
A Hierarchical Approach to Active Pose Estimation

Jascha Hellwig∗, Mark Baierl∗, João Carvalho†, Julen Urain†, Jan Peters

Abstract— Creating mobile robots which are able to find and
manipulate objects in large environments is an active topic of
research. These robots not only need to be capable of searching
for specific objects but also to estimate their poses often relying
on environment observations, which is even more difficult in
the presence of occlusions. Therefore, to tackle this problem we
propose a simple hierarchical approach to estimate the pose of a
desired object. An Active Visual Search module operating with
RGB images first obtains a rough estimation of the object’s 2D
pose, followed by a more computationally expensive Active Pose
Estimation module using point cloud data. We empirically show
that processing image features to obtain a richer observation
speeds up the search and pose estimation computations, in
comparison to a binary decision that indicates whether the
object is or not in the current image.

I. INTRODUCTION

A major task of autonomous robots working in manipu-
lation scenarios is to find objects and estimate their poses.
While in recent years there have been major developments
in pose estimation methods [1]–[4], these assume the object
was already found and is present in the viewing frustum.
However, the object might be occluded or even out of
the field of view. In these situations, the agent might be
required to navigate along and interact with the environment
to improve its estimation of the object’s pose. We call Active
Pose Estimation (APE) to the problem of actively deciding
how to interact with the world in order to minimize the
uncertainty with respect to the pose of a target object. In
most cases, to estimate the pose of an object, we are required
to sense depth information by using depth cameras or Lidars.
Nevertheless, the computational requirements of dealing with
depth information are high. We remark that in APE, we are
expected to decide the next action every step, and thus, we
aim to have low computational requirements to increase the
control frequency.

We call Active Visual Search (AVS) to the problem of
actively deciding how to interact with the environment to
search and find a particular object. A possible solution to
increase the control frequency is to run a search process with
RGB information only and then, once the object is found, run
a pose estimation method that uses point clouds, such as the
Iterative Closest Point Algorithm (ICP) [5]. While this can
lead to good performance in terms of pose estimation, it might
not be very robust. If the search procedure terminates without
a decent view of the object, the pose estimation quality could
decrease significantly. To improve robustness, it feels a more

∗†Equal contribution.
All authors are with the Intelligent Autonomous Systems, Technische

Universität Darmstadt, Germany - {jascha.hellwig, mark.baierl}@stud.tu-
darmstadt.de, {joao,julen}@robot-learning.de, jan.peters@tu-darmstadt.de

Correspondence to joao@robot-learning.de

natural solution to apply an active pose estimation process at
the expense of higher computation.

With the aim of having a both computationally light and at
the same time robust pose estimator; in this paper, we propose
a novel algorithm for occluded or out-of-view object pose
estimation. We propose a hierarchical approach that combines
a computationally light AVS process with a computationally
intense APE process. To avoid the high computational budget
of estimating an object pose in high-dimensional point clouds,
we combine an AVS running on RGB observations with
an APE using pointcloud inputs. The search module uses
RGB images to efficiently interact with the environment
in order to estimate a rough two-dimensional object pose.
When the belief in the object’s 2D pose, computed with the
search module, is sufficient, we pass that belief to the pose
estimation module and actively move to estimate the 6D pose
of the object. We frame both process in terms of a POMDP
problem and solve it by adapting the Partially Observable
Monte-Carlo Planning (POMCP) algorithm [6] to the problem
of pose estimation. Framing both process as POMDP permits
sharing the computed belief distributions in the AVS process
to the APE process, reducing the computational complexity
for the second.

In particular, the main contributions of these work are (i)
We propose a unified framework that combines a 2D AVS
process with a 3D APE process. Due to the unified framework,
we present an approach to transfer the beliefs states from the
AVS to the APE process. (ii) We propose two approaches
to apply POMCP for both 2D active search and 3D active
pose estimation. (iii) We make an extensively ablation study
to investigate the performance of our proposed method under
multiple hyperparameters. We investigate the required control
steps until the pose is properly estimated.

