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Abstract
In this work we focus on creating an environment
and agent, which allow us to perform Active Vi-
sual Search (AVS) in an online setup. Therefore,
we introduce an extensible environment which
uses PyBullet to allow for complex simulations.
Furthermore, we present an agent which is able
to find objects in the environment based on ob-
servations in form of discretized images. To do
so, we use a POMDP to model the problem and
a modified version of the POMCP algorithm to
solve it. Finally, we test our method in terms
of performance and computational effort. All of
this builds the foundation for a more complex ap-
proach including not only finding but also grasp-
ing an object in a known environment.

1. Introduction
In order to bring robotic performance closer to humans, an
incredible number of tasks and challenges is still left to
be tackled (He et al., 2017). Many of those are not even
a challenge for humans, like going into the kitchen and
pick up some things to cook a meal. For a human this
is not a challenge, even without knowing where exactly
the desired objects may be. Humans can search objects in
known environments with ease and have even less problems
with grasping them when found. On the contrary, teaching
a robot to search and pick up an object is indeed not a
trivial task. This task is even more challenging, if the exact
position and pose of that object are unknown. Solving this
task would make robot assistants and workers useful in real
life (Chandrasekaran & Conrad, 2015; Zeng et al., 2020).

Therefore, we set the higher goal of this work to tackle the
task of grasping objects with unknown position and pose in a
known environment. For this reason, we divide this problem
into two parts: searching and grasping an object. Both
tasks include various problems, especially when they are
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performed in a real-world like scenario. In such a scenario
the agent has no access to the true state of the system and
therefore has to work only with observations. We decided
to model those observations in form of images, the robot
receives while operating.
In addition, the environment can change, and the agent
needs to adapt in an online fashion. Therefore, we need to
use an online planning method to compute a policy to search
and then grasp an object.

Due to the complexity of the task, we decided to focus on
the first part of the problem and building the foundations
for the second part in the course of this work. For this
reason, we introduce a new environment which allows us to
model the searching and grasping task. Since we intend to
simulate those tasks, before translating them to a real robot,
we use PyBullet (Coumans & Bai, 2016–2021) to include
physics in our simulation of the environment.
We combine this with Partially Observable Markov
Decision Processes (POMDPs) (Kaelbling et al., 1998),
since they have been recently shown to provide working
online planning methods for the AVS problem (Wang et al.,
2020; Giuliari et al., 2021). Those methods use the Partially
Observable Monte-Carlo Plannig (POMCP) (Silver &
Veness, 2010) algorithm, which combines Monte-Carlo
Tree Search (MCTS) (Coulom, 2006) with Monte-Carlo
Belief State Updates. They build up a belief-map of the
environment to search an object and after each step the
belief-map gets more certain about the object’s true location.

We adapt the POMP (Wang et al., 2020) approach to our en-
vironment and introduce a new type of observations, which
represents a discretized version of the image. POMP uses
a binary flag as observation which either represent that the
agent observed the object or not. We change this type of
observation to a discrete mapping from an image to an obser-
vation matrix, containing information found in the image.

The main contributions of this work are the new environment
combining PyBullet and a POMDP formulation for AVS as
well as providing an agent which uses POMCP to search
an object in this environment using discretized images as
observations. In addition, we test our method to proof our
concept and show that the task can be solved in the given
environment.
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2. Problem Statement
The high-level goal of this work is to develop an online
method to find and grasp objects in a real-world scenario.
This problem formulation includes various subproblems that
are all non-trivial.

First of all we need to solve the search task in an online
fashion. This means, that we want to find an object in
an environment that is not static. Therefore, we cannot
precompute an optimal plan, but must react on changes in
the environment while moving through it. In addition, we
intend to work with observations in the form of images
taken by a robot. This means, our agent has no access to the
true state of the world, but only to its observations.

When the object is found by the agent, we are still left with
grasping the object. In order to do so, we will first need to
estimate the pose of the object. This means given the object
we search, we want to estimate its pose in the real-world
using a point cloud. If we are able to estimate the pose
well enough, we can use a pre-trained grasping algorithm to
finish the task.

This work will focus on solving the search task and building
the basis for the pose estimation. The idea is to create
a framework, which can later be easily extended. This
framework should include an adaptable partially observable
environment as well as a working method to search objects
in it.

