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Abstract— This work introduces a novel cooperative control
framework that allows for real-time reactiveness and adaptation
whilst satisfying implicit constraints stemming from proba-
bilistic/stochastic trajectories. Stemming from task-oriented
sampling and/or task-oriented demonstrations, e.g., learning
based on motion primitives, such trajectories carry additional
information often neglected during real-time control deployment.
In particular, methods such as probabilistic movement primitives
offer the advantage to capture the inherent stochasticity in
human demonstrations – which in turn reflects human’s
understanding about task-variability and adaption possibilities.
This information, however, is often poorly exploited and, mostly,
used during offline trajectory planning stage. Our work instead
introduces a novel real-time motion-generation strategy that
explicitly exploits such information to improve trajectories
according to changes in the environmental condition and robot
task-space topology. The proposed solution is particularly well-
suited for bimanual and coordinated systems where the increased
kinematic complexity, tightly-coupled constraints and reduced
workspace have detrimental effects on the manipulability, joint-
limits, and are even capable of causing unstable behavior and
task-failure. Our methodology addresses these challenges, and
improves performance and task-execution by taking the confi-
dence range region explicitly into account whilst maneuvering
towards better configurations. Furthermore, it can directly cope
with different closed-chain kinematics and task-space topologies,
resulting for instance from different grasps. Experimental
evaluations on a bi-manual Franka panda robot show that
the proposed method can run in the inner control loop of the
robot and enables successful execution of highly constrained
tasks.

I. INTRODUCTION

Future assistive robots will be challenged by a multitude
of elaborate tasks in direct contact with everyday users.
Nonetheless, planning for elaborate manipulation tasks often
requires experienced programmers/roboticists to interpret task
goals, conditions, constraints, and preferences – which overall
hampers the rapid deployment required for human-coexistence
application. Here, learning modular representations such as
movement primitives [1]–[3] from human demonstrations
offers a convenient concept which allows also end-users to
teach new tasks to a robot. Intrinsically, the advantage is that
probabilistic learning by demonstration (LbD) methods, like
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Fig. 1. Overview of our approach to human taught cooperative motions:
After teaching an object-centric probabilistic movement primitive, the
encoded covariance is used to adapt the trajectory in order to avoid
joint limits and ensure good manipulability during task execution. In case
unexpected obstacles are recognized during task execution, the motion
generator automatically generates an evasive motion. Furthermore, the
cooperative strategy allows for online adaptation of grasps whilst satisfying
the cooperative learned trajectory and covariance-based constraints.

Probabilistic Movement Primitives (ProMPs) [1] and Stable
Estimator of Dynamical Systems (SEDS) [4], enable to cap-
ture the inherent stochasticity within human’s demonstrations.
This information, however, is often poorly exploited and,
mostly, used during the offline trajectory planning stage.

In this work, instead, we introduce a real-time reactive inte-
grated motion-generation and control strategy that is attuned
to probabilistic/stochastic trajectories – for instance, from the
ones resulting from learning by demonstration applications.
The resulting trajectory improves reactiveness, manipulability
and range of motion whilst satisfying the limits imposed by
the stochastic confidence interval from demonstrated motions
– which implicitly accounts for human’s understanding about
variability and adaption possibilities of the manipulation task.

The proposed framework, although agnostic to the robot’s
kinematic structure – as it relies on task-space information –
is well-suited for bimanual and coordinated systems which
are often more challenging scenarios when it comes to LbD
applications. Indeed, it remains an open challenge how to
properly deploy learned trajectories in real-world human-
centred scenarios where the cooperative task-space constraints,
reduced workspace, and increased kinematic complexity leads
to detrimental manipulability and configurations, e.g. joint-
limits and singularities. These challenges are exacerbated in
human-robot interaction and coexistence, particularly in terms
of how to execute tasks at hand when unforeseen obstacles in
the environment are introduced that need to be avoided. Here,
the ability to generate reactive robot behavior whilst satisfying
the limits regarding the demonstrated task-variability is a key
requirement for future and assistive collaborative robots.



A. State of the Art
Probabilistic LbD methods offer a convenient approach

allowing end-users to easily design new tasks whilst capturing
human’s implicit stochasticity in trajectories and preferences
for the given task. Learning and embedding the cooperative
manipulation information is nonetheless a much more com-
plex procedure that involves both teaching in a large yet
highly constrained space and extracting valuable information
in an infinite range of possible combinations of decoupled or
coupled task and joint spaces.

In recent years, from the pioneering work by Gams et al.
[5], a few research groups have aimed at investigating the
possibilities and limitations related to such challenge either in
an asymmetrical manner [6], inducing – manually or learning
– a dynamic coupling or force fields, [7]–[9], through joint-
space compliance [10], or following task-parametrization,
as in [11], [12], and learning to embed cooperative task-
space information in joint-space through linear operators—
or directly through the decoupled end-effectors using a
single integrated GMM (Gaussian Mixture Model). The
aforementioned results, despite the paramount advances to
the problem, rely on an implicit coupling between arms that
is highly dependent on the training setup. In other words,
the random-variable coupling depends on the same initial
configuration and small changes in grasp or even changing the
gripper—not to mention the issues of changing to different
arms—would require a new set of demonstrations as the
linear operators mapping to joint-space would be completely
different as well as the relative pose between arms.

