
Natural Gradient Optimistic

Actor Critic
Natural Gradient Optimistic Actor Critic
Master thesis by Niklas Kappes
Date of submission: 31. Oktober 2023

1. Review: João Carvalho
2. Review: Jan Peters
Darmstadt

Erklärung zur Abschlussarbeit gemäß §�� Abs. � APB TU Darmstadt

Hiermit erkläre ich, Niklas Kappes, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB

der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen

und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und

anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir

bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte

Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert

aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch

vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch

verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische

Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 31. Oktober 2023

N. Kappes

Abstract

Exploration constitutes a fundamental facet within the realm of Reinforcement Learning,

exerting considerable influence on learning efficiency, policy quality, and agent perfor-

mance. This significance amplifies when exploration must be conducted in real-world

scenarios, as a proficient exploration policy becomes pivotal in curtailing runtime expenses

and expediting superior outcomes. Despite extensive research efforts, exploration in Rein-

forcement Learning (RL) remains an ongoing challenge, attracting substantial attention

from the research community.

Exploration techniques grounded in uncertainty utilization leverage epistemic uncertainty

information to expedite convergence. This thesis introduces a natural gradient-based opti-

mistic exploration method, denoted as Natural Gradient Optimisitic Actor Critic, designed

to establish a directional informed exploration strategy. Natural Gradient Optimisitic Actor

Critic (NGOAC) effectively mitigates pessimistic underexploration and exhibits reduced

sensitivity to hyperparameters, ultimately fostering a stable and resilient learning pro-

cess. It achieves good results in non-bang-bang optimal environments while maintaining

competitive computational efficiency.

Zusammenfassung

Die Exploration bildet einen grundlegenden Aspekt im Bereich von Reinforcement Lear-

ning und übt erheblichen Einfluss auf die Lerneffizienz, die Qualität der Strategie und

die Leistung der Agenten aus. Diese Bedeutung verstärkt sich, wenn die Erkundung in

realen Szenarien durchgeführt werden muss, da hier eine herausragende Explorationsstra-

tegie von entscheidender Bedeutung ist, um die Laufzeitkosten zu senken und schneller

bessere Ergebnisse zu erzielen. Trotz umfangreicher Forschungsbemühungen bleibt die

Erforschung von RL eine ständige Herausforderung und erregt erhebliche Aufmerksamkeit

in der Forschungsgemeinschaft.

Erkundungstechniken, die auf der Nutzung von Unsicherheiten basieren, nutzen epis-

temische Unsicherheitsinformationen, um die Konvergenz zu beschleunigen. In dieser

Arbeit wird eine auf natürlichem Gradienten basierende optimistische Explorationsme-

thode vorgestellt, die als Natural Gradient Optimisitic Actor Critic bezeichnet wird und

darauf ausgelegt ist, eine richtungsinformierte Explorationsstrategie zu etablieren. NGOAC

mildert effektiv die pessimistische Untererkundung und zeigt eine verringerte Empfind-

lichkeit gegenüber Hyperparametern auf, was letztendlich einen stabilen und robusten

Lernprozess fördert. Es erzielt gute Ergebnisse in nicht-bang-bang optimalen Umgebungen

und behält gleichzeitig wettbewerbsfähige Recheneffizienz bei.

Contents

�. Introduction �

�. Related Work �

2.1. Actor Critic Methods . 5

2.2. Experience Replay . 6

2.3. Exploration in Reinforcement Learning . 7

2.4. Bang-Bang Optimal Control . 8

�. Preliminaries ��

3.1. Soft Actor Critic . 10

3.2. Optimisitic Actor Critic . 12

�. Natural Gradient Optimistic Actor Critic ��

4.1. Bang-Bang Exploration induced by Optimism 17

4.2. Natural Gradient Descent . 18

�. Experiments ��

5.1. Performance Benchmark . 24

5.2. Hyperparameter Search . 30

5.3. Prioritized Experience Replay . 43

6. Conclusion �6

A. Implementation Details ��

A.1. Optimisitic Actor Critic . 55

A.2. Natural Gradient Optimisitic Actor Critic 55

A.3. Optimisitic Actor Critic - RepTrick . 56

B. Experimental Setup ��

C. Hyperparameter Search 6�

C.1. Level of Optimism for Optimisitic Actor Critic (OAC) and NGOAC 60

C.2. OAC RepTrick . 61

C.3. Detailed Results . 67

D. Prioritized Replay Buffer ��

�. Introduction

Reinforcement Learning has made remarkable progress in recent years, showcasing its

potential in a wide range of applications, from game-playing agents to robotic control

systems. At the heart of RL lies the fundamental challenge of exploration, a key aspect

that distinguishes RL from supervised learning. In RL, agents must not only learn to

exploit their current knowledge to maximize rewards but also explore the environment to

discover new, potentially more rewarding actions and states.

The exploration problem in RL is both intriguing and multifaceted. It encompasses

questions of how an agent should balance between exploiting its current knowledge and

exploring the unknown, how it can efficiently sample from the vast state and action spaces,

and how it can adapt its exploration strategy to suit different environments and tasks.