3. Related Work
Since the goal of this work is to search an object in a par-
tially observable environment, this chapter will summarize
general concepts of Active Visual Search (AVS).
AVS is a specific group of tasks in which a robot is asked
to navigate through an environment to find a specific ob-
ject. More precisely, this requires the robot to solve a plan-
ning problem as well as a visual task. In recent years, two
dominant approaches have been shown to solve the AVS
task: Deep-Learning Approaches and POMDP-Based Ap-
proaches.

3.1. Deep Learning Approaches

Many recent works use Deep Reinforcement Learning tech-
niques (Schmid et al., 2019; Ye et al., 2019; Chaplot et al.,
2020) and were able to solve the task efficiently. Those meth-
ods use visual neural embeddings for the policy training and
combine this with 3D information for training. However,
deep learning approaches usually require big datasets since
they need to learn a model of the environment as well as a
general motion policy. Recently there were some promising
works using POMDPs and online planning strategies, which
are in general easier to deploy, but still achieve comparable

results (Wang et al., 2020; Giuliari et al., 2021).

3.2. POMDP-Based Approaches

In the last years there have been works achieving state of
the art performance using POMDPs (Wang et al., 2020)
(Giuliari et al., 2021) without any offline training. The first
approach is POMP, a POMCP-based solution (Wang et al.,
2020) that is only applicable to known environments. While
this may seem limiting, it only requires a 2D floor map of
the environment to provide efficient results. More important,
there is a more recent approach POMP++ (Giuliari et al.,
2021), which extends this idea of online policy learning
using POMDPs, to also address unknown environments.
A great benefit of POMDP-based approaches is that the
true belief state is approximated, which can easily be vi-
sualized and allows us to better understand the decisions
of the algorithm. Deep Learning techniques do in general
not provide such insights into the decision making and in
addition require huge amounts of training data.

According to the recent successes of POMDP-based ap-
proaches and their benefits, we decided to provide a
POMDP-based solution for the AVS problem. In order
to explain this solution, we will introduce the necessary
foundations of POMDPs and planning in POMDPs, first.

4. Background
The focus of this work lies on solving the part of the problem
related to object search. Therefore, the following chapter
will focus on explaining foundations and methods required
to search an object in an environment, without having access
to the true hidden state of the world.

4.1. POMDPs

A MDP describes a process in which an agent decides which
action a ∈ A should be performed in a specific state s ∈ S.
Performing this action results in a new state s′ ∈ S as
well as in a rewardRas . The difference between MDP and
POMDP is that in the latter the agent is not able to observe
the true state after performing an action but receives an
observation o ∈ O. This observation is typically used to
approximate the true state of the system (Kaelbling et al.,
1998; Boucherie & Van Dijk, 2017).

More concretely, a MDP describes a system, in which the
the environments dynamics at time t are fully determined by
the corresponding state st at that time. Therefore, we can
formulate the transition probabilities when performing an
action a in any state s as P = P (st+1 = s′|st = s, at = a).
The expected reward for that action is determined by the
reward function Ras = E[(rt+1 = s′|st = s, at = a)] and
the initial state of the system is determined by a probability
distribution Is(s0 = s). Furthermore, the agent uses a



Active Visual Search with Partially Observable Monte-Carlo Planning

policy π(s, a) = P (at+1 = a|st = s) to select actions
(Feinberg & Shwartz, 2012).

Since we do not have access to the true state in a POMDP,
our policy π needs to map observations to actions. In gen-
eral, a so-called history is used, which is a sequence of
actions and observations ht = {a1, o1, ..., at, ot} (alterna-
tive formulation htat+1 = {a1, o1, ..., at, ot, at+1}). Ob-
servations are determined by the observation probabilities
Zas′o = P (ot+1 = o|st = s′, at = a) and the policy can
be formulated as π(h, a) = P (at+1 = a|ht = h) (Silver &
Veness, 2010).

The objective is to find a policy that maximizes the value
function V π(h). This value function describes the expected
return Rt =

∑∞
k=t γ

k−trk from state s when following pol-
icy π. Since we do not have access to the state in a POMDP
the value function is defined as V π(h) = Eπ[Rt|ht = h]
and the optimal value function is then the maximum value
function of all policies V ∗(h) = max

π
V π(h). The estima-

tion of the true state can be done by using a belief state,
which is a probability distribution over states given a history
B(s, h) = P (st = s|ht = h) (Silver & Veness, 2010).

