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Abstract

Tracking the 6D poses of objects is essential in robotics applications. Known poses can be
used in behavioural cloning to teach the robot a desired policy, and they are crucial in
manipulation tasks. Current methods either estimate the poses of all objects in a scene
given a single image or track the pose of a single object in a sequence of images. However,
to the best of our knowledge, there is currently no online method which tracks the poses
of multiple objects in a sequence of images.

This thesis aims to close this research gap. To this end, a fully convolutional neural
network, called 6DCenterPose, is proposed. Given the current RGB-D observation and a
synthetic image showing the previous pose predictions, the method aims to predict the
changes of poses to the current frame. A greedy matching algorithm based on sparse
optical flow is used to associate the pose changes to the respective objects.

Disentanglement of the input feature encodings allows training 6DCenterPose exclusively
on synthetic images. A synthetic data generation pipeline is proposed to generate photo-
realistic and physically plausible images, which are used to train and evaluate the method.
Experiments on real and synthetic videos of the board game Ubongo3D are conducted
and show that the reality gap is successfully bridged. 6DCenterPose is online and runs
at around 12.8 Hz, making it a valuable tool for multi-object 6D pose tracking tasks in
robotic applications.



Zusammenfassung

Die 6D Posen von Objekten zu tracken ist essentiell für Robotik-Anwendungen. Sie können
genutzt werden, um einem Roboter mittels Behavioural Cloning ein Verhalten beizu-
bringen, oder Objekte mit einem Roboter zu bewegen. Aktuelle Methoden bestimmen
entweder die Posen aller Objekte in einem einzelnen Bild oder tracken die Pose eines
einzelnen Objekts in einer Reihe von Bildern. Nach unserem Kenntnisstand gibt es derzeit
keine Methode, welche die Posen mehrerer Objekte in einer Reihe von Bildern online
tracken.

Ziel dieser Arbeit ist es, diese Forschungslücke zu schließen. Es wird die Methode 6DCen-
terPose, ein fully convolutional Neuronales Netzwerk vorgestellt. Für ein RGB-D-Bild des
aktuellen Zeitpuktes und ein synthetisches Bild, welches die Objektposen des vorherigen
Zeitpunktes darstellt, wird die Veränderung der Posen zum aktuellen Zeitpunkt bestimmt.
Ein greedy Zuordnungsalgorithmus, basierend auf sparse optical flow, wird genutzt, um
die Posenänderungen den Objekten zuzuordnen.

Die Feature-Repräsentationen der Bilder sind entkoppelt, was es erlaubt, 6DCenterPose
ausschließlich mit synthetischen Bildern zu trainieren. Hierfür wird eine Pipeline zur
Erstellung fotorealistischer und physikalisch plausibler Bilder vorgestellt, welche zum
Trainieren und Evaluieren der Methode genutzt werden.
Experimente mit echten und synthetischen Videos des Brettspiels Ubongo3D zeigen, dass
die Realitätslücke erfolgreich überbrückt wird. 6DCenterPose ist online und erreicht eine
Laufzeit von etwa 12.8 Hz, was es zu einem hilfreichen Werkzeug für multi-object 6D
pose tracking Anwendungen in der Robotik macht.
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1. Introduction

Access to the 6D poses of objects is essential in many applications like autonomous
driving [1] and augmented reality [2]. In robotic applications, the 6D poses of objects can
be used to teach the robot a policy via behavioural cloning [3, 4]. Additionally, accurately
tracking the pose of objects is essential in manipulation tasks like pick-and-place and
insertion. A straightforward approach to tracking the pose of the manipulated object is
to assume a rigid connection between the robot’s gripper and the object. Using forward
kinematics, the pose of the object can be obtained. However, this assumption can fail in
practical scenarios due to slippage of the object [5], or may not be precise enough due to
inaccuracies in joint angle measurements [6]. Furthermore, this approach only allows
obtaining the pose of the manipulated object. Especially in insertion or assembly tasks,
it can be essential to know the poses of other objects in the scene, like the pose of the
receptacle for insertion tasks or the pose of already placed objects in assembly tasks.

Vision-based approaches aim to accurately determine the 6D pose of objects in the scene
from RGB(-D) images. These approaches can be divided into two lines of work. 6D
pose estimation [7, 8, 9] determines the 6D poses of all objects in a scene given a single
image. These methods are highly accurate, but they are also computationally expensive.
Furthermore, given a sequence of images as common in robot manipulation, the poses are
estimated from scratch for every frame without exploiting temporal information. This is
redundant and can lead to less coherent pose estimates [10].
6D pose tracking [10, 11, 12], on the other hand, focuses on practical aspects like achieving
higher framerates necessary for robot manipulation while focusing on accuracy in the
local regime. Specifically, 6D pose tracking approaches usually operate on two adjacent
frames and, given the object’s pose in the former frame, predict the change of the pose
to the latter frame. Iterating this procedure allows the propagation of an initial pose
estimate over the whole sequence of images. While methods following this approach
achieve impressive performances, they can su⇤er from the focus on the local regime. These
methods can not recover from tracking loss and need to be reinitialised if the track is lost.
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Additionally, current 6D pose tracking methods only focus on a single object and must be
retrained when used for a di⇤erent object [12].
Multi-object tracking [13] is a well-known problem in the computer vision community.
Methods for this task can track multiple objects in a video, exploiting temporal information,
but they primarily focus on tracking the 2D bounding boxes of the given objects [14, 15, 16].
While some of these approaches also track the 3D bounding boxes of objects [17, 18], this
information is not enough for accurate robot manipulation. Approaches that track the full
6D poses of multiple objects in a unified way are still missing.

This thesis aims to combine the task of multi-object tracking with the tasks of 6D pose
estimation and tracking. To this extent, we present 6DCenterPose, a fully convolutional
neural network which can track the 6D pose of multiple objects over a sequence of images.
Following the local approach of 6D pose tracking methods [10], 6DCenterPose operates
on pairs of images, the previous and current frames, and predicts the pose changes of the
objects in the scene. Given the initial poses of all objects, the pose changes are used to
propagate the poses from the previous to the current frame, and the procedure is iterated.
Following recent multi-object tracking approaches [14, 19], we represent objects as points
by their 2D centre location, which are predicted by a heatmap. All other quantities, like
the change of pose, are also predicted using a heatmap, while the prediction is obtained
at the location of the object centre. Additionally, a local o⇤set is predicted, which a simple
greedy matching algorithm uses to link centre predictions between the previous and
current frames. To further guide the prediction process for the current frame, the heatmap
prediction of the previous frame is used as input to the method.

Training deep neural networks requires large amounts of annotated training data. An-
notating images for 3D tasks like 6D pose estimation is inherently more di⌅cult than
providing annotations for 2D tasks. Annotations have to be provided in 3D metric coordi-
nates relative to the camera instead of providing annotations in pixel coordinates. Due to
this di⌅culty, recent approaches [8, 10] use synthetic training data, which already comes
with annotations. But this creates the new problem of bridging the reality gap [20] as
simulated images do not fully resemble real images.

We follow the approach of using photo-realistic, physically plausible synthetic images to
train 6DCenterPose. Following se(3)-TrackNet [10], 6DCenterPose uses separate input
branches for the previous and current frames to decouple their feature representation.
During training, both images are synthetic, while during testing, the current image is
obtained from a real sensor, while the previous image is a rendering of the last pose
prediction. This pushes the reality gap to the input branch of the current frame while the
branch for the previous frame can be e⇤ortlessly aligned between training and testing.
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Accurately and consistently tracking the poses of all objects in a scene is important for
robot manipulation tasks. As a surrogate task, we evaluate the proposed method on the
board game Ubongo3D as it exhibits similarities to many real-world tasks. The pose of the
manipulated object needs to be known to accurately grab it, while the poses of the other
poses need to be known to avoid collisions with them and, in the case of Ubongo3D, place
objects precisely on top of each other.

In summary, this thesis makes the following contributions:

• 6DCenterPose, a fully convolutional neural network, is proposed, which tracks the
6D poses of multiple objects in a sequence of RGB-D images.

• A synthetic data generation pipeline is proposed, which generates photo-realistic,
physically plausible images. These images are used to train and evaluate the method.

• A disentanglement of the feature encodings of the inputs allows training the method
exclusively on synthetic images. Experiments on synthetic and real trajectories
for the task of the board game Ubongo3D show that the reality gap is successfully
bridged.

The remainder of this thesis is structured as follows: Chapter 2 explains recent advances
in 6D pose estimation and tracking, multi-object tracking, and the generation of synthetic
data for training deep neural networks. Chapter 3 explains two related methods, Center-
Track [14] (Chapter 3.1) and se(3)-TrackNet [10] (Chapter 3.2), in detail as they build the
basis of the proposed method of this thesis. Next, Chapter 4 explains 6DCenterPose, which
combines 6D pose tracking with multi-object tracking and proposes, to the best of our
knowledge, the first method for online multi-object 6D pose tracking while only requiring
synthetic RGB-D images for training. The data generation pipeline, which generates
synthetic images used for training and testing, is detailed in Chapter 5. Chapter 6 explains
how we obtain real annotated trajectories, which are subsequently used to evaluate and
compare the proposed approach to a baseline method. Finally, Chapter 7 concludes this
thesis and provides directions for future research.
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2. Related Work

This chapter gives an overview of related literature relevant to this thesis. Chapter 2.1
explains approaches for 6D pose estimation, which is the task of predicting the 6D poses
of all objects in a single image. In contrast, Chapter 2.2 explains approaches for 6D pose
tracking. These approaches are concerned with tracking the 6D pose of a single object in
a sequence of images. Similarly, Chapter 2.3 presents recent approaches for the task of
multi-object tracking. These approaches track multiple objects in a sequence of images,
but they focus only on 2D or 3D bounding boxes. Finally, Chapter 2.4 discusses how recent
approaches use synthetic images to train neural network-based methods.

2.1. 6D pose estimation

6D pose estimation is the task of determining the translation and orientation, represented
by a 6D pose, of all objects in a scene from visual data [7]. The pose is expressed
relative to the camera. Common approaches use either RGB images [7, 8, 21] or RGB-D
images [22, 23] as visual information. However, the RGB-based methods can usually
be extended to using depth information as well. Most state-of-the-art approaches use
convolutional neural networks (CNNs) as the basis of their approaches [7, 22, 23], but
following the recent trend of the computer vision literature, Transformer-based [24]
methods grow in popularity [25, 26, 27].

SSD-6D [9] treats the task of 6D pose estimation as a classification problem. In an
o⇧ine stage, they use the 3D CAD models of the objects to build dictionaries of di⇤erent
viewpoints, one dictionary for every object. The CNN-basedmethod then predicts bounding
boxes and scores for viewpoints and in-plane rotation given an RGB image. These scores
are used to generate pose hypotheses which are matched with the viewpoint directory
to determine the most probable pose hypothesis. Finally, a pose refinement step is used,
either RGB-based or using the Iterative Closest Point (ICP) [28] algorithm if additional
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depth images are available, to generate the final pose output. SSD-6D is a template-
based approach, which has advantages for texture-less objects, but they usually struggle
with occlusion [7]. Furthermore, the discrete output space of the poses further limits
accuracy [27].

To improve the shortcomings of template-based methods, recent approaches treat the 6D
pose estimation problem as a regression problem rather than a classification problem [7, 8].
PoseCNN [7] uses a CNN-based architecture to predict a segmentation mask given an RGB
image. The segmentation mask is used in a Hough voting scheme to determine the 2D
centre of the objects in the scene. Together with a depth prediction for the centre locations,
the 3D location is obtained. Finally, a Region of Interest (RoI) pooling [29] is performed
on the feature maps obtained from the CNN to regress to a quaternion representation
of the orientation of each object. If depth images are available, the pose is refined using
ICP [28].

DOPE [8] uses a CNN-based model to predict two types of outputs given an RGB image.
The first output is nine belief maps which predict the eight projected corners of the 3D
bounding box and the projected centre locations. The second output is eight vector fields
predicting the direction from each projected corner to the corresponding centre. During
inference, they are used to determine which corner belongs to which object, similar to
PoseCNN [7]. Once the corners are assigned to the centres, a PnP algorithm [30] is used
to retrieve the pose of the objects.

Another line of work directly uses depth images in addition to RGB images to make pose
predictions [22, 23] instead of only using depth images for pose refinement. DenseFu-
sion [22] starts by predicting segmentation masks given the RGB image. The predicted
mask is then used to crop the RGB image around the object and obtain a partial point
cloud given the depth image. A CNN-based architecture is used to compute pixel-wise
colour embeddings using the cropped RGB image, and a PointNet [31] is used to com-
pute pixel-wise geometric embeddings using the predicted point cloud. A dense fusing
procedure is used to fuse both embedding types, which is used to make pixel-wise pose
predictions together with a confidence score. They further propose a pose refinement step
to predict a pose residual used to improve the pose prediction. The final pose output is
the pixel-wise pose prediction with the highest confidence score.

MoreFusion [23] is a multi-view approach, which means that multiple images from the
scene with di⇤erent camera poses are used to make the 6D pose prediction. This is
done by predicting instance maps from the RGB images, which are fused with camera
tracking obtained from the depth images to obtain volumetric maps from the scene. These
volumetric maps contain information on which areas of the 3D scene are free and which
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are occupied by an object or obstacle. The volumetric map and the RGB-D data are used
to make initial pose predictions of the objects, which are subsequently used, together with
the 3D CAD models of the objects and the volumetric maps, in a collision-based refinement
step to ensure the physical plausibility of the predicted poses.