Furthermore, exploration in RL is a fundamental aspect that impacts an agent’s learning

efficiency, the quality of its learned policies, and its overall performance. Exploration in RL

is a sophisticated challenge, with key issues including the trade-off between exploration

and exploitation, the curse of dimensionality in high-dimensional spaces, sparse and

delayed rewards, and the uncertainties introduced by stochastic environments. Handling

non-stationarity, achieving sample efficiency, and balancing optimism and pessimism in

exploration strategies are also vital aspects. Additionally, addressing the heterogeneous

demands of different RL tasks and finding the right balance between intrinsic and extrinsic

motivations for exploration present ongoing challenges. Tackling these issues is crucial

for advancing RL algorithms and making them more effective in complex real-world

applications.

While there exist alternative exploration strategies rooted in intrinsic motivation or more

advanced methods, this thesis confines its focus to uncertainty-oriented exploration.

Uncertainty-based exploration entails the selection of actions that prioritize the agent’s

comprehension of the environment, typically through quantifying uncertainty measures

like variance or entropy. This approach motivates the agent to investigate regions where

�

outcomes are uncertain, potentially enhancing its policy learning and decision-making

capabilities.

An example of an uncertainty-based approach is Optimisitic Actor Critic. OAC optimizes

an linearly approximated Upper Confidence Bound derived from the state-action value

function. This optimization results in a directional informed exploration policy and miti-

gates pessimistic underexploration by incorporating optimism, leading to superior results

in terms of convergence speed in continuous control task with well tuned hyperparame-

ters. In addition to the substantial benefits offered by OAC, a more in-depth analysis of

the optimization problem reveals a notable dependence of the exploration policy on the

optimization bound. This dependence can potentially result in the generation of bang-

bang-like actions for exploration. This thesis delves into the hyperparameter sensitivity of

OAC and explores its impact in various environments, considering both theoretical and

experimental perspectives.

The primary objective of this thesis is to enhance the optimization approach, aiming

to develop an exploration policy that retains the advantages of OAC while exhibiting

reduced sensitivity to hyperparameters, thus avoiding the tendency to generate a bang-

bang exploration strategy. An extension of OAC that utilizes the natural gradient, denoted

as NGOAC, is introduced. Unlike OAC, Natural Gradient Optimisitic Actor Critic optimizes

the Upper Confidence Bound (UCB) without relying on a linear approximation of the

objective function. It leverages Hessian information to improve the exploration policy while

reformulating the update to only incorporate first-order information. The theoretical merits

of NGOAC are exemplified through a straightforward example and subsequently evaluated

in the Cartpole, Ant, and Humanoid environments. To underline the necessitie of the

natural gradient, OAC-RepTrick is introduced. This approach optimizes a reparameterized

UCB using Stochastic Gradient Descent (SGD) to derive an exploration policy. In addition

to an extensive hyperparameter search to assess the sensitivity of various exploration

strategies, this thesis investigates the impact of a prioritized replay buffer. This buffer

incorporates additional online data into the off-policy agent update.

In summary, this thesis makes the following contributions:

• The theoretically and empirically hyperparameter sensitivity of OAC and its inherent

tendency to generate a bang-bang exploration strategy in continuous control tasks

is demonstrated.

• NGOAC, an optimistic exploration strategy, is proposed, which optimizes the explo-

ration policy using a natural gradient.

�

The thesis is structured as follows: In Chapter 2, we delve into related work in the fields of

Actor Critic methods, experience replay, exploration in RL, and the fundamentals of bang-

bang optimal control. Continuing in Chapter 3 with the introduction of maximum entropy

RL in combination with Soft Actor Critic (SAC), followed by an in-depth explanation of

OAC. In Chapter 4, the bang-bang tendency of OAC is further elucidated and exemplified

using a toy example. Additionally, the natural gradient version, NGOAC, is introduced.

Chapter 5 encompasses the hyperparameter experiments and investigations of a prioritized

replay buffer. Finally, Chapter 6 concludes this thesis and provides directions for future

research.

�

�. Related Work

In Reinforcement Learning, an infinite Markov Decision Process (MDP) [1, 2] defined by

the tuple (S,A, p, r, �), where an agent observes the current environment state st 2 S
and performs an action at 2 A is considered. This leads to a new environment state

st+1 ⇠ p(·|st, at), where p : S ⇥ S ⇥ A ! [0,1) represents the probability density of

the state transitions. For each transition in the environment the agent receives a reward

r : S ⇥A! R. The overall goal of the agent is to maximize the total expected reward

J =
X

t

E(st,at)⇠⇢π [�
t · r(st, at)] (2.1)

where ⇢⇡(st) and ⇢⇡(st, at) denote the state and state-action marginals of the trajectory

distribution produced by the policy ⇡(at|st) and � defines the discount factor. Accordingly,

a trajectory ⌧ = (s0, a0, r0, s1, a1, r1, ...) is obtained by sequentially generated actions from

the policy ⇡ [3].

The state-value function for policy ⇡ quantifies the current state and is defined as the

expected return when starting in state st and following ⇡

V⇡(st) = E⇡

" 1
X

k=0

�k · rt+k+1

�

�

�

�

�

s = st

#

. (2.2)

Likewise the action-value function or Q-function defines the value of performing action at
in state st while following policy ⇡

Q⇡(st, at) = E⇡

" 1
X

k=0

�k · rt+k+1

�

�

�

�

�

s = st, a = at

#

(2.3)

�

�.�. Actor Critic Methods

Actor-Critic Policy Gradients incorporate the value function into the learning process.