Another challenge concerning cooperative manipulation
are limitations towards the reactiveness and capabilities
to compensate for planning inaccuracies and environment
uncertainties. In this context, motion generation strategies
based on reactive planners, e.g., [13]–[15], have shown to be
more efficient paradigms for human-centred, dynamic and
unstructured scenarios. The existing literature is however
exiguous when it comes to the challenges of scaling up
reactive solutions for higher DoF systems [16]–[18]. Among
the scarce works, we highlight [17], [19]–[21] where cooper-
ative task-space variables were explored with possibly task-
relaxations to reduce task-dimensionality – ensuring better
convergence and an improved reactive behavior. Therein,
however, the task descriptions were manually defined, which
required time and experienced roboticists to understand
and interpret task conditions under proper representation
and geometric set-based constraints. This work similarly
makes explicit use of the cooperative-space formulation—
which can be extended to a multitude of conditions and
even multiple-arms without loss of generality [22], [23]—
to improve the task execution of any LbD strategy with
multiple demonstrations. Notwithstanding, most importantly,
the proposed strategy also exploits the variability in user’s
demonstrations, which embeds important information about
task flexibilities, preferences and constraints within the
cooperative task-space. This allows for task-relaxations and
corresponding geometric constraints to be extracted from the
stochastic confidence interval from demonstrated motions in
a more intuitive and practical manner.

B. Contribution
In other words, in this work, we make full use of the prob-

abilistic information embedded into probabilistic/stochastic
trajectories – resulting, for instance, from probabilistic

movement primitives. The stochasticity of the demonstrations
allows us to design for the first time an integrated reactive
motion generation and control framework that produces
improved coordinated motions and actively responds to
unexpected events, such as newly introduced obstacles, in
real-time. This reduces training/programming complexity
for constraint satisfaction during execution, as well as
informs the robotic system on the flexibilities and user-
preferences—which are herein exploited in order to obtain
task-space adaptation towards better manipulability and joint-
limit avoidance. Furthermore, reactions to unforeseen events,
e.g., dynamic obstacles are incorporated into the framework
as well. The proposed adaptation and reaction schemes are
also shaped according to the closed-kinematic chain and task-
space topology, i.e., it will adapt for different grasps which
allows the robot to overcome limitations in terms of teaching
and execution with same grasps and poor manipulability and
joint-space configuration—common issues whilst teaching
bimanual systems. In other words, our solution, whilst
satisfying the confidence space given by the demonstrations,
is autonomously adapted to best fit the robot and grasps
kinematics and topology.

The contributions of this work are summarized below.
1) An adaptive integrated motion generation and control

scheme that is able to exploit the variance in human
demonstrated trajectories for improving bi-manual
manipulation, joint-limit conditions and task-dependent
manipulability;

2) A method for obstacle avoidance in real-time, integrated
with the original trajectory;

3) The ability to transfer the demonstrated trajectories to
different grasping poses and robot topologies.

II. REACTIVE COOPERATIVE MOTION GENERATION FOR
PROBABILISTIC LBD

This section introduces our novel approach for generation
of reactive and adaptive cooperative robot motions from and
within the stochasticity of human demonstrations. First, to
illustrate our concept, we will make use of the widely-known
ProMPs briefly presented in Subsection II-A.1 Second, we
present the cooperative task-space, its subtasks manifolds, and
how to reduce task dimensionality and enhance robot’s flexi-
bility through a cooperative set based task priority approach
[19]. Third, we illustrate the robustness of our strategy to
grasp generalization. Finally, we show the integrated solution
that actively adapts and improves the robot motion and
ensures desired reactiveness by exploiting the cooperative
task variability underlying human demonstrations. The full
overview of the proposed solution is depicted in Fig. 2, and
detailed in subsections below.

A. Probabilistic Demonstrated Motion and its Variability
Movement Primitives (MPs) are a convenient way to

represent time-based smooth robot and object movements
[3]. In particular, probabilistic formulations allow to also
capture variance in the demonstrations [1], [2], [24]. Here,
we will use object-centric ProMPs to represent trajectories of
object positions which allows constructing distributions that
are conditioned on arbitrary time-steps and points inside a
confidence interval of the demonstrations while, compared

1Notice that the proposed reactive cooperative motion generation strategy
is valid for any stochastic/probabilistic trajectory with embedding information
regarding the confidence range, which can be obtained through any LbD
approach with multiple demonstrations.
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Fig. 2. Overview of our novel integrated control and motion generation
approach tailored for probabilistic/stochastic trajectories. Use case stemming
from the usage of ProMPs together with constant relative pose, and absolute,
relative, tilt, and joint-limit controllers with Jacobians as defined in Table I
and following the CoSTP (Cooperative Set-Based Task-Priority) control
approach further detailed in [21] where you can also find the equations for
the controllers marked with a “*”. The symbol ∪ denotes the concatenation
of the matrices input into the block. The P block depicts the nullspace
projection of the input matrix M applied to the input vector v, i.e. the
ouput vector o would be o = (I −M#M)v. The # symbol denotes the
robust pseudo inverse defined later in the section.

to other representations [25], relying on a small amount of
data for training.