So far, all the discussed methods are based on CNNs. Recently, Transformer-based [24]
methods have grown in popularity [32, 33]. This trend is also visible in the 6D pose
estimation literature.
T6D-Direct [21] builds on the object detection method DETR [33], which treats object
detection as a set prediction problem. A conventional CNN backbone is used to extract
image features from RGB images which, together with a positional encoding, forms the
input to the transformer encoder. The transformer decoder then attends to the encoder
output and object queries, which are learned positional embeddings. Finally, the output
of the decoder is passed to a shared feedforward network to produce bounding boxes and
class probabilities. T6D-Direct extends this approach by adding two additional output
heads to independently predict the translation and orientation component of the 6D
pose. In the experiments, problems of the method are shown to predict the orientation of
objects. To alleviate this problem, YOLOPose [25] is proposed. The same architecture as
in T6D-Direct is used, but instead of predicting the orientation of the objects directly, they
predict keypoints of the objects, specifically their interpolated bounding boxes [34]. These
keypoints are then used as input to a separate rotation estimation network to predict the
orientation of the objects.

All discussedmethods so far follow the approach of instance-level pose estimation, meaning
they are trained to estimate the pose of one specific instance of a category of objects, e.g.
one specific cup. Category-level pose estimation, on the other hand, is the task of learning
to predict the poses of objects from a category, even though the specific instance of the
object was not seen during training. This is more challenging since, during inference,
usually, no 3D CAD models of the objects are available.

6D-Vit [26] is a Transformer-based approach for category-level 6D pose estimation using
RGB-D images as input. 6D-ViT processes objects separately, so if more than one instance
is present in the scene, an instance segmentation pre-processing step is necessary. Given
the predicted segmentation map, the RGB images are cropped around the object, and a
partial point cloud of the object is extracted from the depth image. 6D-ViT then processes
the two modalities separately. The cropped RGB image is used as input to the sub-network
Pixelformer, which uses a Transformer encoder and a multilayer perceptron decoder to
produce a pixel-wise instance representation. The partial point cloud is used as input to
the sub-network Pointformer which also uses a Transformer encoder and a multilayer
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perceptron decoder to produce a pixel-wise instance representation. Both instance repre-
sentations are fused with a category shape prior using a multisource aggregation network
to produce a joint and dense object representation. This representation is used together
with the obtained point cloud and the category shape prior to obtain a pose estimation
using the Umeyama algorithm [35].

Perpendicular to the task of pose estimation is the task of pose refinement. Given a pose
estimate of any of the presented methods, DeepIM [36] refines the pose to improve the
prediction. For this, the 3D CAD model of the object is required, which is used to generate
a rendering of the initial pose estimate. DeepIM then uses this rendering and the image
used to produce the initial pose as input to a CNN-based architecture to predict a residual
between the poses shown in the rendering and the real image. The residual pose is then
used to improve the pose estimate iteratively.

The approaches discussed in this chapter produce accurate pose estimates of all the
objects given a single RGB(-D) image. However, especially in robotics applications, we
are interested in the poses of the objects in a sequence of images which is necessary,
for example, in manipulation tasks. One approach is using the discussed methods to
estimate the poses of the objects from scratch for every frame of the video. However,
the discussed methods usually trade o⇤ accuracy for speed, which limits the use of this
approach. Furthermore, the strong correlation between frames of a video is ignored,
leading to less coherent pose estimates [10]. One possible solution to these problems is
discussed in the next chapter.

2.2. 6D pose tracking

6D pose tracking is a task very similar to 6D pose estimation. Again, the 6D pose of
an object relative to the camera is estimated, but in contrast to 6D pose estimation, the
pose should be determined in a sequence of images instead of estimating the pose in a
single image, allowing for the exploitation of temporal information [25]. However, these
approaches are usually specific to an object and require retraining if used for a di⇤erent
object [12].

Tracking is a well-researched problem in robotics using Kalman filters or particle filters [37,
38]. MaskUKF [39] follows this line of work while still leveraging the advantages of deep
neural networks. Given an RGB-D image, MaskUKF uses an image segmentation network
to predict a segmentation map from the RGB image. The segmentation mask, together
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with the depth image, is used to obtain a partial point cloud. This point cloud is then used
as a measurement for an Unscented Kalman Filter to update the belief about the object’s
pose and velocity using the 3D CAD model of the object.

PoseRBPF [11] estimates the full posterior distribution over 6D poses by factorising the
posterior into the 3D location and 3D orientation component. This factorisation leads to
an e⌅cient sampling scheme for a Rao-Blackwellized particle filter [40]. Before applying
the method, a 3D CAD model of the object is used to train an auto-encoder to build a
dictionary of di⇤erent object orientations. The tracking is initialised by a 2D bounding
box prediction of the object. An initial 3D location can be obtained by back projecting the
2D centre and sampling di⇤erent distances. This sampling initialises the particles of the
particle filter. For each subsequent frame, the particles are propagated using a motion
model. Next, the particles are updated using the current observation. A bounding box
for the translation estimation of each particle is obtained, which is subsequently used to
compute a region of interest for that estimation. The region of interest is passed through
the auto-encoder to compute a feature embedding. Using the cosine distance between
this embedding and all the embeddings of the precomputed dictionary, the most likely
orientation is obtained, which is used to update the rotation distribution of the particle.
Finally, the distribution of the translation is updated, and the process can be iterated for
the next frame.
The big advantage of filtering-based approaches is that the pose prediction contains
information about the uncertainty of the estimate. This information is usually unavailable
when using deep learning-based approaches, even though it can be critical in robotics
applications such as grasp planning [41]. Their drawbacks, especially in the case of particle
filters, are their low runtimes [11].

Another line of research views 6D pose tracking as a learning-based problem which is
solved using neural networks [10, 12, 27]. This has the advantage that no occlusions [37]
or likelihoods [11] have to be explicitly modelled, but they are instead learned from large
amounts of data. Furthermore, state-of-the-art learning-based approaches exhibit fast
runtimes [10], making them well-suited for robotics applications.

Garon and Lalonde [12] propose a simple CNN-based model to solve the 6D pose tracking
problem. The input to the method is the RGB-D image of the current timestamp and
a rendering of the pose prediction of the previous timestamp. Therefore, their method
requires a CAD model of the object. The method has two independent convolutional layers,
one for each image, for the input. The outputs of these layers are then concatenated
before being passed to the rest of the network. The method’s output is the change of pose
between the previous frame and the current frame in a joint representation. This change
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in pose is then used to obtain the pose prediction of the current frame, after which the
process is iterated to obtain poses for all images in the sequence.

DeepIM [36], originally proposed as a pose refinement method (as discussed in Chap-
ter 2.1), is shown to be extended to 6D pose tracking. Instead of estimating the pose
residual between a rendering of the pose estimation of the current frame and the current
frame, the residual between a rendering of the previous pose estimation and the current
frame is estimated. Again, this residual is used to propagate the pose estimation of the
previous frame to the current frame. Contrary to Garon and Lalonde [12], the RGB-D
image of the previous and current frames are concatenated before being passed to a
FlowNetSimple [42], instead of being passed to separate input branches. Further, they
explain the importance of using a decoupled pose prediction by using separate output
branches for the translation and orientation component of the pose.

se(3)-TrackNet [10] combines the approaches of Garon and Lalonde [12] and DeepIM [36].
Two separate input branches are used for the rendering of the previous pose and the
current pose observation to decouple the feature representations while using separate
output branches for the change in orientation and change in translation. The proposed
method of this thesis takes inspiration from se(3)-TrackNet, so the approach is explained
in detail in Chapter 3.2.

All discussed methods so far rely on access to a 3D CAD model of the object. In practice,
this dependency can be limiting, especially for novel objects unknown during training.
BundleTrack [43] proposes an approach to alleviate this problem by not requiring any
instance-level or category-level 3D CAD models. Given the previous instance segmentation
mask and the current RGB-D image, the instance segmentation mask for the current frame
is computed. Both segmentation masks are used to crop the respective image around the
target object, after which a keypoint detection network is utilised to compute keypoints
and feature descriptors for the cropped images. The keypoints are then used to predict
a first estimate for the change of pose between the two views. To obtain the final pose
estimate, pose graph optimisation is used. The nodes of the pose graph are obtained from
a memory pool of previous keypoint estimates. The current frame is added to the memory
pool if it corresponds to a novel view. The pose graph optimisation is performed online
and results in the pose prediction of the current frame.

All discussed methods so far rely on CNN-based architectures. But similar to Chapter 2.1,
Transformer-based methods are also used for 6D pose tracking. VideoPose [27] predicts
absolute poses, in contrast to the other, discussed approaches which predict changes in
poses, and exploits temporal information by attending to features of previous frames.
Starting point of VideoPose is a generic object detection method to obtain bounding boxes
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of the objects in the scene from an RGB-D image. The image is then cropped around
the object and used as input to a Transformer encoder. To make a pose prediction, a
Transformer decoder attends to the encoder features of the current frame and the encoder
features of previous frames. The decoder output is then used as input to a 6D pose
regression network, which outputs values for the orientation, the distance to the camera,
and the 2D image location in three separate branches.

All discussed methods in this chapter can track the 6D pose of a single object in a sequence
of videos. One drawback of these methods is that they are specific to the object they are
trained on, and they can not be readily applied to a di⇤erent object [12]. In contrast, the
methods discussed in Chapter 2.1 can estimate the 6D poses of all objects in the scene,
but only for a single frame. While it is possible to use a separate tracker for every object
in the image sequence or estimate all poses from scratch for every image using a pose
estimation method and link them in a separate step, both approaches are not ideal.
Schmauser et al. [44] propose an approach for joint 6D pose estimation, 3D reconstruction,
and data association, resulting in 6D multi-object tracking. However, their approach is
o⇧ine and optimises the object trajectories over a whole RGB-D image sequence. Therefore,
it is not applicable for online tasks like robot manipulation.
In contrast, this thesis aims to combine the approaches of 6D pose estimation and tracking.
A method is proposed that consistently tracks the 6D poses of all objects in the scene using
a single approach in an online fashion.

2.3. Multi-object tracking

Multi-object tracking (MOT) is the task of tracking all object instances, usually pedestrians,
in a sequence of images obtained from a single camera [13]. A trajectory of an object
is represented by a time-ordered set of object detections, which are usually represented
as bounding boxes [45]. The classical MOT approach follows the tracking-by-detection
paradigm, which treats MOT as a two-step process. The first step consists of frame-by-
frame object detection to obtain bounding boxes for all objects in the scene and for all
frames. The second step links bounding boxes corresponding to the same object instance
across frames, formulated as a data association problem, to obtain trajectories. Since the
bounding boxes can be obtained by any object detection method, approaches following
this paradigm focus on solving the data association problem.

To prevent the linking of false positive detections to trajectories, common MOT approaches
apply a threshold on the bounding boxes obtained from the object detection method and
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only link bounding boxes with a high confidence score. Zhang et al. [46] argue that
this procedure can harm the robustness of MOT approaches since low-score bounding
boxes not only correspond to background predictions but also to occluded objects. To
increase robustness and to prevent the loss of true positive bounding box predictions, they
propose the data association algorithm BYTE [46]. Similar to common MOT methods, the
first step is to apply a threshold to the bounding boxes received from the object detector.
The high-score bounding boxes are matched to the existing tracks in a motion-based
fashion by predicting the locations of the previous bounding boxes in the current frame
using a Kalman filter [47] and computing the similarity to the bounding boxes of the
current frame using the intersection over union (IoU) or Re-ID features. In a second
matching step, unmatched tracks are matched to low-score bounding boxes using the
same similarity measures as before. In addition to the data association method, they
propose a MOT approach, ByteTrack [46], by combining object detections obtained from
the object detector YOLOX [48] with their data association method BYTE.

Instead of solving the data association problem using motion, a common approach is to
formulate the data association as a graph partitioning problem [49, 50, 51], where graph
nodes represent object detections and edges represent whether two detections belong to
the same trajectory. Finding an optimal graph partition determines which objects belong
to the same trajectory and, by this, links them to tracks. Brasó and Leal-Taixé [45] propose
a message passing network which is used to learn the partitioning of the graph. The first
step is to build the graph. Nodes correspond to appearance feature embeddings obtained
from a CNN by passing the cropped bounding boxes through it. Edges are obtained for
bounding boxes of di⇤erent frames by computing a feature vector containing relative
bounding box sizes, locations, and temporal distances, and then feeding it through a
multilayer perceptron to obtain geometry embeddings. Next, several message passing
steps are performed to update the edge and node embedding and, by this, propagate
higher-order information through the graph. Finally, the updated edge embeddings are
used to perform binary classification to determine which edges are active. Here, an active
edge represents that the two corresponding nodes should be linked to a track. While this
approach allows obtaining globally consistent trajectories of all the objects in the scene, it
requires object detection of all frames to build the graph. Therefore, the method is not
online and, by this, not fitting for a robot manipulation task.

Zhang et al. propose mmMOT [52], another approach using graph optimisation, to solve
the data association problem. But instead of relying only on colour images obtained
from a camera, a framework is proposed that fuses data from di⇤erent sensors, e.g.
cameras, LiDAR, or radar, in their experiments, to increase the robustness and accuracy of
their approach. Following the tracking-by-detection paradigm, the first step is to obtain
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bounding boxes of the objects using an object detection method. Next, the detections
are used to separately extract features from each sensor modality. These features are
used in a robust fusion module to obtain a joint feature representation. The robust fusion
module also preserves the individual feature representations to increase robustness. If one
of the sensors malfunctions, the method can simply use the other sensors. mmMOT is an
online method and operates on pairs of detections. Following the described procedure, a
joint feature representation of each image is obtained, which is then used in an adjacency
estimator to predict the scores necessary for graph optimisation. The graph optimisation
is solved using an out-of-the-box solver to obtain the final association of the detections.

3D MOT is a task similar to 2D MOT, but instead of associating 2D detections across
frames, the goal is to associate 3D detections across frames [17]. A 3D detection is usually
represented by a 3D bounding box, which consists of a 3D location, the 3D size of the
bounding box, a confidence score, and a heading angle. Therefore, 3D object tracking is
also very similar to 6D pose tracking, as both representations share the same 3D location.
But the heading angle of the 3D bounding box is not enough to recover the full 3D
orientation of the 6D pose. Furthermore, 3D MOT only uses 3D measurements, like point
clouds obtained from LiDAR sensors, while 6D pose tracking operates on RGB(-D) images.