Represented as the critic, the value function is learned by evaluating the returns of the

agent. In contrast to vanilla policy gradients where Equation 2.1 is differentiated directly,

actor-critic methods improve the policy, also called actor, by updating the policy parameters

in the direction suggested by the critic. The combination of value function estimation

and policy gradients reduces the variance of the policy gradient, and therefore, the policy

converges with fewer samples. Also, actor-critic methods can suit different problems and

objectives because the critic can be represented by different types, such as state-value

function (Equation 2.2), state-action-value function (Equation 2.3) [4], or advantage

function [5]. Furthermore, by integrating Temporal Difference Learning (TD Learning),

the critic’s estimation can be bootstrapped, allowing for policy updates at each step, as

opposed to episode-based learning [3]. Besides the advantages of using a separate actor

and critic network, an inaccurate or inconsistent value estimation can affect the quality of

the policy update because the policy gradient depends on the precision of the critic’s value

function approximation. Moreover the actor and the critic can interfere with each other

and influence the learning process as they may suffer from instability and divergence.

A2C is a synchronous and A3C is a asynchronous variant of the advantage actor-critic

algorithm. They utilize an advantage function to measure the relative value of each

action [5]. DDPG, on the other hand, is a deterministic policy gradient algorithm that

employs deep neural networks to represent both the actor and the critic [4]. In contrast,

SAC is a soft actor-critic algorithm that not only maximizes the expected return but also

places emphasis on maximizing the entropy of the policy [6]. All of these algorithms are

well-suited for handling high-dimensional and continuous action spaces. They incorporate

a variety of techniques, such as the use of replay buffers, target networks, twin networks,

and reparameterization tricks, to enhance their overall performance and stability.

Indeed, there exist a multitude of alternative RL methods beyond policy gradient ap-

proaches. Value-based methods involve the estimation of the state- or state-action-value

function corresponding to the optimal policy and do not explicitly learn the policy itself.

Consequently, the policy is derived by maximizing the underlying value function [7, 8].

In model-based RL the state transition p(·|st, at) is learned and used to improve the policy

that is typically used for planning [9, 10, 11].

�

�.�. Experience Replay

Experience Replay stores a fixed number of the most recently collected transitions in a

replay memory. Further a uniformly sampled batch of experiences is used to update the

agent during training. Mixing more and less recent experiences can break the temporal

correlation between consecutive experiences and enables the agent to train on rare

and informative experiences multiple times [12]. Both improving sample efficiency and

stability leads to better performance especially when training a neural network function

approximators with stochastic gradient descent. For example in Neural Fitted Q-Iteration

[13] and Deep Q-Learning [7, 14] this leads to better overall performance.

Sampling from a replay memory indirectly influences the learning process which can

result in superior performance using an informed sampling method. The key component

of prioritized replay is the criterion by which the importance of each experience is mea-

sured. Prioritized Experience Replay [15] extends classic prioritized sweeping ideas [16]

and prioritizes each transition using the Temporal Difference (TD) error such that the

experience with the largest absolute TD error is assigned to a higher prioritization. It

quantifies how unexpected a transition is since it measures the distance to the next-step

bootstrap estimate. Biased sampling can be very helpful in RL since the data distribution

depends on the agent’s policy and can also lead to improvements when an agent has to

deal with sparse rewards. This is shown for example in DDPG [17], Prioritized Dueling

DQN [18], UNREAL [19], DQfD [20] and Rainbow [21].

To incorporate the experiences of distributed actors into the learning process, Distributed

Prioritized Experience Replay accumulates the experiences of distributed actors which

interact with the environment using a shared neural network [22]. The Ape-X architecture

decomposes the standard Deep Reinforcement Learning algorithm into two parts, the

acting and the learning part as done as in Gorila [23].

Furthermore, Hessel et al. show that prioritization is the most important ingredient

contributing to the agent’s performance [21].

6

�.�. Exploration in Reinforcement Learning

Exploration methods in RL can be classified into three main types [24].

Intrinsic motivation-oriented exploration originates from human development where

children often employ less goal-oriented exploration but use curiosity to gain knowledge

about the world. This psychological inspired behavior intrinsically rewards exploration

activities, where typically reward-agnostic information as the prediction error [25, 26],

novelty or information gain is used to design intrinsic rewards.

Uncertainty based exploration originates from the Optimisim in the Face of Uncertainty

(OFU) principle. Uncertainty is quantified by epistemic and aleatoric uncertainty to mea-

sure the sufficiency of learning and the intrinsic stochasticity to derive efficient exploration.

To directly explore state-action pairs with a high uncertainty, an exploration bonus can

be added based on a specific uncertainty measurement. Optimistic action-selection is

achieved by maximizing the optimistic value function or also known as UCB

at = argmax
a

QUCB(st, a) (2.4)

where the optimistic value function is defines as

QUCB(st, at) = Q(st, at) + � · Uncertainty(st, at) (2.5)

Here, the level of optimism can be controlled by the hyperparameter �.

In contrast to incorporating an additional exploration bonus, the action selection can

be greedy to a sampled value function. The posterior distribution of the Q-function is

estimated through parametric or non-parametric posterior, then the sampled Q-function

is used to select actions when interacting with the environment for a whole episode.

at = argmax
a

Q✓(st, a) where Q✓ ⇠ QPosterior (2.6)

Thompson Sampling [27] enables the agent to perform deep exploration [28, 29] and

has advantages in long-horizon exploration tasks.