II. RELATED WORK

AVS is commonly framed as solving a Partially Observable
Markov Decision Process (POMDP). In general POMDP-
based approaches use observations to update the environment
map and compute optimal actions using the current map
estimate. POMCP-based Online Motion Planning (POMP) [7]
knows the environment map before hand and uses the POMCP
algorithm [6] to select optimal actions. Unobserved map cells
are marked as candidate and observed cells marked according
to the observation. The agent explores candidate zones
until the object is found, which is determined by a binary
object detector that can have errors. A robust visual docking
mechanism compensates object detection errors, by returning
the agent to a known position if the object said to be found
was not encountered. POMP++ [8] extends POMP to the



SEARCH

BEST

ACTION

MOVE

&

OBSERVE

UPDATE 

BELIEF STATE

target not detected

Input:
-Agent‘s Position

-Target Object

Pass:
-Belief State

-Target Object

Search Module

TARGET 

DETECTED

?

SEARCH

BEST

ACTION

MOVE

&

OBSERVE

UPDATE 

BELIEF STATE

not good enough estimation

Output:
-Pose of Object

Pose Estimation Module

POSE WELL 

ESTIMATED?

SAMPLE STATE 

FROM BELIEF

SIMULATE

UPDATE VALUES

IMAGE

2D OBSERVATION

PASS PARTICLE

THROUGH GENERATOR

GENERATED OBSERVATION 

= 

REAL OBSERVATION?

ADD PARTICLE TO 

NEXT BELIEF STATE

UPDATE 2D 

ENVIRONMENT MAP

POINT CLOUD

3D OBSERVATION

PASS PARTICLE

THROUGH GENERATOR

GENERATED OBSERVATION 

= 

REAL OBSERVATION?

ADD PARTICLE TO 

NEXT BELIEF STATE

UPDATE 3D 

ENVIRONMENT MAP

SAMPLE STATE 

FROM BELIEF

SIMULATE

UPDATE VALUES

Fig. 1: POMCP Search & Pose Estimation Modules. In the Search Module a target object is searched within a 2-dimensional
space using RGB images, producing a belief state of the object’s pose in 2D. This belief acts a prior for the Pose Estimation
Module, where the full pose is computed using point clouds.

case where the map is unknown and is dynamically created,
which enlarges the search space to navigate the environment.
[9] presents two approaches that extend the general POMCP
algorithm to the continuous domain, Continuous Real-time
POMCP and Adaptative Highest Belief Continuous Real-time
POMCP Follower, which are validated in real-life scenarios
by navigating over 3km. [10] uses semantic environment
models in combination with various search strategies, and
does not use the POMCP algorithm.

In contrast to POMDPs, deep RL methods learn a
parametrized policy to navigate through environment. This
allows faster control frequencies in deployment, as there
is no planning phase. Generalizable Approaching Policy
LEarning (GAPLE) [11] uses depth information for policy
learning, whereas [12] builds an episodic semantic map of
the environment to explore efficiently. [13] combines two
deep neural network modules, one that learns to detect given
objects in its view and another that learns to approach the
target object. [14] uses a Conditional Random Field (CRF)
to build a prediction map representing the most promising
locations for the searched object. While these approaches
showed good performance, they require a large amount of
training data to be able to generalize to unseen situations, and
one of the reasons for focusing on solving POMDPs instead.

III. BACKGROUND

Our proposed method is framed as a POMDP problem.
Then, we solve the POMDP problem by adapting the POMCP
algorithm to the pose estimation problem. In the following,
we introduce the POMDP problem and we briefly explain
the POMCP.

A. Partially Observable Markov Decision Processes

A POMDP [15] is described as a tuple
⟨S,A, T ,R,Ω,O, γ⟩, where S is a finite set of states, A a
finite set of actions, T : S × A → S is a state transition
model, R : S × A → R is a reward function, Ω is a finite
set of observations, O : S ×A → Ω is an observation model,
and γ ∈ [0, 1) is a discount factor. At time step t an agent
is in state st, performs an action at according to its policy
π, obtains an immediate reward rt, transitions to state st+1

and obtains an observation ot. All the variables are available
to the agent, except for the internal state s, which it cannot
observe. Therefore, and opposite to a Markov Decision
Process (MDP), the policy is conditioned on the history of

Symbol Meaning

st state at time t
at action at time t
ost,at observation for state st and action at
M environment map
V observed environment state
pagent agent’s state
Pobject object’s state belief
I observed RGB image
PC observed pointcloud
GI simulation environment

TABLE I: Used Notation.

previous interactions with the environment and not on the
current state π(at | ht), where ht = {o0, a0, . . . , ot−1, at−1}.
Since the true belief state for a history ht is not known, it is
approximated using particles Bi

t . Each particle corresponds
to a sample state and the sum of all particles builds the
current belief state B(ht). The goal of a planning agent is to
obtain an optimal policy to maximize the expected sum of
discounted rewards Jπ = Eπ,T ,O [

∑∞
t=0 γ

tR(st, at)].

