matches the log likelihood of
the expert πE:

θ̂ = argmax
θ

E
(o,a)∼πE

[logπθ (a|o)] .

Using the Kullback–Leibler divergence [8]

KL (p(x) || q(x)) =
∫︂

p(x) log
p(x)

q(x)
dx ,

6

this objective can also be formulated via

θ̂ = argmin
θ

KL (πE (a|o) ||πθ (a|o)) . (2.4)

In austere environments, BC can work quite well but suffers from the covariate shift
and the i.i.d. assumption: Supervised learning assumes that the observation-action pairs
(oi, ai) are distributed i.i.d.. Still, in a MDP, an action in a given state (observation) induces
the next state, which breaks this assumption. Errors made in different states can add up
until a state out of the experts’ distribution is reached. The policy has never been trained
in this state (more precisely, on the observation induced by this state). Thus, the behavior
is undefined and can lead to failure.

Many SOTA methods [1], [9]–[11] are based on datasets of observation-action pairs.
This positions these approaches in the BC rubric. The methods presented in Chapter 8
improve over vanilla BC by using SOTA generative models and by working with action
and observation chunks.

7

3. Related Work

IL is an approach that tries to mimic the behavior of an agent [12]–[14], which proves its
capabilities in various robotic tasks [15], [16]. BIL covers the research field of performing
human-like tasks with two arms and has acquired a growing interest in recent years
[17]–[21]. Early work in this field took a control-based or planning-based approach [22]–
[25], while today’s approaches are learning-based and use RL [26]–[28] or Movement
Primitives [16], [21], [29]. The latter poses an unique form of IL but comes with a
higher inductive bias, as it assumes the learned behavior can be represented through a
dynamical system, limiting its flexibility in tasks that require more complex, unstructured,
or multimodal behaviors. This work focuses on pure neural network-based approaches
trained via IL. An overview of traditional and SOTA IL approaches is given in this section.
Existing tasks and benchmarks targeting BIL are presented.

3.1. Algorithms

Nowadays, many algorithms and approaches targeting IL exist. The most basic approach
for IL is vanilla BC [7]. It is well-known and simple. BC is a supervised learning approach
that targets learning observation-action pairs π(a|s) from expert demonstrations, by as-
suming that these pairs are i.i.d. The simplicity of this approach comes at the cost of the
covariate shift. In out-of-training distribution states, the learned policy is undefined and
can lead to failure. These unseen states can be reached easily as the i.i.d. assumption of
the action pairs violates the Markov property of MDPs. Nevertheless, BC can be successful
if enough expert demonstrations are available.
DAgger [30] extends BC by asking the expert for guidance in unseen states. This reduces
the covariate shift and leads to better generalization, but it is only applicable if an expert
is available during training.
DART [31] modifies BC without needing an expert during training time. Noise is added

8

to the experts’ policy during data collection, forcing the supervisor to demonstrate how
to recover from errors. However, this approach may be impractical in high-precision
scenarios, as injecting noise into the demonstrations could result in imminent failure.
Addressing some of the limitations of feed-forward BC, Implicit BC remodels the policy
from a ∼ π(·|s) to a = argmina′ E(s, a). E is a learned energy function encoding the
expert behavior. On top of handling discontinuities and multi-valued functions, Implicit
BC can show better extrapolation in unseen states.
ALOHA [10] showcases its power by using an Action Chunking Transformer and extending
BC by learning to predict a sequence of actions as a response to a history of observations.
Implementing a Multi-Head Attention (MHA) Transformer [32], ALOHA showed impres-
sive results in real-world scenarios, even in an extended mobile setup [33].
ActionFlow [1] displays another novel approach that works with sequential observations
and actions. It generates action sequences by combining Flow Matching [34] with Invari-
ant Point Attention (IPA) [35] to achieve spatial invariance. This method was only tested
on single-arm tasks.
Also, using a modern network structure, the Diffusion Policy [9] uses a conditional Dif-
fusion model [36] to learn the gradient of an action-distribution score function, similar
to the energy learned in the Implicit BC approach. The main advantage of this method
is its improved stability. APEX [19] is another approach that uses Diffusion models but
also focuses on collision prevention by adding information about obstacles to the model,
making it less general.
Another group of algorithms [11], [18], [37] makes use of the Transformer architecture
[32] in combination with RGB-D observations. These methods learn a single model
for several tasks by adding a language description. [18] proposes the PerAct2 model
which explicitly extends the work of [11] to a bimanual setup. [38] is another work that
approaches bimanual IL using image data and point clouds. A disadvantage of these
methods is the need for large amounts of data, e.g., [18] requires five RGB-D cameras.

While all the previous methods are somehow based on the original BC idea, Generative
Adversarial Imitation Learning (GAIL) [39] was the first method approaching the task of
IL using Inverse Reinforcement Learning (IRL). IRL approaches try to learn some cost or
reward function that explains the experts’ behavior. Based on this, the policy is trained
using basic RL techniques.
GAIL specifically learns the rewards function as a discriminator component from a General
Adversarial Network [40]. The training is completed once the discriminator cannot
distinguish between state-action samples from the generator network and the expert.
Some adaptations [41]–[43] try to improve this concept further.
Maximum Entropy IRL [44] also learns a reward function that explains the experts’

9

behavior. The goal is to learn a diverse and multimodal policy by trading this off with
maximizing the entropy of the resulting policy. Maximum Causal Entropy IRL [45]
additionally considered the entropy of the state distribution over time to take the system
dynamics into account. Guided Cost Learning [46] even goes a step further and combines
expert demonstrations with active learning to improve the efficiency of learning the reward
function.
Adversarial training can suffer from instability between the generator and discriminator.
IQ-Learn [47] avoids this by learning a Q-function. The state-action value function
encodes the reward and the policy: a = argmaxa′ Q(s, a′). This method proved to work
for single-arm manipulators [47].
SQIL [48] also targets the task of imitation using RL and the Q-function. Handing the
agent a reward of +1 for matching expert demonstrations and a reward of 0 for all other
behaviors, this method aims to match the expert demonstrations over a long horizon.
The sparse reward, encoded using a Q function, encourages the agent to stay close to
the demonstrated states. Although applying a basic RL approach, this algorithm can be
classified as a regularized variant of BC.

3.2. Environments & Datasets

With a large number of developed IL algorithms available, the need for shared envi-
ronments and benchmarks arises [49]–[55]. However, most works focus on single-arm
manipulation: MimicGen [56] allows the production of large-scale datasets with minimal
human effort and provides 18 different single-arm tasks. D3IL [57] targets benchmarking
with a focus on diverse behaviors in seven single-manipulator tasks. D4ARL [58] contains
the Adroit domain [59] and the FrankaKitchen tasks [60], both containing several single-
arm tasks. MoMaRT [61] is a collection of five long-horizon robot mobile manipulation
tasks in a realistic simulated kitchen. However, the robot only has a single arm with
one gripper. RoboTurk [62] enables the collection of large-scale datasets but also only
evaluates the framework on three single-arm tasks (lifting, picking, and assembly).
Robosuite [63] is a simulation framework using the MuJoCo [64] physics engine. It
provides several environments, four of them implementing bimanual tasks: handover, lift,
peg-in-hole, and transport.
HumanoidBench [65] focuses on building a simulation benchmark for humanoid robots
but also has some static tasks that can be reduced to a bimanual setup.
Providing a large benchmark framework for various manipulation skills in simulations
of high realism (based on SAPIEN [66]), ManiSkill [67] contains two bimanual tasks,

10

namely move-bucket and push-chair.
ALOHA [10] evaluates its models in five real-world scenarios and the simulated tasks
single-insertion, mug-on-plate, and double insertion, all requiring two arms. With Mobile
ALOHA [33], the authors add further bimanual tasks with cook-shrimp, wipe-wine, use-
cabinets, rinse-pan and push-chairs. They use a particular setup and build an extensive
teleoperation interface.
The authors of [68] implement further bimanual real-world scenarios and benchmarks. It
evaluates different cloth manipulation tasks. Bi-KVIL [38] focuses on kitchen tasks like
placing-spoon-on-table, pour-water, and clean-table. Bunny-VisionPro [69] provides a tele-
operation system that also allows the collection of data for IL; tasks like pan-cleaning and
uncovering-and-pouring are already elaborated. BiDex [20] offers a low-cost and portable
bimanual dexterous teleoperation framework to collect data in real-world scenarios that
require high dexterity, e.g., drill-operating and wire-winding. APEX [19] also focuses on
real-world tasks and evaluates its method on two bimanual chores: ball-in-cup and vertical-
stacking. BRMData [70] is a dataset for real-world bimanual-mobile robot manipulation
in household tasks. Some interesting task implementations are bottle-handoff, wine-wipe,
and play-with-rubiks-cube.
Bi-Touch [71] focuses on tactile feedback and uses the tasks pushing, reorienting, and
gathering to evaluate their approach. The environments are implemented using PyBullet
[72] as the physical backend, making it less potent than works based on MuJoCo [64],
for example. The implementation of [73] also uses PyBullet and implements the task of
lift-table-on-box, presenting a task of a larger scale.

The latest benchmarks for BIL have been established by Drolet et al. [17] and PerAct2 [18].
[17] focuses on comparing a cross-section of fundamental and state-of-the-art algorithms.
The simulation is based on the work of [29] and uses the MuJoCo [64] physics engine.
The experts’ data is generated using waypoints. [29] would also enable collecting experts’
data with PS Move controllers. [17] implements a single task (four-peg-insertion-task)
and uses it to benchmark six different algorithms regarding hyperparameter tolerance,
noise tolerance, compute efficiency, performance, and training stability. The work uses
a minimal observation space without image-like data. [18], on the other hand, only
compares vision and RGB-D data-based algorithms. The focus is on training a single model
for various tasks using language conditioning. Using CoppeliaSim [74] as its backend, 13
different tasks (e.g., lift-a-ball, handover-an-item, straighten-rope, put-bottle-in-fridge) are
implemented. These environments extend the RLBench datasets [53] and use waypoints-
based data generation. In contrast to [17], the benchmarking of [18] focuses on analyzing
the performance of the algorithms dependent on the coupling (temporal, spatial, and
physical) and required symmetrical and synchronized coordination.

11

4. Environment

The environment setup is the first crucial component of the BIL framework. Since real-
world robotic experiments are expensive, time-consuming, and often difficult to reproduce,
using simulations as a foundation is the most practical approach. Simulations offer full
control over the experimental setup, ensuring repeatability and scalability, making it the
best choice for developing and benchmarking learning methods.
When deciding to use simulations, selecting a suitable simulation framework becomes
essential. In this work, robosuite [63] is chosen as the primary simulation environment.
Built upon the MuJoCo [64] physics engine, it provides a solid base. The environment
creation is factored from the pure XML-based creation into object-oriented classes that
handle the individual components. This gives an intuitive entry point for extensions and
adaptations. robosuite provides a rich set of pre-implemented objects and environment
components and has built-in support for various robot models. It also offers features
like domain randomization, efficient data collection mechanisms, and video recording,
and has implemented multiple controller types. Furthermore, it provides fundamental
implementations for bimanual manipulation tasks, making it a solid foundation for the
framework of this work.
This chapter provides an overview of how robosuite is utilized and introduces the
implemented two-arm tasks.

4.1. Robot Control

The control of bimanual robots requires two primary components: (i) the control of the
end-effector to manipulate objects and (ii) the control of the gripper to grasp and release
objects. The individual components are taken over from robosuite.

12

4.1.1. Operational Space Control

robosuite [63] offers several pre-implemented controllers, one of these is the OSC [3].
This controller is chosen for the following reasons. It provides intuitive control in task
space, making it easy to specify actions in task space. It enables generalization across
different robot types since the control signals are independent of the robot’s internal
configuration. It allows for scalability, as applying an OSC per arm enables generalization
to an arbitrary number of robot arms.
The OSC implementation in robosuite follows standard operational space control theory,
extending Equation (2.1) to

τ = JT (q)u⏞ ⏟⏟ ⏞
τ task

+τ null + τ g

by incorporating gravity compensation τ g to enhance end-effector accuracy and null-space
control τ null. The latter guides the robot around problematic singularities and keeps it in
a configuration of high manipulability [75].
The primary control signal u for task-space movements is based on a PD controller [4],
ensuring compliant behavior:

u = KP (xdes − x) + KD (ẋdes − ẋ) .

Here xdes and x are the desired and current end-effector pose. ẋdes and ẋ are the corre-
sponding velocities. Stiffness KP and damping KD define the compliance and damping
behavior of the controller. For this work, the default settings of robosuite are used to
implement a critical damping: KP = 150 · I6 and KD = 2

√
KP The reader should note

that the units for positional and rotational entries vary, but the given values follow the
International System of Units (SI).
To simplify learning, the desired velocity is set to zero in all cases. This suffices for
manipulation tasks and reduces the action space dimensionality. Additionally, robosuite
provides implementations for absolute and delta control inputs. This work uses delta
inputs since they are independent of the task-space size. With this choice, the final control
formulation is

τ = JT (q) (KP∆x− KDẋ) + τ null + τ g .

The controller’s input is ∆x ∈ R6. The first three components correspond to the desired
change in position ∆p. The last three components describe the desired change in rotation
∆r, expressed using the axis-angle representation.

13

4.1.2. Gripper Control

The gripper control is a simple proportional controller for each joint q of the gripper:

τq = kP(qdes − q) .

The robosuite‘s default uses a rigid setup with kP = 1000. The SI unit again depends on
the joint type.

4.2. Action Space

Like the controller, the action space is decomposed into control signals for each end-effector
and each gripper.

4.2.1. End-Effector Action Space

For a single arm, the end-effector action space for the end-effector is defined as a ∈ [−1, 1]6.
The action values are normalized to the range [−1, 1] and are then mapped to the actual
controller ranges of ∆x, which in this work falls to ±5 cm for position and ±0.5 rad for
rotation.

4.2.2. Gripper Action Space

The gripper action space is [−1, 1]. The lower limit −1 corresponds to fully opening the
gripper, and+1 corresponds to fully closing the gripper. This gripper action is independent
of the number of fingers and synchronizes all of them. This is sufficient for tasks that
require grasping simplistic objects, but depending on the task and its objects, this can be
a limiting factor. Furthermore, it should be noted that the change of the gripper state is
limited to ±0.2 per time step: To change the command signal from fully open to fully
closed or visa versa, at least 2/0.2 = 10 time steps are needed.
For internal control, the input actions are then internally scaled to the corresponding joint
limits of the individual fingers.

14

4.2.3. Total Action Space

Combining the above components, the total action space for Na arms becomes [−1, 1]7Na .
Each arm contributes seven dimensions, six for the end-effector and one for the gripper:

a =

⎛⎜⎜⎜⎝
∆p̃

∆r̃

q̃grip

⎞⎟⎟⎟⎠ ∈ [−1, 1]7 (4.1)

The tilde indicates that these actions are scaled to [−1, 1]. A scaling function s is used to
transfer between the scaled values and the actual input values for the controller parts:

•̃ = s(•) and • = s−1 (•̃) , for • = ∆p,∆r, qgrip . (4.2)

In tasks without a gripper, the action space dimension is reduced accordingly. The actions
are queried with a frequency of 20Hz, while the underlying MuJoCo simulation runs with
500Hz.

4.3. Observation Space

robosuite provides a highly flexible observation space, supporting joint positions and
velocities, poses in the world frame, RGB images, RGB-D images, and segmentation masks.
Arbitrary other observation modalities can be added.

15

5. Bimanual Tasks

A core goal of this work is to provide a structured set of bimanual tasks that cover a wide
range of coordination challenges. The tasks are categorized based on the arms’ temporal,
spatial, and physical coupling and the requirement for symmetrical and synchronized
coordination, following the categorization proposed in [18]. Additionally, a horizon
category indicates the approximate duration needed to complete the task. Furthermore,
it is ensured that all selected tasks actually require two arms. robosuite [63] already
provides four two-arm tasks; another four were added to achieve sufficient task coverage.
For specific task details, the author is referred to Appendix A.