Weng et al. [17] propose an approach for 3D MOT using classic approaches, namely a
Kalman filter [47] and the Hungarian method [53]. Following the tracking-by-detection
paradigm, they use a 3D detection module to obtain 3D bounding boxes for the current
frame given a LiDAR point cloud. A 3D Kalman filter using a constant velocity model
is used to predict the state of the previous detections for the current frame. To match
the predicted trajectories to the current detections, an a⌅nity matrix is constructed by
computing the 3D IoU or negative centre distance. This results in a bipartite graph
matching problem which is solved using the Hungarian algorithm. Each trajectory is then
updated using the matched detection following the state update of the Kalman filter.
CenterPoint [18] represents objects as points instead of a full 3D bounding box. A standard
LiDAR-based backbone is used to extract a feature representation of the input point cloud.
The feature representation is then flattened into an overhead map view, which is used as
input to a standard image-based keypoint detector to find the object centres. All other
object properties, like the 3D size and orientation, are predicted from the point feature
at the centre location. Furthermore, given the map views of the current frame and the
previous frame, the velocity of the objects is estimated. The velocity is used to greedily
match previous detections to current ones and, by this, track the objects in the scene. Due
to the sparse nature of point clouds [54], the point feature of the centre location might
not contain enough information to accurately regress to all properties of the 3D bounding
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box. Because of this, CenterPoint proposes a second stage for pose refinement. Given the
current 3D bounding box prediction, point features at the centres of each bounding box
face are extracted and, together with the centre point feature, passed through a multilayer
perceptron, which outputs a confidence score and a box refinement.

While tracking-by-detection successfully solves the MOT problem, approaches following
this paradigm are becoming increasingly complicated [16] and mainly focus on increasing
the accuracy while neglecting practical aspects like runtime [17], which is important for
downstream tasks like robot manipulation. Another paradigm to solve the MOT problem is
tracking-by-regression, where object detection and tracking are solved in a joined fashion
by regressing past detections to the current frame. These methods are, by definition, local
and online, making reinitialisation of lost long-range tracks impossible. Instead, they are
simple, fast, and more accurate in the local regime [14], making them well-suited for
applications like robot manipulation.

D&T [16] is an approach which uses correlation maps of adjacent frames to learn the tasks
of detection and tracking simultaneously. The method builds upon the fully convolutional
object detector R-FCN [55]. Given two adjacent input images, the first step is to compute
convolutional feature maps for each image using a backbone network. Based on these
feature maps, a region proposal network is used to propose candidate regions based on
anchor boxes [56]. These candidate regions are used in RoI pooling [29] to aggregate
position-sensitive score and regression maps from intermediate convolutional layers to
classify boxes and refine their coordinates. This way, bounding boxes are predicted
independently for the images. To link the detections to trajectories, intermediate position-
sensitive regression maps from both frames are used to compute correlation maps. They
are used, together with the regression maps of the individual frames, in an RoI tracking
operation to output the box transformation from one frame to the other. These box
transformations are then used to link the detections of the adjacent frames to create
tracks.

Tracktor [15] uses a standard two-stage object detection method, in this case Faster R-
CNN [56], and exploits its bounding box regressor to track objects without the need to
specifically train the method on the tracking task. Faster R-CNN extracts features from an
image using a backbone. Then, a region proposal network is used to extract bounding box
proposals for the objects in the scene. RoI pooling [29] is used to extract feature maps for
each proposal which are then used in classification and bounding box regression heads to
predict the bounding boxes. Tracktor uses the bounding box regression mechanism to
propagate the bounding boxes of the previous frame to the current frame. Specifically,
RoI pooling is performed on the features of the current frame but with the bounding box
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coordinates of the previous frame, assuming small object motion between the two frames.
This way, bounding boxes are obtained in the current frame while preserving the object
identity and, therefore, creating tracks. Furthermore, they propose extensions to Tracktor
to alleviate problems arising due to the local nature of the approach. A motion model is
used if the assumption of small object movements can not be satisfied. If the camera is
moving in the image sequence, camera motion compensation [57] is used, and for low
framerates, a constant velocity assumption [58, 59] is used.

CenterTrack [14] also follows the tracking-by-regression paradigm and represents objects
as their centre location instead of their full bounding box. Other object properties, like
bounding box size, are regressed from the features at the centre location. Furthermore,
given two adjacent input images and the previous detections represented by a heatmap,
CenterTrack predicts the o⇤set of each object from the previous frame to the current
frame, linking them to tracks. The method proposed in this thesis builds upon CenterTrack.
Therefore, it is explained in detail in Chapter 3.1.

Following the general trend of the recent computer vision literature, Transformer-based [24]
methods are used for MOT in a tracking-by-attention paradigm [60, 61, 62].
Trackformer [60] formulates MOT as a set prediction problem and jointly performs track-
ing and detection of the objects in the scene. Features from each frame are extracted
using a common CNN-based backbone. These features are then encoded using a standard
Transformer encoder with self-attention. Trackformer uses two types of queries in a
standard Transformer decoder to reason about the objects in the scene. Static and learned
object queries [33] are used to initialise new tracks. Each object query learns to predict
bounding box position and size while avoiding duplicate detections using self-attention.
Track queries follow objects through the image sequence while preserving their identity
and adapting to changes in the locations of the objects. Both query types and the image
feature encoding serve as input to a standard Transformer decoder that produces output
embeddings. The output embeddings are mapped to the bounding boxes and classifi-
cation scores using a multilayer perceptron. Furthermore, the output embeddings are
used as track queries as input to the Transformer decoder for the next frame. This way,
Trackformer represents objects as queries and uses them to link detections across time
using self- and encoder-decoder attention.

All the discussed approaches successfully track multiple objects across sequences of images,
but only as 2D or 3D bounding boxes. In this thesis, we also work on the task of MOT,
but instead of representing the objects as bounding boxes, we track them using their 6D
pose.
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2.4. Synthetic data generation

Due to the di⌅culty of the tasks of 6D pose estimation and tracking, deep learning-based
methods require a large amount of training data. However, annotating the 6D poses of
objects in images is inherently more complex than providing annotations for tasks like
object detection or image classification, as annotations need to be provided in 3D metric
space instead of in 2D image coordinates [8]. This challenge is reflected in the number of
images and annotations of commonly used data sets. The ImageNet [63] classification
dataset contains approximately 1.3 million images with the same number of annotations,
divided into 1000 classes. The 2014 release of the object detection dataset MS COCO [64]
contains approximately 165k images with 886k annotated instances divided into 80
categories. In contrast, the 6D pose estimation dataset LINEMOD [65] contains around
1000 images with objects from 15 categories, for which annotations are provided, resulting
in 15k annotations.

To alleviate this problem, several approaches explore the use of synthetic training data [8,
10, 11]. Using synthetic images has the significant advantage that highly accurate pose
annotations are readily available as they are needed to render the synthetic images in the
first place. However, using synthetic images shifts the problem of the laborious task of
providing pose annotations for real images to another problem. The simulated environment
used to render the synthetic images will not precisely match the real world due to errors
in system identification, unmodeled physical e⇤ects, and low-fidelity simulated sensors.
These phenomenons combined are known as the reality gap [20]. Bridging the reality gap
(called sim-to-real transfer) is the challenge methods trained on synthetic images need to
face.

One approach to bridge the reality gap is the idea of domain adaptation [66, 67]. The
idea is to train a model on a source domain, here on synthetic images, and then transfer to
a target domain, which in this case are real images. Ganin and Lempitsky [66] propose an
approach which combines deep feature learning with domain adaptation. Their proposed
method consists of a backbone that extracts features on top of which a head is used for
the task at hand. During training, annotated samples from the source domain are used in
a supervised learning setting. In addition, unlabeled data from the target domain is used
in an unsupervised manner. A domain classification head is used on top of the backbone,
which predicts whether the input image is from the source or the target domain. During
training, the parameters of the backbone are trained to maximise the loss of the domain
classifier, while the parameters of the domain classification branch and task-specific branch
are trained to minimise their respective objectives. This training approach encourages the
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backbone to learn domain invariant features, which allows the learned method to be used
in the target domain, i.e. in this case for real images.

Shrivastava et al. [67] propose an approach similar to Generative Adversarial Networks
(GANs) [68] to improve the realism of synthetic images. They train a refinement network
that takes a synthetic image as input and outputs an image more closely resembling a real
image. The refinement network is trained in a way to preserve the annotations of the
synthetic image so it can be used in subsequent training of neural networks. Furthermore,
the development of artefacts found in GAN-based approaches is discouraged. To inform
the refinement network what real images look like, a discriminator is used, which takes
unlabeled real images and the refined synthetic images as input and is trained to determine
if the input is synthetic.
Both approaches assume that the source and target domains are su⌅ciently close, which
is not trivially satisfied in practice [10]. Furthermore, both approaches require real images
of the target domain, even though only unlabelled ones, which further hinders their
applicability in unseen scenarios.

To use synthetic images for training a deep neural network, they must be somehow
generated. The most straightforward approach used by some methods [8, 9, 11, 12, 36]
is to sample random poses of the objects and render them on top of images obtained from
commonly used datasets [64, 69, 70, 71]. While this approach produces images with 6D
pose annotations, the generated images look unrealistic. Additionally, image contexts,
like interactions of the rendered objects with the background and shadows, are ignored.
This approach is mainly used because of the lower computational cost for generating the
images compared to rendering full scenes [72].

Research regarding how transferable features learned in neural networks are [73] suggests
that the rendered images should be as similar to the real world as possible. This idea is
further supported by Movshovitz-Attias et al. [72], who investigate the influence of the
realism of model textures when training neural networks using synthetic images. This
research suggests using full synthetic 3D scenes instead of overlaying static images with
rendered models. Many synthetic datasets using full synthetic scenes exist [74, 75, 76, 77,
78], but they are expensive to generate as they require artists to carefully model specific
environments [79], negating the big advantage of reducing human involvement when
using synthetic data.

Instead of modelling scenes photo-realistically, Tobin et al. [20] propose domain randomi-
sation (DR). In contrast to training a model on a single photo-realistic environment, the
idea is to expose the model to a wide range of simulated environments by randomising the
settings of the simulator, like the number and shape of distractor objects, positions of all
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objects, light settings, camera settings, among others. In particular, they also randomise
all textures by using random RGB values, gradients between two RGB values, and checker
patterns of two RGB values. They explicitly use non-photo-realistic and not physically
plausible images and, instead, provide a lot of variability in the synthetic scenes. Hence,
the real world is simply another configuration, allowing the model to generalise to it.
Tremblay et al. [79] build on domain randomisation, but instead of using random textures,
they randomly sample them from a set of photo-realistic textures. The randomised objects
are then rendered on top of background images from a real dataset [71] instead of placing
them in full 3D scenes.

So far, all discussed approaches randomly sample object poses. However, random sam-
pling can lead to unnatural object penetration, which does not occur in the real world.
Especially for depth images, object penetrations can introduce an undesired bias to the
data distribution [10]. While aligning some physical properties between the real world
and the simulator may be challenging, gravity and collision can be easier aligned [80].
Tremblay et al. [81] place objects in a way to avoid object penetration and then let them
fall under the influence of gravity while taking images from di⇤erent viewpoints of the
falling objects. Wen et al. [10] propose the idea of physically plausible domain randomisa-
tion, where most simulator properties are randomised as in domain randomisation [20],
including object poses allowing object penetration. Several physics simulation steps fol-
low the placement to separate colliding objects and let them fall onto a table. Once
all objects reach stable poses, an image using the simulated camera is obtained. These
approaches combine the benefits of domain randomisation with the closer alignment of
the photo-realistic synthetic images to the real world while being physically plausible.

This thesis follows the idea of physically plausible domain randomisation and proposes a
data generation pipeline in Chapter 5, which produces photo-realistic, physically plausible
images while randomising most simulator properties. Some approaches [7, 12, 72, 79, 80]
highlight the benefits of using real data in combination with synthetic images. But the task
solved in this thesis is not used in an existing dataset, and creating a dataset is beyond
the scope of this thesis, so we only rely on synthetic training images.
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3. Preliminaries

This chapter discusses two related works in detail as they build the foundation for the
proposed method of this thesis. Chapter 3.1 explains CenterTrack [14], a multi-object
tracking method. It represents tracked objects as points and uses a greedy matching algo-
rithm based on sparse optical flow to associate detections between frames. Chapter [10]
explains se(3)-TrackNet, a single-object 6D pose tracking method. They disentangle the
input features, which allows training the method exclusively on synthetic images. Fur-
thermore, they represent poses using a Lie Algebra representation which helps to learn
pose residuals e⇤ectively. These ideas are combined to design the proposed approach of
this thesis.

3.1. CenterNet & CenterTrack

CenterNet

CenterNet [19] is an object detection method representing objects as a single point. This
representation is in contrast to other current object detection methods [29, 56, 82], which
represent objects by a tightly-fitting axis-aligned bounding box. Given an input image
I � RW◊H◊3 with width W , height H and three colour channels, the aim of CenterNet is
to produce a low-resolution heatmap Ŷ � [0, 1]W/R◊H/R◊C with a downsampling factor
R = 4 and C classes. A prediction Ŷ x,y,c = 1 corresponds to a detected object of class c at
location (x, y), while Ŷ x,y,c = 0 is background. In practice, the values of Ŷ are between 0
and 1 and can be interpreted as the confidence of the prediction.