B. Partially Observable Monte-Carlo Planning

A widely used online planning method for POMDPs is the
POMCP algorithm [6]. It extends Monte-Carlo tree search
(MCTS) [16] to POMDPs and combines it with a Monte-
Carlo update of the agent’s belief state. POMCP addresses
the intractability of online planning in large POMDPs by
utilizing Monte-Carlo sampling for belief state updates and
planning. In addition it requires only a black-box simulator
of the POMDP, rather than explicit probability distributions,
in order to sample state transitions and observations. This
algorithm can be divided in two major steps:

I) Select the best action using an extension of the UCT
algorihtm [17] for POMDPs - Partially Observable UCT.

II) Update the belief state after an action is performed and
an observation is received, using Monte-Carlo belief
state updates.

I) Partially Observable UCT: To select the action, three
procedures are used:

1) SEARCH - search for the best action.
2) SIMULATE - determine the value of a state.
3) ROLLOUT - extend the search tree.
The SEARCH procedure starts with sampling a state s

from the current belief B(ht). s and the history ht is given
to the SIMULATE procedure in order to evaluate the value



Image

Observation

e e e

e e e

e e e

Belief State

(a) Promising Believed Object Position

Image

Observation

Belief State

e e e

e e e

e e e

(b) Object Not Found - Resample Belief
State

Image

Observation

x e e

x e e

x x e

Belief State

(c) Object Found - Particles Agree

Fig. 2: Illustration of the belief and object position over time steps (indicated with t). The light pink square represents the
current agent’s position. Parts of the map the agent has already observed are marked in white. a) At time-step t = 36 many
particles agree on the object 2D pose, given by the marked yellow L shape, and therefore the agent moves SOUTH . b)
Because the object is not the location the agent believed at t = 36, particles are resampled, resulting in a new belief state. c)
At time-step t = 61 the agent finds the object and all particles agree.

of different actions. This process is repeated Nsim times
before selecting the next action to update the search tree
and approximate the action values.

The SIMULATE procedure uses two different policies to
traverse the search tree, depending on whether the given
history is already present in the search tree or not. If the
history is present, a tree policy πtree is used to select actions
while navigating through the search tree. This tree policy
uses an extension of the UCB1 algorithm [18] for POMDPs
in order to compute the value of performing an action given
the current history. The best action is then passed to the black
box simulator G to generate an observation, a reward and
the next state (s′, o, r) ∼ G(s, a). The next state s′ is used
to recursively call the SIMULATE procedure and accumulate
the returns in a discounted fashion until a terminal state or
a maximum depth is reached. If the history is not present
during the SEARCH procedure, a new node T (ha) in the
tree is created for each possible action. Then the ROLLOUT
procedure is called to determine the value of the given history.

The ROLLOUT procedure selects an action according to
a random rollout policy πrollout that is given to the black
box simulator to generate an observation, a reward and
the next state. The next state is then used to recursively
call the ROLLOUT procedure, until a terminal state or a
maximum search depth is reached and a discounted reward
is accumulated.

Finally the real action to be executed by the agent at can be
selected using the values returned by the SEARCH procedure
and a real observation ot is received, which is used with
Monte-Carlo belief state updates to update the belief state
before selecting the next action at+1.
II) Monte-Carlo Belief State Update: In order to update the
belief state, K particles are used. Each particle Bi

t represents
a randomly selected state s from the current belief state Bt,
and is then passed with the selected real action at to the black
box simulator to receive an observation o and the next state
s′. The observation o is used to check, whether it matches

the real observation from the environment ot. If they match
o = ot, the state s′ is added to the next belief state. This
process is repeated until K particles are added to the next
belief state Bt+1.

IV. COMBINING ACTIVE VISUAL SEARCH
AND ACTIVE POSE ESTIMATION IN POMDPS

The problem we address with our method is the one of
estimating the pose of an object in an environment using
visual information. This means that the agent has no access
to the true state of the environment, but to observations.