Modeling bimanual coordinated movements directly with
ProMPs in joint or individual end-effector spaces results in
problems due to the need to ensure correct alignment of
trajectories between training and execution, as well as stable
coordination in the presence of external disturbances and
obstacles. Instead, in this work, we model the trajectories of
the cooperative variables as a ProMP as shown in the next
subsection. Note that such variables can be directly obtained
from individual task-space or joints configurations, thus being
easily extracted from any demonstration strategy.

Formally, an object-centric position-based ProMP is a
compact representation of a trajectory, where a point yz ∈ R3

in the trajectory (the object’s 3D position - translation part
p of a dual quaternion (3)) is assumed to be a linear
combination of N basis functions yz = Φ⊺

zω, with Φ
a basis function matrix and ω the learnable weights. z
is a phase-variable that linearly maps time t to the [0, 1]
range. A distribution p(ω) over the weights is learned from
multiple human demonstrations. Assuming the weights are
Gaussian distributed p(ω) = N (ω;µω,Σω), the parameters
of p(ω), the mean and covariance matrix, are obtained via
maximum likelihood estimation. For more details on the
training procedure and dimensions of all variables we refer
the reader to [1], [26].

Let yz be a desired position to reach at (nor-
malized) time-step z(t) with covariance Σy. The con-
ditional distribution over weights is computed with
Bayes’ rule for Gaussian distributions as p(ω|yz,Σy) ∝
p(yz|ω,Σy)p(ω) = N

(
ω;µω,Σω

)
, and due to the linear

transformation, the resulting trajectory distribution is p(τ ) =
N

(
τ ;Φ⊺µω,Φ

⊺ΣωΦ
)
, with

µω = µ∗
ω +K (yz − ϕ⊺

zµ
∗
ω) , Σω = Σ∗

ω −Kϕ⊺
zΣ

∗
ω
(1)

K = Σ∗
ωϕz

(
Σy + ϕ⊺

zΣ
∗
ωϕz

)−1
, Φz = Id ⊗ ϕz,

where µ∗
ω and Σ∗

ω are the learned weights of the uncondi-
tioned ProMP, and ϕz is a vector of basis-functions activations
at time-step z(t). The covariance matrix for each time-step
in the conditioned ProMP trajectory is obtained with

Σz = Φ⊺
zΣωΦz. (2)

B. Cooperative Set-Based Task-Priority (CoSTP)
As standard stochastic LbD methods do not encode the

variables and transformations in the cooperative task-space
manifold [5]–[10], we first describe how to capture the same
from individual configurations. Consider a two-arm robot
where x1 and x2 represent the pose of the left and right end-
effectors. The pose is described using unit dual-quaternions
as2

x = r + 1
2εpr, (3)

where r = cos(ϕ/2)+ sin(ϕ/2)n represents a rotation along
axis n with angle ϕ [29], p is a pure quaternion that represents
the translation, and ε is such that ε ̸=0 but ε2=0 [30]. Under
multiplication, the set of elements x form the unit dual-
quaternion group Spin (3) ⋉ R3 with inverse given by the
conjugate x∗ = r∗ + 1

2εr
∗p∗. Dual quaternion elements h

can also be described by h = P (h) + εD (h) , where P (h)
and D (h) are the primary and dual components.

The cooperative dual-task space formulation (see [18], [20],
for further details) explores sequences of transformations to
depict fundamental cooperative variables, i.e. the absolute
pose3 and relative pose between arms,

xr = x∗
2x1, and xa = x2xr/2 (4)

where xr/2 is the transformation that corresponds to half of
the angle ϕr around the axis nr = înx + ĵny + k̂nz of the
P(xr) and half of the translation between the two arms [18].

In our case, the coordinated motion is defined over desired
intervals along some of these cooperative variables. For
instance, while handling a ball, we often want to control
just the relative distance between arms as we move along the
absolute position, i.e. without orientation control. Meanwhile,
in a task as shown in Fig. 8, the robot needs to control
additionally the complete relative pose and the tilt angle along
a given axis (to hold the tray stray). Exploring the subtasks
reduces dimensionality and enlarges the robots nullspace for
ensuring better manipulability, cooperative workspace, joint-
space motion, and in addition, to relax constraints allowing
for further reaction and adaptation to unforeseen events.