To learn the heatmap Ŷ , the centre locations pi of the objects in the training images need
to be known. If only bounding box annotations are given, represented by the coordinates
of the four corners of the bounding box (xmin, ymin, xmax, ymax), the centre coordinate
can be obtained as p = ((xmin+xmax)/2, (ymin+ymax)/2) � R2. A ground truth heatmap
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Y � [0, 1]W/R◊H/R◊C can be constructed using these centre locations. Since the heatmap
is a downsampled version of the input image, the centre locations need to be downsampled
as well and are obtained by p̃ = ⇥p/R⇤ = (p̃x, p̃y). Predicted centre locations near the
ground truth centre location can also produce su⌅ciently good bounding boxes. Instead
of penalising all incorrect location predictions equally, a region around the actual location
is considered correct. This assumption is realised by an unnormalised 2D Gaussian around
the centre location

Yx,y,c = exp

�
⌅
(x⌅ p̃x)

2 + (y ⌅ ỹy)
2

2�2
p

⇥
, (3.1)

where the standard deviation �p, i.e. the spread of the kernel, is dependent on the object
size [83]. These Gaussians are used for all the classes’ centre points to obtain the full
ground truth heatmap. If two Gaussians of the same class overlap, the maximum value at
that location is used. The maximum is preferable over taking the average of the Gaussians
at that location to ensure that the close-by peaks remain distinct instead of smoothing
them out [84].
The objective to train the heatmap output of CenterNet is given by a variant of the focal
loss [83, 85]:

Lk =

⇤
(1⌅ Ŷ x,y,c)� log(Ŷ x,y,c) if Yx,y,c = 1

(1⌅ Yx,y,c)⇥(Ŷ x,y,c)� log(1⌅ Ŷ x,y,c) otherwise,

whereN is the number of objects in the image and ⇥ = 2 and ⇤ = 4 are hyper-parameters.
The fact that the input is downsampled by a factor R introduces a discretisation error
since the ground truth location could lie between two pixels in the downsampled location
output. To recover the actual location, CenterNet outputs a local location regression map
Ô � RW/R◊H/R◊2, containing an o⇤set in x and y directions for all location outputs. To
save computation and memory costs, a single location regression map is used for all classes
c. It is trained using an L1 loss

Lo⇤ =
1

N

⌅

p

⇧⇧⇧Ôp̃ ⌅
⌃ p
R

⌅ p̃
⌥⇧⇧⇧ ,

where Ôp̃ is the value of the location regression map at location p̃. Supervision is only
provided at the centre locations p̃, while all other regions are ignored.
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So far, the method only predicts downsampled centre locations and refines them to the
original input resolution. To get full bounding box predictions, CenterNet additionally
outputs a size map Ŝ � RW/R◊H/R◊2, which regresses to the height and width of the
bounding box given the centre location. Again, one size map is used for all classes c. The
size map is again learned using an L1 loss

Lsize =
1

N

N⌅

k=1

|Ŝpk ⌅ sk|,

where Ŝpk is the values of the size map at centre location pk and sk = (xmax⌅xmin, ymax⌅
ymin) is the ground truth size of the bounding box, which is obtained from the bounding
box annotations. Supervision is again only provided at centre locations.
The overall training loss is the weighted sum of these losses

Ldet = Lk + ⌅sizeLsize + ⌅o⇤Lo⇤.

The weights are set to be ⌅size = 0.1 and ⌅o⇤ = 1.
The architecture of CenterNet consists of a fully convolutional encoder-decoder backbone
network to generate image features, which are then passed to separate heads to output
the heatmap, the size map and the location regression map.

CenterTrack

CenterTrack [14] extends CenterNet to perform tracking of objects through a sequence of
images. It is a purely local approach and only associates objects in adjacent frames. If
the tracking for one object is lost and later detected again, the tracks will not be linked;
rather, a new track is initialised.
More precisely, CenterTrack follows the idea of tracking-conditioned detection [86, 87, 88].
Instead of only providing the current frame to detect objects in it, previous detections and
frames are provided to the network as well.
CenterTrack takes as input the current frame It � RW◊H◊3 at time t, the previous frame
It�1 � RW◊H◊3 at time t⌅ 1, and the detections of the tracked objects in the previous
frame B

t�1 = {bt�1
0 , b

t�1
1 , ...}. Each object b = (p, s, w, id) is represented by its centre

p � R2, its size s � R2, its detection confidence w � [0, 1] ⇧ R, and an unique identity
id � I. This representation follows the representation of CenterNet, with the addition of
the identity id.
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The detections of the previous frame need to be pre-processed to be a suitable input
to the method. CenterTrack exploits the point-based nature of the tracks to achieve a
suitable input. Similar to the heatmap output of CenterNet, all detections of the previous
frame B

t�1 are displayed using a 2D Gaussian at their respective centre location (see
Equation 3.1) in a class-agnostic heatmap Ht�1 � RH◊W◊1. Only detections with a
confidence w greater than a threshold ⇧ are displayed to avoid the propagation of false
positive detections.
The resulting heatmapHt�1 is concatenated with the previous frame It�1 and the current
frame It, resulting in seven input channels. Besides this change, the rest of the backbone
architecture of CenterNet remains unchanged.

CenterTrack aims to find all objects in the current frame, similar to CenterNet, but also link
these detections across time by assigning objects that appeared in the previous frame a
consistent id. To achieve this association, CenterTrack adds a 2D displacement map D̂

t �
RW/R◊H/R◊2 to the existing outputs of CenterNet, whereR = 4 is the same downsampling
factor as for CenterNet. Given a detected object location p̂t, the displacement d̂ = D̂p̂t ,
where D̂p̂t is the entry of the displacement map at location p̂t, captures the di⇤erence in
location of the object between the current frame and the previous frame d̂ = p̂t ⌅ p̂t�1,
similar to a sparse optical flow. The displacement map is learned using an L1 loss

Ldis =
1

N

N⌅

i=1

|D̂pt
i
⌅ (pt�1

i
⌅ pt

i)|,

where pt�1
i

and pt

i
are the ground truth locations of the object. Supervision is only provided

at the ground truth centre locations. The final training loss is

Ldet = Lk + ⌅sizeLsize + ⌅o⇤Lo⇤ + ⌅disLdis,

where ⌅size = 0.1, ⌅o⇤ = 1, and ⌅dis = 1.
Data association is achieved using a simple greedy matching algorithm. Each detection in
the current frame at position p̂ is greedily associated with the closest unmatched detection
at position p̂⌅ D̂p̂ in descending order of confidence. If no unmatched prior detection
within a radius ⌃ is found, a new track is initialised. ⌃ is defined as the geometric mean of
the width and height of the predicted bounding box of each track.

CenterTrack uses two types of data augmentations, which are essential to successfully
training the method. The first type of data augmentation concerns the class-agnostic
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input heatmaps of the previous detections Ht�1. During inference, this heatmap can
contain wrongly localised objects, false positive detections, and false negative detections.
These errors are not present during training but represent important failure cases of object
tracking. To alleviate this problem, data augmentations are used. First, each track location
pt�1 is locally perturbed by adding Gaussian noise to simulate localisation errors. Next,
to simulate false positives, spurious locations p⇥ are randomly added near ground truth
locations and displayed in the heatmap using a 2D Gaussian as before. Finally, to simulate
false negatives, ground truth detections are randomly removed.
The second type of augmentation concerns the output of the method. Object locations in
the previous and current frames are highly correlated. Due to this correlation, CenterTrack
could simply output the previous heatmap Ht�1 and a displacement map D̂

t full of zeros
without resulting in a large training error. This output is not desirable, as CenterTrack
would refuse to track. Therefore, an aggressive type of data augmentation is used to
alleviate this problem. Specifically, both input frames It�1 and It are randomly scaled
and translated. Applying these transformations results in a larger object displacement
between two frames, discouraging CenterTrack from repeating the previous detection.
Hence, it is important to sample a separate scaling and translation for both frames since
using the same transformation would leave the object’s displacement unchanged. Of
course, the translation and scaling have to be applied to the ground truth centre and size
annotations as well.

CenterTrack is online and real-time capable with a reported runtime between 15 FPS and
28 FPS, making it well-suited for robotics applications. We extend CenterTrack to the task
of multi-object 6D pose tracking while training it exclusively on synthetically generated
data, contrary to CenterTrack, which relies on real images.

3.2. se(3)-TrackNet

se(3)-TrackNet [10] is an RGB-D-based method for 6D pose tracking of a single object. It
is a local and online approach with a reported runtime of 90.9 Hz, which makes it ideal for
robotics applications. se(3)-TrackNet is exclusively trained on synthetic image data, which
shifts the problem from the laborious task of providing 6D pose annotations for training
images to the sim-to-real problem. This chapter explains how se(3)-TrackNet works and
how they achieve the sim-to-real transfer.
Being a local approach, se(3)-TrackNet operates on pairs of images, the previous frame
and the current frame, instead of optimising the trajectory over the whole video at once.
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Given a 3D CAD model of an object which should be tracked, the initial pose of the object,
and a sequence of RGB-D images, the goal of se(3)-TrackNet is to predict the object’s
pose for all frames in the sequence. This goal is achieved by predicting the pose change
between the previous frame and the current frame. Since the initial pose is given as input,
the predicted pose change can be used to propagate the pose over the whole sequence of
images iteratively and, this way, obtain the trajectory of the object in the video.
se(3)-TrackNet represents poses using Lie Algebra. Specifically, a change in pose �� is
locally parameterised in the tangent space as �� = (t,w)T � se(3), with t � R3 and
w � so(3), in a way that its exponential mapping lies in the Lie Group

�T = exp(��) =

�

 R t

0 1

⌦

↵ � SE(3),

where the rotation matrix R is obtained from w by

R = I3◊3 +
[w]x
|w| sin |w|+ [w]2x

|w|2 (1⌅ cos |w|), (3.2)

where I3x3 is the identity matrix in R3 and [w]x is the skew-symmetric matrix. Given a
rendering of the previous pose T t�1 and an image of the current frame, se(3)-TrackNet
predicts t and w. Using the exponential mapping, the change in pose �T is obtained
and used to propagate the previous pose to the current pose as T t = �T · T t�1 =
exp(��) · T t�1.

A data generation pipeline is proposed to train the method using only synthetic images.
The authors follow the idea of domain randomisation [20] and randomise the number of
objects, poses, textures, lighting, etc., to provide a high variability in the training data
so the model can generalise to the real world. Previous approaches [7, 20] sample the
poses randomly, which can lead to unnatural object penetration. Object penetrations are
especially problematic for the depth modality because these penetrations introduce an
undesired bias to the depth data distribution. Physically Plausible Domain Randomisation
(PPDR) is proposed to alleviate this problem. Here, the object poses are still randomly
sampled, but several physics simulation steps follow the sampling. The simulation ensures
that colliding objects are separated and all objects have fallen onto the table. This
procedure is used to generate images of individual, random scenes. Since se(3)-TrackNet
operates on pairs of images, a second image, the previous frame, must be generated for
every scene. They are obtained by randomly sampling a pose perturbation, where the

24



magnitude of t and w are separately sampled from zero-mean Gaussian distributions,
and their direction is uniformly sampled. A second pose is obtained using this pose
perturbation, which is then used to generate the second image. For the second image, only
the tracked object is rendered without a background or other objects. Finally, both images
are cropped around the tracked object and resized to a fixed resolution of 176◊ 176 to
provide a consistent input size to the neural network.

Instead of concatenating the current frame and the previous frame before feeding the
data to the network, se(3)-TrackNet uses two input branches with separate weights. They
disentangle the feature encodings of the previous frame and the current frame. Both
images are synthetically generated during training, but during testing, the current frame
comes from a real sensor, while the previous frame is a rendering of the previous pose
estimate. This fact explains why only the tracked object is rendered in the data generation
pipeline because, during inference, we usually can not reconstruct the entire scene. This
way, the data distribution of the previous frame can be e⇤ortlessly aligned between training
and testing without having to think about the reality gap. It also pushes the domain gap
to be only present at the input branch of the current frame.
The networks’ output consists of two separate output branches, one for t and one for w,
representing the change in pose between the previous and current frames. se(3)-TrackNet
is trained in an end-to-end manner using an L2 loss

L = ⌅1||w ⌅ w̄||2 + ⌅2||t⌅ t̄||2,

where t̄ and w̄ are the ground truth values and ⌅1 and ⌅2 are weights. Both weights are
set to 1 during their experiments.

A bidirectional alignment is used to help further bridge the domain gap of the depth data.
During training, two augmentation steps are applied to the depth data of the current
frame. First, random Gaussian noise is added to the depth data. Second, a depth missing
procedure is applied by randomly changing valid depth pixels to invalid ones. These
augmentations simulate sensor noise and corrupted pixels commonly found in real depth
cameras. During testing, a bilateral filter is applied to the depth image of the current
frame to smooth sensor noise and fill in missing pixels. These augmentations are only
applied to the images of the current frame since the domains of the depth data of the
previous frame are already aligned by design.

We use the same pose parametrisation as se(3)-TrackNet in this thesis and follow the local
approach of providing the initial pose, predicting the change to the next frame, and use the
pose change to propagate the initial pose over the whole image sequence. Furthermore,

25



we also train the approach of this thesis exclusively on synthetic data and follow the same
ideas of bridging the sim-to-real gap. But instead of only tracking a single object, we
extend the approach to multi-object 6D pose tracking.

3.3. Camera calibration

Many parts of the proposed method in this thesis rely on a calibrated camera, like the
data generation pipeline in Chapter 5, the data augmentation in Chapter 4.2, and the
rendering of the previous frame in Chapter 4.2. The procedure of calibrating a camera
and obtaining the intrinsics matrix K is explained in the following.
The intrinsics matrix K � R3◊3 can be obtained from the projection matrix P � R3◊4,
which expresses the relation between 3D coordinates in the world to 2D coordinates in
the image. Therefore, n points are needed for which both the 3D location Xi as well as
the 2D location xi, both expressed in homogeneous coordinates, are known. Each pair of
points lies on a ray since the 3D point is projected along this ray to obtain the 2D image
coordinate. Therefore, the projected 3D point PXi and the image point xi are collinear,
which also means that the cross product between the two is zero

xi ◊ PXi =

�

����

yipT

3 Xi ⌅ pT

2 Xi

pT

1 Xi ⌅ xipT

3 Xi

xipT

2 Xi ⌅ yipT

1 Xi

✏

⇣⇣⇣⌘
= 0,

where pT

j
are the rows of P and xi and yi are the entries of x. Rewriting this equation

yields a system of linear equations
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p1
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✏

⇣⇣⇣⌘
= 0,

with two linearly independent equations. P has 11 degrees of freedom; therefore, n ⌃ 6
point correspondences are needed, where n = 6 is needed for a minimal solution while
more point correspondences lead to a least-squares estimation problem. Stacking the
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linearly independent equations of all the point correspondences yields a matrixA � R2n◊9,
resulting in the equation system Ap = 0, which needs to be solved.
The trivial solution p = 0 is eliminated by adding a constraint on the norm of p, which
results in a homogeneous least squares optimisation problem

Ap = 0 s.t. ||p|| = 1.