5.1. Existing Bimanual Tasks

The existing bimanual tasks in the robosuite framework are illustrated in Figure 5.1.
The Figure highlights the flexibility of different robot configurations in robosuite.

The peg-in-hole task requires the robot to guide a cylindrical stick through a square hole.
This task does not involve grippers, as the objects are rigidly attached to the robot arms.
The coupling in this scenario is primarily spatial, as both arms must work within a confined
area while exerting force to achieve proper insertion. Physical and temporal coupling
does not appear. Each arm contributes equally to the insertion process without a strict
timing constraint. The coordination required is asymmetric but synchronized.
The lift task is a short-horizon task in which both arms must grasp and lift an edgy cup
from a table. The cup is designed to be easily gripped, minimizing the complexity of
the grasping process. This task exhibits spatial and physical coupling, as the arms must
operate within the same workspace and apply force simultaneously. Coordination in this
task is symmetric and synchronized since both arms must exert equal force and lift the
object in a coordinated manner to maintain balance and prevent unintended tilting.
The handover task requires one robot arm to pick up a hammer and transfer it to the

16

Peg-In-Hole Lift Handover Transport

Figure 5.1.: Bimanual Tasks of ROBOSUITE [63] with varying robot configurations. Peg-
in-hole: The green pole has to be stuck through the hole of the red plate. Lift: The two
arms must lift the squared cub. Handover: One arm has to pick up the hammer from the
table and hand it over to the other arm. Transport: The red cube must be moved from the
rear box to the box up front. The lid of the left box must be removed, and the hammer
must be placed in the rear box. Here, it can be seen how lightning and the environment’s
appearance can be adapted.

other arm. This task introduces temporal coupling, as the handover movement follows
a sequential sequence. The task exhibits a mix of spatial and physical coupling, as both
arms must interact with the same object in a controlled manner. In this case, the required
coordination is asymmetric but synchronized. A simplified version of this task exists,
where the hammer starts in the gripper of one of the arms, reducing the complexity.
The transport task introduces an additional layer of complexity, requiring a hammer to be
moved from an initial bin to a target bin while simultaneously removing an obstructing
object from the target bin. An extra challenge is introduced by covering the target bin with
a lid, which must be lifted before placing the hammer inside. This task exhibits all three
types of coupling: temporal, as the lifting of the lid and transport of the hammer must
be executed sequentially; spatial, as both arms operate in overlapping workspaces; and
physical, during the handover. The coordination is asymmetric but again synchronized.

5.2. New Bimanual Tasks

Four additional tasks have been implemented to extend the range of bimanual challenges
beyond the existing robosuite tasks. They are depicted in Figure 5.2. These tasks
focus on increasing difficulty in coupling, coordination, and the necessity for precise
manipulation.

The place-ball task involves lifting and placing a large ball inside a box. The ball is designed
to be too large for a single-arm grasp, necessitating the use of both arms for lifting. The

17

Place-Ball Pick-Place Quad-Insert Hinged-bin

Figure 5.2.: Implemented tasks in the bimanual framework. Place-ball: The two arms
must lift and place the ball in a box up front. Pick-place: Including a handover, the
hammer must be picked up and placed in the box. Quad-insert: The bracket must be
placed correctly on the four pins with 1mm tolerance. Hinged-bin: The hammer must be
placed in the hinged bin. The opening angle of the lid is limited so that the box does not
stay open by itself. At the end of the task, the bin must be closed.

task demonstrates strong spatial coupling, as the arms must coordinate their forces and
maintain a stable ball hold. Coordination is symmetric and synchronized, requiring the
arms to move together to avoid dropping the ball.
The pick-place task extends the complexity of the handover task by requiring the hammer
to be placed inside a small box after transfer. This increases the temporal horizon and
introduces additional precision constraints. The task mainly exhibits temporal and spatial
coupling, as the arms must work in sequence to complete the task. The coordination is
asymmetric and synchronized, with one arm passing the object and the other executing
the final placement.
The quad-insertion task, adapted from [17], presents a significantly more challenging
scenario compared to the lift task. The two arms must grasp a bracket with two handles,
move it to the target location, and precisely insert it onto four pins with a tight tolerance
of 1mm. This task requires exceptional spatial and physical coupling, as both arms must
exert precise control to achieve alignment. Coordination is symmetric and synchronized,
as the arms must simultaneously adjust their positioning to ensure successful insertion.
Finally, the hinged-bin task involves picking up a hammer and placing it inside a bin
that is closed with a hinged lid. One arm is responsible for lifting the lid, while the
other places the hammer inside. Unlike more straightforward object-placement tasks,
like the put-bottle-in-fridge [11], this scenario mandates actual bimanual coordination, as
the lid has a limited opening angle and does not remain open once released. The task
exhibits strong temporal and spatial coupling, as both arms must operate synchronously
to complete the sequence. Coordination is asymmetric and synchronized, with each arm
having distinct but interdependent roles.

18

Coupling Coordination

Task temporal spatial physical symmetrical synchronized Horizon

Peg-In-Hole 7 3 7 7 3

Lift 7 3 3 3 3

Handover 3 3 3 7 3

Transport 3 3 3 7 3

Place-Ball 7 3 7 3 3

Pick-Place 3 3 3 7 3

Quad-Insert 7 3 3 3 3

Hinged-Bin 3 3 7 3 3

Table 5.1.: Task categorization of the bimanual tasks following [18]. Besides the occur-
ring/required coupling and coordination, the task horizon is indicated.

Together with these new tasks, the framework‘s tasks, summarized in Table 5.1, ensure a
broad range of coupling, coordination, and task horizon challenges. The reader should
note that all presented tasks require synchronized coordination and have spatial coupling.
This highlights the actual need for two arms to solve the challenges.

5.3. Randomization and Task Variations

Each task incorporates randomization to enhance robustness in policy learning. The initial
robot joint configurations, object positions, and orientations are randomized. Specific
object properties, such as the size of the hammer, also vary to increase generalization.
The exact details of the randomization setup can be found in Appendix A.

With its code-first approach, robosuite enables a straightforward adaption of the task’s
appearances and allows the generation of various task variants by, for example, adapting
the distribution for sampling the initial states.

19

6. Data Collection

Collecting high-quality demonstration data is essential for IL, and numerous methods
have been developed to acquire such trajectories. RoboTurk [62], for example, relies on
mobile phone-based teleoperation, primarily designed for single-arm tasks. MimicGen
[56] amplifies a small number of expert demonstrations by generating additional synthetic
trajectories. D3IL [57] utilizes an Xbox gamepad for teleoperation, focusing on single-
arm setups. ALOHA [10] employs an expensive teleoperation system, while VITAL [76]
introduces a low-cost teleoperation approach, both aimed explicitly at bimanual tasks.
These methods highlight the range of existing approaches to the demonstration collection.

The robosuite framework [63] itself provides several fundamental pre-implemented
data collection methods, including keyboard-based control, GUI-based operation, and the
use of the SpaceMouse® by 3Dconnexion. However, these approaches are mostly suited
for simple one-handed tasks. The SpaceMouse® device requires extensive training before
effective teleoperation.

The data collection and generation process is not the primary focus of this work. Instead,
the approach of [17], [18] is adapted, leveraging waypoint-based experts for data col-
lection. This method enables fast and reproducible generation of thousands of expert
trajectories, ensuring high-quality and consistent training data. Nevertheless, it should be
mentioned that robosuite provides an interface to add new teleoperation devices and
methods.

6.1. Waypoint-Based Expert

Following the work of [17], [18], an expert policy based on waypoints is utilized. The
waypoints for both arms are jointly specified as (tleft, tright), where each waypoint is
characterized by a target position pWP, orientation rWP, and gripper state q̃WP, denoted

20

as t = (pWP, rWP, q̃grip,WP). The desired gripper state takes a value of either -1 (open) or
1 (closed).

The waypoint targets are dynamically computed based on the observations following
the randomized environment reset. For tasks requiring high accuracy, such as quad-
insertion, waypoints can be dynamically updated after each action step based on the
current observations. This mechanism also enables the waypoint-based expert to work in
potential dynamic environments.

For a single arm in state s = (pcurrent, rcurrent), the corresponding delta action is computed
using a P-controller-like approach based on the current waypoint target t:

a(s, t) =

⎛⎜⎜⎜⎝
s (pWP − pcurrent)

s
(︂
Log

(︂
Exp (rWP)Exp (rcurrent)T

)︂)︂
q̃grip,WP

⎞⎟⎟⎟⎠ ∈ [−1, 1]6 × {−1, 1} . (6.1)

The scaling function s (Equation (4.2)) ensures that the action values remain within the
predefined input range of [−1, 1]. The term Log

(︂
Exp (rWP)Exp (rcurrent)T

)︂
computes the

rotation delta ∆r in an axis-angle representation. Unlike the end-effector actions, the
gripper action is applied immediately without interpolation. The overall execution of the
waypoint expert within the environment is detailed in Algorithm 6.1.

6.2. Data Storage and Processing

The expert demonstration data is stored efficiently as pairs of simulation states and
corresponding actions Ds = {si, ai}i. This memory-efficient approach enables post-
collection adaptation of observation modalities, e.g., switching between low-dimensional
state-based observations, RGB(D) images, or segmentation data. Before initiating the
learning, it is beneficial to generate an explicit dataset, as later discussed in Section 7.2.
This ensures optimized and efficient data accessibility during the models’ training.

21

1: state = environment.reset() ▷ Get initial state.
2: waypoints = create_waypoints(state)
3: success = false
4: for each waypoint in waypoints do
5: reached = false ▷ Track if waypoint is reached.
6: while not reached do
7: if waypoint.is_dynamic then
8: waypoint = update(waypoint, state) ▷ Update waypoint.
9: end if

10: action = get_action(waypoint, state) ▷ Equation (6.1)
11: state, success = environment.step(action) ▷ Execute action.
12: reached = check_reached(waypoint, state) ▷ Check if waypoint is reached.
13: if success then
14: terminate
15: end if
16: end while
17: end for

Algorithm 6.1.: Rollout of the waypoint expert for a single episode. The code is a
simplified version of the implementation, without data collection, and checks for, e.g.,
reachability and tolerances.

22

7. Learning Framework

With robosuite [63] serving as the foundational environment for simulation and data
collection, the choice of robomimic [54] for the learning component is a natural one, given
that both are part of the Advancing Robot Intelligence through Simulated Environments
(ARISE) initiative [77]. Since these modules originate from the same development group,
their compatibility is well-established, ensuring seamless integration.

robomimic provides a modular and well-structured framework for training, evaluation,
and rollout of policies. It includes training pipelines for various IL and offline RL methods:
Different variants of BC [7], Hierarchical BC [78], and offline RL algorithms such as TD3-
BC [79], IQL [80], IRIS [81] are implemented. Beyond these built-in methods, robomimic
offers a well-structured base for implementing custom methods and algorithms, making it
a suitable choice for extending learning strategies.

7.1. Algorithm Overview

robomimic [54] provides several pre-implemented algorithms for IL. The framework sup-
ports multiple BC variants, including standard BC [7] and versions that utilize stochastic
Gaussian Mixture Model policies [82], Variational Autoencoders [83], Recurrent Neural
Networks [84], and Transformer-based policies [32]. Furthermore, Hierarchical BC [78]
is implemented to target long-horizon tasks.

In addition to these pre-existing methods, this work extends the framework by incor-
porating additional algorithms based on generative models: Diffusion Policy [9], Flow
Matching [34], ActionFlow [1], and a variant of ActionFlow without the invariance prop-
erty. Further details on the methodology and implementation of these algorithms are
provided in Chapter 8.

23

7.2. Learning Pipeline

By combining robosuite [63] and robomimic [54], this work establishes a structured
pipeline for a full IL loop. The suggested workflow consists of the following steps:

1. Create a robosuite task or select an existing one, e.g. Section 5.

2. Define a waypoint-based expert or choose an existing one (Chapter 6). Alterna-
tively, use an existing data collection method from robosuite or introduce a new
teleoperation device.

3. Collect expert demonstrations using robosuite, resulting in a dataset of simulation
state-action pairs:

Ds = {(si, ai)} .

4. Determine the environment appearance and observationmodalities (low-dimensional,
RGB, depth, segmentation) before extracting the observation-action pairs from Ds
to obtain the learning dataset:

Do = {(oi, ai)} .

5. Execute the training, evaluation, and rollout of policies using robomimic.

This pipeline offers a modular and flexible framework for imitation learning, allowing
seamless integration of new tasks, data collection strategies, and learning algorithms. Its
structured design ensures reproducibility and scalability, making it an effective tool for
conducting the experiments detailed in Chapter 9.

24

8. Algorithms

In this chapter, three algorithms are presented: Diffusion Policy [9], Flow Matching [34],
and ActionFlow [1]. The Diffusion Policy represents a SOTA approach for imitation
learning. While its structure is not specifically tailored to robotic tasks, it has demonstrated
strong performance across various domains. Before this work, Diffusion Policy had not
been integrated into robomimic [54]. Its integration into the framework provides a
solid benchmark against which ActionFlow can be tested. The same applies to Flow
Matching. Incorporating ActionFlow into the learning framework, it is also extended to
support multiple robotic arms Na. This work focuses on the bimanual case of Na = 2.
The following sections provide a detailed theoretical background on the algorithms and
discuss the modifications introduced for the implementation in this work. Furthermore, a
slight ActionFlow modification is proposed, replacing the Invariant Point Attention (IPA)
with a standard Multi-Head Attention (MHA). This model will be referred to as noIPA.
It adapts the flow mechanism to pose-based tasks and, from a concept perspective, sits
between Flow Matching and ActionFlow.

8.1. Common Policy Structure

All methods are implemented as multi-step policies. This means that instead of predicting
only the next action based on the current observation, the model considers a sequence
of past observations to generate a sequence of future actions. This approach provides a
more stable and informed decision-making process. Formally, the last To observations are
used to predict the next Tp actions, of which only the first Ta are executed before a new
prediction is made. For clarity, the following notations are used throughout this chapter:
The observation sequence of length To is denoted as o = (ot−To+1, . . . ,ot−1,ot) and the
predicted action sequence of length Tp as a =

(︁
at, at+1, . . . , at+Tp−1

)︁
.

25

ot−3 ot−2 ot−1 ot observation sequence

model

at at+1 at+2 · · · at+7prediction sequence

ataction sequence

o a

Figure 8.1.: The multi-step inference cycle at timestep t. Based on the latest To observa-
tions, the next Tp actions are predicted, but only the first Ta actions are executed. After
that, the inference starts again for timestep t+ Ta. The scheme uses the values To = 4,
Tp = 8 and Ta = 1.

During training, the model learns from (o, a) pairs, effectively loosening the Markov
property [6] by incorporating temporal dependencies: The model predicts an action
sequence based on the latest observation history at inference time but only executes the
first Ta actions before updating the prediction. This process is illustrated in Figure 8.1. A
history of observations allows the model to estimate velocities and infer temporal patterns.
Predicting a sequence of actions instead of a single action improves trajectory smoothness
and helps the model commit to a single mode of behavior. Additionally, executing multiple
actions per inference step (Ta > 1) reduces overall inference time and can aid in meeting
real-time requirements.

For the experiments in Chapter 9, the values To = 4, Tp = 8, and Ta = 1 are used.
Optimizing these hyperparameters was not the focus of this work, and depending on the
task and setup, alternative configurations may yield better performance.

26

0

0.5

1

0 50 100
t

ᾱt t = 0 t = 10 t = 20 t = 30 t = 100

forward diffusion

Figure 8.2.: Forward diffusion process x(t) =
√
ᾱtx(0) +

√
1− ᾱtϵ in 2D with a cosine

schedule. The initial blob-distribution (t = 0) is washed out until only Gaussian noise
remains (t = 100). A model is trained to reverse this process.