Besides intrinsic motivation- and uncertainty-oriented exploration advanced strategies

adapt and utilize the underlying neural network structures to explore with parametric

�

noise [30, 31, 32] or are constrained to restrictions of the environment and the task itself

to achieve safe exploration [33, 34].

In general directed exploration strategies exhibit higher levels of sample efficiency com-

pared to undirected techniques. However, it is essential to acknowledge that some directed

exploration strategies such as bonus-based exploration (BBE) suffer from three main limi-

tations. The policy is biased after any finite number of steps in the environment because

it is learned on a combination of the task reward and the exploration bonus. Secondly, the

agent slowly adapts the policy and the rewards within a single episode which leads to

sample inefficiency. Lastly, unseen transitions are not incorporated into the exploration

behavior resulting in a lack of optimism and increases the time required to visit unseen

and enables the agent to learn a better policy [35].

To mitigate this Decoupled Exploration and Exploitation Policies (DEEP) separately learns

an unbiased task policy and an exploration policy also called behavior policy that is used

to select actions during training. This leads to strictly better performance and sample

efficiency even in dense and sparse environments [36]. Further UFO extends this by

incorporating optmism into the action selection process [35].

�.�. Bang-Bang Optimal Control

In continuous control problems, policies are commonly represented as continuous probabil-

ity distributions, with Gaussian distributions being a popular choice. This representation

allows for more refined decision-making compared to simpler policies like discretized

controllers. In many standard continuous control tasks, learned agents tend to result

in bang-bang policies, even when using Gaussian policies. It’s noteworthy that bang-

bang controllers are frequently optimal and can achieve performance that is on par with

state-of-the-art (SOTA) algorithms [37].

Non-bang-bang optimal tasks can be classified based on either the task’s inherent goal

or the reward structure it employs. For instance, consider the Cartpole stabilization task

from the MuJoCo set of environments [38]. In this task, the inherent goal is to stabilize

the pole, which naturally leads to an optimal control policy that necessitates actions with

minimal magnitude to achieve stability. Introducing various action costs can alter the

reward structure, potentially leading to the emergence of non-bang-bang optimal policies.

8

max

Z T

0
r(s(t))� c(a(t))dt (2.7)

Maximizing only the state reward in Equation 2.8 the agent learns a bang-bang control

even under a Gaussian policy. Adding a linear action cost in Equation 2.9 results in

minimizing the fuel-type cost inducing a bang-off-bang control. Minimum energy-type

cost on the basis of quadratic action costs in Equation 2.10 generally leads to a non-bang-

bang optimal control [37].

c(a(t)) = 0 (2.8)

c(a(t)) = |a(t)| (2.9)

c(a(t)) = a(t)2 (2.10)

�

�. Preliminaries

This chapter provides a comprehensive introduction to maximum entropy RL within the

framework of SAC in Chapter 3.1. Furthermore, it delves into the optimistic exploration

strategy OAC in Chapter 3.2, discussing the UCB based on the critic’s estimates and the

formulation of the optimization problem.

�.�. Soft Actor Critic

SAC is an off-policy maximum entropy algorithm that is based on soft Q-learning [39]

and optimizes a stochastic policy. In contrast to the classical RL objective in Equation 2.1,

the cumulative reward in entropy regularized RL [40, 41, 42] incorporates the entropy of

the policy distribution

Jentropy =
X

t

E(st,at)⇠⇢π

h

�t
⇣

r(st, at) + ↵H
⇣

⇡(|̇st)
⌘⌘i

(3.1)

Accordingly, the agent tries to maximize the trade-off between the expected return and

the entropy of the policy distribution [43]. Maximizing the entropy ensures a minimum

randomness of the policy distribution such that the agent acts as randomly as possible

while trying to succeed at the task. This highly correlates to the exploration-exploitation

tradeoff in RL. Enforcing higher entropy results in a more exploratory training strategy

that can accelerate learning later on and prevent the policy from converging to a sub-

optimal solution. Concurrently the entropy term in Equation 3.1 limits the exploitation

potential of the agent that can mitigate the agent to exploit the optimal solution. This

exploration-exploitation dilemma is still an open problem in RL and is addressed by

different exploration strategies as described in Chapter 2.3.

��

SAC is an Actor-Critic algorithm where the policy gradient is computed by optimizing the

expected performance that the critic predicts [6]. The critic is trained to model future

rewards of the agent and is learned using TD Learning, as described in Chapter 2.1.

Maximizing the learned state-action value function approximation inherently induces an

overestimation bias, originating from the critics’ predictions and, consequently, potential

inaccuracies in these predictions. The model is parameterized with two, independently-

initialized networks to counteract overestimation in off-policy RL. Using the min double Q

trick [44] the target of the state-action value function is defined by the minimum value

over both Q-function approximatons

y(rt, st+1) = rt + �

✓

min
j=1,2

Q✓̄j
(st+1, a)� ↵ log ⇡�(a|st+1)

◆

with a ⇠ ⇡�(·|st+1).