We consider the situation in which the object might not
be in our field of view at first, but it might be occluded or
even in a different area of the environment. To deal in a
computationally efficient way with this problem, we split the
process in two stages. First, the agent navigates along the
environment in order to get a decent view for estimating its
pose. We call to this stage, the Search stage and we apply
AVS methods to search efficiently. Second, once the object
is found, we apply APE methods to estimate the pose of
the object. Namely, we call it Pose Estimation stage. An
overview of our method that combines those two stages, is
shown in Fig. 1.

AVS has been shown to work with RGB images and
therefore we do not use point cloud data when searching the
object. Because of this, we obtain a computationally more
efficient approach. Hence, we merge AVS using RGB images
and APE using point clouds into a single approach. While it
is possible to first use AVS and then do pose estimation
independently, in our approach we use the environment
information from the search module as a prior for the pose
estimation module improving the computational efficiency.
In the following, we introduce extensively the algorithm we
run on each module.

A. Search Module

We solve the AVS problem with POMDPs methods.
We propose to solve the search problem in a two-



Image Observation

x x x

e e x

e e x

Environment Map

e e e c c c c c

e e e c c c c c

e e e e e x c c

c e e e e e c c

c e e e e e c c

Environment Map

e e e c c c c c

e e e c c c c c

e e e e x x x c

c e e e e e x c

c e e e e e x c

e x c

Fig. 3: Environment map update between two steps Mt → Mt+1 in the 2D Search Module. The leftmost figure shows the
current map and position of the agent (center of black borders). After executing the real action at in the current state st, an
RGB image Ist,at

is received (2nd figure), which is processed into an observation (3rd figure). With this observation the
agent updates his internal map of the environment accordingly. Notice the area inside the black borders.

dimensional projection of the environment. This projection
has been previously shown to be enough [7]. We stick
to this approach and therefore define our environment
map as M ∈ V x×y where V are the possible values
of a cell and x, y the discrete cell position in the
environment. V can take 5 possible values, representing
the knowledge we have about the observed environment,
V := {empty, candidate, object, other object, blocked}.
Finally, for each time step t the agent is in a specific state
st, which represents both the knowledge of the environment
and the belief states of our search object. This state is a
tuple st = (M,pagent,Pobject), where Mst is the state’s
map of the environment, the agents position pagent

st ∈ N2

and the believed object position Pobject
st ∈ Nobj size×2.

Our definition of the believed object position allows to
define objects corresponding to the occupied cells in the
environment map. Therefore, each object is described by
locations in M according to the level of discretization.
For example, a cube might take a single cell whereas an
edge-like shape might occupy three cells.

In a POMDP, observations are the only way an agent can
reason about the state of the environment. In our case we use
RGB images to produce observations which are then used to
update the gathered information about the environment, as
depicted in Fig. 3. We use observations to replace candidate
values of the environment map with observed values. Those
observed values are generated by transforming an image
Ist,at

to an observation ot after an action at in state st is
performed. The observation ot ∈ V w×h represents, in which
cells of the image the searched object is observed, where w
is the amount of cells observed along the x-axis and h the
y-axis ones. Various methods can be used to transform an
image into this type of observation, e.g. color based decisions
can be sufficient. Those observations are introducing noise
and misidentified cells as can be seen in Fig. 5. However,
we can show that they are expressive enough and allow to

successfully find objects.
Most important, those type of observations allow the agent

to reason about the environment and the object by himself.
This means if an object is identified in some part of the
image, the agent will explore that region until it observes
the full object. This exploration is the major benefit towards
the binary observations mentioned earlier. There is more
information that is passed to the agent and therefore used
for action selection. These observations allow to move to
believed object positions in the received images, rather than
simply exploring until the object is found in an image.