8.2. Diffusion Policy

The Diffusion Policy [9] is a SOTA model that applies diffusion models to IL. It builds
upon the principles of diffusion models [36], [85], [86], initially developed for generative
modeling, and adapts them to predict actions. Unlike BC, which directly maps observations
to actions, Diffusion Policy learns to model the distribution of plausible actions by iteratively
refining a noisy initial guess.

8.2.1. Diffusion Process for Action Generation

The core idea behind diffusion models is to gradually corrupt training data with Gaussian
noise and then train a neural network to recover the original data step by step. The
fundamental idea of the diffusion process is sketched in the following; for mathematical
details, the reader is referred to [36], [87].

The forward diffusion process iteratively adds noise to a sample a(0) from the true dis-
tribution, forming a Markov chain of increasingly noisy samples. Mathematically, this
process can be expressed as

q
(︂
a(t)|a(t−1)

)︂
= N

(︂
a(t);

√︁
1− βta(t−1), βtI

)︂
,

where βt is the noise variance schedule: {βt ∈ (0, 1)}Tt=1 [36]. For T → ∞, a(T) is
equivalent to a sample from the zero mean Gaussian N (0, I). Figure 8.2 illustrates the
diffusion process.

27

Using the parametrization trick with αt = 1 − βt and ᾱt =
∏︁t

i=1 αi the noise-infused
sample at step t can be computed in closed-form as

a(t) =
√
αta(t−1) +

√
1− αtϵ

=
√
αtαt+1a(t−2) +

√︁
1− αtαt−1ϵ

= . . . =
√
ᾱta(0) +

√
1− ᾱtϵ .

(8.1)

As ϵ is noise sampled from N (0, I), this implements

q
(︂
a(t)|a(0)

)︂
= N

(︂
a(t);
√
ᾱta(t−1), 1− ᾱtI

)︂
.

The reverse process aims to denoise the input starting at a random sample a(T) ∼ N (0, I).
During training a model pθ is learned to predict the noise removal:

Lθ =
⃦⃦⃦
ϵ− pθ

(︂
a(t),o, t

)︂⃦⃦⃦2
. (8.2)

The denoising model ϵ̂ = pθ
(︁
a(t),o, t

)︁
is conditioned on the current observation sequence

o and the diffusion step t.

8.2.2. Learning and Inference

During training, the model is trained to predict ϵ. To achieve this, the model is trained
on observation-state (o, a) ∈ Dtrain to minimize the loss in Equation (8.2). Algorithm 8.1
depicts this.

Equation 8.1 suggests that one could directly predict a(0) from a(T) using ϵ̂ = pθ
(︁
a(T),o, T

)︁
and a(0) =

(︁
a(T) −

√
1− ᾱtϵ̂

)︁
/
√
ᾱT . However, this direct computation does not align with

the generative nature of diffusion. The reverse diffusion process is designed to gradually
remove noise over multiple steps, ensuring a smooth and high-quality reconstruction.
Therefore, inference instead follows a stepwise procedure where at each step, an estimate
a(t−1) is computed from a(t). Additionally, a controlled noise σtz is introduced to maintain
the probabilistic structure of the generative process [88]:

a(t−1) =
1
√
αt

(︃
a(t) − 1− αt√

1− ᾱt
ϵ̂

)︃
+ σtz , with σ2

t =
1− ᾱt−1

1− ᾱt
(1− αt) and z ∼ N (0, I) .

28

1: t ∼ Uniform({1, . . . , T})
2: ϵ ∼ N (0, I)
3: a(t) =

√
ᾱta+

√
1− ᾱtϵ ▷ Eq. (8.1)

4: ϵ̂ = pθ

(︁
a(t),o, t

)︁
5: Lθ = ∥ϵ− ϵ̂∥2

Algorithm 8.1.: Diffusion training step for
a single observation-action pair (o, a) ∈
Dtrain. The computed loss Lθ is used for
mini-batch updates of the model pθ.

1: â ∼ N (0, I) ▷ Gaussian noise a(T)

2: for t = tN , ..., t1 do
3: ϵ̂ = pθ (â,o, t) ▷ Predict noise.
4: Update â using Equation (8.3)
5: end for
6: return â ▷ Generated action â(0)

Algorithm 8.2.: Diffusion inference step
for a given observation o and N inference
timesteps {t1, . . . , TN} ⊂ {1, . . . , T} for
DDIM inference [87].

The authors of [87] introduce a deterministic formulation of the reverse process that
allows mapping a(t) to any earlier timestep τ < t:

a(τ) =

Eq. (8.1) with predicted a(0)⏟ ⏞⏞ ⏟
√
ᾱτ

(︄
a(t) −

√
1− ᾱtϵ̂√
ᾱt

)︄
⏞ ⏟⏟ ⏞

predicted a(0)

+
√
1− ᾱτ ϵ̂ , with ϵ̂ = pθ

(︂
a(t),o, t

)︂
. (8.3)

This decreases the inference time, as fewer steps can be used while maintaining a good
sampling quality. Algorithm 8.2 summarizes the inference cycle.

8.2.3. Transformer Architecture

This work uses a Transformer-based model pθ. The Transformer model [32] is a SOTA
approach that has demonstrated strong performance across various domains beyond
natural language processing.

Transformers have revolutionized deep learning by introducing attention mechanisms that
efficiently process long-range dependencies. The architecture for action prediction differs
from standard implementations in its tokenization approach. Instead of text embeddings,
the input consists of an observation- and action-sequence (o and a) and a time index
indicating the current step in the diffusion process. Implementing [9], the modalities
are projected into a latent space of dimensionality Demb before being processed by the

29

t SinusodialEmb
[1] [1, Demb]

o ObsEncoder
[To, ∗] [To, Demb]

a Linear
[Tp, Da] [Tp, Demb]

c
[To + 1, Demb]

+

+
[Tp, Demb]

[To + 1, Demb]

xc

xa

MLPEncoder

MHAqk
v

+

MHAqk
v

+

MLP

+Linear
[Tp, Da] [Tp, Demb]

ϵ̂

Decoder (N×)

c concatenation
+ addition

[Tp, Demb]

[Tp, Demb]

[Tp, Demb]

Figure 8.3.: The diffusion model pθ(a,o, t) following [9]. Normalization and dropout
layers are not shown. The action sequence a, the observation sequence o, and the
diffusion timestep t are embedded into a latent space of dimensionality Demb. The
position parameters xa/c are learnable. In total Tp + To + 1 tokens are encoded. After
N decoder iterations with Multi-Head Attention (MHA), a final linear layer recovers the
action dimensionality Da. The first MHA block implements a self-attention block.

attention mechanism; Figure 8.3 illustrates the model. For simplicity, normalization and
dropout layers are excluded in the following explanation.

The action sequence a of length Tp is passed through a single linear layer and is combined
with a learnable position parameter xa.
The observation sequence o of length To is passed through an observation encoder. Depend-
ing on the available observation modalities, Multilayer perceptrons (MLPs), Convolutional
Neural Networks (CNNs), or other components are used.
The timestep parameter t is embedded using a sinusoidal encoding.
Concatenating the encoded observations and timestep, the total conditioning receives a
learnable position parameter xc and passes through a final MLP encoder.

As a result, the encoded action sequence has Tp tokens, and the conditioning has To + 1 to-
kens. After passing through N decoder layers, a final linear layer restores the action
dimensionality.

30

q

k

v

Linear

Linear

Linear

q̃

k̃

ṽ

s̃ = softmax
(︂

q̃k̃T√
Dhead

)︂
ṽ

Linear

Linear

Linear

q̃

k̃

ṽ

s̃ = softmax
(︂

q̃k̃T√
Dhead

)︂
ṽ

Linear

Linear

Linear

q̃

k̃

ṽ

s̃ = softmax
(︂

q̃k̃T√
Dhead

)︂
ṽ

[Nq, Demb]

[Nkv, Demb]

[Nkv, Demb]

[H,Nq, Dhead]

[H,Nkv, Dhead]

[H,Nkv, Dhead]

c s Linear
[Nq, Demb]

Scaled Dot-Product
Attention (per head)

H×

concatenation

Figure 8.4.: Multi-Head Attention implementation of [32]. The inputs q, k and v, with
Nq/kv tokens each, are projected to H heads. Per head, an attention score s̃ is computed.
These scores are concatenated to s. A final linear layer forms the output. Inside the
SOFTMAX of the score calculation, attention masks M can be applied.

Multi-Head Attention. The heart of the described transformer model is the Multi-Head
Attention (MHA) block [32]. All details about it can be found in [32], but the fundamentals
are displayed here to later compare it to the attention mechanism of the ActionFlow [1].
The MHA block maps a query q and key-value pairs (k, v) to an output. Figure 8.4
illustrates this: Each of the three input vectors is passed through a linear layer projecting
them to H heads of dimensionality Dhead = Demb/H, resulting in q̃, k̃ and ṽ. For each
head, an attention score

s̃ = softmax

(︄
q̃k̃

T

√
Dhead

)︄
ṽ (8.4)

is computed using Scaled Dot-Product Attention. Details for Equation (8.4) are given in a
moment. These attention scores are then concatenated again to create a final score value
s with the same shape as a. Passing s through a final linear layer creates the output (with
the same shape as a).

In the model pθ from above, this attention mechanism is used twice in the decoder: In the
first self-attention block, each decoder token can attend to each other decoder token, but
causal masking ensures that tokens can only attend to previous tokens. This is achieved
using an additional mask matrix M inside the softmax of Equation (8.4). In the second
MHA, each decoder token can attend to all tokens from the encoding. Here, an attention
maskM is used to prevent attention to padded positions in the encoder sequence, ensuring
that the model does not incorporate information from padding tokens, which do not carry
meaningful content.

31

Scaled Dot-Product Attention. Equation (8.4) describes the Scaled Dot-Product Atten-
tion used in the MHA block. The underlying computations are explained here, as this is
later needed to understand the theory behind the ActionFlow model. Regarding a single
head, the inputs to the attention functions are the query q̃ ∈ RNq×D and the key-value
pair k̃ ∈ RNkv×D, ṽ ∈ RNkv×D. The head dimensionality Dhead is abbreviated as D. The
query is noted as

q̃ =

⎛⎜⎜⎜⎝
q11 · · · q1D
...

...

qNq1 · · · qNqD

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
qT1
...

qTNq

⎞⎟⎟⎟⎠ .

The vectors qi ∈ RD describe the query part of token i ∈ {1, . . . , Nq}. Analogously, key
and value are written as

k̃ =

⎛⎜⎜⎜⎝
kT1
...

kTNkv

⎞⎟⎟⎟⎠ and ṽ =

⎛⎜⎜⎜⎝
vT1
...

vTNkv

⎞⎟⎟⎟⎠ .

The dot-product q̃k̃
T
computes the importance score of each key kj for every query qi per

row:

q̃k̃
T
=

⎛⎜⎜⎜⎝
qT1
...

qTNq

⎞⎟⎟⎟⎠(︂k1 · · · kNkv

)︂
=

⎛⎜⎜⎜⎝
qT1 k1 · · · qT1 kNkv
...

...

qTNq
k1 · · · qTNq

kNkv

⎞⎟⎟⎟⎠ ∈ RNq×Nkv .

(q̃k̃
T
)ij ∈ R is interpreted as the importance of key j for query i. To normalize the

importance per query, each row is normalized by the softmax function, such that∑︁
j(q̃k̃

T
)ij = 1 ∀i. The scaling with

√
D is applied to prevent vanishing gradients. The

final score of the head is computed as

s̃ =

⎛⎜⎜⎜⎝
qT1 k1 · · · qT1 kNkv
...

...

qTNq
k1 · · · qTNq

kNkv

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

vT1
...

vTNkv

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
s1
...

sNq

⎞⎟⎟⎟⎠ ∈ RNq×D .

A single cell
sij = qTi k1v1j + . . .qTi kNkvvNkvj

32

ρ0 ρ1

0 1
t

Figure 8.5.: Linear probability flow ρt from a normal Gaussian ρ0 = N (0, 1) to a blob
distribution ρ1. The visualization is derived from [89]. The darker the color, the higher the
probability density.

corresponds to the interaction of one query qi with all keys k̃ and all values ṽ.

8.3. Flow Matching

Unlike diffusion-based methods, which iteratively refine noisy samples through denoising,
Flow Matching [34] models a probability flow between a source and target distribution.
This section presents the mathematical principles behind Flow Matching and the learning
and inference mechanism. The underlying Transformer architecture is equivalent to the
one presented in the previous Section 8.2.

8.3.1. Flow Matching for Action Generation

FlowMatching [34] is a continuous time formulation for modeling probability distributions.
Instead of progressively corrupting data with noise and learning to reverse this process
(diffusion), Flow Matching directly models the probability flow between the source
and target distributions using an ordinary differential equation. Let ρ1(a) be the data
distribution over actions and ρ0(a) be a reference distribution, often chosen as a simple
prior such as a Gaussian distribution N (0, I). The probability path ρt(a) for t ∈ [0, 1]
connects these two distributions and implies the motion of a(0) ∼ ρ0(a) to its target
a(1) ∼ ρ1(a) as the flow a(t) = φt

(︁
a(0)
)︁
. Instead of modeling φt directly, Flow Matching

proposes to learn the vector field ut(a) = dφt(a)/dt with a parametric model vθ(a, t) [90].
Learning this directly is generally intractable, as no unique and closed-form solution for ut

33

exists. This is solved by conditioning the vector field and, therefore, the flow on the target
distribution. The choice for the target flow is chosen to be a straight line from a(0) to a(1):

a(t) = φt(a(0), a(1)) = ta(1) + (1− t)a(0) , ut =
dφt

dt
= a(1) − a(0) . (8.5)

This induces a constant and tractable vector field u = ut. Figure 8.5 visualizes the
probability path ρt for this linear interpolation

Adding the observations o as conditioning the objective of Flow Matching becomes

Lθ =
⃦⃦⃦
ut(a, a(1))− vθ(a,o, t)

⃦⃦⃦2
. (8.6)

In contrast to the Diffusion model [36], the model is not predicting noise removal but
learns to predict the velocity of the underlying flow to iteratively update noisy samples
a(0) until a(1) is reached. Typically, this is done by applying Euler integration

a(tk+1) = a(tk) + vθ
(︂
a(tk),o, tk

)︂
∆t , ∆t = tk+1 − tk , (8.7)

for K explicit times tk ∈ [0, 1] with t0 = 0 and tK = 1.

8.3.2. Learning and Inference

The principal structure of the training and inference with the Flow Matching [34] looks
similar to that of the Diffusion Policy (Section 8.2.2). Still, instead of learning to predict
a noise ϵ, the model vθ is trained to predict the vector field u of the flow φ. The diffusion
process is replaced with the flow mechanism of Equation (8.5). The training objective is
similar to that of the Diffusion Policy but pushes the model to learn the correct velocity
(Equation (8.6)) instead of the noise removal. A linear schedule for t is used, e.g. t ∈
Ttrain = {0, 0.01, 0.02, . . . , 1.0} for 100 training steps. During inference, Euler integration
is applied to update the action prediction (Equation (8.7)) by following the vector field
of the learned flow. During inference, the predicted velocities move the action sequence
gradually along the probability path. Similar to using DDIM [87] in the Diffusion Policy, it
is possible to use an exponential schedule during inference with Flow Matching: Starting
with more significant steps, the step width exponentially decreases for t closer to 1.
Figure 8.6 visualizes this exponential subset Tinference ⊂ Ttrain.

Algorithms 8.3 and 8.4 clarify the model structure and application. Compared to the
Algorithms 8.1 and 8.2, it shows that the structure of training inference is equal to that of
the Diffusion Policy. Only the diffusion process has been replaced by flow matching.

34

1: t ∼ Uniform (Ttrain)
2: a(0) ∼ N (0, I)
3: u = a− a(0)
4: a(t) = ta+ (1− t)a(0)
5: û = vθ

(︁
a(t),o, t

)︁
6: Lθ = ∥u− û∥2

Algorithm 8.3.: Flow Match-
ing training step of the Flow
Matching model for a sin-
gle observation-action pair
(o, a) ∈ Dtrain. The compu-
ted loss Lθ is used for mini-
batch updates of the model
vθ.