2Rigid bodies transformations can also be described through other non-
minimal representations, e.g., homogeneous transformation matrices, yet
describing the cooperative task-space using dual quaternion algebra has
several advantages in terms of representation, computational complexity and,
most important, its capability to extract geometric properties and primitives
even in highly constrained contexts [18], [20], [23], [27], [28].

3The absolute pose is located between end-effectors w.r.t. to a common
coordinate system yet, without loss of generality, it can be shifted by means
of a constant transformation.



TABLE I
MAIN GEOMETRIC COOPERATIVE TASKS AND TASK JACOBIANS FOR BOTH

RELATIVE OR ABSOLUTE VARIABLES ACCORDING TO DEFINITION 1
Task Primitive Task Jacobian DOFs

Rel/Abs position (p∈Rp) Jpχ=

[
+
H(x∗

2)Jx1

−
H(x1)J

∗
x2

]
3

Rel/Abs orientation
(r∈Ro)

Jrχ=JP(xχ)
3

Rel/Abs distance (d∈Rd) Jdχ=2(vecT4 pχ)Jpχ 1
Rel/Abs tilt (ϕι∈Rϕι ) Jlzerr = −2(l− lz)TJrz 1
Rel/Abs singul. (σmin∈R) Jσ=

∂σmin(χ)
∂q

1

Joint limits (qi∈Rn) Jqi=qi,c−qi, qi,c=
(qi+qi)

2
1

For brevity, herein, we focus on the following cooperative
task-spaces: the absolute position, orientation, distance, and
deviation angle between Plücker lines, e.g., taking the line
along the z-axis, lz = rk̂r∗, to maintain the orientation of the
manipulated object, and their correspondence in terms of the
relative pose between arms as well as joint limit avoidance.
These cooperative geometric subsets can be formally defined
as follows.

Definition 1: For a given set S ⊆ Spin(3) ⋉ R3, the
following proper subsets can be drawn from geometric
structures of interest with regard to this set,

Rp (S) =
{
p ∈ H0 | p = T

(
xg

)
, xg ∈ S

}
,

Ro (S) =
{
r ∈ Spin(3) | r = P

(
xg

)
, xg ∈ S

}
,

Rd (S) =
{
d ∈ R | d =

∥∥T (
xg

)∥∥ , xg ∈ S
}
,

Rϕι
(S) =

{
ϕι ∈ R |ϕι=cos−1 (⟨lz, l⟩) , lz=rk̂r∗

}
,

where T
(
xg

)
≜ 2D

(
xg

)
P
(
xg

)∗
is the translation with H0

being the pure quaternions set, isomorphic to R3. Briefly, ϕι

describes the opening angle of a solid cone defined by the
rotation of the body z-axis to the coordinate frame, i.e., lz
around a desired Plücker line l.

It is important to highlight that human demonstrations
are encoded/constrained within such cooperative subtask
spaces. These define the manifolds in which the task is
defined. From the robot’s perspective, these tasks need to be
properly mapped to joint-space actions through correspondent
Jacobians, as shown in Table I.4 The task Jacobians in Table
I rely on the absolute and relative pose (4) and on the
cooperative Jacobians

Jxr
=

[
+

H(x∗
2)Jx1

−
H(x1)J

∗
x2

]
, (5a)

Jxa
=

[
−
H(xr/2)Jx2ext

+
+

H(x2)Jxr/2

]
, (5b)

where q = [qT
1 qT

2 ]
T ∈ Rn is the augmented joint vector

and Jxi
= ∂fi/∂qi is the analytical Jacobian, which can

be derived using dual quaternion algebra. The matrices
+

H and
−
H are Hamilton operators that can be used to

commute terms when performing transformations, such that

vec z=
+

H(x) vecy=
−
H
(
y
)
vecx where vec : H → R8 and

z=xy, (see [22], [23], [31]).
Finally, in this paper, the cooperative motion is controlled

through the Cooperative Set-Based Task-Priority (CoSTP)
introduced in [19]. Additional task priorities and, correspond-

4In addition to the cooperative tasks, additional subtasks are the manipu-
lability optimization and joint limit avoidance (qi and qi being the lower
and upper limit of the respective joint). The latter is a special case where
task and joint space coincide.

ing relaxations are easily obtained from the framework in
[19], nonetheless for brevity and clarity, we will focus on the
control and motion generation scheme as shown in Fig. 2.
Notice, additional schemes can be designed without loss of
generality. The overall motion scheme from Fig. 2 leads to
the closed-loop control equation

q̇ = q̇rel + P
(
Jxr

)
q̇abs + P

([
JT
xr

JT
xa

]T)
q̇tilt

+ P

([
JT
xr

JT
xa

JT
xlzerr

]T)
q̇jl,

(6a)

q̇rel = J#
xr

(
vecxr,0 − vecxr

)
, q̇abs = q̇c + q̇ff , (6b)

q̇tilt = J#
xlzerr

|vec (l− lz)|2 , q̇jl =
1

4
J#
xqi

(
JT
xqi

Jxqi

)
assuming that the priority order is absolute control followed
by the tilt and joint limit avoidance. The # symbol defines
the robust pseudo-inverse of a matrix M , i.e., M# =

MT
(
MMT + λϵI

)−1
, where I is the identity matrix

weighted by λϵ > 0 for damping the pseudo-inverse.
Furthermore, xr,0 denotes the relative pose at the beginning
of the task. For the definition of q̇c and q̇ff , see sec. II-D.
The resulting q̇ is integrated and input to a low level joint
impedance controller.