In summary, a POMDP is formulated as a tuple
(S,A,O, T, Z,R, γ), with:

• Finite set of partially observable states S

• Finite set of actions A

• Observation model: O : S ×A← Π(Z)

• State-transition model: T : S ×A← Π(S)

• Z is the finite set of observations

• Reward functionR : S ×A→ R

• Discount factor: γ ∈ [0, 1)

4.2. Monte-Carlo Planning in POMDPs

To find an optimal or at least near-optimal policy for a
POMDP in an online fashion, one can use online POMDP
planners. A successful approach is a version of Monte-Carlo
Tree Search (MCTS) (Coulom, 2006) extended to the use
with POMDPs, called Partially Observable Monte-Carlo
Planning (POMCP). It combines MCTS with Monte-Carlo
belief state updates and provides a computationally-efficient
algorithm, which allows scalability for larger state spaces.
It does so by focusing the samples to the most promising
regions of the search space and therefore improves the belief
state updates (Silver & Veness, 2010).

Before presenting the algorithm itself, we will first introduce
three important concepts:

1. Evaluate a state using Monte-Carlo simulation.

2. Determine, which action to perform with Monte-Carlo
tree search.

3. Update the belief state using Monte-Carlo belief state
updates.

4.2.1. MONTE-CARLO SIMULATION

Monte-Carlo simulation can be used to evaluate a state s
in a MDP by using rollouts. A rollout from state s uses a
MDP simulator and a random rollout policy to select and
perform actions until either a terminal state or the discount
horizon is reached. Then, we can estimate the value of the
state s by the average return of N simulations, V (s) =

1/N
∑N
i=1R

i, where Ri is the return of corresponding to
the i-th simulation (Mooney, 1997; Tesauro & Galperin,
1997).

In order to extend this technique to the use with POMDPs,
a POMDP simulator is required to generate observations, as
well as a history based random rollout policy πrollout(h, a).
This allows to estimate the value of a history ha by the
average return of N simulations starting in ha (Bertsekas &
Castanon, 1998).

4.2.2. MONTE-CARLO TREE SEARCH

Since Monte-Carlo simulation allows us to evaluate a state,
we can now use it in combination with Monte-Carlo tree
search (Coulom, 2006) to detect promising states. The
general idea is to sequentially evaluate the nodes of a search
tree in a best-first order using Monte-Carlo simulation. The
main concept is that for each state s there is a node in the
tree, which contains an action-value Q(s, a) as well as a
visitation count N(s, a) for each action and an additional
count N(s) =

∑
aN(s, a). The action-value of a state s

and an action a can then be estimated by the average return
of all simulations in which the action was performed in that
specific state (Silver & Veness, 2010).

In order to select the best action, we need to build and search
the tree. For this purpose, two different policies are used:

1. A tree policy that is used to navigate through the search
tree.

2. A rollout policy that is used when the scope of the tree
is exceeded and new nodes are created.

In general, the rollout policy is uniform random, which
provides the exploration aspect of the search. The tree
policy can be implemented greedily, however it has been
shown that it can be improved by using the UCT algorithm
(Kocsis & Szepesvári, 2006). The UCB1 algorithm (Auer
et al., 2002) is used to determine the value of an action by

Q⊕(s, a) = Q(s, a) + c
logN(s)

N(s, a)
. Important to notice is
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that the constant c controls the exploration and exploita-
tion trade-off, if c = 0 the tree policy acts greedy. While
navigating through the search tree, actions are selected by
argmaxaQ

⊕(s, a), if all actions from the current state s
have been selected previously. If not all actions were al-
ready selected in a state, the rollout policy is used to select
an action.

Monte-Carlo tree search can be extended to the use with
POMDPs (Silver & Veness, 2010). In order to do so, states s
are replaced by histories h and the search tree then contains
a node T (h) = 〈N(h), V (h)〉 for each seen history h. N(h)
again represents the number of times a history h has been
visited and V (h) is its value, but now defined by the average
return of all simulations starting with h. A simulation at
time t starts in an initial state that is sampled from the
current belief state B(·, ht). The purpose of the two policies
remains the same but the UCB1 algorithm is now history

based V ⊕(ha) = V (ha) + c
logN(h)

N(ha)
(Silver & Veness,

2010).

4.2.3. MONTE-CARLO BELIEF STATE UPDATES

In order to handle large state spaces of a POMDP, the
POMCP algorithm uses an unweighted particle filter to
approximate the belief state. In addition, the particles are
updated based on sample observations, rewards and state
transitions using a Monte-Carlo procedure (Silver & Veness,
2010).