1: â ∼ N (0, I)
2: for t ∈ Tinference \ {0} do
3: û = vθ (â,o, t)
4: â← â+ û∆t
5: end for
6: return â

Algorithm 8.4.: Inference
step with the FlowMatching
model for a given observa-
tion o, with an exponential
schedule Tinference.

0

10

20

0 0.5 1.0
t

st
ep

Ttrain N1
p Tinference N1

p

Figure 8.6.: Linear and expo-
nential schedules for Flow
Matching. The exponential
schedule enables faster in-
ference. Here, 20 training
and the 10 corresponding in-
ference steps are visualized.

The model vθ(a,o, t) is equivalent to the model pθ(a,o, t) used in the Diffusion Policy
(Figure 8.3), but instead of predicting the noise removal ϵ, the model returns the estimated
velocity u of the flow φ. As before, Tp action tokens and To + 1 tokens for conditioning
are used in the MHA block.

8.4. ActionFlow

ActionFlow [1] introduces a pose-based approach to imitation learning for robotic tasks
and employs Flow Matching ([34] and Section 8.3) as its core generative mechanism.
ActionFlow represents each pose as distinct tokens within an adapted Transformer archi-
tecture. While traditional Transformers [32] originate from text processing, where each
token corresponds to a word, ActionFlow adapts this concept by assigning an unique token
to each pose in a manipulation scene. This structured tokenization provides an intuitive
way to model interactions within the environment, reinforcing spatial dependencies. Fur-
ther, MHA is replaced with Invariant Point Attention (IPA), making the model invariant
to global pose transformations. Before the specialized pose-based Transformer architec-
ture for Flow Matching is introduced, the action and observation space of ActionFlow is
clarified.

35

8.4.1. Action and Observation Space Adaption

The environment (Chapter 4) and the previously presented methods utilize delta actions a
and vectorized observations o. In contrast, ActionFlow [1] relies on a pose-based scene and
action representation. A pose is defined as T = (p,R) ∈ R3 × SO(3), where p represents
the position and R the orientation in 3D space.

Each action prediction for a single end-effector consists of a target pose and an additional
feature:

At = (Ta,t, fa,t) .

The feature f can store additional action-related information, such as the target gripper
state q̃grip. Since the current end-effector position and orientation are known, it is always
possible to map between pose-based actions A and the delta actions a.

Similarly, each observation consists of a pose and associated features:

Ot = (To,t, fo,t) .

Potential observation features include the gripper state of the observed end-effector, RGB
images from wrist cameras, or point clouds of observed objects. These observation tuples
can be extracted from the environment observations o.

Throughout this work, all poses T are assumed to be represented in the same coordinate
frame, such as the world frame, ensuring a consistent spatial representation. Considering
the multi-step policy structure, the action and observation spaces are formulated as follows:

(a)A =
(︂
(a)At,

(a)At+1, . . . ,
(a)At+Tp−1

)︂
and (o)O =

(︂
(o)Ot−To+1, . . . ,

(o)Ot−1,
(o)Ot

)︂
.

Here, Tp and To represent the prediction and observation horizons, respectively. The
notation a = 1, . . . , Na denotes individual end-effectors, while o = 1, . . . , No indicates
each observed pose in the scene. With

A =
(︂
(1)A, . . . , (Na)A

)︂
, O =

(︂
(1)O, . . . , (No)O

)︂
,

the action and observation spaces consist of pose-feature tuples structured of shape (N,T),
where N denotes the number of elements, and T is the temporal horizon.

For example, with a prediction horizon of Tp = 8 and Na = 2 robot arms, the action space
consists of TpNa = 16 pose-feature pairs. With No = 3 observed poses and an observation
horizon of To = 4, the observation space has NoTo = 12 pose-feature pairs.

36

T0

T1

Figure 8.7.: Flow in R3 × SO(3) from p0 = 0, R0 = I to p1 = (1 1 1)T , R1 = (ex−ey −ez)
with x, y and z axes in red, green and blue. The displayed frames correspond to the times
t = 0, 0.04, 0.08, . . . , 1 of the flow.

8.4.2. Flow for Poses

Implementing the flow for poses T = (p,R) demands extra attention, as interpolation for
rotations is not straightforward. The following elaboration shows how the flow from the
ActionFlow paper [1], which mainly follows [91], is implemented and simplified. For
better readability, the indice t ∈ [0, 1] of the flow mechanism is moved from top T(t) to the
bottom Tt. This is not to be confused with the time index in the action and observation
sequences. The flow mechanism is discussed for a single pose T but can be multiplied by
parallel computation for all relevant poses.

Following [91], [92], R3 and SO(3) are modeled independently. The flow in R3×SO(3)
moves an initial pose T0 = (p0,R0) to a target pose T1 = (p1,R1) on a straight line.

pt = φt (p0|p1) = tp1 + (1− t)p0 ,

Rt = φt (R0|R1) = R0Exp
(︁
tLog

(︁
R−1
0 R1

)︁)︁
,

(8.8)

for t ∈ [0, 1] . Log and Exp are the logarithmic and the exponential map of the SO(3)
manifold [93]. Figure 8.7 displays a visualization of this flow.

The flow in Equation (8.8) is decoupled. Therefore, the vector field ut = dφt/dt is decou-
pled, and the translational and rotational components can be considered independently.

Translational Component. The velocity ṗt that is induced by the flow can be computed
via

ṗt =
dφt

dt
= p1 − p0 . (8.9)

37

Note that this velocity is constant for all times t. This is also expected, as the flow is linear
in time. The same is implemented in [1], [91]: The velocity is approximated with

ṗt =
p1 − pt

1− t
,

where pt is computed via pt = tp1 + (1− t)p0. This is equal to Equation (8.9):

ṗt =
p1 − pt

1− t
=

p1 − tp1 − (1− t)p0

1− t
=

(1− t)p1 − (1− t)p0

1− t
= p1 − p0 .

As the velocity is constant over time, it will be donated as up = ṗ in the following.

Rotational Component. The time derivative of the rotational flow component is

Ṙt =
dφt

dt
= R0Exp

(︁
tLog

(︁
R−1
0 R1

)︁)︁⏞ ⏟⏟ ⏞
=Rt

Log
(︁
R−1
0 R1

)︁
= RtLog

(︁
R−1
0 R1

)︁
.

Here, d/dt (Exp(tA)) = AExp(tA) is utilized. With Ṙ = Rṙ [93] the velocity can be
identified as

ṙt = Log
(︁
R−1
0 R1

)︁
. (8.10)

It should be noted that this velocity is relative to the local coordinate frame.
In [1], [91] the velocity is approximated with

ṙt =
Log

(︁
R−1
t R1

)︁
1− t

. (8.11)

Analyzing R−1
t R1 gives the following:

R−1
t R1

(8.8)
=
[︁
R0Exp

(︁
tLog

(︁
R−1
0 R1

)︁)︁]︁−1 R1 =
[︁
Exp

(︁
tLog

(︁
R−1
0 R1

)︁)︁]︁−1 R−1
0 R1

= Exp
(︂
tLog

(︂[︁
R−1
0 R1

]︁−1
)︂)︂

R−1
0 R1

(i)
= Exp

(︁
−tLog

(︁
R−1
0 R1

)︁)︁
Exp

(︁
Log

(︁
R−1
0 R1

)︁)︁
(ii)
= Exp

(︁
−tLog

(︁
R−1
0 R1

)︁
+ Log

(︁
R−1
0 R1

)︁)︁
= Exp

(︁
(1− t)Log

(︁
R−1
0 R1

)︁)︁
(8.12)

with (i) : Log
(︁
A−1

)︁
= −Log (A) and (ii) : Exp(a)Exp(b) = Exp(a+ b) .

The reader should note, that (ii) generally violates the Baker-Campbell-Hausdorff formula
[94] for non-commuting a and b, but holds in this special case with a = −tb , resulting in

38

ab− ba = −tbb− b(−tb) = 0 .
Inserting Equation (8.12) this into Equation (8.11) results in

ṙt =
Log

(︁
R−1
t R1

)︁
1− t

(8.12)
=

Log
(︁
Exp

(︁
(1− t)Log

(︁
R−1
0 R1

)︁)︁)︁
1− t

=
(1− t)Log

(︁
R−1
0 R1

)︁
1− t

= Log
(︁
R−1
0 R1

)︁
.

This shows that the velocities of the Equations (8.10) and (8.11) are identical. Due to the
time independence, this velocity will be donated as ur = ṙ .

Total velocity component. As mentioned above, the rotational velocity is expressed in
the local frame. The transitional velocity should also be represented in the local frame.
This is achieved by pre-multiplying with RT

t [1]:

up = RT
t

world frame⏟ ⏞⏞ ⏟
(p1 − p0)⏞ ⏟⏟ ⏞

local frame

ur = Log
(︁
R−1
0 R1

)︁⏞ ⏟⏟ ⏞
local frame

.

(8.13)

As a result, the translational velocity component is time-dependent again. Deciding for
the local frame, instead of the global frame, is also crucial to later achieve invariance to
global transformations, as shown in the ActionFlow paper [1].

8.4.3. Learning and Inference

With the flow being adapted to be pose-specific, the learning and inference have to be
adapted, too. Thus, the model is structured to output the velocity components for transla-
tion and position, but the prediction for the gripper target is absolute. In other words, the
flow mechanism is only applied to the pose part of the action. Algorithm 8.5 summarizes
a learning step for an observation-action pair (O,A) ∈ Dtrain, the actions position, rotation
and gripper sequences are donated as

(︁
p,R, q̃grip

)︁
. Similar to Section 8.3.2 a linear time

schedule Ttrain is used.

39

1: p,R, q̃grip ← A ▷ Extract trajectory components.
2: t ∼ Uniform (Ttrain) ▷ t ∈ [0, 1]
3: p0,R0 ∼ randn

(︁
R3,SO(3)

)︁
4: p1,R1 ← p,R
5: Compute flow at time t:

pt = tp1 + (1− t)p0 , Rt = R0Exp
(︁
tLog

(︁
R−1
0 R1

)︁)︁
, At = (pt,Rt)

6: Compute vector field at time t in local frame:

up = RT
t (p1 − p0) ur = Log

(︁
R−1
0 R1

)︁
7: Run model prediction:

ûp, ûr, q̂grip = vθ (At,O, t)

8: Compute loss:

Lθ = wp
⃦⃦
up − ûp

⃦⃦2
+ wr ∥ur − ûr∥2 + wgrip

⃦⃦
q̃grip − q̂p

⃦⃦2 (8.14)

Algorithm 8.5.: Training step for a pose based flow model vθ on a single end-effector
action

(︁
p,R, q̃grip

)︁
and observation O. Ttrain contains linearly spaced flow times t from 0

and 1. The computed loss Lθ is used for mini-batch updates of the model and consists
of weighted components (wp/r/grip) of the translational, rotational, and gripper loss.

1: Â =
(︂
p̂, R̂

)︂
∼ randn

(︁
R3,SO(3)

)︁
2: for t ∈ Tinference \ {0} do
3: ûp, ûr, q̂grip = vθ

(︂
Â,O, t

)︂
4: Update Â following Equation (8.15):

p̂← p̂+ R̂ûp∆t , R̂← R̂Exp (ûr∆t) .

5: end for
6: return Â, q̂grip

Algorithm 8.6.: Inference step for a pose-based flow model, given an observation O. To
speed up inference time, an exponential subset of discrete time steps Tinference is used.
The flow mechanism is only applied to position and rotation.

40

During inference, the predicted velocities move the poses gradually. An exponential
Tinference ⊂ Ttrain schedule is used to speed up inference (see Figure 8.6). Using the models’
predicted velocities ûp and ûr, the action sequence is successively updated using Euler
integration:

ptk+1
= ptk

+ Rtk ûp∆t , Rtk+1
= RtkExp (ûr∆t) , ∆t = tk+1 − tk . (8.15)

The translational velocity is moved from the local to the world frame by pre-multiplying
with R. A complete inference step is displayed in Algorithm 8.6.

8.4.4. Invariant Transformer

The underlying model vθ(A,O, t) of the ActionFlow policy is based on a transformer
encoder, but instead of using Multi-Head Attention (MHA), Invariant Point Attention
(IPA) [35] is used. Figure 8.8 summarizes the model structure. To implement this, the
features fA, fO of the candidate action sequence A and the observations O run through
individual encoders. This maps these features to a common embedding dimensionality
Demb. If no features are available for a pose, the encoder output is a vector of zeros. Fitting
encoder models, like MLPs or CNNs, are used depending on the incoming feature modality.
The embedded features are concatenated along the token dimensionality. Similarly, all
poses are listed along this dimensionality. For Na arms, No observed poses, a prediction
horizon Tp, and an observation horizon To a total of

Nt = NaTp +NoTp

tokens of pose feature pairs (p,R, f) are created. The features of these poses are combined
with a learnable position parameter x ∈ RNt×Demb . t is embedded using sinusoidal
embedding, too, and a MLP. In contrast to the Diffusion Policy, this embedding is not used
to create another token but is replicated Nt times before it is added to the features f. The
transformer encoder consists of N encoder blocks built using IPA and a MLP. The outputs
are updated tokens of shape RNt×Demb . From these tokens, the first NaTp action tokens
are passed through a final linear layer. This maps each output token to R7, with the first
six entries being the predicted velocities ûp and ûr, and the last entry corresponding to
the gripper state q̂grip.

Comparing this model to the models of Diffusion Policy and Flow Matching (Figure 8.3 on
page 30) shows the key differences: While Diffusion Policy and Flow Matching uses one
token per sequence element and one additional token to embed t (Tp + To + 1 tokens in

41

A

O

t

pA

RA

fA FeatureEncoder

[Na, Ta, 3]

[Na, Ta, 3, 3]

[Na, Ta, ∗] [Na, Ta, Demb]

pO

RO

fO FeatureEncoder

[No, To, 3]

[No, To, 3, 3]

[No, To, ∗] [Na, Ta, Demb]

c

c

c

SinusodialEmb MLP
[1]

[Nt, Demb]

+

×

x

IPAfp
R

+

+

MLP

Linear
s

r

ûp, ûr, q̂grip

Encoder (N×)
[Nt, 3]

[Nt, 3, 3]

[Nt, Demb]

c concatenation N1
p+ addition N1

p× duplicate Nt× N1
ps select NaTp tokens N1

pr reshape N1
p

[Nt, Demb]

[Nt, Demb]

[Na, Tp, 7]

Figure 8.8.: The ActionFlow model vθ(A,O, t) adapted from [1]. Normalization and
dropout layers are not shown. The features f of the action sequenceA and the observation
sequence O, as well as the flow step t, are embedded into a space of dimensionality
Demb. x is a learnable position parameter. In totalNt = NaTp+NoTp tokens are encoded.
After N transformer iterations with Invariant Point Attention (IPA), a final linear layer
recovers the output dimensionality R7.

total), ActionFlow uses one token per pose (NaTp +NoTp in total). Moreover, ActionFlow
combines each embedded feature token with a pose (p,R) that is used in the IPA, which
is used instead of MHA.

Invariant Point Attention. The key component of ActionFlow is the IPA [35]. This section
describes the simplified IPA implementation that is used in ActionFlow [1]. In addition to
processing features in the latent space, IPA incorporates geometric information by utilizing
the corresponding positions r ∈ R3 and rotations R ∈ SE(3). Given that, the conventional
attention is extended by incorporating explicit geometric transformations. The details are
presented in the following. As the IPA is used as self-attention, the number of tokens Nt
and the head dimensionality Dhead are abbreviated with N and D.

42

Projection and Multi-Head Splitting. Similar to self-attention with MHA, linear layers
project the feature tokens f ∈ RNt×Demb to queries q, keys k, and values v

(q, k, v) = Linear (f) ,

which are then split into H heads:

q̃, k̃, ṽ ∈ RH×Nt×Dhead .