In practice, it is solved by decomposing A using a singular value decomposition A =
USV T . P is then given by the last right singular vector p = v12.
For this thesis, we are only interested in the intrinsics matrix K, which needs to be
extracted from the projection matrix P . To extract K, the projection matrix is split into
a 3 ◊ 3 matrix M and a 3 ◊ 1 vector m: P = [M |m]. Next, M is decomposed using
RQ-decomposition into an upper triangle part and an orthonormal part. The upper triangle
part is the desired intrinsics matrix

K =

�

����

fx 0 cx

0 fy cy

0 0 1

✏

⇣⇣⇣⌘

which we can now use for the proposed method. fx and fy are the focal length along the
x and y axis, respectively, and (cx, cy) is the principal point. We assume that no skew is
present.
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4. 6DCenterPose

This work aims to predict the 6D pose of all objects in a scene T t

i
� SE(3), i = 1, 2, ..., N ,

for N objects, at any time t > 0. For this, 3D CAD models of all the objects, their initial
poses T 0

i
� SE(3), and a sequence of RGB-D images I⇤ � RW◊H◊4

, ⇧ = 0, 1, ..., t, where
It is the current observation, are required. To achieve this goal, we propose a local and
online method called 6DCenterPose. As a local method, it predicts the change of pose
given the observation of some timestamp t and the previous observation at timestamp
t ⌅ 1. Since the initial pose is given, the change of pose can be used to propagate the
initial pose to the next frame. This procedure is iterated for all the frames, which yields
the trajectories of the objects in the image sequence.
The change of the poses is predicted by a fully convolutional neural network, whose
architecture is inspired by both CenterTrack [14] and se(3)-TrackNet [10]. This combina-
tion allows for training exclusively on synthetic images while generalising to real images.
Furthermore, a simple data association procedure based on sparse optical flow allows
linking detections across frames which is necessary to apply the changes of poses to the
correct corresponding objects.

4.1. Network architecture

The starting point for 6DCenterPose is a regular ResNet-18 [89], similar to se(3)-TrackNet,
and one of the backbones used for CenterTrack. We follow CenterTrack and use heatmap-
based outputs instead of directly regressing to the desired values. Using heatmaps has the
advantage that the architecture of the method does not need to be changed when changing
the number of tracked objects. The architecture of ResNet consists of a 7◊ 7 convolutional
layer, followed by a 3◊ 3 max pooling layer, both with stride 2. These layers are followed
by four stages of residual building blocks, where the size of the stages determines the
architecture (ResNet-18, ResNet-34, etc.). Each stage halves the size of the feature map
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while doubling the number of feature channels. However, since 6DCenterPose should
output heatmaps with a similar size as the input images, the original image extends need
to be recovered from the low-resolution feature map of the ResNet. The image extends are
recovered by adding deconvolutional layers to the ResNet [90]. We follow CenterTrack and
use an output stride of R = 4. Therefore, we add four deconvolutional layers, each with
stride 2, to the architecture to recover the desired output resolution. Every convolutional
layer and transposed convolutional layer is followed by a Batch Normalisation [91] layer
and a ReLU activation function.

On top of this backbone structure, separate heads are added to predict the desired output
maps. Each output head consists of one 3 ◊ 3 convolutional layer, a ReLU activation
function, and a 1◊ 1 convolutional layer. We adopt the same output maps as CenterTrack:
the centre heatmap, a bounding box size map, a location refinement regression map, and
an o⇤set map. Additionally, we add two more output maps. To predict the change of
pose, we follow the parametrisation of se(3)-TrackNet. To recap, the change of pose �T
is locally parameterised in the tangent space �� = (t,w) � se(3), so that its exponential
mapping lies in the Lie Group �T = exp(��) � SE(3). To predict the change in pose,
we add a change in 3D location map T̂ � RW/R◊H/R◊3 which is used to predict t and a
change in 3D orientation map Ŵ

W/R◊H/R◊3 which is used to predict w. Both maps are
trained using a mean squared error loss

Lloc =
1

N

N⌅

k=1

(T̂ pk ⌅ t̄k)
2

and

Lori =
1

N

N⌅

k=1

(Ŵ pk ⌅ w̄k)
2
,

for N objects with centre locations pk, while T̂ pk and Ŵ pk are the predicted values of
the location and orientation map at location pk, respectively, and t̄k and w̄k constitute
the ground truth pose changes. Following CenterTrack, supervision is only provided at
the centre locations.
Together with the other losses of CenterTrack, we get the following overall training loss:

L = Lk + ⌅sizeLsize + ⌅o⇤Lo⇤ + ⌅disLdis + ⌅locLloc + ⌅oriLori.
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One goal of 6DCenterPose is to be trained exclusively on synthetic images and still be
able to generalise to real images. To achieve this sim-to-real transfer, we follow the
approach of se(3)-TrackNet. Specifically, we use separate input branches for all the inputs
to disentangle the respective feature encodings. As already mentioned, ResNet consists of
four stages of residual building blocks. We duplicate the first of these stages and use it as
the separate input branches of the method. Then, the feature representations of the input
branches are concatenated and used as input to the remaining three stages.
During training, both the current and previous frames are synthetic images. During testing,
the current frame is obtained from a real sensor, while the previous frame is a rendering
of the previous pose predictions. This way, the domain gap reduces to the input branch of
the current frame, while the input branches for the heatmap and the previous frame are
e⇤ortlessly aligned.
An overview of 6DCenterPose is shown in Figure 4.1.
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Figure 4.1.: The proposed 6DCenterPose architecture: Inputs to the method are an RGB-D
image corresponding to the current observation, a rendering of all objects
corresponding to the pose predictions of the previous timestamp, and a class-
agnostic heatmap of the object centres of the previous timestamp. Each input
has a separate feature encoder to disentangle the feature representations.
The encoders’ outputs are then concatenated and used to predict the outputs,
i.e. a heatmap of the current centre locations, the bounding box size map, the
location re�nement map, the offset map, the change in 3D location map and
the change in 3D orientation map. During training, both images are synthetic,
while during testing, the image of the current observation is a real image.
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4.2. Data augmentations

As discussed in Chapter 3.1 and Chapter 3.2, data augmentations play an essential role in
training CenterTrack [14] and se(3)-TrackNet [10]. Since 6DCenterPose builds closely
upon these methods, we also adapt their data augmentations.

Bidirectional alignment of depth data

To bridge the sim-to-real gap of the depth modality, we follow se(3)-TrackNet [10] and
adopt a bidirectional alignment of the depth data. During training, random Gaussian
noise is added to the pixels with a valid depth value of the depth map of the current frame.
This augmentation is followed by applying a depth missing procedure to the depth map of
the current frame by randomly changing pixels with valid values to pixels with invalid
values. This augmentation simulates sensor noise and corrupted pixels usually found in
commercially-available depth sensors.
During testing, a bilateral filter is applied to the depth map of the current frame to smooth
sensor noise and fill in missing values of the depth map. This augmentation helps to align
the real measurements with the synthetic domain.
These augmentations are only applied to the current frame’s depth map since the previous
frame’s depth maps are aligned by design, as the values are synthetic both during training
and testing.

Af�ne transformations

As discussed in Chapter 3.1, scaling and translating the input images independently
is essential to train CenterTrack to discourage the method from simply repeating the
previous detection. Since 6DCenterPose builds upon CenterTrack, we also need to apply
these transformations. Furthermore, 6DCenterPose predicts a rotation component, the
change of orientation of the objects, in addition to the other translation-based outputs
(including the change of 3D location). Because of this rotation component, we add a
rotation augmentation to encourage 6DCenterPose to make rotation predictions other
than zero.
When applying a⌅ne transformations to an image, like scaling, translating, and rotating, it
is also important to transform the annotations of the image. Transforming 2D annotations
like the object centres and bounding box sizes is quite straightforward, but it is a bit
more involved for 3D annotations like the 6D poses. The procedure to apply an a⌅ne
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transformation to a 6D pose is explained in the following.
A general a⌅ne transformation of scaling, translating and rotating in homogeneous
coordinates is given by

A =

�

✓✓✓ 

a1 a2 a3

a4 a5 a6

0 0 1

⌦

◆◆◆↵
.

Here, a3 and a6 correspond to a translation in x and y direction, respectively. The norm
along the first and second column corresponds to the scaling along the x and y direction,
i.e. sx =


a
2
1 + a

2
4 and sy =


a
2
2 + a

2
5. We assume equal scaling along both image axes,

i.e. s := sx = sy. The rotation R of the image is recovered by the following expression

R =

�

�
a1
sx

a2
sy

a4
sx

a5
sy

✏

⌘ =
1

s

�

�a1 a2

a4 a5

✏

⌘ .

Given a pose annotation T with an orientation part RT � R3◊3 and a translation part
t � R3, the orientation part and the translation part are treated separately.
The rotation of the a⌅ne transformationR is applied in image coordinates, but the object’s
orientation is given in the 3D coordinate frame of the camera. The z-axis of the camera
coordinate system corresponds to the principal axis, which is the axis around which the
rotation of the a⌅ne transformation is applied. The rotation of the a⌅ne transformation,
therefore, corresponds to a rotation around the z-axis in the camera coordinate system

Rz =

�

�R 0

0 1

✏

⌘ =

�

����

a1
sx

a2
sy

0

a4
sx

a5
sy

0

0 0 1

✏

⇣⇣⇣⌘

The orientation part of the pose after the a⌅ne transformation is then R⇥
T = Rz ·RT

To apply the a⌅ne transformation to the translation part t of the pose, the intrinsics matrix
of the camera K is needed. The first step is to project the 3D location of the object to
image coordinates using the intrinsics matrix K
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timg = K · t =

�

�ximg

yimg

✏

⌘ .

In order to apply the a⌅ne transformationA, timg needs to be transformed to homogeneous
coordinates first resulting in t̂img = (ximg yimg1)

T . Then, the a⌅ne transformation is
applied

t̂
⇥
img = A · t̂img =

�

����

x
⇥
img

y
⇥
img

1

✏

⇣⇣⇣⌘

Finally, the new image point needs to be projected back to the 3D camera coordinate
system to obtain the new 3D location of the object. Since all points along one ray project
to the same point on the image, i.e. the depth is lost, the distance of the new 3D point to
the camera is required. We obtain it based on the distance z of the original pose.
Given the scaling factor s of the a⌅ne transformation A, we define the distance of the
new 3D point as z⇥ = z/s. With this value and the inverse of the camera intrinsics matrix
K�1, we obtain the new location of the object relative to the camera

t⇥ = K�1 · (z⇥ · t̂⇥img).

The resulting pose after the a⌅ne transformation is then given as

T ⇥ =

�

�R⇥ t⇥

0 1

✏

⌘ ,

which is used as the new ground truth pose for the given object. This process is repeated
for all objects in the scene, resulting in the augmented pose annotations for the given
image.
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5. Synthetic data generation

Annotating training images for the 3D domain is inherently more challenging than anno-
tating images with 2D labels since, in the latter case, annotations only have to be provided
in pixel coordinates. In contrast, in the former case, the annotations have to be provided
in metric coordinates relative to the camera. To alleviate this problem, approaches like
se(3)-TrackNet [10] train their method exclusively on synthetically generated images.
This way, the 6D poses are readily available since they need to be known to render the
images. Using synthetic images shifts the problem of annotating training images to the
sim-to-real problem of aligning the synthetic domain to the real world.
We follow this approach and use synthetic images to train the method in this thesis. To this
end, we created a synthetic data generation pipeline using BlenderProc [92], which serves
as an interface to the 3D modelling software Blender1. Chapter 5.1 describes the process
of generating the synthetic training images. In addition to generating random images,
we generate random trajectories and render image sequences of objects following these
trajectories. These sequences can then be used as test data to evaluate the in-distribution
performance of the proposed method. This procedure is described in Chapter 5.2. CAD
models for all the rendered objects are created using Blender.

5.1. Training data generation

The data generation pipeline aims to generate realistic-looking scenes. Therefore, it is not
enough to place the tracked objects in an empty space. The basis for the synthetic scene is
a table which is modelled in a way to resemble the real table used in the experiments (see
Chapter 6). The tabletop size for our experiments is 66 cm by 100 cm. A cube is placed
around the table to resemble a room for several purposes. First, the upper part of the cube,
i.e. the ceiling, is set to emit light and illuminate the scene. The emission strength, as well

1https://www.blender.org/

35



as the colour of the light, are randomised for the individual images. Second, the room’s
walls and floor are used to display textures, which are randomised for individual images.
Finally, adding a room is very important to render depth images. Without the room, the
depth values besides the objects and the table are infinite, or rather the maximal value
of the data type used to save the depth image, while in real scenes, especially in indoor
scenarios, the depth values rarely reach the maximal values of the used data type.
Now that the scene is set up, the objects can be placed in it. For this purpose, random
locations are uniformly sampled. In x and y directions, the sample space is limited
by the tabletop. The z direction, i.e. the height, is sampled between 0 cm and 25 cm
above the tabletop. In addition to sampling the poses, a collision check is performed to
ensure unrealistic object penetration is avoided. Avoiding object penetrations is especially
important for the depth modality since they can not happen in the real world and would
introduce undesired bias to the depth data [10]. Finally, a physics simulation is used to
ensure object separation further and let the objects fall onto the table.
Finally, the 3D scenes have to be converted to 2D images. For this reason, a camera is
placed in the scene. The camera’s location is uniformly sampled in a range of ⌅75 cm to
75 cm in x and y direction and 6 cm to 100 cm above the tabletop in z direction. After
placing the camera, it is oriented to look at the centre of the tabletop. Using this setup,
we can generate an RGB-D image for every scene and get the pose annotations for all the
objects.