The belief state for history ht is approximated byK particles
Bit ∈ S, 1 ≤ i ≤ K. This allows us to formulate the belief
state B̂(s, ht) as the sum of all particles. The benefit of using
an unweighted representation is that it can be implemented
efficiently with a black box simulator of the POMDP, which
does not require an explicit model of the POMDP (Silver &
Veness, 2010).

In order to update our particles and therefore the belief state
after the agent has performed an action at and received an
observation o, Monte-Carlo simulation is used. At first,
a particle is selected from Bt which represents a state s
sampled from our current belief state. Then a black box
simulator G(s, at) is used to generate the next state s′ and
the corresponding observation o. In order to approximate
the true belief state, only particles that result in the real
observation o = ot are added to the next set of particles
Bt+1. Those steps are performed until K particles have
been added and the true belief state is approximated when
using sufficient many particles K (Silver & Veness, 2010).

4.2.4. POMCP ALGORITHM

Combining all previously mentioned methods results in the
POMCP algorithm (Silver & Veness, 2010). This algorithm

consists of two major steps

1. Search the best action given the current history.

2. Update the belief state after the action has been per-
formed.

Algorithm 1 POMCP (Silver & Veness, 2010)

procedure SEARCH(h)
repeat

if h = empty then
s ∼ I

else
s ∼ B(h)

end if
SIMULATE(s, h, 0)

until TIMEOUT
return argmax

b
V (hb)

end procedure

procedure SIMULATE(s, h, depth)
if γdepth < ε then

return 0
end if
if h /∈ T then

for all a ∈ A do
T (ha)← (Ninit(ha), Vinit(ha), ∅)

end for
return ROLLOUT(s, h, depth)

end if
a← argmax

b
V (hb) + c

√
logN(h)
N(hb)

(s′, o, r) ∼ G(s, a)
R← r + γ · SIMULATE(s′, hao, depth+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(ha)← N(ha) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R
end procedure

procedure ROLLOUT(s, h, depth)
if γdepth < ε then

return 0
end if
a ∼ πrollout(h, ·)
(s′, o, r) ∼ G(s, a)
return r + γ · ROLLOUT(s′, hao, depth+ 1)

end procedure

In order to search the best action for the current history, an
implementation of Monte Carlo Tree search for POMDPs
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Figure 1. Combination of the Search Module and Pose Estimation Module.

(Algorithm 1) is used. The start for the search is the given
history h, which allows to sample a start state s ∼ B(h),
however if h is empty we sample a state from the initial
state distribution I.

When the search is complete, the action is performed by the
agent and a true observation ot is received. We can now
use the POMDP simulator again to update the belief state
by sampling states from the current belief state and passing
them to the POMDP simulator.

Iteratively performing search and belief updates provides
an efficient algorithm to handle large POMDPs. However,
it is still necessary to provide a POMDP simulator for the
problem specific POMDP to simulate steps and observation.

5. Method
In order to search and grasp objects in real-world scenarios,
we need to find an object and estimate its pose. We intend
to handle those two tasks independently from each other.
Therefore, we introduce a POMCP search module as well
as the concept and idea for the POMCP pose estimation
module, which is left for future work.

The main concept can be seen in Figure 1. First, the search
module (described in 5.2) uses the POMCP algorithm to
find an object. It receives the initial position in the environ-
ment and the object it should search as an input. Once it
believes to have found the object it terminates, and the pose
estimation module starts. It receives the object to search as
an input from the search module and again uses the POMCP
algorithm. It terminates once it believes to have estimated
the pose of the object ”well enough”.

5.1. Environment

Due to the intention for solving the task in real-world sce-
narios, we decided to use PyBullet (Coumans & Bai, 2016–
2021) as basis for the simulation of our environment. PyBul-
let is a powerful library, which not only allows to include
physics and image rendering for a simulated environment,
but also provides tools for complex simulations of robots.
For this reason, PyBullet can be used to simulate real-world
scenarios in a reasonable way. This allows us to define our

environment and test different approaches before deploying
it to a real robot.

Since in a real-world task, we do not know the true position
of the object, the only information an agent has access to are
observations. We define those observations as images from
a camera for the search task. Therefore, our agent can move
in the environment and after each movement he observes a
new image. One can imagine the agent like a camera that is
flying over large table on which objects are placed.

The objects the agent has to find are simple geometric forms
like an ’L’ build out of similar colored cubes. However, there
might be other objects, which could make the search more
difficult by occlusions, distractions or even by blocking the
path.

This simple but expressive environment allows us to model
and test real-world like scenarios in a simplified way, as it
is simple to understand and to observe for a human. More
important, this allows us to understand the way an agent
acts.