This is equivalent to the initial embedding of MHA; see Figure 8.4.

Incorporating Pose Information. Each token is associated with pose information T =
(p,R) given by a rotation matrix R ∈ SO(3) and a translation vector p ∈ R3. This
information is consolidated in a transformation matrix T and its inverse:

T =

⎛⎝ R p

0T 1

⎞⎠ ∈ SE(3) , and T−1 =

⎛⎝RT −RTp

0T 1

⎞⎠ ∈ SE(3) .

Pose-Invariant Attention Score. The attention score of MHA (Equation 8.4 and page 32)
is modified to include the pose information T. Given the fact that self-attention is applied
to the queries q̃ and key-value pairs k̃, ṽ of a single head are elements in RN×D. Using the
pose information Ti, i = {1, . . . , N} of the individual tokens and following the notation
introduced on page 32, each vector of these three components is transformed by

q′i =
(︁
T−1
i

)︁T qi k′i = Tiki , and v′i = Tivi .

Typically, the head dimensionality D is larger than 4. Thus, these transformations are
implemented as

Ax =

⎛⎜⎜⎜⎜⎜⎜⎝
Ax[1:4]
Ax[5:8]

...

Ax[D−3:D]

⎞⎟⎟⎟⎟⎟⎟⎠ for A ∈ R4×4 and x ∈ RD .

43

In total, the transformed components are

q̃′ =

⎛⎜⎜⎜⎝
qT1 T

−1
1

...

qNT−1
N

⎞⎟⎟⎟⎠ , k̃
′
=

⎛⎜⎜⎜⎝
(T1k1)T

...

(T1kN)T

⎞⎟⎟⎟⎠ , and ṽ′ =

⎛⎜⎜⎜⎝
(T1v1)T

...

(T1vN)T

⎞⎟⎟⎟⎠ .

The attention function of MHA from Equation (8.4) is used on dashed components:

s̃′ = softmax

(︄
q̃′k̃

′T

√
Dhead

)︄
ṽ′ .

Looking into the details of the dot product reveals its invariance:

q̃′k̃
′T

=

⎛⎜⎜⎜⎝
qT1 T

−1
1 T1k1 · · · qT1 T

−1
1 TNkN

...
...

qTNT−1
N T1k1 · · · qTNT−1

N TNkNkv .

⎞⎟⎟⎟⎠
The importance of key kj for query qi is extended to contain the relative transformation
between the poses Ti and Tj:

(︂
q̃′k̃

′T)︂
ij
= qTi

relative transformation iTj⏟ ⏞⏞ ⏟
T−1
i Tj kj .

This importance is invariant to any global transformations Tδ ∈ SE(3) as

(TδTi)
−1 (TδTj) = T−1

i T−1
δ Tδ⏞ ⏟⏟ ⏞
=I

Tj = T−1
i Tj .

This proves that the dot products are computed solely based on the relative transformations
between tokens. Similar to the standard Scaled-Dot-Product Attention on page 32, the
importance is normalized per row. Using the updated dot product, the final attention
score is computed as

s̃′ =
(︂
q̃′k̃

′T)︂
ṽ′ =

⎛⎜⎜⎜⎝
qT1 T

−1
1 T1k1 · · · qT1 T

−1
1 TNkN

...
...

qTNT−1
N T1k1 · · · qTNT−1

N TNkNkv

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

vT1 TT
1

...

vTNTT
N

⎞⎟⎟⎟⎠ .

44

p

R

⎛⎝ R p

0T 1

⎞⎠ T
[N, 4, 4]

f
Linear

Linear

Linear

q̃

k̃

ṽ

Linear

Linear

Linear

q̃

k̃

ṽ

Linear

Linear

Linear

q̃

k̃

ṽ

[N,Demb]

[N, 3]

[N, 3, 3]

[H,N,D]

[H,N,D]

[H,N,D]

c s Linear
[N,Demb]

Pose-Aware Scaled
Dot-Product Attention

(per head)(︂
q̃′k̃

′T)︂
ij
= qTi T

−1
i Tjkj

v′i = Tivi

s̃′ = softmax
(︂

q̃′k̃′T√
D

)︂
ṽ′

si = T−1
i s′i

q̃ = (q1 · · · qN)T k̃ = (k1 · · · kN)T

ṽ = (v1 · · · vN)T s̃ = (s1 · · · sN)T

H×

concatenation

Figure 8.9.: The full IPA block of ActionFlow [1]. The structure is similar to the one of the
MHA block in Figure 8.4 but incorporates the pose information T.

The values vi have been mapped to the frame of the keys ki. However, the attention output
is expected to be in the same frame as its input. Thus, the final output of the pose-aware
attention function is mapped back to the input frame: si = (T−1

i s′i)T . Given that, the total
attention function is invariant to global transformations Tδ:

IPA(f,T) = IPA(f,TδT) .

The output of the attention function is processed through a final linear layer, like in the
MHA block. Figure 8.9 summarizes the pose-invariant attention.

8.4.5. Invariance of ActionFlow

With the IPA being invariant to global transformations Tδ, the velocity model is invari-
ant too because the IPA component is the first and only element processing the poses.
Mathematically this is expressed by

vθ(A,O, t) = vθ(Tδ ⊙ A,Tδ ⊙ O, t) .

Here ⊙ marks that the global transformation T is applied to all poses T in the action
and observation sequences: T′ = TδT. With this underlying invariant backbone and
the fact that the target velocities for Flow Matching are given in the local frame, see

45

Equation (8.13), the policy is invariant to global transformations, as shown by Funk et
al. [1] in detail. This property suggests that ActionFlow is well-suited for tasks involving
spatially structured inputs, such as those found for robotic manipulation.

8.5. Pose-based Flow Matching without IPA

ActionFlow [1] introduces two main changes compared to the previously presented
methods: First, it increases the number of tokens by utilizing a single token per pose.
This encodes information for the model and should be beneficial for manipulation tasks.
On top of that, MHA is replaced with IPA. This step seems prudent, considering that
the relative positioning between the objects and robot arms is crucial in manipulation
tasks. The question is whether this is true or if this intrinsic structure limits the models’
capabilities. A so-called noIPA model is implemented to examine this. It has the same
structure as the ActionFlow model described in Section 8.4.4 and Figure 8.8, but the IPA
block in the transformer encoder is replaced with a standard MHA block.

To make this work, the incoming tokens (p,R, f) are processed as displayed in Figure 8.10:
The rotation matrices R are converted to quaternions q before concatenating the posi-
tions p. A MLP maps the 7-dimensional tokens to the embedding dimensionalDemb before
combining them with the features f and passing them to the MHA module.

With this implementation, the model still uses the more extensive set of tokens but can
freely decide how to use the pose information. This comes at the cost of losing the
invariance property. The effects of this are studied in Chapter 9 below.

p

R

f

ToQuaternion

[N, Ta, 3]

[N, 3, 3]

[N, 4]

[N,Demb]

c MLP
[N, 7]

[N,Demb]

+

MHAqk
v

c concatenation N1
p+ addition N1

p

[N,Demb]

[N,Demb]
...

Figure 8.10.: The pose based attention block of the noIPA model, which replaces the IPA
block in the ActionFlow model. After converting the rotations R to quaternions q, the
concatenated pose information is embedded into the feature vector f.

46

9. Experiments

Utilizing the developed framework for BIL, two key design questions, which are already
examined by Funk et al. [1], are explored in more detail - for bimanual tasks:

(a) Can representing each observed pose as an individual token enhance policy perfor-
mance?

(b) Does the IPA layer, which computes the relative poses between tokens, aid in
uncovering informative features that improve policy performance, or is the IPA layer
too restrictive?

Targeting an answer for (a), Diffusion Policy (DP)(Section 8.2) and FLow Matching
(Section 8.3) are compared against the ActionFlow (AF) (Section 8.4) and the noIPA
model (Section 8.5) in various experiments. Question (b) will be answered by comparing
ActionFlow and its modified version noIPA. In addition, the ActionFlow model’s invariance
is tested to determine whether it can benefit limited demonstrations.

General Experiment Settings. All models are trained on datasets collected fromwaypoint-
based expert demonstrations, where each task has a dataset comprising 1 000 successful
demonstrations. Depending on the specific experiment, only a subset of this dataset
might be utilized. Unless explicitly stated otherwise, experiments exclusively employ
low-dimensional observations. Generally, these observations include end-effector position,
orientation, gripper state, and object positions and orientations. Further details about the
available low-dimensional observations are provided in Appendix A.
Hyperparameter settings for all models are comprehensively documented in Appendix B.
Transformer-based components across the different experiments are configured to have a
similar number of parameters. A cosine learning rate schedule with five warmup epochs
is consistently employed. Depending on the task’s complexity, varying numbers of epochs
are utilized. For diffusion models, DDIM uses 100 training steps combined with 25 in-
ference steps, whereas the flow-based methods employ 100 training steps followed by

47

25 exponential inference steps. These relatively high values ensure that training and
inference steps do not become limiting factors regarding model accuracy.
During training, the models are periodically saved and evaluated by executing several
rollouts. Based on the performance in these preliminary evaluations, the best-performing
model per seed is selected. A final, comprehensive evaluation is conducted by performing
100 rollouts for each selected model.

9.1. Sanity Check

To validate the quality of the waypoint-based datasets and gain a preliminary overview
of each method’s performance, the four approaches are compared across the tasks lift,
simple-handover, place-ball, pick-place, hinged-bin, quad-insert, and transport. The peg-in-
hole task is excluded as it uses no grippers and, thus, does not depict a typical bimanual
task. These experiments utilize 1 000 demonstrations per task during training. Due to the
long horizon in the transport, only 500 are used. The models are periodically evaluated
throughout training by conducting 10 rollouts at fixed intervals. Following training, the
three best seeds and their corresponding best-performing checkpoints - selected based

0.0

0.5

1.0

Lift Handover Place-Ball Pick-Place Hinged-Bin Quad-Insert Transport

su
cc
es
s
ra
te

Diffusion Policy N1
p Flow Matching N1

p noIPA N1
p ActionFlow N1

p

Figure 9.1.: Mean success rates for the models trained on 1 000 demonstrations each.
Out of 5 seeds per model, the three best-performing model checkpoints run 100 rollouts,
resulting in 300 rollouts per environment-model pair. To indicate the variance between
the three models, the range of the individual success rates is marked with black. With
increasing task complexity and length, the models with per-pose tokenization perform
better. noIPA shows a minimal advantage over ActionFlow. The exact numerical values
can be found in Table C.1.

48

on success rates - are evaluated comprehensively: Each chosen model undergoes a final
evaluation of 100 rollouts, resulting in 300 rollouts per algorithm-task pair.

Figure 9.1 summarizes the results visually, while detailed numerical results can be found in
Table C.1. Tasks with lower complexity, such as lift, simple-handover, and place-ball, exhibit
very similar performances across all four approaches, with minor variations attributed
primarily to statistical uncertainty. Similar to the results of [1], the Diffusion Policy
and the Flow Matching model perform comparably when averaged across all tasks. The
pick-place task, characterized by a longer horizon and additional subtasks - picking up a
hammer, handover, and placing it into a target box - reveals some first limitations of the
Diffusion Policy and Flow Matching compared to ActionFlow and noIPA. Tasks exhibiting
high complexity, specifically hinged-bin, quad-insert, and transport, demonstrate clear
advantages of ActionFlow and noIPA. This is especially evident in the quad-insert task
with its stringent insertion tolerance of 1mm and the transport task with its long horizon.
Additionally, for these more complex tasks, noIPA shows a slight performance edge over
ActionFlow.

As task complexity, accuracy demands, and task length increase, the benefits of per-pose
tokenization become more pronounced.

9.2. Sample Efficiency

In this section, models are trained using a limited subset of the available demonstrations
to investigate the sample efficiency. In addition to the models of Section 9.1, models
are trained on 1, 4, 16, 64, and 256 successful demonstrations. The tasks pick-place,
hinged-bin, and quad-insert are chosen to retrieve meaningful data: Each of the tasks
requires the arms to interact differently. For the pick-place task, the arms have a physical
coupling but move asynchronously, while the hinged-bin task has no direct interaction of
the arms. Handling the lid and moving the hammer can be seen as individual movements
with some temporal coupling. The quad-insertion has physical coupling and requires
synchronized arm movement while grasping the bracket.

All models are trained for 1 500 epochs in case of the pick-place task and for 2 500 epochs
on the hinged-bin and quad-insert task. After these training durations, the training loss and
success rates stagnated. Figure 9.2 visualizes the results, and Table C.2 displays the results
in detail. In the tasks with physical coupling (pick-place and quad-insert), the per-pose
token models ActionFlow and noIPA outperform the models with fewer tokens, especially

49

0.0

0.5

1.0

su
cc
es
s
ra
te

100 101 102 103 100 101 102 103 100 101 102 103

Pick-Place Hinged-Bin Quad-Insert

N Demonstrations

Diffusion Policy N1
p Flow Matching N1

p noIPA N1
p ActionFlow N1

p

Figure 9.2.: Mean success rates for the models trained on 1, 4, 16, 64, 256 and 1 000
demonstrations each. Each model is trained on three seeds and rolled out for 100
rollouts, resulting in 300 rollouts contributing to the means. The per-pose token models
ActionFlow and noIPA show higher success rates for less available demonstrations.
However, the difference to the less-token models is smaller in the hinged-bin task, which
does not have physical coupling. Table C.2 holds the experimental results in detail.

in regimes with less available demonstrations. It can be seen that the difference in the
hinged-bin task is more minor. This task does not contain physical coupling between the
arms. The quad-insertion task requires symmetrical synchronization of the two arms. Here,
ActionFlow performs slightly better than the noIPA model for N = 16 demonstrations. Yet,
similar to Section 9.1, ActionFlow has a bit weaker performance than the noIPA model.

9.3. Invariance of ActionFlow

The key property and motivation of the ActionFlow architecture is the invariance to global
transformations Tδ. To verify this, the following training-evaluation pipeline is used:
The models are trained on demonstrations collected in the lift task using the waypoint
expert but are evaluated on a rotated version. The transformation Tδ of the arms in the
rotated setup contains a rotation by 90° and a translation to the table’s left edge. The
same transformation is applied to the cups’ initial states. The lift task is easy to solve and
chosen because its simplicity guarantees that a change in the success rate occurs from the
rotation, not from general poor model performances. Figure 9.3 displays the training and
evaluation setup with the corresponding experimental results. Detailed numerical results
can be found in Table C.3. It should be clear that the rotated lift task is implemented only

50

0.0

0.5

1.0

su
cc
es
s
ra
te

0.0

0.5

1.0

su
cc
es
s
ra
te

Lift Lift Rotated

Diffusion Policy N1
p Flow Matching N1

p noIPA N1
p ActionFlow N1

p

Figure 9.3.: Mean success rates for the models trained on lift demonstrations (left) and
evaluated on a rotated version (right). Per model category, 300 rollouts (100 per model
seed) contribute to the means. To indicate the variance between the three models, the
range of the individual success rates is marked with black. The per-pose tokenization of
noIPA enables some generalization, indicating that the learned features also consider the
relative transformations between the individual poses. Still, only ActionFlow is invariant
to global transformations. Refer to Table C.2 for detailed results.

to rotate the cup and the robots; the world frame is identical to the original version of the
task, and all poses are expressed in this world frame.

The results are as expected: Only ActionFlow shows the invariance property. Still, it can
also be seen that the noIPA model sometimes solves the task in the rotated setup. This
indicates that this model also learned features considering the relative transformations
between the individual poses. However, as the structure does not force this, the results
are worse than ActionFlow’s.

51

10. Discussion and Outlook

This thesis is structured into two key parts: Developing a BIL framework and its application.
The first part of this work introduces a framework built upon two components of the ARISE
initiative [77], namely robosuite [63] and robomimic [54]. The second part applies
this framework to evaluate various IL methods, with a particular focus on ActionFlow [1].