(3.2)

Accordingly, both Q-value approximatons are optimized by minimizing the quadratic loss

function

min
✓j

LQ(✓j ,D) = E(st,at,rt,st+1)⇠D

h

�

Q✓j (st, at)� y(rt, st+1)
�2
i

. (3.3)

To enhance the stability of the training process, the update of the critic uses target

networks, which are computed based on an exponentially moving average on the weights

of the value network [14]. Empirical findings demonstrate that using two soft Q-functions

significantly accelerates the training procedure, particularly in the context of addressing

more challenging tasks with a high-dimensional action space [45].

The optimization objective of the policy in Equation 3.1 can be reformulated by incorpo-

rating the value function learned as per Equation 3.3.

max
�

L⇡(�) = Ea⇠⇡φ

min
j=1,2

Q✓̄j
(s, a)� ↵ log ⇡�(a|s)

�

(3.4)

In Equation 3.4, the distribution depends on the policy parameter that makes computing

the policy gradient unfeasible. The expectation over actions can be reformulated as an

expectation over noise using the reparameterization trick [46] such that the distribution

only depends on the noise.

��

The entropy regularization coefficient in Equation 3.1 influences the scaling factor of the

reward function. Therefore, a suitable temperature is crucial for training, and a sub-optimal

temperature can lead to degraded performance. In [45], an Autotuned Temperature

version of SAC is introduced, employing an automatic gradient-based temperature tuning.

It adjusts the expected entropy solving a constrained optimization problem such that a

minimum expected entropy is fulfilled. This makes SAC easier adaptable to different tasks

and reduces the time of hyperparameter tuning.

Broadly, SAC exhibits superior performance compared to SOTA model-free RL algorithms,

including both off-policy Deep Deterministic Policy Gradient (DDPG) and on-policy Proxi-

mal Policy Optimization (PPO). Furthermore, it also improves sample-efficiency in com-

parison to DDPG. Particularly in complex and high-dimensional environments, such as

the Humanoid task where conventional off-policy algorithms often encounter difficulty

or converge to a suboptimal policy [47], the stable learning process in SAC becomes

pronounced. The adaptability of SAC extends to real-world learning tasks because of its

robustness and sample efficiency. This is evidenced by its successful application in tasks

such as acquiring locomotion skills with a Minitaur robot or accomplishing manipulation

tasks using a 3-finger dexterous robotic hand, as highlighted in the work by [6].

Illustrated within the context of SAC, it is a general observation that the incorporation

of the minimum double Q-trick to augment training stability is not without its caveat

concerning exploration potential. This consideration arises from updating both Q-function

approximation with the same shared target value. The consistent generation of pessimistic

target values mitigates the issue of overestimation bias through bootstrapped TD Learning

targets. However, a direct consequence of pessimism is reduced and suboptimal exploration,

owing to underestimation bias, as discussed in [48, 49]. This is mitigated within the

maximum entropy framework, where a lower bound is imposed on the entropy of the policy

distribution to guarantee a minimum level of stochastic exploration behavior. Moreover,

this emphasizes the necessity and underscores the demand of exploration methods based

on the OFU principle [50]. The inherent limitation of shared pessimistic target values is

further investigated in the computation of the Bellman error by [51]. Their study reveals

that using independent target values can surpass the performance of SOTA algorithms.

�.�. Optimisitic Actor Critic

In the study conducted by [49], they pinpoint two main issues in the exploration strategy

of SAC: a) pessimistic underexploration as a result of consistently updating the critic

��

with pessimistic target values and b) the presence of directional uninformedness in

the exploration behavior using a symmetric Gaussian policy as demonstrated by SAC.

To address these concerns, the researchers propose an optimistic exploration extension,

denoted as OAC. This approach involves the computation of a local exploration policy, which

is based on the current learned policy. The exploration policy is devised by maximizing an

Upper Confidence Bound derived from the critic, effectively circumventing the pessimistic

underexploration problem.

µe,⌃e = argmax
µ,⌃

Ea⇠N (µ,⌃)

⇥

Q̂UCB(s, a)
⇤

s. t. KL(N (µ,⌃),N (µT ,⌃T)) �
(3.5)

The optimization objective is constrained by a maximum Kullback-Leibler Divergence (KL)

divergence denoted as �, which quantifies the dissimilarity between the distributions of

the exploration policy and the target policy, as expressed in Equation 3.5. This ensures

that the exploration policy maintains similarity to the target policy, thus preserving the

stability of the optimization process.

The UCB on the Q-value function draws upon both Q-function approximations employed

within the context of SAC, with its calculation relying on the assessment of their mean

and variance:

QUCB(s, a) = µQ(s, a) + �UB · �Q(s, a)

µQ(s, a) =
1

2
(Q✓1(s, a) +Q✓2(s, a))

�Q(s, a) =
1

2
|Q✓1(s, a)�Q✓2(s, a)|

(3.6)

To facilitate efficient computation and ensure faster optimization, the UCB defined in

Equation 3.6 is linearly approximated at the mean µT of the target policy.

Q̂UCB(s, a) = aT [raQUCB(s, a)]a=µT
+ const (3.7)

In the context of Gaussian policies, which are commonly used within the framework of

SAC, it is possible to analytically compute the exploration policy in each step from scratch.