5.2. POMCP Object Search

In order to apply POMCP to AVS, we use the concept and
formulation provided in Wang et al. (2020). In addition, we
introduce a new type of observations and use the belief state
to determine when the search is successful. We expect the
floor map of the environment (e.g., the possible positions
inside the environment) to be known.
This allows the agent to have a map of the environment, to
collect information while moving through it. This map is
initialized without any information about the object’s posi-
tion, initially everything is marked as a candidate position.
While exploring, the agents marks positions as empty, de-
sired object or other object. This map is part of a state in
the POMDP as well as an expected object position, which
may be at every candidate position.

In the following we will first present the POMDP formula-
tion itself, to then explain how the POMCP agent simulates,
moves, and observes. Finally, we will present our approach
of using the belief state to determine when an object is
found.
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Figure 2. Visualisation of belief state updates performed while the agent moves in the environment.

5.2.1. POMDP FOR OBJECT SEARCH

In our POMDP formulation for the AVS task, the set of par-
tially observable states S contains states, which include the
position of the agent, the expected object position, and a dis-
crete map of the environment containing already collected
information. The actions A describe possible movements of
the agent in the environment and after each action a reward
is received. The reward function R provides a positive re-
ward signal if the object is observed and a negative reward
signal for moving as well as reobserving empty positions.

5.2.2. SIMULATION

In order to plan, the POMCP algorithm uses simulations.
During those simulations no real observations are received,
but simulated ones. This means, that for each simulation
the object is placed at some candidate location according to
the state’s environment map. Then steps and observations
are simulated just as if the object would really be at that
location until the simulated object is found. While doing
so, the simulator renders images according to its state of the
world which act as observations during the simulation.
It is important to notice that in simulation the agent still has
no knowledge of the object’s true position in simulation,
just the environment returns different observations for each
simulation, since the object positions may differ in simula-
tion. Using such simulations allows to express a belief in all
possible objects positions and how to move optimally while
considering this belief.

5.2.3. ACTIONS

There are four different possible actions a ∈ A in the
POMDP. Each action corresponds to a movement in a two-
dimensional space, in our case moving north, east, south or
west, A = {NORTH,EAST, SOUTH,WEST}.
As already mentioned, the search space is discretized, and
each action corresponds to a movement to the next discrete
position in that direction. It is important to notice that not
every action is possible in every state of the POMDP, for ex-
ample if some obstacle blocks the way or at the boundaries

of the environment.
In a POMDP it is in general possible to define actions that
do not directly result in an observation. For our purpose
such actions are not necessary and therefore each action
directly results in a new observation.

5.2.4. OBSERVATION

In previous works the observations were quite simple and
a single observation was either finding the object or not
(Wang et al., 2020; Giuliari et al., 2021). This reduces the
complexity of observations, but it requires some reasoning
about seeing the whole object. This may be beneficial in
some case, still we want to leave the reasoning about having
seen the whole object to the agent.

In general, we want to be able to search for objects that
might not fit into a single observation and still be sure to
have found them. For this reason, we have chosen a new
format for observations, which is a discretized version of
the image the agent receives after each action. Therefore, an
observation o ∈ O is a N ×N sized grid, where N defines
the level of discretization. Each element zi,j ∈ Z represent
a part of the image. For example z0,0 is the upper-left corner
of the image. In order to assign such values to an element in
the observation grid, a simple object detection can be used.
In this version of the environment, a color-based decision
is enough. This means, if the object we search is green,
everything green is marked as the desired object, as can be
seen in Figure 3.

Image Observation

x x x

e e x

e e x

(a) Example 1

Image Observation

e e x

e e x

e e x

(b) Example 2

Figure 3. Transforming an image to a 3× 3 observation.

This type of transforming images to observations of course
is not accurate, as one can see in Figure 3a and 3b. It intro-
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duces some flaws in certain situation, but this is intended.
In real-world scenarios a more complex transformation has
to be used, but the agent should never rely on it to be exact.
This mistrust in the observation and the ability to handle it
motivated these kinds of observations and is the reason why
we have not chosen to stick to observations like the ones in
previous methods.

The power and robustness of our agent lies in the combina-
tion of observations and the belief state. The termination
of the search does not depend on the observation but on
the belief state. Therefore, we will first explain the belief
state of our POMDP to then explain how it is updated when
receiving an observation in order to determine if the desired
object has been found.