The presented BIL framework extends robosuite by incorporating four additional biman-
ual tasks: place-ball, pick-place, quad-insert, and hinged-bin. With robosuite’s backbone,
the tasks are designed to be easily adaptable, allowing modifications such as changes in
appearance or the use of different robot models. A waypoint-based expert is implemented
to enable efficient data collection, facilitating the rapid generation of thousands of suc-
cessful demonstrations. While this method ensures consistency, it lacks adaptability to
variations and multi-modal behaviors. Future improvements could enhance this approach
by incorporating multi-modal behaviors and further randomization to increase robust-
ness. Additionally, while robosuite offers data collection methods primarily suited for
single-arm tasks, extending support to bimanual teleoperation devices would be a valuable
extension for future research.

Alongside the environment extensions, the second major component of the framework
involves enhancements to robomimic. This work integrates SOTA generative algorithms,
specifically Diffusion Policy [9] and Flow Matching [34], into the framework. Additionally,
ActionFlow [1] is implemented as a pose-based method, along with an alternative version
(noIPA). The structured nature of robomimic provides a flexible and effective environment
for IL experiments, making it an excellent foundation for further research. However, the
reliance on synthetic data collection within a simulated environment raises concerns about
sim-to-real transferability, which could be explored further in future work. On top of
that, future research could extend this framework by integrating additional IL and RL
algorithms to expand its capabilities.

The second part of this work utilizes the developed framework to investigate ActionFlow
in depth. Experiments are conducted specifically for bimanual tasks based on the original

52

work of Funk et al. [1]. ActionFlow leverages pose-based scene information and incor-
porates IPA to enforce invariance to global transformations. In addition to ActionFlow,
the noIPA model is introduced as a second pose-based method. Unlike ActionFlow, noIPA
processes pose information arbitrarily rather than using strictly relative transformations.
The comparison of these methods with Diffusion Policy and Flow Matching, which are not
specifically tailored for pose-based tasks, highlights a fundamental distinction: tokeniza-
tion within the underlying Transformer architecture. While Diffusion Policy and Flow
Matching assign a single token per sequence entry, ActionFlow and noIPA use a token per
pose. With that, ActionFlow and noIPA enable explicit encoding of per-pose information,
leading to richer scene representations.

Experiments presented in Chapter 9 answer two research questions: (a) Applying per-pose
tokenization improves performance, as expected, by encoding additional structural infor-
mation within the scene. It should be used if explicit pose information is available in the
scene. (b) IPA enforces a more restrictive structure compared to MHA and the experimen-
tal results indicate that noIPA slightly outperforms ActionFlow. However, this difference
is marginal. The invariance introduced by IPA might not provide an advantage in tasks
where complete action trajectories are predicted, as consecutive predicted poses exhibit
minimal relative transformations. Future research could explore whether the invariance
property is beneficial in settings involving more significant relative transformations, such
as policies predicting key points rather than whole trajectories.

Furthermore, the evaluation of the invariance property within ActionFlow was successful.
This invariance property is particularly relevant for scenarios where end-effector poses
cannot be directly derived from the robot’s internal kinematics, as with external gripping
devices like UMI [95], with hand tracking for teleoperation [96], or when learning across
different robotic platforms. In the first case, no robot base exists during data collection,
making it hard to define a common frame for both end effectors. ActionFlow enables
learning from these demonstrations without minding the absolute arrangement of the
environment. In the second case, ActionFlow allows for faster and easier transfer between
different robot platforms, as the transformations between the different robot bases do
not have to be considered and estimated. These theoretical advantages exist, but further
experiments are necessary to validate their benefits in practical applications.

The findings of this thesis have important implications for both research and practical
applications in robotic IL. The developed framework provides a foundation for evaluating
new learning algorithms in structured bimanual environments. This work offers a valuable
tool for researchers working on robot learning methods. It enables flexible experiment
rollouts and supports multiple IL approaches, which can be easily added. Additionally,

53

the insights from ActionFlow’s structure and invariance properties may influence future
developments in tokenization strategies for pose-based policies.

Future research can build upon this work by further exploring invariance in key-point-
based prediction, improving data collection methods, and assessing broader generalization
capabilities across different robotic platforms. Ultimately, this work lays the foundation
for continued advancements in BIL and structured action representations, enabling more
robust and transferable policies.

54

References

[1] N. Funk, J. Urain, J. Carvalho, V. Prasad, G. Chalvatzaki, and J. Peters, ActionFlow:
Equivariant, Accurate, and Efficient Policies with Spatially Symmetric Flow Matching,
2024. arXiv: 2409.04576 [cs.RO] (cited on pp. i, ii, 2, 7, 9, 23, 25, 31, 35–39,
42, 45–47, 49, 52, 53).

[2] J. Peters and S. Schaal, “Learning to Control in Operational Space”, International
Journal of Robotics Research (IJRR), pp. 197–212, 2008. doi: 10.1177/0278364
907087548 (cited on p. 4).

[3] O. Khatib, “A unified approach for motion and force control of robot manipulators:
The operational space formulation”, IEEE Journal on Robotics and Automation,
pp. 43–53, 1987. doi: 10.1109/JRA.1987.1087068 (cited on pp. 4, 13).

[4] D. Oku and E. Obot, Comparative Study Of PD, PI and PID Controllers For Control Of
A Single Joint System In Robots, Sep. 2019. doi: 10.9790/1813-0709025154
(cited on pp. 4, 13).

[5] T. Fujiki and K. Tahara, “Series admittance–impedance controller for more robust
and stable extension of force control”, ROBOMECH Journal, Dec. 2022. doi: 10.1
186/s40648-022-00237-5 (cited on p. 4).

[6] M. van Otterlo and M. Wiering, “Reinforcement Learning and Markov Decision
Processes”, in Reinforcement Learning: State-of-the-Art. Springer Berlin Heidelberg,
2012, pp. 3–42, isbn: 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-
3_1 (cited on pp. 5, 26).

[7] D. Pomerleau, “ALVINN: An Autonomous Land Vehicle In a Neural Network”, in
Proceedings of (NeurIPS) Neural Information Processing Systems, 1989, pp. 305–313
(cited on pp. 6, 8, 23).

[8] S. Kullback and R. A. Leibler, “On Information and Sufficiency”, The Annals of
Mathematical Statistics, pp. 79–86, 1951. doi: 10.1214/aoms/1177729694
(cited on p. 6).

55

https://arxiv.org/abs/2409.04576
https://doi.org/10.1177/0278364907087548
https://doi.org/10.1177/0278364907087548
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.9790/1813-0709025154
https://doi.org/10.1186/s40648-022-00237-5
https://doi.org/10.1186/s40648-022-00237-5
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1214/aoms/1177729694

[9] C. Chi, Z. Xu, S. Feng, et al., Diffusion Policy: Visuomotor Policy Learning via Action
Diffusion, 2024. arXiv: 2303.04137 [cs.RO] (cited on pp. 7, 9, 23, 25, 27, 29,
30, 52, IX).

[10] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, Learning Fine-Grained Bimanual
Manipulation with Low-Cost Hardware, 2023. arXiv: 2304.13705 [cs.RO] (cited
on pp. 7, 9, 11, 20).

[11] M. Shridhar, L. Manuelli, and D. Fox, Perceiver-Actor: A Multi-Task Transformer for
Robotic Manipulation, 2022. arXiv: 2209.05451 [cs.RO] (cited on pp. 7, 9, 18).

[12] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey of Robot Learning
from Demonstration”, Robotics and Autonomous Systems, pp. 469–483, 2009. doi:
10.1016/j.robot.2008.10.024 (cited on p. 8).

[13] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of Imitation Learning for
Robotic Manipulation”, International Journal of Intelligent Robotics and Applications,
pp. 362–369, 2019. doi: 10.1007/s41315-019-00103-5 (cited on p. 8).

[14] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation Learning: A Survey
of Learning Methods”, ACM Computing Surveys, 2017. doi: 10.1145/3054912
(cited on p. 8).

[15] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of
motor skills by learning from demonstration”, in 2009 IEEE International Conference
on Robotics and Automation, 2009, pp. 763–768. doi: 10.1109/ROBOT.2009.5
152385 (cited on p. 8).

[16] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement primitives”,
in Robotics Research. The Eleventh International Symposium, P. Dario and R. Chatila,
Eds., 2005, pp. 561–572. doi: 10.1007/11008941_60 (cited on p. 8).

[17] M. Drolet, S. Stepputtis, S. Kailas, et al., A Comparison of Imitation Learning Algo-
rithms for Bimanual Manipulation, 2024. arXiv: 2408.06536 [cs.RO] (cited on
pp. 8, 11, 18, 20, V).

[18] M. Grotz, M. Shridhar, T. Asfour, and D. Fox, PerAct2: Benchmarking and Learning
for Robotic Bimanual Manipulation Tasks, 2024. arXiv: 2407.00278 [cs.RO]
(cited on pp. 8, 9, 11, 16, 19, 20).

[19] A. Dastider, H. Fang, and M. Lin, APEX: Ambidextrous Dual-Arm Robotic Manipu-
lation Using Collision-Free Generative Diffusion Models, 2024. arXiv: 2404.02284
[cs.RO] (cited on pp. 8, 9, 11).

[20] K. Shaw, Y. Li, J. Yang, et al., Bimanual Dexterity for Complex Tasks, 2024. arXiv:
2411.13677 [cs.RO] (cited on pp. 8, 11).

56

https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2209.05451
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1007/s41315-019-00103-5
https://doi.org/10.1145/3054912
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1007/11008941_60
https://arxiv.org/abs/2408.06536
https://arxiv.org/abs/2407.00278
https://arxiv.org/abs/2404.02284
https://arxiv.org/abs/2404.02284
https://arxiv.org/abs/2411.13677

[21] J. Campbell and H. Ben Amor, “Bayesian Interaction Primitives: A SLAM Approach
to Human-Robot Interaction”, in Proceedings of the 1st Annual Conference on Robot
Learning, ser. Proceedings of Machine Learning Research, 2017 (cited on p. 8).

[22] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth manipulation for
laundry folding”, in 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sep. 2011, pp. 1413–1419. doi: 10.1109/IROS.2011.6048873
(cited on p. 8).

[23] J. Grannen, Y. Wu, S. Belkhale, and D. Sadigh, Learning Bimanual Scooping Policies
for Food Acquisition, 2022. arXiv: 2211.14652 [cs.RO] (cited on p. 8).

[24] S. Mirrazavi, N. Figueroa, and A. Billard, “A unified framework for coordinated
multi-arm motion planning”, The International Journal of Robotics Research, 2018.
doi: 10.1177/0278364918765952 (cited on p. 8).

[25] C. Smith, Y. Karayiannidis, L. Nalpantidis, et al., “Dual Arm Manipulation — A
Survey”, Robotics and Autonomous Systems, pp. 1340–1353, 2012. doi: 10.1016
/j.robot.2012.07.005 (cited on p. 8).

[26] Y. Chen, T. Wu, S. Wang, et al., Towards Human-Level Bimanual Dexterous Manipu-
lation with Reinforcement Learning, 2022. arXiv: 2206.08686 [cs.RO] (cited on
p. 8).

[27] S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch, Bi-Manual Ma-
nipulation and Attachment via Sim-to-Real Reinforcement Learning, 2022. arXiv:
2203.08277 [cs.RO] (cited on p. 8).

[28] Y. Lin, A. Church, M. Yang, et al., Bi-Touch: Bimanual Tactile Manipulation with
Sim-to-Real Deep Reinforcement Learning, 2023. arXiv: 2307.06423 [cs.RO]
(cited on p. 8).

[29] S. Stepputtis, M. Bandari, S. Schaal, and H. B. Amor, A System for Imitation Learn-
ing of Contact-Rich Bimanual Manipulation Policies, 2022. arXiv: 2208.00596
[cs.RO] (cited on pp. 8, 11).

[30] S. Ross, G. J. Gordon, and J. A. Bagnell, A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning, 2011. arXiv: 1011.0686 [cs.LG]
(cited on p. 8).

[31] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, DART: Noise Injection for
Robust Imitation Learning, 2017. arXiv: 1703.09327 [cs.LG] (cited on p. 8).

[32] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention Is All You Need, 2023. arXiv:
1706.03762 [cs.CL] (cited on pp. 9, 23, 29, 31, 35, VII).

57

https://doi.org/10.1109/IROS.2011.6048873
https://arxiv.org/abs/2211.14652
https://doi.org/10.1177/0278364918765952
https://doi.org/10.1016/j.robot.2012.07.005
https://doi.org/10.1016/j.robot.2012.07.005
https://arxiv.org/abs/2206.08686
https://arxiv.org/abs/2203.08277
https://arxiv.org/abs/2307.06423
https://arxiv.org/abs/2208.00596
https://arxiv.org/abs/2208.00596
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1703.09327
https://arxiv.org/abs/1706.03762

[33] Z. Fu, T. Z. Zhao, and C. Finn, Mobile ALOHA: Learning Bimanual Mobile Manipula-
tion with Low-Cost Whole-Body Teleoperation, 2024. arXiv: 2401.02117 [cs.RO]
(cited on pp. 9, 11).

[34] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le, Flow Matching for
Generative Modeling, 2023. arXiv: 2210.02747 [cs.LG] (cited on pp. 9, 23, 25,
33–35, 52).

[35] J. M. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein structure prediction
with AlphaFold”, Nature, vol. 596, pp. 583–589, 2021. doi: 10.1038/s41586-0
21-03819-2 (cited on pp. 9, 41, 42).

[36] J. Ho, A. Jain, and P. Abbeel, Denoising Diffusion Probabilistic Models, 2020. arXiv:
2006.11239 [cs.LG] (cited on pp. 9, 27, 34).

[37] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox, RVT: Robotic View
Transformer for 3D Object Manipulation, 2023. arXiv: 2306.14896 [cs.RO]
(cited on p. 9).

[38] J. Gao, X. Jin, F. Krebs, N. Jaquier, and T. Asfour, Bi-KVIL: Keypoints-based Visual
Imitation Learning of Bimanual Manipulation Tasks, 2024. arXiv: 2403.03270
[cs.RO] (cited on pp. 9, 11).

[39] J. Ho and S. Ermon, Generative Adversarial Imitation Learning, 2016. arXiv: 1606
.03476 [cs.LG] (cited on p. 9).

[40] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative Adversarial Networks,
2014. arXiv: 1406.2661 [stat.ML] (cited on p. 9).

[41] X. B. Peng, A. Kanazawa, S. Toyer, P. Abbeel, and S. Levine, Variational Discriminator
Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining
Information Flow, 2020. arXiv: 1810.00821 [cs.LG] (cited on p. 9).

[42] Y. Li, J. Song, and S. Ermon, “InfoGAIL: interpretable imitation learning from
visual demonstrations”, in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 3815–3825. doi: 10.5555/3294996
.3295138 (cited on p. 9).

[43] H. Xiao, M. Herman, J. Wagner, S. Ziesche, J. Etesami, and T. H. Linh, Wasserstein
Adversarial Imitation Learning, 2019. arXiv: 1906.08113 [cs.LG] (cited on p. 9).

[44] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, Maximum entropy inverse
reinforcement learning, 2008. doi: 10.5555/1620270.1620297 (cited on p. 9).

[45] B. Ziebart, J. Bagnell, and A. Dey, Modeling Interaction via the Principle of Maximum
Causal Entropy, Jun. 2010 (cited on p. 10).

58

https://arxiv.org/abs/2401.02117
https://arxiv.org/abs/2210.02747
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2306.14896
https://arxiv.org/abs/2403.03270
https://arxiv.org/abs/2403.03270
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1810.00821
https://doi.org/10.5555/3294996.3295138
https://doi.org/10.5555/3294996.3295138
https://arxiv.org/abs/1906.08113
https://doi.org/10.5555/1620270.1620297

[46] C. Finn, S. Levine, and P. Abbeel, Guided Cost Learning: Deep Inverse Optimal Control
via Policy Optimization, 2016. arXiv: 1603.00448 [cs.LG] (cited on p. 10).