Since our method is using POMCP, a black box simulator
GI(st, at) is required to perform simulations. It returns for
a given state st and action at an successor state s′ and the
corresponding generated observation ost,at along with the
reward rt. Since, we cannot generate images Ist,at

in order
to generate the observation ost,at

, the black box simulator
has to be capable of surpassing the need for images. We solve
this by directly creating the observation ost,at

by generating
it from the environment map Mst of the given state st. We
know the position and orientation of the agent as well as
the characteristics of the camera used to take images, which
allows us to calculate in which parts of the image, an object
should be seen. It is important to notice, that this calculation
is independent of the true position of the searched object,
but only dependent on the believed object position Pobject

st
of the state st. This means, after a true observation from
the environment is received, we can pass all particles to the
black box simulator to generate observations. Those generated
observations are used to discard the particles which believed
in a contradicting object position. For example, if a particle
beliefs the object to be seen, when taking the action at, but
taking that action in the environment results not in observing
the object, the particle is thrown away and a new particle is
sampled.

Using those generated observations to update the belief
state results in more correct believed object positions, which



Environment MapPoint Cloud Observation

e x c

e e x

e e e

Environment Map

e e e c c c c c

e e e c c c c c

e e e e e e c c

c e e e e e c c

c e e e e e c c

e x c

e e e c c c c c

e e e c c c c c

e e e e e x c c

c e e e e e c c

c e e e e e c c

e e e c c c c c

e e e c c c C c

e e e e e x c c

c e e e e e x c

c e e e e e e c

e e e c c c c c

e e e c c c c c

e e e e e e x c

c e e e e e e c

c e e e e e e c

e e x

e e e

e e e

Agent‘s View

Side View

Fig. 4: Environment map update between two steps Mt → Mt+1 in the 3D Pose Estimation Module. The leftmost figure
shows two levels of the current map (z = 1 and z = 2) and position of the agent (center of black borders). After executing
the real action at in the current state st, a point cloud PCPCPCst,at

is received (2nd figure), which is processed into an
observation ot. The observation has the Z-levels, where each is used to update the corresponding level in the environment
Mt,z=i → Mt+1,z=i, i = 1, 2, ..., Z. With this observation the agent updates his internal map of the environment accordingly.
Notice the area inside the black borders.

Image Observation

x x x

e e x

e e x

Ground Truth

e x x

e e x

e e x

Fig. 5: Mapping from RGB images to observations. Creating
observations from images can lead to mistakes, e.g. due to
perspective distortion. The upper left corner in the observation
is marked with object, while the ground truth is empty.

will finally result in finding the object at the believed object
position, as can be seen in Fig. 2. A terminal state st
has ∀(x, y) ∈ Pobject

st : Mst(x, y) = object. This can be
interpreted as a state, whose believed object position matches
its past observations from the environment. When such a
terminal state is reached, the current belief state in terms of
particles is passed to the pose estimation module and the
search module terminates.

B. Pose Estimation Module

The pose estimation module follows the same concept
as the search module, with two major differences: (1) the
environment map is now three-dimensional: M ∈ V x×y×z ,
and (2) the observations are produced using point clouds
PCPCPCst,at .

In order to use the prior belief state, each particle Bi
2D

from the search module corresponds to a particle Bi
3D

in the Pose Estimation module. The particles in the Pose
Estimation module now set the lowest level of their envi-
ronment map to the one passed from the search module
∀x∀y : MBi

3D
(x, y, 0) = MBi

2D
(x, y) and all other levels are

filled with candidate values. Therefore, the initial belief
represents a rough belief of the object’s pose and the three-
dimensional environment in general.

In order to estimate a more precise pose, we use point
clouds PCPCPCst,at

instead of images Ist,at
and change the

observation to be three-dimensional ot ∈ V w×h×d, where d
is now representing the observed cells of the environment
along the z-axis. The update process for the environment
map Mst after an observation ot is received, is the same as
in the case of the search module, but now with respect to
three-dimensions, as can be seen in Fig. 4.

Using point clouds introduces a different type of noise as
images do. In order to handle noisy observations we introduce

Observation       
Voxel Types

< 3 Directions 3 Directions

4 Directions 4 Directions

Observation 

Observation Observation 

Fig. 6: Soft equality for point cloud observations. Cells with
points in all quadrants (orange) are denoted core cells.

a soft equality (=̇) relationship. We classify every cell in
a level of the environment map Mst as one specific type
according to the positioning of the points it contains, before
assigning an observed value to it. In more detail, only cells
classified as core cells (see Fig. 6), are used for testing Soft
Equality of two observations. This means only observations
with equal core cells are considered as equal.

V. EXPERIMENTS

A new black box simulator GPCPCPC(st, at) is introduced,
which follows the same intuition of the simulator GI, but now
generates point clouds according to the belief in the object’s
position and so generates three-dimensional observations.