Formally, each task is governed by its corresponding set Si

and an error ei having an upper and lower bound (ei, ei). We
define regions where a particular task remains active based
on these conditions: (a)ei ∈

(
ei, ei

)
(b)ei ⪰ ei and ėi ⪯

0(c)ei ⪯ ei and ėi ⪰ 0 Therefore, if a task is close to
the boundary of the set, we push it away and then it is
deactivated so that it acts only in the lower priority of the
self-motion, i.e. the nullspace. The stability analysis follows
standard Lyapunov-Krasovskii analysis based on [32] and
defines conditions for control values. Additional details can
be found in [19].

Overall, the CoSTP framework allows us to shift task
priority between cooperative geometric tasks according to
boundary conditions – enlarging the ability of the robot to
avoid dicey scenarios, and to adapt and react to unforeseen
events. Among the main novelties, herein, is the ability
to adapt the trajectory satisfying the user demonstrated
variability in terms of the stochastic confidence interval as
described in section II-D.
C. Cooperative System Generalization and Transfer

Our approach as stressed is oriented at encoding transfor-
mation and variables within the cooperative task-space. In this
subsection, we will show that the consequence of this setup is
that the distributions are independent of the closed kinematic
chain of the robot and its configuration. Hence, it is also
independent of the training conditions. Take, for instance, the
trajectory taught with an initial grasp pose 0x1 and 0x2 as
shown in Fig. 3. During execution, we may want to grasp a
different object with either a different cooperative system or,
at least different grasps as shown in the right side of Fig. 3.
In this case, assuming a constant transformation between
grippers and end-effectors, the cooperative absolute pose
and its corresponding trajectory along time are respectively
described according to (4) by 1xa(t)=

1x∗
2(t)

1x1(t) and
2xa(t)=

2x∗
2(t)

2x1(t) for both grasps (b) and (c).
Both cooperative variables can therefore be mapped

back to the original demonstration—or resulting
trajectory after ProMPs conditioning—described along
0xa(t)=

0x∗
2(t)

0x1(t), by means of a grasp transformation



Fig. 3. Transfer generalization between demonstrations to different grasps
ensures robustness in terms of shaping the cooperative variables within the
encoded demonstrations.

∆0g
i
, i={1, 2} given by ∆0g

i
≜ ix∗

a
0xa. Now, according

to (4), we have

∆0g
i
=
(
ix2

ixr/2

)∗ (
0x2

0xr/2

)
=ix∗

r/2

(
ix∗

2
0x2

)
0xr/2, (7)

which briefly describes the frame transformation from the
current frame i to the cooperative variables from the original
frame (from training), i.e., 0. In other words, 0xa = ixa∆

0g
i
.

In the case, one of the grippers is held constant, e.g. ix∗
2 =

0x2, the transformation is simplified to a simple change of
relative frame ∆0g

i
= ix∗

r/2
0xr/2.5

Notice that this provides the system with a cooperative-
centric perspective of the demonstration, which allows flexi-
bility in terms of the robot motion and robustness in terms
of grasping and arm configuration. The executed nominal tra-
jectory will be always corrected by the transformation ∆0g

i
,

which fits the encoded demonstration, while the executed
trajectory will be deflected to ensure better manipulability,
joint-limit avoidance and overall a large region for reaction in
accordance with the tightly-coupled kinematic chain system
capability, i.e. according to the grasp and individual arm
kinematics. These features are described in the following.

D. Adaptive Reactive Motion Generation

We now propose our cooperative motion generation
framework that (i) follows the trajectory provided by the
demonstrations; (ii) deflects the trajectories inside the two
sigma confidence interval defined by the covariance of the
ProMP to achieve higher manipulability and to avoid joint
limits; and (iii) reactively evades unforeseen obstacles in
real-time.