[47] D. Garg, S. Chakraborty, C. Cundy, J. Song, M. Geist, and S. Ermon, IQ-Learn: Inverse
soft-Q Learning for Imitation, 2022. arXiv: 2106.12142 [cs.LG] (cited on p. 10).

[48] S. Reddy, A. D. Dragan, and S. Levine, SQIL: Imitation Learning via Reinforcement
Learning with Sparse Rewards, 2019. arXiv: 1905.11108 [cs.LG] (cited on
p. 10).

[49] N. Gavenski, M. Luck, and O. Rodrigues, Imitation Learning Datasets: A Toolkit For
Creating Datasets, Training Agents and Benchmarking, 2024. arXiv: 2403.00550
[cs.LG] (cited on p. 10).

[50] A. Gleave, M. Taufeeque, J. Rocamonde, et al., imitation: Clean Imitation Learn-
ing Implementations, arXiv:2211.11972v1 [cs.LG], 2022. arXiv: 2211.11972
[cs.LG] (cited on p. 10).

[51] R. Memmesheimer, I. Mykhalchyshyna, V. Seib, and D. Paulus, Simitate: A Hybrid
Imitation Learning Benchmark, 2019. arXiv: 1905.06002 [cs.LG] (cited on
p. 10).

[52] S. Toyer, R. Shah, A. Critch, and S. Russell, The MAGICAL Benchmark for Robust
Imitation, 2020. arXiv: 2011.00401 [cs.LG] (cited on p. 10).

[53] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, RLBench: The Robot Learning
Benchmark & Learning Environment, 2019. arXiv: 1909.12271 [cs.RO] (cited
on pp. 10, 11).

[54] A. Mandlekar, D. Xu, J. Wong, et al., What Matters in Learning from Offline Human
Demonstrations for Robot Manipulation, 2021. arXiv: 2108.03298 [cs.RO] (cited
on pp. 10, 23–25, 52).

[55] F. Al-Hafez, G. Zhao, J. Peters, and D. Tateo, LocoMuJoCo: A Comprehensive Imitation
Learning Benchmark for Locomotion, 2023. arXiv: 2311.02496 [cs.LG] (cited
on p. 10).

[56] A. Mandlekar, S. Nasiriany, B. Wen, et al., MimicGen: A Data Generation System for
Scalable Robot Learning using Human Demonstrations, 2023. arXiv: 2310.17596
[cs.RO] (cited on pp. 10, 20).

[57] X. Jia, D. Blessing, X. Jiang, et al., Towards Diverse Behaviors: A Benchmark for Imi-
tation Learning with Human Demonstrations, 2024. arXiv: 2402.14606 [cs.RO]
(cited on pp. 10, 20).

59

https://arxiv.org/abs/1603.00448
https://arxiv.org/abs/2106.12142
https://arxiv.org/abs/1905.11108
https://arxiv.org/abs/2403.00550
https://arxiv.org/abs/2403.00550
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/1905.06002
https://arxiv.org/abs/2011.00401
https://arxiv.org/abs/1909.12271
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2311.02496
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/2402.14606

[58] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, D4RL: Datasets for Deep
Data-Driven Reinforcement Learning, 2021. arXiv: 2004.07219 [cs.LG] (cited
on p. 10).

[59] A. Rajeswaran, V. Kumar, A. Gupta, et al., Learning Complex Dexterous Manipulation
with Deep Reinforcement Learning and Demonstrations, 2018. arXiv: 1709.10087
[cs.LG] (cited on p. 10).

[60] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, Relay Policy Learning:
Solving Long-Horizon Tasks via Imitation and Reinforcement Learning, 2019. arXiv:
1910.11956 [cs.LG] (cited on p. 10).

[61] J. Wong, A. Tung, A. Kurenkov, et al., Error-Aware Imitation Learning from Teleoper-
ation Data for Mobile Manipulation, 2021. arXiv: 2112.05251 [cs.RO] (cited on
p. 10).

[62] A. Mandlekar, Y. Zhu, A. Garg, et al., RoboTurk: A Crowdsourcing Platform for Robotic
Skill Learning through Imitation, 2018. arXiv: 1811.02790 [cs.RO] (cited on
pp. 10, 20).

[63] Y. Zhu, J. Wong, A. Mandlekar, et al., robosuite: A Modular Simulation Framework
and Benchmark for Robot Learning, 2022. arXiv: 2009.12293 [cs.RO] (cited on
pp. 10, 12, 13, 16, 17, 20, 23, 24, 52).

[64] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based con-
trol”, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109 (cited on
pp. 10–12).

[65] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel, HumanoidBench: Simulated
Humanoid Benchmark for Whole-Body Locomotion and Manipulation, 2024. arXiv:
2403.10506 [cs.RO] (cited on p. 10).

[66] F. Xiang, Y. Qin, K. Mo, et al., SAPIEN: A SimulAted Part-based Interactive ENviron-
ment, 2020. arXiv: 2003.08515 [cs.CV] (cited on p. 10).

[67] J. Gu, F. Xiang, X. Li, et al., ManiSkill2: A Unified Benchmark for Generalizable
Manipulation Skills, 2023. arXiv: 2302.04659 [cs.RO] (cited on p. 10).

[68] I. Garcia-Camacho, M. Lippi, M. C. Welle, et al., “Benchmarking Bimanual Cloth
Manipulation”, IEEE Robotics and Automation Letters, pp. 1111–1118, 2020. doi:
10.1109/LRA.2020.2965891 (cited on p. 11).

[69] R. Ding, Y. Qin, J. Zhu, et al., Bunny-VisionPro: Real-Time Bimanual Dexterous
Teleoperation for Imitation Learning, 2024. arXiv: 2407.03162 [cs.RO] (cited
on p. 11).

60

https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1910.11956
https://arxiv.org/abs/2112.05251
https://arxiv.org/abs/1811.02790
https://arxiv.org/abs/2009.12293
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2403.10506
https://arxiv.org/abs/2003.08515
https://arxiv.org/abs/2302.04659
https://doi.org/10.1109/LRA.2020.2965891
https://arxiv.org/abs/2407.03162

[70] T. Zhang, D. Li, Y. Li, et al., Empowering Embodied Manipulation: A Bimanual-
Mobile Robot Manipulation Dataset for Household Tasks, 2024. arXiv: 2405.18860
[cs.RO] (cited on p. 11).

[71] Y. Lin, A. Church, M. Yang, et al., Bi-Touch: Bimanual Tactile Manipulation with
Sim-to-Real Deep Reinforcement Learning, 2023. arXiv: 2307.06423 [cs.RO]
(cited on p. 11).

[72] E. Coumans and Y. Bai, PyBullet, a Python module for physics simulation for games,
robotics and machine learning, url: http://pybullet.org, 2021 (cited on
p. 11).

[73] F. Xie, A. Chowdhury, M. C. D. P. Kaluza, L. Zhao, L. L. S. Wong, and R. Yu, Deep
Imitation Learning for Bimanual Robotic Manipulation, 2020. arXiv: 2010.05134
[cs.RO] (cited on p. 11).

[74] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable robot
simulation framework”, in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 1321–1326. doi: 10.1109/IROS.2013.6696520
(cited on p. 11).

[75] K. Cetin, E. Tatlicioglu, and E. Zergeroglu, “On null-space control of kinematically
redundant robot manipulators”, in 2016 European Control Conference (ECC), 2016,
pp. 678–683. doi: 10.1109/ECC.2016.7810367 (cited on p. 13).

[76] H. Kasaei and M. Kasaei, VITAL: Visual Teleoperation to Enhance Robot Learning
through Human-in-the-Loop Corrections, 2024. arXiv: 2407.21244 [cs.RO] (cited
on p. 20).

[77] Advancing Robot Intelligence through Simulated Environments (ARISE), url: https
://github.com/ARISE-Initiative, 2025 (cited on pp. 23, 52).

[78] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-Fei, Learning to
Generalize Across Long-Horizon Tasks from Human Demonstrations, 2021. arXiv:
2003.06085 [cs.RO] (cited on p. 23).

[79] S. Fujimoto and S. S. Gu, A Minimalist Approach to Offline Reinforcement Learning,
2021. arXiv: 2106.06860 [cs.LG] (cited on p. 23).

[80] I. Kostrikov, A. Nair, and S. Levine, Offline Reinforcement Learning with Implicit
Q-Learning, 2021. arXiv: 2110.06169 [cs.LG] (cited on p. 23).

[81] A. Mandlekar, F. Ramos, B. Boots, et al., IRIS: Implicit Reinforcement without Inter-
action at Scale for Learning Control from Offline Robot Manipulation Data, 2020.
arXiv: 1911.05321 [cs.RO] (cited on p. 23).

61

https://arxiv.org/abs/2405.18860
https://arxiv.org/abs/2405.18860
https://arxiv.org/abs/2307.06423
http://pybullet.org
https://arxiv.org/abs/2010.05134
https://arxiv.org/abs/2010.05134
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/ECC.2016.7810367
https://arxiv.org/abs/2407.21244
https://github.com/ARISE-Initiative
https://github.com/ARISE-Initiative
https://arxiv.org/abs/2003.06085
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/1911.05321

[82] D. Reynolds, “Gaussian Mixture Models”, in Encyclopedia of Biometrics, S. Z. Li and A.
Jain, Eds. Boston, MA: Springer US, 2009, pp. 659–663, isbn: 978-0-387-73003-5.
doi: 10.1007/978-0-387-73003-5_196 (cited on p. 23).

[83] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders”, Foun-
dations and Trends® in Machine Learning, vol. 12, pp. 307–392, 2019, issn: 1935-
8245. doi: 10.1561/2200000056 (cited on p. 23).

[84] R.M. Schmidt, Recurrent Neural Networks (RNNs): A gentle Introduction and Overview,
2019. arXiv: 1912.05911 [cs.LG] (cited on p. 23).

[85] Y. Song and S. Ermon, Generative Modeling by Estimating Gradients of the Data
Distribution, 2020. arXiv: 1907.05600 [cs.LG] (cited on p. 27).

[86] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics, 2015. arXiv: 1503.03585
[cs.LG] (cited on p. 27).

[87] J. Song, C. Meng, and S. Ermon, Denoising Diffusion Implicit Models, 2022. arXiv:
2010.02502 [cs.LG] (cited on pp. 27, 29, 34).

[88] C. Luo, Understanding Diffusion Models: A Unified Perspective, 2022. arXiv: 2208.1
1970 [cs.LG] (cited on p. 28).

[89] T. Fjelde, E. Mathieu, and V. Dutordoir, An Introduction to Flow Matching, url: ht
tps://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html,
2024 (cited on p. 33).

[90] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural Ordinary
Differential Equations, 2019. arXiv: 1806.07366 [cs.LG] (cited on p. 33).

[91] J. Yim, A. Campbell, A. Y. K. Foong, et al., Fast protein backbone generation with
SE(3) flow matching, 2023. arXiv: 2310.05297 [q-bio.QM] (cited on pp. 37,
38).

[92] J. Yim, B. L. Trippe, V. D. Bortoli, et al., SE(3) diffusion model with application to
protein backbone generation, 2023. arXiv: 2302.02277 [cs.LG] (cited on p. 37).

[93] J. Solà, J. Deray, and D. Atchuthan, A micro Lie theory for state estimation in robotics,
2021. arXiv: 1812.01537 [cs.RO] (cited on pp. 37, 38).

[94] B. C. Hall, “The Baker-Campbell-Hausdorff Formula”, in Lie Groups, Lie Algebras,
and Representations: An Elementary Introduction. Springer New York, 2003, pp. 63–
90, isbn: 978-0-387-21554-9. doi: 10.1007/978-0-387-21554-9_3 (cited
on p. 38).

62

https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1561/2200000056
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/2208.11970
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2310.05297
https://arxiv.org/abs/2302.02277
https://arxiv.org/abs/1812.01537
https://doi.org/10.1007/978-0-387-21554-9_3

[95] C. Chi, Z. Xu, C. Pan, et al., Universal Manipulation Interface: In-The-Wild Robot
Teaching Without In-The-Wild Robots, 2024. arXiv: 2402.10329 [cs.RO] (cited
on p. 53).

[96] F. Zhang, V. Bazarevsky, A. Vakunov, et al., MediaPipe Hands: On-device Real-time
Hand Tracking, 2020. arXiv: 2006.10214 [cs.CV] (cited on p. 53).

[97] I. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization, 2019. arXiv:
1711.05101 [cs.LG] (cited on p. IX).

63

https://arxiv.org/abs/2402.10329
https://arxiv.org/abs/2006.10214
https://arxiv.org/abs/1711.05101

A. Tasks in Detail

Giving information about the task implementations, the following sections display the
details of the bimanual tasks available in the BIL framework (Chapter 5). The task
collection includes the robosuite tasks peg-in-hole, lift handover, and transport as well
as the additional implemented tasks place-ball, pick-place, quad-insert and hinged-bin. A
general overview categorizing the tasks by coupling and required arm synchronization
can be found in Table 5.1.

A.1. Peg-In-Hole

Figure A.1.: Peg-In-Hole task.

Task Description. In this task, the arms’ grip-
pers are replaced with a fixed cylindrical stick
and a squared plate with a squared hole. The
goal is to insert the stick into the hole.

Success Criteria. The task is completed once
the stick is pushed through the squared hole by
at least half its length.

Coupling and Synchronization. The coupling
is mainly spatial; both arms work within a com-
mon workspace. If the task is solved as intended, no physical coupling appears. Whether
temporal coupling is present depends on how the insertion is fulfilled, but it is unneces-
sary. The required synchronization between the two arms is not symmetric but must be
synchronized to place the two parts relative to each other.

Task Randomization. During the initialization of the task, the robot’s joint configuration
is slightly randomized by applying Gaussian noise N (0, 0.02) to each joint.

I

Low Dimensional Observations. The available low-dimensional observations are hole
position, hole quaternion, hole position, and peg quaternion. These values are given in
the world frame.

A.2. Lift

Figure A.2.: Lift task.

Task Description. The task requires the robot
arms to pick up a box-shaped cup from the table.
Two edgy handles allow for an easy grasp of the
cup.

Success Criteria. The task is completed if the
cup is lifted by 10 cm.

Coupling and Synchronization. The coupling
in this task is spatial and physical: The two arms
share the same workspace and are coupled once
both grippers grasp the cup. From this moment, symmetric synchronization is required,
too.

Task Randomization. The robot’s joint configuration is slightly randomized by applying
Gaussian noise N (0, 0.02) to each joint. The cup is positioned randomly in a 6 × 6 cm
large square between the two arms. The orientation of the cup is varied by ±60°.

Low Dimensional Observations. The available low-dimensional observations are cup
position, cup quaternion, and the positions of the two handles. All are given in the world
frame.

A.3. Handover

Task Description. One arm must pick up a hammer and hand it to the other. With the
handover-simple task, a variant is available where the hammer is already placed in the
robot’s right gripper.

Success Criteria. To complete the task, the receiving arm must grasp the hammer
handle at least 10 cm above the table, and the other arm cannot touch the hammer.

II

Figure A.3.: Handover task.

Coupling and Synchronization. Besides the
spatial and physical coupling, this task also has
temporal coupling, as the handover movement
follows a sequential sequence. The required
synchronization between the arms is asymmet-
ric but synchronized.

Task Randomization. Each initial joint posi-
tion is randomized by N (0, 0.02). The hammer
is placed in front of the right arm in a 20×10 cm
region and can be oriented in any orientation
(360°). Additionally, the hammer can be flipped, meaning that the tip can point clockwise
or counter-clockwise. The handle thickness is varied between 3 and 4 cm, and the handle
length is sampled to be between 10 and 25 cm.

Low Dimensional Observations. The available low-dimensional observations (given in
the world frame) are the hammers’ position and quaternion.

A.4. Transport

Figure A.4.: Transport task.