��

µE = µT +

p
2�

�

�

�

⇥

raQ̂UB(s, a)
⇤

a=µT

�

�

�

⌃T

⌃T

⇥

raQ̂UB(s, a)
⇤

a=µT

⌃E = ⌃T

(3.8)

Accordingly, the optimized exploration policy is not constrained to share the same mean

as the target policy, whereby it is not symmetric around the mean of the target policy. This

enables exploration to be guided by directional information, thereby enhancing sample

efficiency. The theoretical impact of the optimization problem is exemplified in Figure 3.1.

Consequently, actions that are sampled from the exploration policy are concentrated on less

explored regions of the state-action space, effectively reducing the need to sample actions

that have previously been explored. Additional implementation details are expounded

upon in Appendix A.1.

raw action space

QUCB

Qθ1

Qθ2

πT

πE

Figure 3.1.: Optimization result of OAC in a toy example. The value function approxima-

tions and policy distributions are shown against the raw action space.

Furthermore, the authors in [49] introduce a revised Q-target computation within the SAC

framework. Through an locally independent optimistic exploration strategy as illustrated

in Equation 3.8, the update of the target policy can adopt a more pessimistic approach,

��

yielding policy updates that are both more conservative and stable. Instead of employing

the minimum double Q trick, the authors generalize the Lower Confidence Bound (LCB)

QLCB(s, a) = µQ(s, a) + �LB · �Q(s, a) (3.9)

to calculate the target Q-value in Equation 3.10 and simultaneously the update of the

target policy, as presented in Equation 3.4. Consequently, the hyperparameter �LB governs

the extent of pessimism in the computation of the target Q-value, much like �UB scales

the degree of optimism in the exploration policy update, as detailed in Equation 3.2.

y(rt, st+1) = rt + � (QLCB(st+1, a)� ↵ log ⇡�(a|st+1))

with a ⇠ ⇡�(·|st+1)
(3.10)

The experimental results in Chapter 5.1 demonstrate that OAC attains a state-of-the-art

level of sample efficiency in continuous control tasks, as evaluated using the MuJoCo [38]

continuous control benchmarks. OAC mitigates pessimistic underexploration through the

locally optimized exploration policy, which facilitates the selection of actions from ⇡E
that directly adjusts the critic estimate. Due to the mean shift of the exploration policy

relative to the target policy, OAC also avoids directional uninformedness. The optimistic

estimation in Equation 3.6 is only employed for optimizing the exploration policy in each

step from scratch, ensuring that optimism does not induce overestimation bias as described

in [45, 44]. Consequently, the critic and target policy continue to be updated using a

lower-bound estimate.

The exploration-exploitation trade-off is also addressed by other works that employ an

optimistic exploration strategy based on curiosity estimates derived from Q-function

approximations, similar to the approach taken in OAC. The concept of reward-shifting,

facilitated through a changing reward shifting constant, proves to be effective in striking

a balance between exploration and exploitation. This involves reinforcing conservative

exploitation through positive shifts in rewards, while employing negative reward shifts to

stimulate curiosity-driven exploration, thus enhancing optimistic exploration [52]. Unlike

OAC, it directly adapts the Q-function estimate of the critic, and notably, the exploration

policy remains uninformed.

In the pursuit of mitigating the overestimation bias without incurring the downsides of

overly pessimistic targets, Generalized Pessimism Learning (GPL) introduces a learnable

penalty designed to enact such pessimism. The parameterized uncertainty regularizer

��

is deployed to ensure accurate estimation of the target action-values with low bias and

variance. This regularizer is learned concurrently with the critic through a dual TD

Learning approach, achieved by minimizing the bias in the target returns, as quantified

by the epistemic uncertainty inherent in the critic’s predicted return distributions [48].

Addressing the challenge of pessimistic underexploration involves a direct adaption of the

target-values themselves, aimed to compensate the overestimation bias directly within

the Q-function approximations. In contrast, OAC involves recalculating the optimistic

exploration strategy each step from scratch, which only indirectly influences the critic.

�6

�. Natural Gradient Optimistic Actor Critic

In this chapter, the theoretical hyperparameter sensitivity of OAC is thoroughly explored,

revealing its inclination to generate a bang-bang-like exploration strategy, as discussed in

Chapter 4.1. Additionally, Chapter 4.2 introduces the natural gradient variant of OAC and

shows the advantages of the optimization method.

�.�. Bang-Bang Exploration induced by Optimism

In accordance with the content presented in Chapter 3.2, OAC addresses fundamental

concerns pertaining to pessimistic underexploration and directional uninformedness.

However, it is noteworthy that the utilization of the linear approximation of the UCB as

depicted in Equation 3.7 results in a mean shift of the probability distribution. In Equation

3.8, this shift’s direction is determined through the computation of the gradient of the

critic, while the length of the shift is primarily influenced by the KL constraint in Equation

3.5. This indicates a strong interdependence between the parameters of the exploration

policy and the optimization constraint in a general context, emphasizing the necessity

for a sufficiently good choice of the KL bound, as it directly influences the exploration

behavior of the agent.

An improper hyperparameter choice can give rise to two distinct exploration behaviors.

Firstly, when a small KL bound is chosen, it results in negligible or minimal mean shift,

which in turn leads to a lack of optimistic exploration behavior. Consequently, the explo-

ration policy explores the state-action space similar to when employing entropy-based

exploration of SAC.