5.2.5. BELIEF STATE UPDATE

After each simulation, the agent performs a real action
and receives a real observation. As explained earlier, the
POMCP algorithm then performs a Monte-Carlo belief state
update. This update results in particles, which cause the
same observation as the real observation received.
Therefore, if the observation shows an object, all particles
will also have an object at that position in their internal en-
vironment map (see Figure 2). This means that the internal
representations of the environment of all particles converges
more and more to the true object position.

6. Experiments
In order to test our approach, we have implemented our en-
vironment and POMDP in a way that it can be integrated in
the POMDPy framework (Emami et al., 2015). This frame-
work provides an efficient POMCP solver, which we used
to test our approach. To show that our method is working,
we compare our approach with a random walk algorithm.
In addition, we test the effect of different number of Monte-
Carlo simulations on the performance and computational
effort.
First, we compare how many times the algorithm has found
the object (e.g., reached the terminal state) in 100 episodes,
seen in Figure 4.

Figure 4. Comparison of different number of simulations and how
often they reach the terminal state.

The random walk does on average find the object in 41
of 100 episodes before the maximum number of steps has
been reached. Our approach does already surpass this per-
formance using only four simulations, which results in an
average of 56 objects found in 100 episodes. One can see
that the performance settles around 50 simulations since
the current environment is still quite simple and not many
simulations are required to find the object reliably.
Next, we compare the average steps required to find the
object using different numbers of simulations, depicted in
Figure 5.

Figure 5. Comparison of different number of simulations and the
average steps required to find the desired object.

As expected, the number of steps required to find the object
decrease when using more simulations. In comparison to
the random walk approach, all number of simulations per-
form better. It is to notice that these values only describe
executions, in which the object was found and not those, in
which the algorithm was not able to find the object. This
explains why even the previously worse performing number
of simulations outperform the random walk approach, since
if they find the object, they require fewer steps.
Since more simulations tend to lead to fewer steps required
to find the object, it is left to evaluate the trade-off in terms
of computational effort when using more simulations, seen
in Figure 6.

Figure 6. Comparison of different number of simulations and the
required time for an epoch in seconds.

As expected, the more simulations are used, the more time
is required to run an epoch. However, there are several
options to increase performance in terms of time since the
evaluation was completely non-optimized and performed on
a simple CPU.
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Figure 7. Idea for a sim-to-real model using POMCP search and pose estimation during simulation to quickstart training in the real-world.

In general, our experiments have shown that our approach
works as expected. The next steps in terms of experiments
can now focus on evaluating different scenarios like occlu-
sions and other distractions.

7. Future Work
In order to extend this work to provide a complete module
for searching and grasping an object, there are multiple
topics of interest. In general, the pose estimation part has to
be build and tested and in addition the search module can
be extended.

During this work, several extensions for the POMCP search
module came to our mind. First of all, the algorithm can
be extended by including actions, which rotate the camera.
This allows to not only look directly on the table, but to look
at positions far away. This makes observations harder to
process and probably noisier, however this may be handled
by adding the measurements of a range scanner.
Another extension is the change from a two-dimensional
search space mapping to a three-dimensional. This would
allow to search objects that are placed on top of other objects
for example. Since this enlarges the state space, the effect
on the performance and run time has to be evaluated.
As a last possible extension, we have in mind to work with
an unknown state space (Giuliari et al., 2021). It has been
shown to work and this allows to remove the requirement of
knowing the state space.

In order to build the pose estimation part, the main idea is to

develop a simple POMCP pose estimation module as seen
in Figure 1. This will first work only in simulated environ-
ments since it probably requires the true pose in order to
define a reasonable reward function. However, using this
in simulation allows us to extract a simple policy for pose
estimation. This policy may then be used as an initial policy
for a neural network for pose estimation. Then, a pre-trained
grasp module like DexNet (Mahler et al., 2017) could be
used to generate a reward in the real-world, depending on
how good the grasping was performed. This reward can
then be used to train the pose estimation network, as can be
seen in Figure 7. This concept, if realisable, would provide
a module to search and grasp an object and improve over
time.

8. Conclusion
In this work, we have provided a new and extensible envi-
ronment for AVS using POMCP. This environment allows to
simulate real-world like scenarios and can easily be adapted
to create harder and more complex environments.
Moreover, we have provided a POMCP based solution in or-
der to find a desired object in this environment. In addition,
we introduced a new type of grid-like observations, which
let the agent reason when an object is found or not based on
what has been observed.
The environment provided also allows for additional tasks
like pose estimation and grasping and therefore it builds the
foundation for future works, in which a robot may find and
grasp an object.
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