Task Description. This task has the longest
horizon, consisting of multiple sub-tasks. The
overall exercise is to place the hammer in the
rear box. Before that, the right robot arm must
remove the lid covering the box that contains
the hammer at the start of the episode, and the
left arm must remove the red dice from the rear
box to the box up front. As the right arm cannot
reach the target box, a handover of the hammer
must be performed.

Success Criteria. The task is completed if the red cub is placed in the box up front and
the hammer is placed in the rear box.

Coupling and Synchronization. The task contains all (spatial, physical, temporal) cou-
plings and requires synchronized coordination.

III

TaskRandomization. The robot’s joint configuration is slightly randomized byN (0, 0.02).
The positions of all objects and boxes are sampled from 1× 1 cm regions. The hammer’s
initial rotation is varied by ±54°. Its size is fixed to a thickness of 3 cm and a handle length
of 20 cm. The orientation of the red cube is varied by ±30°.

Low Dimensional Observations. The available low-dimensional observations are given
in the world frame: Cube position and quaternion, hammer position and quaternion,
position and quaternion of the lids handle, positions of the target bin and the bin up front.

A.5. Place-Ball

Figure A.5.: Place-Ball task.

Task Description. The robot arms must lift
and place a large ball in a box in front of the
ball. The ball is designed so large that grippers
cannot grasp it.

Success Criteria. If the ball is inside the box
and the arms are not touching the ball, the task
is completed.

Coupling and Synchronization. The coupling
in this task is spatial and requires careful sym-
metric coordination to prevent dropping the ball. As with all bimanual tasks, synchroniza-
tion between the two arms is required.

Task Randomization. The robot’s initial joint positions are randomized by N (0, 0.02).
The ball’s and box’s initial positions are sampled from 10× 10 cm regions. Additionally,
the orientation of the box is varied by ±180°.

Low Dimensional Observations. Ball position, box position, and box quaternion are the
available low-dimensional observations. The values are given in the world frame.

IV

A.6. Pick-Place

Figure A.6.: Pick-Place task.

Task Description. This task requires a ham-
mer to be placed in a target box. The box and
the hammer are placed so that a handover of
the hammer is required before it can be placed
in the box.

Success Criteria. The task is accomplished
once the hammer is placed in the box and no
arm is grasping it.

Coupling and Synchronization. The coupling
and coordination are equivalent to the handover task (spatial, physical, temporal and
asymmetric, synchronized).

Task Randomization. The robot’s joint configuration is slightly randomized by applying
Gaussian noise N (0, 0.02) to each joint. The hammer’s and box’s initial positions are
sampled from 10×10 cm regions. The orientations are varied by ±180°, and the hammer’s
thickness and length are varied between 3 to 4 and 22 to 25 cm. The hammer is always in
front of the right arm, and the box is always in front of the left arm.

Low Dimensional Observations. Given in the world frame, the available low dimensional
observations are hammer position/orientation and box position/orientation.

A.7. Quad-Insert

Task Description. This task is adapted from Drolet et al. [17]. A bracket with four holes
and two handles must be placed on four pins. The insertion tolerance for each pin is only
1mm.

Success Criteria. The task is accomplished once the bracket is placed on the stand.

Coupling and Synchronization. The coupling is spatial and physical. The required
coordination is synchronized and highly symmetric as soon as the bracket is lifted.

V

Figure A.7.: Quad-Insert task.

Task Randomization. Noise N (0, 0.02) is
used to randomize the robot’s initial joint con-
figuration slightly. The bracket and stand posi-
tions are sampled from 4× 4 cm large regions.
The rotations are varied by ±15°. The bracket
is always positioned in front of the right arm,
and the stand is always in front of the left arm.

Low Dimensional Observations. The avail-
able low-dimensional observations (world
frame) are bracket position/quaternion, posi-
tions of the handles, and stand position/quaternion.

A.8. Hinged-Bin

Figure A.8.: Hinged-Bin task.

Task Description. The arms must work to-
gether to place the hammer in a bin covered
with a hinged lid. The opening angle of the lid
is limited such that the box does not stay open
on its own.

Success Criteria. To complete the task, the
hammer must be placed in the box, and its lid
must be closed.

Coupling and Synchronization. The task ex-
hibits temporal and spatial coupling. Required coordination is asymmetric and synchro-
nized, with each arm having distinct but interdependent roles.

Task Randomization. The robot’s joint configuration is slightly randomized by applying
Gaussian noise N (0, 0.02). The hammer’s and bin’s initial positions are sampled from
10× 10 cm regions. The orientations are randomized by ±22.5°. The hammer thickness
and length are varied between 3 to 4 and 10 to 15 cm. The hammer is always in front of
the right arm, and the bin is always in front of the right arm, with its general orientation
so that the open side points to the center of the table.

Low Dimensional Observations. Available are hammer position/quaternion, bin posi-
tion/quaternion, and handle position/quaternion. All low-dimensional values are given in
the world frame.

VI

B. Hyperparameters

The following sections describe the chosen hyperparameters for the models and experi-
ments of Chapter 9. It is explicitly stated that no fine-tuning has been carried out. The
values were selected so that all algorithms work and are kept as equal as possible. More
precise analysis could increase performance and efficiency, but this work did not focus on
these issues.

B.1. Models

All presented algorithms are implemented as multi-step policies and use a Transformer
architecture [32] as the underlying model.

Horizons. All models take in a sequence of the last To = 4 observations to predict the
next Tp = 8 actions. Of these predictions, only the first (Ta = 1) action is executed before
a new prediction sequence is generated. The procedure is visualized in Figure 8.1.

Training and Inference. Both underlying mechanisms (diffusion and flow) use fewer
inference steps during sampling than training. The Diffusion Policy uses 100 diffusion
timesteps during training but runs DDIM inference with 25 timesteps. The flow-based
methods use a linear schedule with 100 steps during training but an exponential schedule
with 35 steps during inference. These parameters are not optimized but chosen so that
they do not limit the policy performances. Reducing the time steps used might make faster
inference times possible without sacrificing performance.

VII

Ac
tio

nF
lo
w

IPAfp
R

+

+

MLP

N×

[Nt, Demb]

[Nt, Demb]

[Nt, Demb]

D
iff
us
io
n
Po

lic
y/

Fl
ow

M
at
ch

in
gMHAqk

v

+

MHAqk
v

+

MLP

+

N×

[Tp, Demb]

[Tp, Demb]

[Tp, Demb]

[Tp, Demb]

Figure B.1.: Comparison of the Transformer blocks used in the Diffusion Policy/Flow
Matching (left) and ActionFlow (right). The block for the noIPA model is equivalent to
the one of ActionFlow, but IPA is replaced with MHA - see Figure 8.10.

Transformer Structures. The underlying Transformer models of the algorithms consist
of multiple blocks with MHA/IPA and feedforward, see Figures 8.3 and 8.8. Figure B.1
extracts and visualizes the relevant components. Key design choices are the number of
blocks N , the embedding dimensionality Demb, and the number of heads Nhead. The
values are chosen equally for all models with

N = 4, Demb = 64, and Nhead = 4 .

Tuning these values to the limit could again increase training and inference time.

B.2. Training

The algorithms are trained to minimize the mean squared error between the target noise
removal/velocity and the predicted values - see Equations (8.2) and (8.6). For ActionFlow
and noIPA, the rotation, translation, and gripper components of the loss are weighted
with wp = 2, wr = 1, and wgrip = 2, see Equation (8.14).

VIII

Lift Handover Place-Ball Pick-Place Hinged-Bin Quad-Insert Transport

Demos 1 000 1 000 1 000 1 000 1 000 1 000 1 000

Steps 78 467 102 787 182 060 221 570 317 030 227 868 226 645

Epochs (9.1) 400 600 600 1 000 2 500 2 000 3 000

Epochs (9.2) — — — 1500 2500 2 500 —

Table B.1.: Top: Overview of all datasets generated with the waypoint experts. The total
number of demonstrations and the total number of action steps in the datasets are
provided. Bottom: Number of epochs used for training the experiments 9.1 and 9.2.

Durations. Table B.1 displays how many epochs are used to train the models in the
experiments 9.1 and 9.2. In experiment 9.1, all available demonstrations (collected
with the waypoint experts) are used. Depending on the length of the task, different
numbers of total update steps per epoch are applied. The sample efficiency experiment
(Section 9.2) uses fewer demonstrations. Experiment 9.3 uses the trained lift models from
experiment 9.1 and uses them in the rotated setup.

10−4

10−5

0
0 5 last

epoch

le
ar
ni
ng

ra
te

Figure B.2.: Cosine learning rate schedule
with five warmup epochs, an initial learning
rate of 10−4, and a warmup decay factor of
0.1.

Optimizers. The training utilizes the
AdamW optimizer [97]. For the flow-based
methods β1 = 0.9, β2 = 0.95 and a L2 reg-
ularization of 10−4 are used. The Diffu-
sion Policy uses a L2 regularization of 10−3

for the noise prediction components and
10−6 for the observation encoder [9]. Mini-
batch updates of size 128 are used. The
learning rate follows a cosine learning rate
schedule with five warmup epochs. From
10−4, the learning rate decays continuously
till the final epoch. Figure B.2 visualizes
the learning rate schedule.

IX

C. Experimental Results in Detail

Remark. Success rates are reported as the mean of three models trained on different
seeds. The mean value of the three models is provided. In this case, a standard deviation
would not be meaningful. Instead, the maximum and minimum success rates are always
specified in the format mean max

min . This information indicates the variance. Diffusion Policy,
Flow Matching, and Action Flow are abbreviated with DP, FM, and AF.

C.1. Sanity Check

Table C.1 provides the success rates for Section 9.1. The corresponding visualization can
be found in Figure 9.1. Models are trained to solve the tasks lift, handover, ball-insert,
pick-place, hinged-bin, quad-insert, and transport.

Lift Handover Place-Ball Pick-Place Hinged-Bin Quad-Insert Transport

DP 0.99 1.00
0.98 0.97 0.99

0.95 0.99 1.00
0.98 0.90 0.93

0.86 0.78 0.87
0.73 0.33 0.46

0.24 0.27 0.29
0.24

FM 1.00 1.00
1.00 0.92 0.98

0.84 0.96 0.97
0.95 0.92 0.94

0.89 0.65 0.81
0.56 0.39 0.48

0.27 0.21 0.24
0.19

noIPA 1.00 1.00
0.99 0.97 1.00

0.90 0.98 0.99
0.98 0.98 0.99

0.98 0.86 0.91
0.81 0.72 0.76

0.68 0.95 0.97
0.93

AF 0.98 1.00
0.94 1.00 1.00

1.00 0.99 1.00
0.98 0.99 1.00

0.97 0.81 0.86
0.76 0.68 0.71

0.61 0.88 0.96
0.79

Table C.1.: Detailed results of the sanity check experiment in Section 9.1, which are
visualized in Figure 9.1. Out of 5 seeds per model, the three best-performing model
checkpoints run 100 rollouts, resulting in 300 rollouts per mean. To indicate the variance
between the three models, the range of the individual success rates is donated as
mean max

min .

X

C.2. Sample Efficiency

To test the sample efficiency of the three model types, they are trained onN ∈ {1, 4, 16, 64,
256, 1 000} demonstrations. To provide a good cross-section of various appearing couplings,
the tasks pick-place, hinged-bin, and quad-insert are selected. Table C.2 displays the results,
which are visualized in Figure 9.2.

N Demonstrations 1 4 16 64 256 1000

Pi
ck
-P
la
ce

DP 0.00 0.00
0.00 0.00 0.01

0.00 0.00 0.00
0.00 0.05 0.06

0.04 0.31 0.38
0.25 0.90 0.93

0.86

FM 0.00 0.00
0.00 0.00 0.01

0.00 0.01 0.01
0.00 0.14 0.18

0.11 0.61 0.65
0.57 0.92 0.94

0.89

noIPA 0.00 0.00
0.00 0.01 0.02

0.00 0.13 0.17
0.06 0.66 0.86

0.51 0.98 0.99
0.96 0.98 0.99

0.98

AF 0.00 0.00
0.00 0.00 0.00

0.00 0.09 0.17
0.03 0.49 0.63

0.41 0.92 0.97
0.87 0.99 1.00

0.97

H
in
ge

d-
Bi
n DP 0.00 0.00

0.00 0.00 0.00
0.00 0.09 0.15

0.02 0.48 0.57
0.33 0.63 0.70

0.54 0.78 0.87
0.73

FM 0.00 0.00
0.00 0.01 0.01

0.00 0.19 0.23
0.13 0.51 0.54

0.45 0.57 0.60
0.53 0.65 0.81

0.56

noIPA 0.00 0.00
0.00 0.03 0.06

0.01 0.37 0.44
0.27 0.68 0.73

0.64 0.74 0.77
0.67 0.86 0.91

0.81

AF 0.00 0.01
0.00 0.00 0.01

0.00 0.20 0.25
0.12 0.64 0.71

0.56 0.68 0.79
0.62 0.81 0.86

0.76

Q
ua

d-
In
se
rt DP 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.04 0.07
0.00 0.13 0.19

0.10 0.33 0.46
0.24

FM 0.00 0.00
0.00 0.00 0.00

0.00 0.00 0.01
0.00 0.03 0.05

0.02 0.17 0.19
0.15 0.39 0.48

0.27

noIPA 0.00 0.00
0.00 0.00 0.00

0.00 0.16 0.19
0.14 0.68 0.84

0.52 0.73 0.75
0.72 0.72 0.76

0.68

AF 0.00 0.00
0.00 0.01 0.03

0.00 0.32 0.38
0.25 0.60 0.73

0.51 0.61 0.74
0.47 0.68 0.71

0.61

Table C.2.: Detailed results of the sample efficiency experiment in Section 9.2, which
are visualized in Figure 9.2. The table displays the mean success rates for the models
trained with different numbers of demonstrations N . Trained on three different seeds,
each model runs 100 rollouts, resulting in 300 rollouts per mean value. To indicate the
variance between the three models, the range of the individual success rates is donated
as mean max

min .

XI

C.3. Invariance

The following experiment is set up to verify the invariance property of ActionFlow and
to check the other models regarding this property: The models are trained on the lift
task. Afterward, they are evaluated on two setups. The first one is equivalent to the one
during training. In the second one, the robot arms are placed on the left side of the table.
This is equivalent to rotating the arms by 90° and moving them to the table’s edge via
a translation. The same transformation is applied to the cups’ initial states. Table C.3
provides the numerical values displayed in Figure 9.3.

Lift Rotated Lift

DP 0.99 1.00
0.98 0.01 0.01

0.00

FM 1.00 1.00
1.00 0.00 0.00

0.00

noIPA 1.00 1.00
0.99 0.22 0.32

0.05

AF 0.98 1.00
0.94 0.99 1.00

0.98

Table C.3.: Detailed results of the invariance experiment in Section 9.3, which are visual-
ized in Figure 9.3. The table displays the mean success rates for the models trained in
the lift task. The models are evaluated on a setup identical to training and on a setup
that rotated the cup and the robots by 90 degrees. Trained on three different seeds,
each model runs 100 rollouts, resulting in 300 rollouts per mean value. To indicate the
variance between the three models, the range of the individual success rates is donated
as mean max

min .

XII

	Figures, Tables and Algorithms
	Abbreviations
	Introduction
	Contribution and Thesis Structure

	Foundations
	Robot Control
	Reinforcement Learning
	Imitation Learning

	Related Work
	Algorithms
	Environments & Datasets

	Environment
	Robot Control
	Action Space
	Observation Space

	Bimanual Tasks
	Existing Bimanual Tasks
	New Bimanual Tasks
	Randomization and Task Variations

	Data Collection
	Waypoint-Based Expert
	Data Storage and Processing

	Learning Framework
	Algorithm Overview
	Learning Pipeline

	Algorithms
	Common Policy Structure
	Diffusion Policy
	Flow Matching
	ActionFlow
	Pose-based Flow Matching without IPA

	Experiments
	Sanity Check
	Sample Efficiency
	Invariance of ActionFlow

	Discussion and Outlook
	References
	Tasks in Detail
	Hyperparameters
	Experimental Results in Detail