We now have synthetic images of random scenes, but the proposed approach is trained
on pairs of images. So what remains to be done is to generate a second image for every
synthetic image. To generate them, a pose perturbation for every object in the scene is
sampled. Let T ⇤ be the pose annotation for one object in the current frame ⇧ . The pose
perturbation T ⇤�1

⇤ consists of a translation component t and a rotation componentR. The
direction of the translation is uniformly sampled while the distance of the translation, i.e.
its norm, follows a Gaussian distribution |t| ⌥ |N (0,�t)|. For the rotation, we follow se(3)-
TrackNet [10] and use a Lie Algebra representation w � so(3). The direction of w is again
uniformly sampled and the norm of w follows a Gaussian distribution |w| ⌥ |N (0,�w)|.
The rotation matrix R is then obtained from w using Equation 3.2. In our case, we set
�t to 2 cm and �w to 0.5236 rad (=� 30⇤). Using R and t, we can construct the pose
perturbation T ⇤�1

⇤ , with which we can determine the previous pose T ⇤�1 = T ⇤�1
⇤ T ⇤ .

To generate the second image of the previous frame, a perturbed pose for all the objects in
the scene is sampled. Again, a collision check is performed to ensure no object penetrations
occur. If a collision is detected, a new perturbed pose is sampled, and this process is
repeated until all objects are placed. In contrast to the current frame, the previous frame
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is rendered using the python package pyrender2. It is used because, during inference, the
poses for the previous frame must also be rendered. While Blender generally produces
higher-quality images, the rendering time is also usually higher. Since a low runtime
during inference is crucial, the lightweight package pyrender is used. Another di⇤erence
between the current frame and the previous frame is that only the objects that the proposed
method should track are rendered for the previous frame. For the training data, we could
easily render the whole scene as well, but we are usually unable to reconstruct the entire
scene during inference. By only rendering the tracked objects, the domain of the previous
frame is exactly the same during inference and training, pushing the domain gap to be
only present for the current frame [10].

After generating a second frame for every scene, the synthetic training dataset is complete
and is used to train the proposed method. Figure 5.1 shows an example of a generated
image pair.

RGB Depth

Figure 5.1.: An example training image pair generated using the data generation pipeline.
The lower row shows the RGB and depth images which are generated using
BlenderProc. Based on these poses, perturbed poses are sampled, which are
used to render the RGB and depth image in the upper row using pyrender.

2https://pyrender.readthedocs.io/
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5.2. Test data generation

After training the proposed method, its performance needs to be evaluated. In addition
to testing on real trajectories (see Chapter 6.2), we use the data generation pipeline to
render synthetic trajectories. The benefit of using synthetic trajectories is that annotating
real trajectories is labour-intensive and prone to errors. For synthetic trajectories, the pose
annotations are readily available and also very precise. While the performance on real
data is more important for real-world applications, the performance on synthetic data is a
good indicator if the method works in the first place.
The general setup is very similar to the training data. Again, we use a table as the base of
the scene and place a cube around it to simulate a room. The textures of the room are
randomised, but instead of using a di⇤erent texture for every frame as for the training
data, the textures are kept for the whole trajectory. The illumination conditions are also
randomised and kept for the entire trajectory. A fixed camera pose is used to ensure that
the whole table is visible and the trajectories of the objects can be captured.
After setting up the scene, the objects need to be placed in it. For every synthetic test
sequence, the number of moving objects is specified. If the number of moving objects
is lower than the total number of objects in the scene, the rest of the objects will be
stationary (except in the case of collisions, see below). The objects that are moving are
chosen randomly.

For each of the moving objects, a trajectory needs to be generated. Here, a trajectory is a
smooth, continuous curve through 3D space combined with a smooth, continuous rotation
of the object. Videos are a discretisation of continuous visual information; therefore,
we also need a discrete trajectory. A discrete trajectory T is a series of poses T =
[T 0

,T 1
, ...,T t�1] for t time steps. Our first idea was to sample two random poses T 0 and

T t�1 and linearly interpolate between them. This does generate a smooth, continuous
curve, but the di⇤erence between the individual poses is, by definition, always the same.
Since the proposed method predicts these di⇤erences in poses, having the same di⇤erence
for every frame pair is not ideal, as the ground truth value for all the frame pairs would
be the same. Instead, we use Bézier curves, which are also smooth and continuous curves,
and allow for di⇤erent changes between poses throughout the trajectory.

The basis of Bézier curves are Bernstein polynomials. A Bernstein polynomial of degree n

is defined as
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n

i (t) =

�
n

i

�
t
i(1⌅ t)n�i

,

where i = 0, 1, ..., n, n � N, and t � [0, 1] ⇧ R. The Bernstein polynomials are then used
to define a basis of the vector space of polynomials ⇥m

n of at most degree n in Rm. The
polynomials using the Bernstein basis are called Bézier curves and are defined as

p(t) =
n⌅

i=0

biB
n

i (t), (5.1)

where again i = 0, 1, ..., n, n � N and t � [0, 1] ⇧ R. bi � Rm are called Bézier points or
control points. The start point and end point of the Bézier curve coincide with the first
and last control point, i.e. p(0) = b0 and p(1) = bn, while the rest of the curve lies in the
convex hull of the control points.
We can now use the Bézier curves to define a trajectory. First of all, we need to decide how
many control points are used. Using two control points results in a linear interpolation
between the two points, while the trajectory becomes more intricate by using more control
points. For our experiments, we use four control points, i.e. n = 3. Next, we have
to decide on the number of frames Nframes the synthetic trajectory should have. This
choice does not influence the shape of the trajectory, but it influences how much the pose
changes between frames. For our experiments, we set Nframes = 150. To generate the
trajectories, we treat the location component and the rotation component separately. For
the location component, we uniformly sample n+ 1 locations li � R3

, i = 0, 1, ..., n. In x

and y direction, the sample space is limited by the tabletop size, similar to the training
data generation. The range of the z direction is set to be between 0 cm and 25 cm above
the tabletop. The location part of the trajectory is then given by Equation 5.1 with the
sampled locations li as control points

l(t) =
n⌅

i=0

liB
n

i (t),

with t = j/(Nframes ⌅ 1), j = 0, 1, ..., Nframes ⌅ 2.
We decided to use a quaternion representation for the rotation component due to their
favourable interpolation properties [93]. We sample n+1 unit quaternions qi, i = 0, 1, ..., n,
where each quaternion is represented with four real numbers qi = (q0,i, q1,i, q2,i, q3,i)
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and the norm of the quaternion is |qi| = 1. The rotation matrix for a unit quaternion
q = (q0, q1, q2, q3) can be recovered using

Rq =

�

����

q
2
0 + q

2
1 ⌅ q

2
2 ⌅ q

2
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Again, using Equation 5.1 with the sampled quaternions qi as control points, we get the
rotation part of the trajectory

q(t) =
n⌅

i=0

qiB
n

i (t),

with t = j/(Nframes ⌅ 1), j = 0, 1, ..., Nframes ⌅ 2.
The full pose for every frame t is then given by

T t =

�

�Rq(t) l(t)

0 1

✏

⌘ � SE(3),

resulting in a complete trajectory for the moving objects. For the stationary objects, a
random pose is sampled similarly to the moving objects and kept unchanged for all the
frames.
So far, the trajectories and stationary poses are generated completely independently. As
already discussed, these poses may lead to unnatural object penetrations, which must
be resolved. But contrary to the training data generation, we can not simply sample a
new pose in the event of a collision as this would violate the continuity and smoothness
requirements of the trajectories and sampling a completely new trajectory would be very
ine⌅cient. Instead, we calculate the distance vectors between all pose pairs for every
frame. The orientation component does not matter here, and we only focus on the location
part. Given two locations l1 and l2, the distance vector between both locations is given as
d = l2 ⌅ l1. The norm of this vector is used for the collision check: If ||d|| < dcoll for some
collision distance dcoll, a collision is detected and needs to be resolved. Else, no collision
is detected, and the poses can be kept. To determine the collision distance, we calculate
the diameter of all the objects in the scene and take the biggest one dobj. To allow for a
smoother collision resolve, we define the collision distance as dcoll = 2.5dobj.
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To resolve the collision, we calculate how far the two poses overlap, which is given by
r = dcoll ⌅ ||d||. Then, we move both locations by half of this distance along the distance
vector:

l1,resolved = l1 ⌅ r
d

||d||

l2,resolved = l2 + r
d

||d||

This shift resolves the collision between the two poses, but the collision resolve can lead
to collisions between the two objects and other objects in the scene (including the table).
Therefore, the collision check has to be iterated until all collisions are resolved.
We now have collision-free, smooth, and continuous trajectories for all the objects in
the scene. They are rendered using BlenderProc and are used to evaluate the proposed
method in Chapter 6. Contrary to the training data, there is no need to generate a second,
previous frame for every generated frame as they are generated during inference based
on the pose predictions of the proposed method.

41



6. Experiments

This chapter explains the experimental setup used in this thesis. Chapter 6.1 explains
how to calibrate the camera used for the experiments. Chapter 6.2 explains the specific
task which is solved in this thesis. That chapter also lays out the metrics used to evaluate
the method and how real trajectories are annotated for the purpose of evaluating the
proposed method. Chapter 6.3 explains implementation details. Finally, Chapter 6.4
compares 6DCenterPose with a baseline and discusses the results of the experiments.

6.1. Camera calibration

Both the data generation (see Chapter 5) and parts of the proposed method (see Chapter 4)
require the intrinsics matrix K of the camera used for the experiments. To follow the
described procedure to calibrate a camera in Chapter 3.3, point correspondences between
3D and 2D are needed. To obtain them, we build a camera calibration board shown in
Figure 6.1, which contains several black dots. To obtain the 3D coordinates, a coordinate
origin is defined on the calibration board and the locations of all the black dots relative to
the origin are carefully measured.

Next, the 2D coordinates of the black points are needed. We use an Azure Kinect RGB-D
camera for all our experiments and use it to capture the image shown in Figure 6.1. From
it, the pixel coordinates of the black dots are determined. The resolution of the recorded
image is 1920◊ 1080, but we use a resolution of 960◊ 540 to allow for a faster generation
of images in the data generation pipeline and to follow the input resolutions used by
CenterTrack [14]. Therefore, the obtained 2D locations are divided by 2 to account for
this downscaling.

Now that we have 2D-3D point correspondences, we use the procedure described in
Chapter 3.3 to obtain the following intrinsics matrix:
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K =

�

����

524.79512479 ⌅2.04110125 520.71537408

0 541.88587573 242.56187974

0 0 1

✏

⇣⇣⇣⌘
.

Due to inaccuracies in the measurements and properties of the camera, we receive a
non-zero skew component, which we set to zero for the experiments.

Figure 6.1.: The image used for calibrating the camera. The locations of the black dots
on the calibration board are measured in 3D metric coordinates relative to
a corner of the calibration board and in 2D pixel coordinates to establish
a 2D-3D correspondence. These correspondences are used to obtain the
projection matrix P from which the intrinsics matrix K is obtained.
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6.2. Datasets

The task we want to solve during this thesis is the board game Ubongo3D 1. The game
consists of 16 di⇤erently shaped blocks in the four colours red, green, blue, and yellow.
Additionally, there are cards displaying an outline. The objective of the game is to stack
some given blocks on the outline so that two layers are completely covered. The fastest
player wins the round, and the same procedure is repeated with new outline cards.
We decided to work with this task because it is an excellent surrogate task for robot
manipulation. Placing the first block represents a pick-and-place task, while placing the
subsequent blocks represents an insertion task. The insertion task has the additional
challenge that the current block has to be placed so that the blocks already placed are not
toppled over, undoing the current progress.

To train 6DCenterPose, we use the data generation pipeline described in Chapter 5.1 to
generate 200k image pairs used for training. Additionally, 20k image pairs are generated
for validation during training. Instead of training on all 16 Ubongo3D shapes, we use four
shapes, one of each colour, to train and evaluate our method. The generation of the 220k
images took around one day.

After training the method, its performance needs to be evaluated. We follow the evaluation
procedure used in previous 6D pose estimation methods [7, 10] based on the metrics
ADD, which performs exact model matching and ADD-S, which is designed to evaluate
symmetric models. They are defined as [65]

ADD =
1

m

⌅

x⌅M
||Rx+ t⌅ (R̂x+ t̂)||

ADD-S =
1

m

⌅

x1⌅M
min
x2⌅M

||Rx1 + t⌅ (R̂x2 + t̂)||,

where M denotes the set of 3D model points and m is the number of points. t and R are
the ground truth translation and rotation, respectively, while t̂ and R̂ are the estimated
translation and rotation, respectively. A predicted pose is considered correct if the value
of the metric is smaller than some threshold. The threshold is varied between 0 cm and a
maximal threshold, 10 cm for our experiments, following previous approaches [7, 10].

1https://www.kosmos.de/spielware/spiele/familienspiele/7333/ubongo-3-d
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This change of threshold results in a threshold-accuracy curve of which the area under
the curve is reported. This approach allows to represent the performance of the whole
method using a single value (per metric).

To use these metrics to evaluate the accuracy of 6DCenterPose, we need annotated test
videos on which predictions are made. To evaluate the in-distribution performance, we
use the proposed data generation pipeline to generate synthetic test videos where the
annotations of all the objects in the scene are given (see Chapter 5.2). In total, we generate
100 test videos. Each video contains all four Ubongo shapes the method was trained
on. One random object is moving in 50 videos, two random objects are moving in 25
videos, three random objects are moving in 15 videos, and all four objects are moving in
10 videos.