On the other hand, opting for a higher constraint value induces a more substantial mean

shift, causing the exploration policy to diverge significantly from the target policy. The

exploration policy parameters are defined in the raw action space, where it is a common

setting in off-policy RL to map the sampled actions to the correct action space such that

��

raw action space

QUCB

Qθ1

Qθ2

πT

πE

(a)

mean µ

s
t
a
n
d
a
r
d

d
e
v
ia
t
io
n

σ

(b)

Figure 4.1.: Optimization results of OAC in a toy example for different KL constraints.

The different exploration policies (red) are shown in the raw action space on

the left (a). The different trust regions and the underlying objective function

can be seen on the right (b).

the action boundaries are not violated. In practice, it is typically seen in SAC and similar

algorithms that a tanh function is used for the action space mapping.

The optimization of the exploration policy, subject to substantial update length, results

in a mean value characterized by a considerable magnitude in the raw action space.

Consequently, the sampled actions exhibit high magnitudes, subsequently undergoing the

transformation through a tanh function for mapping into the action space. This culminates

in actions for exploration located either at or in close proximity to the boundaries of the

action space and therefore produces a bang-bang like exploration behavior.

This may benefit efficient exploration in bang-bang optimal tasks; however, it tends to

result in suboptimal exploration when applied to non-bang-bang optimal tasks as described

in Chapter 2.4 and is observable in the experiments in Chapter 5.2.

�.�. Natural Gradient Descent

To mitigate the consequences of optimizing a linear approximation of the UCB, the

optimization task can be addressed through the application of natural gradient descent

[53]. This yields an exploration policy that 1) reduces sensitivity to the KL constraint, 2)

�8

action space

QUCB

Qθ1

Qθ2

πT

πE

Figure 4.2.: Optimization results of OAC in a toy example for different KL constraints.

The value function approximations and policy distributions are shown against

the action space, mapped using a tanh function.

improves the optimization outcome resulting in a solution with higher UCB value and

3) also adapts the covariance of the exploration policy to align with the structure of the

objective function.

In contradistinction to the formulation of the optimization objective in Equation 3.5 in

OAC, the UCB as defined in Equation 3.6 is not linearly approximated. This distinction

manifests in the following formulation of the optimization objective.

µe,⌃e = argmax
µ,⌃

J(µ,⌃)

s. t. KL(N (µ,⌃),N (µT ,⌃T)) �

with J(µ,⌃) = Ea⇠N (µ,⌃)

⇥

QUCB(s, a)
⇤

(4.1)

This can be solved using the natural gradient with respect to the natural distribution

parameters, that corresponds to the vanilla gradient with respect to the expectation

parameters [54]. Therefore the natural gradient step for a Gaussian policy can be expressed

as

��

raw action space

QUCB

Qθ1

Qθ2

πT

πE

Figure 4.3.: Optimization result of NGOAC in a toy example. The value function approxi-

mations and policy distributions are shown against the raw action space.

⌃
�1 = ⌃

�1
⇡ � 2� [r⌃J(µ,⌃)]

µ = µ⇡ + �⌃ [rµJ(µ,⌃)] .
(4.2)

Furthermore, the the gradients for the mean and covariance can be computed using the

gradient and hessian of the objective function [55]. It is noteworthy that the hessian

information can be derived from the first-order information employing Stein’s Lemma

[56, 57].

rµJ(µ,⌃) = E [raQUCB(s, a)]

r⌃J(µ,⌃) =
1

2
E
⇥

r2
aQUCB(s, a)

⇤

=
1

2
E
⇥

⌃
�1(a� µ)raQUCB(s, a)

T
⇤

(4.3)

The update length in Equation 4.2 is determined by satisfying the KL constraint for a policy

update along the direction of the natural gradient. This assurance is achieved through

bracketing line search. Further implementation details can be found in Appendix A.2

Utilizing second-order gradient information to update both the policy’s mean and standard

deviation results in a more refined optimum compared to OAC, as illustrated in Figure 4.3,

where the exploration policy is positioned close to the maximum of the UCB. Furthermore,

��

NGOAC maintains directional informedness and supports optimistic exploration, akin to

OAC.

mean µ

s
t
a
n
d
a
r
d

d
e
v
ia
t
io
n

σ

(a)

action space

QUCB

Qθ1

Qθ2

πT

πE

(b)

Figure 4.4.: Optimization results of NGOAC in a toy example for different KL constraints.

The different trust regions and the underlying objective function can be seen

on the left (a). The different exploration policies (red) are shown in the raw

action space on the right (b).

In theory, the optimized value of the expected UCB is not explicitly determined by the

trust region bound. Consequently, NGOAC avoids exhibiting a pronounced bang-bang

exploration tendency exemplified in Figure 4.4 and is, therefore, less sensitive to a good

hyperparameter choice. Similar experimental results can be seen in Chapter 5.2.

��

�. Experiments

The subsequent experimental trials were executed utilizing NVIDIA’s physics simulation

environment for RL, Isaac Gym [58], that enhances the learning speed by leveraging

its parallel training capabilities. The foundational implementation of the agents, with

particular emphasis on the one pertaining to SAC, is drawn from the RL Games repository

[59]. The experiments are launched through the utilization of the experiment launcher de-

veloped by the Intelligent Autonomous Systems (IAS) group [60]. It simplifies the process

of launching experiments, enabling execution either on a local machine or on a cluster

running SLURM Workload Manager [61]. In order to conduct a comparative analysis of

the different exploration strategies, the evaluation is performed within the Cartpole, Ant,

and Humanoid environments. These environments are available in IsaacGymEnvs, which

provides tensor-based Gym environments for GPU-accelerated RL [58].

