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Abstract— Grasping objects successfully from a single-view
camera is crucial in many manipulation tasks. An approach
to solve this problem is to leverage simulation to create large
datasets of pairs of objects and grasp poses, and then learn
a conditional generative model that can be prompted quickly
during deployment. However, the grasp pose data is highly
multimodal since there are several ways to grasp an object.
In this work, we learn a grasp generative model with diffusion
models to sample candidate grasp poses given a partial point
cloud of an object. We show in real-world experiments that our
approach can grasp several objects from raw depth images with
90% success rate and benchmark it against several baselines.
https://sites.google.com/view/graspdiffusionnetwork

I. Introduction

We consider the problem of learning a distribution of

candidate successful grasps poses of a parallel gripper, given

a partial view of an object from a depth camera (a partial

point cloud). Full point clouds are often impractical to obtain

in the real world, especially for grasping scenarios (e.g., if

an object is placed on top of a table, we cannot obtain the

point cloud of its bottom). The grasp pose data is often

not unimodal since several grasp poses can successfully

grasp an object. Diffusion models are a good candidate

for modeling these distributions because, contrary to other

generative models, such as VAEs and GANs [1], [2], they

avoid mode collapse, can handle large amounts of data, and

are empirically more stable to train [3]. Moreover, they are

prolific in many robotic manipulation fields [4]–[8].

Denoising Diffusion Probabilistic Models (DDPM) [9]

were designed for Euclidean spaces. However, grasp poses

belong to the space of homogeneous transformations SE(3).

To adapt diffusion to this space, we decouple the Lie group

SE(3) into SO(3)×R
3 and learn a diffusion model in the

Lie algebra. As previously shown in [10], [11], properly

modeling the diffusion of rotations has several benefits.

Our contributions include: (1) We present the Grasp

Diffusion Network (GDN) – a new grasp generative model

conditioned on partial point clouds that uses diffusion in the

SO(3)×R
3 manifold. (2) We evaluate GDN in the real world

using partial point clouds obtained with a RGB-D camera and

show that it achieves higher success rates than the baselines.
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II. Related Work

For complete surveys on deep learning models for grasp-

ing, we refer the readers to [12], [13]. A seminal work

in this field is 6-dof GraspNet [14], which uses a condi-

tional variational autoencoder (CVAE) [15] to learn a grasp

distribution given partial point clouds from single objects

observations. Several works build on top of this model to

extend grasping to full scene point clouds [16], [17]. In

recent works, score-based and diffusion models have been

proposed [7], [18], [19]. SE(3)-DiffusionFields [7] learns

a grasp distribution of a parallel gripper with an energy-

based model (EBM) via denoising score matching, and uses

Langevin dynamics to sample from the learned model, which

involves backpropagating through the entire EBM network

to obtain a log-probability gradient. Instead, we model the

generative model using DDPM, and our network directly

computes the gradient as the denoising function output.

GraspLDM [19] learns a grasp generative model using latent

diffusion in Euclidean space. However, a CVAE is first used

to learn the latent space representation.

III. Grasp Diffusion Network

Our goal is to approximate p(G|C), a distribution of a

parallel gripper grasp poses G conditioned on a partial point

cloud observation C. A grasp pose G = (t,R) is an element

of SE(3), where t ∈ R
3 is a translation and R ∈ SO(3) a

rotation. As DDPM models were derived for the Euclidean

space, for the translation part, we use DDPM in R
3, while

for the rotation part, we define a diffusion model in SO(3) as

in [10]. The denoising posterior is a factorized distribution

pθ(Gi−1|Gi, i, c) = IGSO(3)×R3(Gi−1;µθ(Gi, i, c),Σi)

= N
(

ti−1;µ
t

θ,Σi

)

IGSO(3)(Ri−1;µ
R

θ ,Σi),

where c is a conditioning variable representing a partial

point cloud embedding, and IGSO(3) is the isotropic Gaussian

distribution in SO(3) [11]. To sample grasp poses, we start

from random noise and iteratively sample from this posterior

distribution for N steps. For faster inference, we also use

Denoising Diffusion Implicit Models (DDIM) [20].