While the evaluation on synthetic trajectories is important to prove the method is working
in the first place, the main objective of 6DCenterPose is to be used in real scenarios.
To evaluate this out-of-distribution performance and the sim-to-real transfer, we record
real videos using an Azure Kinect RGB-D camera statically mounted to the table of the
experimental setup. A 3D printer is used to print three of the four Ubongo3D shapes used
for training so they can be placed in the real scene. Four videos are recorded - three videos
where only one of the three shapes is moved and one video where two of the three shapes
are moved. The movement of the shapes is done by a human demonstrator.

To obtain the 6D poses of the objects, we place ArUco markers [94] on the shapes. After
recording the video, the markers’ pose is obtained for every frame independently. However,
several post-processing steps are needed to obtain the poses of the objects.
First of all, filters are applied to smooth the recorded trajectories. Furthermore, the ArUco
markers may not be detected in every frame. To still get a pose annotation for every frame,
we interpolate the poses for the frames that do not have an annotation to fill these holes.

These post-processing steps result in pose annotations for all the markers in the scene.
However, the origin of the marker usually does not coincide with the origin of the 3D CAD
model of the object the marker is placed on. Since we are interested in the trajectory of
the object and not the trajectory of the markers, we determine the o⇤set between the
position of the marker on the object and the origin of the object. This o⇤set is added to
the recorded trajectories to obtain the trajectories of the objects.

Thus, we now have real annotated videos to evaluate the sim-to-real performance of 6DCen-
terPose. Figure 6.2 shows the experimental setup used to record the videos. Figure 6.7
and Appendix A show poses obtained from the ArUco markers.
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Figure 6.2.: The experimental setup used for the recording of real videos. The Ubongo3D
shapes are used, and an ArUco marker is placed on each of them to recover
the ground truth pose.

6.3. Implementation details

The implementation of 6DCenterPose is based on CenterTrack [14]. We train 6DCenter-
Pose using the Adam [95] optimiser with a learning rate of 1.25e ⌅ 4 and a batch size
of 32. All weights are randomly initialised, and we use no pre-training to evaluate the
sim-to-real performance. Pre-training on a real image dataset would implicitly inform
the method about the data domain of the real world. The weights of the loss function
are set to ⌅size = 0.1, ⌅o⇤ = 1, ⌅dis = 1, ⌅loc = 1, and ⌅ori = 10 for all our experiments.
The method is trained for 100 epochs, and the learning rate is divided by a factor of 10
after 60 epochs. The training is performed on a Nvidia Quadro RTX 8000 GPU and a AMD
Ryzen Threadripper 3990X CPU and took around 12 days.

We follow CenterTrack [14] and use an input resolution of 544◊960. The synthetic images
are rendered in a resolution of 540◊ 960 and then resized to fit the input resolution. The
videos from the RGB-D camera are recorded in a resolution of 3840◊ 2160 at 30 FPS, so
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the ArUco markers are well visible. After recording, they are downsampled and resized to
fit the input resolution of the 6DCenterPose.

Data augmentations include the already discussed a⌅ne transformations and the depth
missing procedure. The a⌅ne transformation consists of a scaling factor which is randomly
sampled between 0.6 and 1.4, a translation randomly sampled in a way that the new
image centre is somewhere in the image extends, leaving a border of 128 pixels to the
image edges, and a rotation randomly sampled following a normal distribution with zero
mean and a standard deviation of 7. The rotation is then clipped to a range of ⌅14⇤ to
14⇤. The depth missing procedure is applied with a probability of 30%, and up to 20% of
pixels are turned from valid to invalid. Depth values in the range of 1 cm to 200 cm are
considered valid, while values outside this range are considered invalid.

Additionally, we apply HSV jitter, Gaussian blur and Gaussian noise to the RGB image
of the current frame. Again, these augmentations are not applied to the images of the
precious frame as they are rendered both during training and testing and, by this, follow
the same data distribution.

Centre locations are perturbed in x and y direction following a normal distribution with
zero mean and a standard deviation of 5% of the width and height of the corresponding
bounding box, respectively. A ground truth centre location is removed with a probability
of 40% (false negative rate), while a new centre near an existing one is added with a
probability of 10% (false positive rate).

Following se(3)-TrackNet, we normalise the ground truth labels of the change in location
and of the change in orientation by dividing them by the maximal translation (2 cm) and
by the maximal rotation (0.5236 =� 30⇤) so the values lie in the range of ⌅1 and 1. Note
that these are only the maximal values used to render the previous image given a synthetic
image. Due to the a⌅ne transformation, values with an absolute value bigger than 1 are
possible.

During inference, only detections with a confidence score bigger than 0.1 are added to the
heatmap used as input to 6DCenterTrack. Only detections with a confidence score bigger
than 0.1 are returned as output. In case the tracking of an object is lost, the corresponding
track is kept alive for up to 3 frames before it is terminated. During this time, the last
prediction for the changes in pose is used to obtain a new pose. Currently, no initialisation
of new tracks during the video is supported since 6DCenterPose can only predict changes
in pose, not absolute poses. Therefore, the initialisation of a new track requires the
absolute pose of the object for the frame in question, which can be either obtained from
ground truth values or a 6D pose estimation method.
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To initialise the tracking pipeline, the initial poses of all objects are needed. For the
synthetic trajectories, the ground truth poses used to render the images are used. For the
real trajectories, the ground truth poses obtained from the ArUco markers are used.

6.4. Results

6.4.1. Baseline

To assess if 6DCenterPose works well, it needs to be compared to another approach. As
a baseline, we use se(3)-TrackNet [10] since it inspired the proposed approach and the
source code is publicly available. Since se(3)-TrackNet is only designed as a single-object
tracking method, we need to extend it to the task of multi-object tracking. This extension
is achieved by training four separate se(3)-TrackNets, one for each object also used to train
6DCenterPose. For every frame of the test videos, we iterate over all the se(3)-TrackNets
to get a pose prediction of all the objects in the scenes. This gives se(3)-TrackNet an
advantage, as each method is specifically trained for each object.
The se(3)-TrackNets are trained using the same training images used to train 6DCenterPose,
and the training follows the procedure outlined in the corresponding publication for se(3)-
TrackNet. To initialise the tracking pipelines, se(3)-TrackNet uses the same ground truth
poses as 6DCenterPose.

6.4.2. Synthetic trajectories

Table 6.1 and Figure 6.5 display the results of se(3)-TrackNet and 6DCenterPose, evaluated
on the synthetic trajectories.
6DCenterPose achieves 32.1% on the ADD metric and 47.7% on the ADD-S metric. The
higher score on the ADD-S metric is because the Ubongo shapes consist of symmetric cubes.
This di⇤erence between ADD and ADD-S suggests that 6DCenterTrack can predict the
location part of the 6D pose while struggling with accurately predicting the orientation.
In contrast, se(3)-TrackNet performs excellently on the synthetic trajectories, achieving
96.6% on the ADD metric and 97.0% on the ADD-S metric, which is in line with the results
reported in the publication. There is no notable di⇤erence between the ADD and ADD-S
metrics, suggesting that se(3)-TrackNet can accurately predict the location and orientation
of the objects. However, as already mentioned, se(3)-TrackNet predicts the poses for each
object separately, using specifically trained methods for the individual objects. In contrast,
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se(3)-TrackNet [10] 6DCenterPose

Objects ADD ADD-S ADD ADD-S

02_ubongo_yellow 96.5 96.8 30.5 48.1

08_ubongo_blue 97.7 98.1 33.0 45.8

11_ubongo_red 96.2 96.4 33.5 50.7

15_ubongo_green 96.0 96.6 31.1 46.3

ALL 96.6 97.0 32.1 47.7

Speed (FPS) 8.1 12.8

Table 6.1.: Results of 6DCenterPose compared to se(3)-TrackNet evaluated on the syn-
thetically generated trajectories. se(3)-TrackNet tracks each object separately
while 6DCenterPose tracks all objects simultaneously. Therefore, the speed
of se(3)-TrackNet is obtained by adding the individual runtimes and dividing
the number of frames by it.

6DCenterPose predicts all object poses with a single pass through the networks. Using
specified approaches for each object results in a big advantage for se(3)-TrackNet, which
explains the gap in performance between the two approaches.

To analyse the predictions made by the approaches in more detail, Figure 6.3 displays the
absolute di⇤erences between the predictions and the ground truth values. The graphs
display the mean and standard deviation over all 100 synthetic trajectories and all 4
Ubongo shapes, separated into the three spatial dimensions and the four dimensions of
the quaternion representations of the orientations.

These results further confirm that 6DCenterPose struggles with accurately predicting
the orientation of the objects, indicated by the large means and standard deviations of
the four quaternion components, compared to se(3)-TrackNet. Furthermore, all three
spatial dimensions display a drift during the trajectory, indicated by the increasing means
and standard deviations for increasing frame numbers. Finally, Figure 6.3 indicates that
6DCenterPose has problems accurately predicting the object’s depth, displayed by the
absolute error in z, compared to the absolute error in x and y. Note the larger scale of the
y-axis in the plot for the z direction compared to the x and y direction.
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se(3)-TrackNet displays a slight drift in x-direction, but, all in all, the absolute errors for
all dimensions are small, as reflected by the metrics in Table 6.1.

Table 6.2 reports the tracking losses of 6DCenterPose, detailing which object is lost in which
frame. 6DCenterPose currently does not allow the reinitialisation of tracks. Therefore,
a lost track results in lower values in the metrics, as a lost track can be interpreted as
a value higher than the maximal threshold. The main reason for tracking loss in the
synthetic trajectories is occlusions, which regularly occur due to the random nature of the
synthetic trajectories. se(3)-TrackNet does not experience any tracking loss and is robust
to occlusions.

Object Frame of track loss

02_ubongo_yellow 3

11_ubongo_red 3

08_ubongo_blue 4

15_ubongo_green 4

15_ubongo_green 22

11_ubongo_red 50

02_ubongo_yellow 94

02_ubongo_yellow 126

15_ubongo_green 144

Table 6.2.: Tracking loss of 6DCenterPose during the synthetic trajectories.

Table 6.1 displays the inference speed of the evaluated methods. The value for se(3)-
TrackNet is obtained by adding the runtime of the individual methods for all objects in the
scene and dividing the number of frames by it. In practice, given enough computational
power, the individual se(3)-TrackNets can be executed in parallel to increase the speed,
which was beyond the scope of this thesis. The runtime for both approaches includes all
steps of the pipeline, including the rendering of the pose prediction of the previous frame,
the loading of the current frame from memory, as well as the pass of the data through the
networks. 6DCenterPose achieves a competitive runtime to se(3)-TrackNet, being near
real-time, which makes it applicable for robotics applications.
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Figure 6.6 shows qualitative results of 6DCenterPose and se(3)-TrackNet for one of the
synthetic trajectories. Further qualitative results, as well as absolute error graphs for the
individual objects, are shown in Appendix A.

6.4.3. Real trajectories

Table 6.3 and Figure 6.5 present the results of 6DCenterPose and se(3)-TrackNet, evaluated
on the real trajectories.

se(3)-TrackNet [10] 6DCenterPose

Objects ADD ADD-S ADD ADD-S

08_ubongo_blue 61.3 73.3 40.2 60.5

11_ubongo_red 49.3 64.8 19.5 30.7

15_ubongo_green 72.3 80.1 19.3 41.5

ALL 61.0 72.7 26.3 44.2

Table 6.3.: Performance of 6DCenterPose compared to se(3)-TrackNet evaluated on the
real trajectories.

6DCenterPose achieves 26.3% on the ADD metric and 44.2% on the ADD-S metric. Again,
the score for ADD-S is higher, indicating that 6DCenterPose is better at predicting the
location than predicting the orientation of the objects. In contrast to the synthetic trajecto-
ries, the scores of the individual objects are not as uniform. Compared to the other shapes,
the score for the blue shape is almost twice as high. This is most likely because the blue
shape is the simplest and smallest among the evaluated shapes. One reason for the low
score of the red shape is the fact that the track for it is lost in two of the four trajectories,
as shown in Table 6.4. However, the green shape does not experience tracking loss, but
the scores are similar to the red shape. This indicates that 6DCenterPose struggles with
more complex shapes.
se(3)-TrackNet achieves 61.0% on the ADD metric and 72.7% on the ADD-S metric, again
outperforming 6DCenterPose. For the real trajectories, the di⇤erence between the ADD
and ADD-S metrics is higher for se(3)-TrackNet as well, indicating problems with the
orientation prediction.
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Another reason for the lower metric scores might be the occlusion due to the ArUco mark-
ers. Large parts of the object are occluded by placing the markers on the objects, making
predictions more di⌅cult. However, the markers do not influence the depth measurement
as they have no significant thickness, which is probably why the methods can still make
reasonably accurate predictions.

Object Frame of track loss

11_ubongo_red 75

11_ubongo_red 482

Table 6.4.: Tracking loss of 6DCenterPose during the real trajectories.

To further analyse the results of the methods, Figure 6.4 displays the absolute di⇤erences
between the pose predictions of the methods and the ground truth poses. Again, the mean
and standard deviation over all trajectories and all objects are displayed.
These results further confirm the observations made for the synthetic trajectories. 6DCen-
terPose, again, is quite accurate in the prediction made in x and y direction but struggles
with the orientation prediction as well as the depth prediction, as shown in the errors in
qw, qx, qy, qz, and z.
The high mean and standard deviation in y and z direction around frame 450 are due to
the tracking loss of the red shape as shown in Table 6.4. This results indicates that the
errors in depth prediction eventually lead to tracking loss.
As no occlusions occur in the real trajectories, the main reason for tracking loss are the
inaccuracies of the pose predictions and problems in bridging the reality gap.

Figure 6.7 shows qualitative results of 6DCenterPose and se(3)-TrackNet for one of the
real trajectories, as well as ground truth annotations obtained by the ArUco markers.
Frame 328 shows the problems of 6DCenterTrack to accurately predict the depth and
orientation of the red shape, which eventually leads to the tracking loss in frame 482 as
shown in Table 6.4. Furthermore, the movement of one of the objects leads to changes in
pose for the other objects, even the stationary ones. This result indicates that the pose
predictions of the individual objects are highly correlated. In contrast, the pose predictions
of se(3)-TrackNet are not correlated because the input image is cropped to a tight region
around the tracked object. This way, the movement of one object cannot influence the
pose prediction for another object.