Fig. 7: Simulation environment with the Franka Emika Panda
robot arm in PyBullet. A virtual camera is attached to the
end-effector to capture RGB images.

This procedure can take more time than when using an RBG
image, but also gives a more precise pose estimation of the
object.

Our experiments were designed to answer the following
questions:

1) Does our mapping from images to observations improve
over a binary observation decision in the context of
AVS?

2) Can the combination of search with a pose estimation
module estimate object poses in a POMDP?

3) How is our approach affected by hyperparameters and
different types of objects?

Our environment contains an agent depicted as a Franka
Emika Panda robot arm that has to search for objects
laying on a table as in Fig. 7. The implementation uses
PandaGym [19] and Pybullet [20]. The search space is defined
by a 20×20 grid on the table with 5 levels in the z-dimension.
The considered objects are letters represented by multiple
connected cubes placed in the grid, as depicted in Fig. 8. The
action space is A = {NORTH,EAST, SOUTH,WEST},
which corresponds to moving the end-effector in discrete steps
along the x- and y-directions while maintaining a fixed height
z = 5. Observations are generated using an RGBD camera
mounted at the end-effector, pointing towards the table. The
black box simulator G uses Open3D [21] to render RGBD
images according to the believed object positions.

The reward function is defined as

R1 = Paction

R2 =

{
Pre-observe if Ms = Ms′

0 otherwise

R3 =

{
Rterminal if s′ is terminal
0 otherwise

R1,2,3 = R1 +R2 +R3

R2D = R1,2,3 +Rexploration +Rdiscovery

R3D = R1,2,3 +Rrefinement,

where Paction is a constant penalty for performing an

Fig. 8: Examples of objects considered in the experiments.

action, Pre-observe is a penalty depending on the amount of
the environment map that is re-observed when performing an
action and Rterminal is the reward for reaching a terminal state.
The search module uses R2D where Rexploration is a reward for
observing cells that are marked as candidate, while Rdiscovery
is a reward for observing objects. The pose estimation module
uses R3D, where Rrefinement is a reward for discarding cells
marked as object while they are actually empty.

A. Evaluations

In Fig. 9 the left and middle figures compare the per-
formance of our search module using binary observations
o ∈ {object found,¬object found} against our proposed
image to observation mapping, where o ∈ V w×h. The
results show that our method is able to find the object
faster (less average steps) and more reliably (more times
the terminal state is reached). Therefore, confirming that it is
beneficial to introduce a feature extraction map from images
to observations, instead of a simple binary classification to
decide whether the object is seen or not.

In Fig. 9 the rightmost plot shows the performance of
combining the search and pose estimation modules - AVS
+ APE. From the plot is clear that larger objects are harder
to handle than smaller ones. With more maximum number
of setups all objects could be potentially estimated, at the
expense of higher computation.

VI. CONCLUSION & FUTURE WORK

In those situations in which the pose of a certain object is
difficult to asses from a single image, actively deciding the
actions the agent should do to improve the pose estimation
its a mandatory skill for our robots. Nevertheless, solving
directly the problem for the objects full pose might be
computationally demanding, due to the sensor inputs and
the dimension of the possible solutions. To deal with this
computational limitation, we propose to split the active pose
estimation problem in two stages: A searching process and a
pose estimation one. In our work, we propose to model both
stage problems as POMDP and solve them with POMCP
methods. Framing both stages under the same umbrella allow
us to comprenhend how both phases are related to each other
and allow us to share information between each other such



Fig. 9: Comparisons between our mapping from RGB images to observations vs. a binary object detector. The number of simulations and
particles in the middle and right figures are fixed to Nsim = 200 and K = 200, respectively. In the legends, the digits near the marker,
e.g. 2× 2 indicate the area occupied by the object. Left: results for Search Module with object L. The marker size is proportional to the
number of used particles. The colors indicate the number of simulations. Middle: Results for Search Module with all objects and a fixed
number of particles and simulations. Right: Results for combining the Search and Pose Estimation Modules with all objects and fixing the
number of particles and simulations.

as the computed belief states. Along the paper, we present
two proposed algorithms to integrate POMCP into the search
a pose estimation problems and evaluate its performance for
a high number of different objects. Through an extensive
ablation study, we have evaluated our proposed framework
and measure the required number of control steps to solve the
task under several variables: different shape and size objects
or different type of belief updates.