Similar to [9], we learn the joint denoising vector

ϵθ(Gi, i, c) = [ϵt
θ
, ϵR

θ
] ∈ R

6 , and compute the means with

µt

θ =
1√
αi

(

ti −
1− αi√
1− ᾱi

ϵtθ

)

(1)

µR

θ = Exp

(

1√
αi

(

LogRi −
1− αi√
1− ᾱi

ϵRθ

))

, (2)

for an appropriate diffusion noise schedule αi. The denoising

vector ϵR
θ

∈ R
3 is represented in the Lie algebra of SO(3).

https://sites.google.com/view/graspdiffusionnetwork
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(a) Grasp Diffusion Network inference pipeline

DDIM

DDPM

(b) Samples from GDN with DDPM and DDIM

Fig. 1: (a) The input to GDN is a partial point cloud of the object (blue dots), and the output is a distribution of gripper poses by denoising
in the SO(3)×R

3 manifold. The denoising posterior means are updated with eqs. (1) and (2). (b) Grasp samples generated with GDN
using DDPM and DDIM sampling methods. The colors green and red indicate if the grasp was successful or unsuccessful in simulation.

The Exp and Log operators map elements from the Lie

algebra to the Lie group and vice-versa, respectively. The

parameters of ϵθ(Gi, i, c) are learned by minimizing the loss

L(θ) = Ei,ϵ,c,G0

[

∥ϵ− ϵθ(Gi, i, c)∥22
]

, (3)

with i ∼ U(1, N), (ϵR, ϵt) ∼ IGSO(3)×R3 (0, I), c an object

partial point cloud, and G0 = (t0,R0) a grasp sample from

the dataset. The noisy sample Gi = (ti,Ri) is constructed

with ti =
√
ᾱit0 + (1− ᾱi)Iϵ

t, Ri = Rλ(
√
ᾱi,R0), R ∼

IGSO(3)(I,
√
1− ᾱi), where λ is the geodesic interpolation

from the identity rotation λ(γ,R) = exp(γ log(R)).
Figure 1a shows an overview of our method – GDN.

Figure 1b displays grasp samples generated in simulation

with slow (DDPM) and faster (DDIM) sampling methods.

As expected, DDIM produces less diverse samples. See [21]

for more details.

IV. Experiments

To train GDN we use the ACRONYM dataset [22], fully

generated in simulation, and choose a subset of everyday

objects from 10 categories totaling 567 objects and ≈1M

grasps. We use the train/test splits from [16]. The DDPM

model uses 100 diffusion steps and a noise cosine schedule.

The loss function is optimized with mini-batch gradient

descent using the Adam optimizer [23] and a learning rate

3×10−4. In each mini-batch, with a virtual camera we render

partial point clouds (with 1024 points) of 32 objects and use

32 grasps per object (a total of 1024 grasps per batch).

To evaluate our models we use – GDN using DDPM,

and GDN using DDIM with 10 sampling steps –, and two

baselines: a CVAE model similar to [14], [19], and SE(3)-

DiffusionFields (SE(3)-DF) [7], which establishes the state-

of-the-art for grasp generation with score-models in SE(3).

In this experiment, a robot needs to grasp an object from

a table and drop it in a box, using only a partial point cloud

view from an external RGB-D camera (Azure Kinect). We

bought 10 objects from a local store from the training set

categories, displayed in fig. 2a. To calibrate the external

camera we used MoveIt [24], and to segment and retrieve the

object’s partial point cloud, we use the segmentation method

FastSAM [25]. We sample 100 candidate grasp poses, remove

those colliding with the partial point cloud and the table, and

select one randomly. We use a path planner to move the robot
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Fig. 2: (a) Objects used in the real-world experiments. Each object
is placed in 5 different configurations. (b) Average success rates
obtained by GDN methods and baselines.

Fig. 3: The figures show overlays of the successful grasp execution
sampled with GDN for different real-world objects.

to a pre-grasp and grasp joint goal configurations (computed

with inverse kinematics) while avoiding collisions. At the

grasp pose, the gripper is closed, and the end-effector moves

first 50cm vertically and then to a disposal area, where the

object is dropped into a box. We consider a successful grasp

if the gripper can hold the object until reaching the box.

Figure 3 shows examples of successful grasp executions

sampled with GDN for different objects. In fig. 2b we report

that GDN with DDIM sampling obtained an average 90%
success rate, which is considerably higher than the base-

lines CVAE and SE(3)-DF (these results mirror the insights

obtained from simulation results). One possible reason to

justify the DDPM and DDIM results is that the latter is

a deterministic sampling method known to produce more

precise samples, albeit less diverse (see fig. 1b).

V. Conclusion

We proposed the Grasp Diffusion Network (GDN), a novel

grasp generative model to sample grasp poses given partial

point clouds of single objects. GDN encodes the grasp

distribution with diffusion in the SO(3)×R
3 manifold. In a

grasping scenario with real-world objects, we show that GDN

can transfer from simulation to the real world and obtain

better success rates than the baselines. In future work, we

will expand our method to grasp objects in cluttered scenes.
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