Further qualitative results of 6DCenterPose and se(3)-TrackNet on real trajectories and
absolute di⇤erence plots for the individual objects are shown in Appendix A.
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6.4.4. Sim to real

Figure 6.5, Table 6.1, and Table 6.3 show the results of 6DCenterPose and se(3)-TrackNet
on synthetic and real trajectories.
The values of the ADD and ADD-S metrics for 6DCenterPose decrease only slightly when
evaluating on real trajectories instead of evaluating on synthetic trajectories. This result
indicates that 6DCenterPose successfully bridges the reality gap, allowing training the
method on synthetic images and transferring to real images.
In contrast, values of the ADD and ADD-S metrics decrease drastically for se(3)-TrackNet.
However, se(3)-TrackNet still achieves high values for both metrics, outperforming 6DCen-
terTrack.

The main reason why se(3)-TrackNet struggles to bridge the reality gap is probably the
synthetic training data. 6DCenterPose uses the whole images as input, which allows the
method to benefit from the photo-realistic rendering of the entire scene during training.
se(3)-TrackNet only uses a tight crop around the target image as input, making the photo-
realistic rendering of the whole scene obsolete. Furthermore, due to the crop of the image,
all the information provided to se(3)-TrackNet concerns the tracked object. This way,
minor errors in the 3D models of the object can negatively influence the predictions. In
contrast, 6DCenterPose uses the whole image as input. This way, minor errors in the 3D
model only constitute a small portion of the input data, making the method less dependent
on it.

For a more detailed analysis, accuracy-threshold curves for the individual objects are
shown in Appendix A.
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Figure 6.3.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the synthetic trajec-
tories, divided in the location coordinates and the quaternion representation
of the orientation. The graphs show the mean of the absolute error over all
trajectories and objects, and the shaded area shows the standard deviation
around the mean.
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Figure 6.4.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the real trajectories,
divided in the location coordinates and the quaternion representation of
the orientation. The graphs show the mean of the absolute error over all
trajectories and objects, and the shaded area shows the standard deviation
around the mean.
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Figure 6.5.: Accuracy-threshold curves for se(3)-TrackNet and 6DCenterPose, evaluated
on the real and synthetic test trajectories, aggregated over all tested shapes.
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure 6.6.: Qualitative results for one of the synthetic trajectories. The images of each
row correspond to one method. The left row contains the ground truth poses
used to render the images, the middle row contains predictions from the
proposed method 6DCenterPose, and the right column contains predictions
from se(3)-TrackNet [10].
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure 6.7.: Qualitative results for one of the real trajectories. The images of each row
correspond to one method. The left row contains the ground truth poses
obtained using ArUco markers [94], the middle row contains predictions
from the proposed method 6DCenterPose, and the right column contains
predictions from se(3)-TrackNet [10].
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6.4.5. Discussion of results

To conclude the evaluation, this chapter analysis the problems observed during the experi-
ments.

Sim-to-real transfer of se(3)-TrackNet

The first observation is the problem of se(3)-TrackNet to bridge the reality gap, even
though, in the corresponding publication, they succeed at this task. This thesis uses the
publicly available implementation of se(3)-TrackNet, which is assumed to be correct. The
only di⇤erence to the publication is, therefore, the synthetic data used to train the method
and the task used for evaluation.

The main di⇤erence between the proposed data generation pipeline in this thesis and the
data generation of se(3)-TrackNet is that se(3)-TrackNet randomises more textures, e.g.
the texture of the table. In contrast, we only randomise the wall textures. Additionally,
se(3)-TrackNet uses a random number of point light sources while we only use the ceiling
object as an ambient light source. Finally, the synthetic data of se(3)-TrackNet contains
more objects which can occlude the tracked object, while occlusion is rare in our synthetic
data, as only tracked objects are placed on the table. However, occlusion by other objects
is not present in our real trajectories, so this fact should not influence the sim-to-real
transfer.
Another problemmight be the placement of the ArUco marker on the object as it introduces
substantial occlusion of the object. However, se(3)-TrackNet is trained keeping occlusion
in mind, so it should be robust to the marker placement.

Another source of error is the calibration of the intrinsics matrixK. Errors in the calibration
matrix can lead to inconsistencies in the perspective projection between the rendered
images and the images obtained from the camera. The intrinsics matrixK is used in many
parts of se(3)-TrackNet and 6DCenterPose, therefore, an accurately calibrated camera is
essential.

Finally, the ground truth poses obtained from the ArUco markers could explain the
performance degradation of se(3)-TrackNet. Having erroneous ground truth labels can
result in a high error, even though the method produces valid pose predictions. However,
the qualitative results shown in Figure 6.7 suggest that the poses obtained from the ArUco
markers are reasonable.
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6DCenterPose successfully bridges the reality gap. This indicates that 6DCenterPose is
robust to potential errors in camera calibration, occlusions introduced by ArUco markers,
and less variance in textures in the synthetic training data.

Problems in depth and orientation prediction

As shown in the experiments, the main problems of 6DCenterPose are to accurately predict
the depth and the orientation of the object while being reasonably accurate in predicting
the x and y coordinates of the object. The reason for this behaviour is that a change in x

and y direction of the object pose results in a di⇤erent location of the object in the image.
In contrast, a change in z direction or a change in orientation changes the appearance of
the object in the image while keeping the location in the image unchanged.

6DCenterPose operates on the whole image to predict the changes of pose. Therefore,
most of the provided information does not concern a specific object, making it challenging
to predict changes in appearance accurately. In contrast, se(3)-TrackNet uses a tight crop
around the tracked object as input. Therefore, basically all the information provided as
input concerns the object, making se(3)-TrackNet more sensitive to changes in appearance.

Another observation made from the qualitative results is that the predicted poses are highly
correlated. A change in orientation and depth for one object frequently leads to changes
in orientation and depth of other objects, even if those objects are not moving. This
behaviour is also a result of using the whole image as input, which results in correlated
pose predictions. Furthermore, all objects share the same change in location and change
in orientation maps T̂ and Ŵ , respectively, leading to a further correlation of pose
predictions. This behaviour can not occur for se(3)-TrackNet because it only operates on
cropped parts of the image. This way, other objects are not visible to se(3)-TrackNet, and
they can not influence the pose predictions.
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7. Conclusion

This thesis presents 6DCenterPose, a fully convolutional neural network for RGB-D-based
multi-object 6D pose tracking. Separate input branches are used to disentangle the feature
representations of the inputs. This disentanglement allows training the method exclusively
on synthetic training images while being robust to the domain change to the real world.
To this end, a synthetic data generation pipeline is proposed to generate the training
images. The output of the method consists of heatmaps, making 6DCenterPose invariant
to the number of tracked objects. Given the initial poses of all objects, 6DCenterPose
predicts a Lie Algebra representation of the pose changes, which are used to propagate
previous pose predictions to the current frame. O⇤set predictions of object locations
between the previous and current frames are used to greedily assign the pose changes to
the corresponding objects.

Experiments on synthetic and real trajectories are conducted on the task of the board
game Ubongo3D. They show that the reality gap is successfully bridged, achieving 26.3%
on the ADD metric and 44.2% on the ADD-S metric on the real trajectories and 32.1% on
the ADD metric and 47.7% on the ADD-S metric on the synthetic trajectories, resulting
only in a slight drop in performance between the domains.

6DCenterPose runs at 12.8 Hz and is an online method, which makes it applicable in
robot manipulation tasks. The advantage of 6DCenterPose is that all objects are tracked
simultaneously, resulting in a runtime independent of the number of objects. Previous
methods for 6D pose tracking are trained for a specific object, therefore, the runtime
decreases with an increase of tracked objects.

Even though the reality gap is successfully bridged, the pose predictions of 6DCenterPose
are not as precise as the predictions of the baseline method. A detailed analysis is
presented, highlighting the weaknesses of 6DCenterPose, which indicate directions for
future research.
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Future research

The main shortcomings of 6DCenterPose are the predictions of depth and orientation as
shown in Chapter 6.4. Future research should address these problems. Zhou et al. [14]
highlight problems in depth predictions and show how to solve them using an output
transformation. Instead of predicting a change in location map T̂ , future research could
predict the depth of the object as shown by Zhou et al. Together with the predicted object
location in 2D and the camera intrinsics matrix K, the 2D location can be projected back
to 3D as shown in Chapter 4.2, obtaining the location part of the object poses.

To obtain more accurate orientation predictions, future research could follow PoseCNN [7].
They predict bounding boxes of the objects in the scene and use them in RoI pooling [29]
to regress to quaternion representations of the objects separately. Ideally, this will improve
the precision of the orientation predictions. Furthermore, this would disentangle the
orientation predictions, which was shown to be problematic in the experiments.

Implementing these changes would result in absolute pose predictions for all objects
instead of predicting pose changes. Predicting absolute poses has the additional advantage
that no initial pose predictions are necessary to start the tracking pipeline. Furthermore,
the tracking pipeline can easily recover from tracking loss, which is currently not the case.

The problems in bridging the reality gap observed for se(3)-TrackNet suggest that the data
generation pipeline can be improved. Potential changes include adding point light sources
to generate more realistic lighting and randomising object and table texture, following the
idea of domain randomisation [20]. Additionally, following Falling Things [81], synthetic
images could be obtained during the physics simulation to obtain more diverse object
poses instead of only capturing stable poses. Furthermore, distractor objects can be added
to the scene to incorporate occlusion to the training data and make it more challenging,
ideally improving the robustness of the trained methods.

Finally, 6DCenterPose should be trained and evaluated on a standard 6D pose estimation
dataset like YCB-Video [7] to better compare it to previous methods and eliminate potential
problems of the pose predictions obtained from the ArUco markers.
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A. Further results

This chapter provides more detailed results for the discussed methods. Figure A.1, Fig-
ure A.2, and Figure A.3 provide more qualitative results on real trajectories. Figure A.4,
Figure A.5, and Figure A.6 provide more qualitative results on synthetic trajectories.

Figure A.7, Figure A.8, and Figure A.9 display absolute error curves for the real trajec-
tories, separated into the individual objects. Figure A.10, Figure A.11, Figure A.12, and
Figure A.13 display absolute error curves for the synthetic trajectories, separated into the
individual objects.

Finally, Figure A.14, Figure A.15, Figure A.16, and Figure A.17 show accuracy-threshold
curves for the evaluated methods, separated into the individual objects.
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.1.: Qualitative results for one of the real trajectories. The images of each row
correspond to one method. The left row contains the ground truth poses
obtained using ArUco markers [94], the middle row contains predictions
from the proposed method 6DCenterPose, and the right column contains
predictions from se(3)-TrackNet [10].
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.2.: Qualitative results for one of the real trajectories. The images of each row
correspond to one method. The left row contains the ground truth poses
obtained using ArUco markers [94], the middle row contains predictions
from the proposed method 6DCenterPose, and the right column contains
predictions from se(3)-TrackNet [10].
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.3.: Qualitative results for one of the real trajectories. The images of each row
correspond to one method. The left row contains the ground truth poses
obtained using ArUco markers [94], the middle row contains predictions
from the proposed method 6DCenterPose, and the right column contains
predictions from se(3)-TrackNet [10].

75



Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.4.: Qualitative results for one of the synthetic trajectories. The images of each
row correspond to one method. The left row contains the ground truth poses
used to render the images, the middle row contains predictions from the
proposed method 6DCenterPose, and the right column contains predictions
from se(3)-TrackNet [10].
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.5.: Qualitative results for one of the synthetic trajectories. The images of each
row correspond to one method. The left row contains the ground truth poses
used to render the images, the middle row contains predictions from the
proposed method 6DCenterPose, and the right column contains predictions
from se(3)-TrackNet [10].
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Ground truth 6DCenterPose se(3)-TrackNet [10]

Figure A.6.: Qualitative results for one of the synthetic trajectories. The images of each
row correspond to one method. The left row contains the ground truth poses
used to render the images, the middle row contains predictions from the
proposed method 6DCenterPose, and the right column contains predictions
from se(3)-TrackNet [10].
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Figure A.7.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the real trajectories,
divided in the location coordinates and the quaternion representation of
the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 08, and the shaded area shows the standard deviation
around the mean.
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Figure A.8.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the real trajectories,
divided in the location coordinates and the quaternion representation of
the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 11, and the shaded area shows the standard deviation
around the mean.
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Figure A.9.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the real trajectories,
divided in the location coordinates and the quaternion representation of
the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 15, and the shaded area shows the standard deviation
around the mean.
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Figure A.10.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the syn trajectories,
divided in the location coordinates and the quaternion representation of
the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 02, and the shaded area shows the standard deviation
around the mean.
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Figure A.11.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the synthetic trajec-
tories, divided in the location coordinates and the quaternion representation
of the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 08, and the shaded area shows the standard deviation
around the mean.
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Figure A.12.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the synthetic trajec-
tories, divided in the location coordinates and the quaternion representation
of the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 11, and the shaded area shows the standard deviation
around the mean.
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Figure A.13.: Absolute errors of se(3)-TrackNet and 6DCenterPose for the synthetic trajec-
tories, divided in the location coordinates and the quaternion representation
of the orientation. The graphs show the mean of the absolute error over all
trajectories for shape 15, and the shaded area shows the standard deviation
around the mean.
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Figure A.14.: Accuracy-threshold curves for se(3)-TrackNet and 6DCenterPose, evaluated
on the real and synthetic test trajectories for shape 02.
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Figure A.15.: Accuracy-threshold curves for se(3)-TrackNet and 6DCenterPose, evaluated
on the real and synthetic test trajectories for shape 08.

87



Figure A.16.: Accuracy-threshold curves for se(3)-TrackNet and 6DCenterPose, evaluated
on the real and synthetic test trajectories for shape 11.
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Figure A.17.: Accuracy-threshold curves for se(3)-TrackNet and 6DCenterPose, evaluated
on the real and synthetic test trajectories for shape 15.
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