1) Trajectory Following Motion Generation: The trajectory
defined by the ProMP is interpolated in equi-distant points
that are sent to the trajectory generator one by one. The
trajectory generator plans ahead for two points and requests
the next trajectory point when the first point is reached based
on the commanded position. The velocity vts for a trajectory
segment is defined by

vts = min

(
|pc − pl|2
10 · T

, vmax

)
, (8)

with pl, pc and T denoting the last and the currently processed
point of the trajectory as well as the low-level joint impedance
controller and motion generator cycle time (herein, T=1 ms).
The maximum Cartesian velocity is given by vmax. The
velocity bound provides an additional safety feature, required
especially when the robot needs to adapt to large task
deflections and large or complex obstacles to trespass. The
trajectory segments are interpolated according to the current
trajectory, i.e. the nominal desired position pn is updated

5The variable xr/2 can be easily obtained by exponential mappings from
the relative pose between arms as xr/2 = exp

(
1
2
logxr

)
, [23], [31].
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Nominal trajectory

Projected orthogonal plane
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dman
dlim

dt

Direction to the next goals

Fig. 4. Task deflection: dman and dlim are conditioned to be within limits
given by the covariance ellipsoid and convexly combined (13) such that the
result always respects the covariance ellipsoid.

according to

pn = pn + vtsT
pc − pl

|pc − pl|2
, (9)

in each time step.

2) Adaptive Deflection: Probabilistic/stochastic trajectories,
as the ones stemming from probabilistic motion primitives
naturally define some flexibility in task execution in terms of
the observed covariance during teaching. In LbD deployment,
this information is often used solely to sample a trajectory
that fits the current purpose in offline stage. Instead, our
approach exploits this flexibility, namely the confidence
interval, to control or optimize, in real-time, different aspects
concerning the manipulation task at hand by means of
task-space deflection from the nominal trajectory bounded
by the human’s demonstrated confidence interval. This is
advantageous in contrast to a fixed limit for such optimizations
as we can have more space for optimization in regions where
the covariance of demonstrations is high and thus, the required
task precision is low but we will have all the precision that
was demonstrated in regions where the demonstrations show
low covariance.

In contrast to e.g. [33], where the covariance of the trajec-
tory is used to adapt the stiffness, we consider two paramount
aspects for the success of cooperative manipulation tasks, the
cooperative manipulability and joint-limit avoidance.6

a) Cooperative Manipulability: In order to guide the
robot to regions of greater manipulability, we compute the
singular value decomposition of the absolute pose Jacobian
and deflect the robot in accordance with the direction of the
singular vector umin corresponding to the smallest singular
value σmin as in [34] but with different scalar gains,

dman = λmanumin min
j∈{1,2,3}

2Σz(j, j)

ej · umin
, (10)

λman =

{
min((1− σmin

ϵσ
)kman, 1), if σmin < ϵσ;

0, otherwise,
with Σz(j, j) and ej denoting the j-th element on the
diagonal of Σz and the unit vector of the j-th coordinate,
respectively. As umin is only defined up to the sign, one needs
to make sure, that the direction of deflection is continuous
to avoid oscillations. In order to avoid leaving the two sigma
region of the demonstrations, λman is capped at 1.

b) Task-space Guided Joint-limit Avoidance: In order to
avoid running into joint limits during trajectory execution, the
robot is commanded to move towards the Cartesian direction
that a movement of all joints towards their center position

6The task-space guided joint-limit avoidance is not to be confused with
nullspace optimization of joints. In this work, we propose a task-space
modification that will actively bring the cooperative system to a better pose
in terms of range of motion by modifying the main task whilst keeping the
deflection bounded. This should be seen as an additional robotic feature that
can be used together with standard joint-limit avoidance.



would result, i.e.

dlim := λlim

Jxa
(qc − q)∣∣Jxa
(qc − q)

∣∣
2

min
j∈{1,2,3}

2Σz(j, j)
∣∣Jxa

(qc − q)
∣∣
2

ej · Jxa
(qc − q)

,

(11)

λlim := min

(
1, klim max

i=1...n

(
1

qr
dz

(
|qi − qi,c|

qi,max − qi,c
, 1− qr

)))
.

where qi, qi,max, qi,c denote the current, maximum and center
joint position of joint i. The minima in (11) and (10) scale
the deflection such that it stays inside the 2-sigma range of
the demonstrations. The parameter qr defines the percentage
of the range of motion the robot will start to deflect in order
to avoid limits, e.g. when qr=0.5, the robot starts deflecting
as soon as one of the joints reaches the outer 50% of its
range. The speed of attainment of the maximum deflection
factor to one can be tuned with the parameter klim.

The deflection, in (11), maps the joint velocity that
minimizes the error (qc−q)T (qc−q) to cooperative task-
space velocities, i.e., the absolute pose, by means of the
Jacobian Jxa

. The task-space action is normalized as scaled
accordingly to the worst joint configuration after dead-zone
correction through

dz(a, b) :=


a+ b, a < −b

0, |a| < |b|
a− b, a > b.

(12)

These deflections are scaled such that they use only λlim/λman

portion of the two sigma range defined by the covariance
of the conditioned ProMP (computed as in (2)), as shown
in Fig. 4. Afterwards, they are convexly combined via the
parameter α

d∗
t := αdlim + (1− α)dman, (13)

for the preliminary deflection d∗
t .