Our proposed approach allows the use of multiple possible
features to represents the belief update metric. Nevertheless,
in practise, we limit to the color features. In future works, we
aim to explore the performance of the proposed belief update
metric for additional features, from handcrafted ones such as
edges to learned features. Additionally, we aim to explore
the performance of our proposed method in real robot pose
estimation tasks and study the required changes to adapt it
to a real robot problem.

REFERENCES

[1] X. Li, Y. Weng, L. Yi, L. J. Guibas, A. L. Abbott, S. Song, and H. Wang,
“Leveraging SE(3) equivariance for self-supervised category-level object
pose estimation,” CoRR, vol. abs/2111.00190, 2021.

[2] K. Kleeberger, M. Völk, R. Bormann, and M. F. Huber, “Investigations
on output parameterizations of neural networks for single shot 6d
object pose estimation,” CoRR, vol. abs/2104.07528, 2021.

[3] S. Zhang, W. Zhao, Z. Guan, X. Peng, and J. Peng, “Keypoint-graph-
driven learning framework for object pose estimation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 1065–1073.

[4] J. Lin, Z. Wei, Z. Li, S. Xu, K. Jia, and Y. Li, “Dualposenet: Category-
level 6d object pose and size estimation using dual pose network
with refined learning of pose consistency,” CoRR, vol. abs/2103.06526,
2021.

[5] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

[6] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
in Advances in Neural Information Processing Systems, J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., vol. 23.
Curran Associates, Inc., 2010.

[7] Y. Wang, F. Giuliari, R. Berra, A. Castellini, A. D. Bue,
A. Farinelli, M. Cristani, and F. Setti, “POMP: pomcp-based
online motion planning for active visual search in indoor

environments,” CoRR, vol. abs/2009.08140, 2020. [Online]. Available:
https://arxiv.org/abs/2009.08140

[8] F. Giuliari, A. Castellini, R. Berra, A. D. Bue, A. Farinelli, M. Cristani,
F. Setti, and Y. Wang, “POMP++: pomcp-based active visual search
in unknown indoor environments,” CoRR, vol. abs/2107.00914, 2021.
[Online]. Available: https://arxiv.org/abs/2107.00914

[9] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Continuous
real time pomcp to find-and-follow people by a humanoid service
robot,” in 2014 IEEE-RAS International Conference on Humanoid
Robots, 2014, pp. 741–747.

[10] M. Saito, H. Chen, K. Okada, M. Inaba, L. Kunze, and M. Beetz,
“Semantic object search in large-scale indoor environments,” in IROS
2011, 2011.

[11] X. Ye, Z. Lin, J.-Y. Lee, J. Zhang, S. Zheng, and Y. Yang, “Gaple:
Generalizable approaching policy learning for robotic object searching
in indoor environment,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4003–4010, 2019.

[12] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[13] X. Ye, Z. Lin, H. Li, S. Zheng, and Y. Yang, “Active object
perceiver: Recognition-guided policy learning for object searching on
mobile robots,” CoRR, vol. abs/1807.11174, 2018. [Online]. Available:
http://arxiv.org/abs/1807.11174

[14] A. C. Hernandez, M. Durner, C. Gomez, I. Grixa, O. Teikmanis, Z.-
C. Marton, and R. Barber, “Searching for objects in human living
environments based on relevant inferred and mined priors,” in 2021
European Conference on Mobile Robots (ECMR), 2021, pp. 1–7.

[15] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
Intelligence, vol. 101, no. 1, pp. 99–134, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S000437029800023X

[16] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Proceedings of the 5th International Conference on
Computers and Games, ser. CG’06. Berlin, Heidelberg: Springer-
Verlag, 2006, p. 72–83.

[17] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” vol.
2006, 09 2006, pp. 282–293.

[18] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp.
235–256, 2002.

[19] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “panda-gym:
Open-Source Goal-Conditioned Environments for Robotic Learning,”
4th Robot Learning Workshop: Self-Supervised and Lifelong Learning
at NeurIPS, 2021.

[20] E. Coumans and Y. Bai, “Pybullet, a python module for physics simu-
lation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[21] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.