The final task deflection, as highlighted in Fig. 4, stems
from the projection of (13) onto the plane that is orthogonal
to the direction towards the next goal. In other words, we
have

dt := d∗
t −

d∗
t · (pc − pl)

|pc − pl|22
(pc − pl), (14)

for the final task deflection dt. This strategy can be used
on top of nullspace optimization and even for non-redundant
manipulators/tasks.

3) Reactive Deflection: In the presence of obstacles, the
task deflection is overwritten by a deflection that will guide
us smoothly around the obstacle. We will denote this term
with dobs. It is computed based on the distance dobs to the
obstacle

dobs := min
(
|p− op|2 , |pn − opn |2

)
, (15)

where ox denotes the point on the obstacle surface closest
to x. The parameter

β := max

(
dobs − dmin

dmax − dmin
, 0

)
, (16)

ensures a smooth blending between the task deflection and
the obstacle deflection via a convex concurrent approach

d := βdt + (1− β)dobs . (17)
The parameter dmax denotes the distance at which the obstacle
avoidance starts to evade and deflect the nominal trajectory.
On the other hand, dmin depicts the point at which the
task deflection is fully replaced by the obstacle avoidance

2-sigma range promp trajectory

Fig. 5. Conditioned ProMP for the deflection experiment. The deflected
trajectory exploits the 2-sigma region improving manipulability and joint-
limit avoidance through task-space guided deflections as in (11).

Fig. 6. Overlay of undeflected and deflected trajectory for a difficult
trajectory with absolute position depicted by red and green markers. The
deflection allows to avoid the joint limit in the 6-th joint of the robot’s left
arm that is hit during the undeflected motion. This effect is highlighted in
Fig. 5.

deflection. Finally, dobs can be computed to

dobs :=
(pn(t)− opn(t))× (pn(t)− pn(t− T ))∣∣(pn(t)− opn(t))× (pn(t)− pn(t− T ))

∣∣
2

χ, (18)

χ :=

(
10

(
1− dobs

dmax

)3

− 15

(
1− dobs

dmax

)4

+ 6

(
1− dobs

dmax

)5
)
.

where χ is calculated as a 5th order spline that interpolates
from 0 to 1 and has 0 derivative of first and second
order at 0 and 1. Herein, for brevity, we are considering
obstacles without velocity information, that is, unknown and
unforeseen obstacles that are perceived only during execution.
Nonetheless, without loss of generality, the velocity could
also be integrated to the resulting deflected trajectory ensuring
any motion of the obstacle is pruned.

4) Resulting Trajectory: The resulting deflection d, in (17),
is deployed alongside the nominal position, pn, yielding a



novel desired position pd := pn+d. As the distance between
two consecutive goals can vary due to the deflection, in order
to ensure a smooth movement, the instantaneous control goal
pi is interpolated according to the actual velocity vact

pi := pi + vactT
pd − pi

|pd − pi|2
, (19)

and pd is updated whenever |pd − pi|2/T < vact. If the
actual velocity is below the velocity for the current segment
it is increased in each time step by a constant acceleration
until vts is reached to ensure a smooth transition to higher
velocities.

In order to reach the instantaneous control goal pi(t), a
feed-forward joint velocity

q̇ff := vact ˙̃qff
1

| ˙̃qff |
2

, (20)

with ˙̃qff :=
(
Jxr

Jxa

)# (
0T pT

i (t+ T )− pT
i (t)

)T
and a control velocity

q̇c := kpos ˙̃qc
1

T | ˙̃qc|
2

, (21)

where ˙̃qc := J#
xa

(pi − p)

are applied. The # symbol defines the robust pseudo-inverse,
Jxr

and Jxa
are the relative pose and the absolute position

Jacobians and p is the current position of the robot according
to the commands, i.e. assuming perfect low-level control. The
parameter 0 ≤ kpos ≤ 1 is the position control gain. Due to
the use of Jxr

in (20), the feed forward velocity respects
the relative orientation of the robot and is thus not reduced
when being projected into the nullspace of the relative pose
controller. Fig. 2 depicts the proposed integrated strategy,
summarizing the contributions within this section.

III. EXPERIMENTAL EVALUATION

This section explores experimental aspects concerning the
validation and performance of our framework on a dual-arm
system, Kobo, that features two slightly modified Franka
Emika Panda arms with 7-DoF each. For all experiments,
demonstrations7 were performed at the Kobo setup at Darm-
stadt through Kinesthetic teaching whereas execution was
performed at Franka Emika headquarters in Munich.

We evaluated our framework on a cooperative task of
transporting a tray with a coffee mug – building a set-based
constraint for the orientation along the z-axis, i.e. the tilt
angle in Table I – and constrained motion given by the
coupled kinematics. In this scenario, while five demonstrated
trajectories were always free of collision and trained under
similar conditions, they were tested and executed in com-
pletely different settings. More specifically, we evaluate our
framework in a constrained setup where the workspace is
limited and the system prone to singularities and joint-limits—
situations typical in dual-arm systems—in a scenario with
unforeseen obstacles along the resulting trajectory and lastly,
in fully different grasp-object context which needs shaping
towards the original trajectory. For the sake of repeatability,
for all experiments, we used the same non-optimized values
of vmax = 0.1 m/s as maximum velocity, used qr = 0.25,
α = 0.5, ϵσ = 0.25, klim = 1, kman = 1, dmin = 0.2,
dmax = 0.4 and the gains 2, -5, 0.5, 0.25 for the relative pose,

7For learning the ProMPs, we use a 20 Radial Basis Functions (RBFs)
equally spaced in the [0, 1] interval, where the bandwidth was chosen with
cross-validation to minimize the mean-squared error between the mean
trajectory and the demonstrations.

x[m] y[m]

z
[m

]

Fig. 7. Results of the obstacle evasion experiment. The depicted curves
are the desired trajectories for the free (pd,f) and obstructed (pd,o) path as
well as the real robot positions tracking these trajectories (pf ,po).

end-effector tilt, ProMP following and joint limit avoidance
control, respectively if not stated differently.

A. Adaptive Deflection
Firstly, we tested the capabilities of the adaptive deflection

using a trajectory that was coincidentally taught with a bad
initial joint configuration. Thus, without adapting the trajec-
tory according to manipulability and joint limit avoidance, the
controller was not able to follow the desired trajectory from
the ProMPs after conditioning. On the other hand, through
task modification (klim = kman = 1) along the confidence
interval of the demonstrated trajectories, the robot is able
to adapt its motion and deflect the task towards a region of
better manipulability and that it is not trapped in a joint-limit.
We used α = 0.25, klim = 5 for the successful case and
klim = kman = 0 for the unsuccessful case. Fig. 6 highlights
the point at which the controller fails during the execution
without using the deflection—notice the joint limit at the
second last joint of the robot’s left arm—and an overlay of
the position of the robot following the deflected trajectory
for the same point. Fig. 5 depicts the resulting trajectory
and the confidence interval in terms of the covariance of
the demonstrated trajectory (2σ interval). As expected, the
deflection explores the robot’s topology changing the task
trajectory, within the bounds from the demonstration, such
that the joints remain further from the joint limits and retain
a higher manipulability.

B. Obstacle Avoidance
In a second experiment, we evaluated our obstacle evasion

using a trajectory that was trained with five demonstrations
for taking a tray on the left side of the robot and putting it
down on the right side. Fig. 7 shows the resulting trajectories,
both for the nominal trajectory which would collide with
the obstacle and the reactively deflected one. As shown in
Fig. 7, even in such constrained cooperative manipulation,
our deflection algorithm is able to generate deflected motions
while keeping a minimum distance of 11.65 cm from the
obstacle.

C. Generalization and Transferring
Finally, we explore our framework capability to generalize

and transfer the encoded information from the demonstration
to different grasping strategies while allowing the robot to
adapt to the changed topology to improve the resulting motion.
For the second grasp to execute the trajectory successfully, we
needed to increase the gain of the joint limit avoidance control
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Fig. 8. Cooperative trajectory executed with different grasping poses (green
denotes grasp 1, red denotes grasp 2 from Fig. 3) from an object-centric
perspective view. Notice that the difference in trajectory results from different
deflection strategies due to different topologies.

to 1. Fig. 8 shows the trajectories from two different grasping
configurations with the same demonstrated information. The
trajectories are expected to be similar but not identical due
to the different adaptive deflections. Notice that the change
in grasping will pose different constraints and topology for
the tightly coupled kinematics. Hence, different adaptive
executions are expected. Additionally, for sake of simplicity
and to explore robustness of the approach, we perform
transformation onto the trajectory instead of the object-frame
which leads to additional differences during execution. Still,
the robot was able to execute the trajectory and reach the
goal with both grasps without tuning of parameters. Both
trajectories are also within the confidence interval of the
resulting ProMP distribution, as expected.

IV. CONCLUSION AND FUTURE WORK

The trajectory generation from object-centric ProMPs
presented in this work allows for flexible and robust bi-manual
coupled motion generation and enables real-time reaction
to obstacles in the workspace and cooperative task-space
adaption along the confidence interval of the demonstrations’
distribution. The proposed approach facilitates 1) adaptation
of learned cooperative-task-space-centric motions to varying
goal positions based on ProMP conditioning whilst adapting
the trajectory execution at runtime to ensure sufficient
manipulability and joint-limit avoidance through task-space
deflections within the limits of the variance information
from the user demonstrations, 2) reactive obstacle avoidance
while satisfying the automatically extracted geometric task
constraints and 3) adaptation of the learned motion to changed
grasp configurations, which would not be feasible with
existing decoupled and joint-space. In future work, we plan
to encode and integrate additional human manipulability
information from bimanual demonstrations to our framework
by means of CoSTP nullspace optimization, and extend
the demonstration strategies to include in-the-air regrasping
within the cooperative dual-task space framework.
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