The objective of the Cartpole environment is to maintain the balance of a pole by exerting

forces in either the left or right direction on a cart [62]. The pole is affixed to the cart

through a joint that remains unactuated, while the cart itself travels along a frictionless

track. Both the cart’s position and the pole’s angle have defined limits, and the episode

terminates if these limits are surpassed. At each time step, including the terminal step, a

reward of +1 is earned, with the cumulative reward threshold set at 500.

The Ant environment features a 3D robot configuration - comprising a central torso

with free rotational movement and four legs, each with two body parts. It was initially

introduced by Schulman et al. [63] and is part of the MuJoCo set of environments [38].

The primary objective is to effectively coordinate the movement of the four legs to propel

the robot forward. This is achieved by applying torques to the eight hinges that connect

the two body parts of each leg and the central torso. In total, the action space is eight-

dimensional, representing each action by the torque applied to the eight hinge joints. The

agent observes the positional values and velocities of different body parts, summing up

to a 27-dimensional observation space. The reward consists of three parts, a fixed value

representing the health of the Ant that depends on the termination of the episode, a reward

��

that is correlated to the forward movement of the Ant, a negative reward penalizing high

actions and external contact forces.

The Humanoid environment features a 3D bipedal robot designed to emulate a human

[64]. This robotic model comprises a torso (abdomen) along with a pair of legs and

arms. Each leg consists of three body parts, while the arms are composed of two body

parts, representing the knees and elbows, respectively. The primary objective is to achieve

forward motion as fast as possible while maintaining balance and stability, akin to human

walking, and preventing any instances of falling over. The agent exerts torques on the

hinge joints, leading to an action space characterized by 17 dimensions. At each time

step, the agent receives observations of the 376-dimensional state of the Humanoid. This

results in a task that is notably high-dimensional and inherently complex. Much like the

Ant environment, the reward of the Humanoid environment also consists of three parts. It

includes a health-related reward, a reward component associated with forward movement,

and a negative reward component designed to penalize large actions and external contact

forces. In general this three-fold reward is designed to encourage effective locomotion

while discouraging wasteful or undesirable behaviors.

As elucidated in Chapter 2.4, tasks that are non-bang-bang optimal can be justified by

their task goals, as exemplified in the Cartpole environment. In this context, the pursuit

of a bang-bang optimal control policy would result in a fast termination of the episode,

primarily due to the rapid exceeding of either the cart’s position or the pole’s angle beyond

their specified limits.

In stark contrast to the Cartpole environment, the primary objective in the Ant and

Humanoid environments centers around achieving a maximal state reward, with the

goal of attaining the highest possible forward movement speed. In these scenarios, the

optimal solution is characterized by a "bang-bang" controller, as outlined by Seyde et al.

[37]. This controller involves rapid and extreme control actions to optimize the forward

motion of the agents in these environments. The incorporation of a minimum energy-type

cost [65], which is represented by penalizing large actions in the reward structures of

both environments, tends to steer the control policies toward non-bang-bang optimality.

However, the degree to which this cost is integrated into the reward depends significantly

on the parameter used to control the cost’s importance. Typically, this parameter is fixed

and governs the balance between optimizing for forward movement and minimizing

energy expenditure.

Accordingly, the experiments are conducted in environments that, on the one hand, do not

exhibit bang-bang optimality by default, exemplified by the Cartpole. On the other hand,

the Ant and Humanoid environment are initially bang-bang optimal, but incorporate

��

quadratic action costs, which in turn transform the optimal control policy also into a

non-bang-bang optimal one.

�.�. Performance Benchmark

The performance of NGOAC is directly compared against the performance of SAC and OAC.

Furthermore, an evaluation is conducted to assess the enhancement of the natural gradient

when compared to a reparameterized optimization problem as described in Chapter 5.1.1.

Additionally, a bang-bang optimal exploration policy is introduced in Chapter 5.1.2 to

check if the task is bang-bang optimal. If so, a bang-bang exploration strategy would lead

to a fast convergence to the optimal policy.

�.�.�. Reparameterized Optimisitic Actor Critic

Besides using the natural gradient (Chapter 4), the optimization problem of OAC in

Equation 3.5 can be solved using the equivalent Lagrange function.

L(µ,⌃,�) = J(µ,⌃)� � · KL(N (µ,⌃),N (µT ,⌃T)) + � · � (5.1)

Treading � as a fixed hyperparameter results in a simplified optimization problem that

can be optimized using SGD as described in Equation 5.2. Additional implementation

details can be found in Appendix A.3.

µE ,⌃E = argmax
µ,⌃

Ea⇠N (µ,⌃)

⇥

QUCB(s, a)
⇤

� � · KL(N (µ,⌃),N (µT ,⌃T)) (5.2)

In this case, the parameter � quantifies the extend of the KL constraint’s influence, given

its treatment as a soft constraint. Consequently, dissimilar to NGOAC, there exists no

guarantee that the exploration policy remains strictly within the trust region. Theoretically,

this could lead to a potential bang-bang exploration similar to that observed in OAC.

Conversely, augmenting the impact of the KL divergence by increasing the parameter �

adjusts the objective function in Equation 5.1 such that the optimum is shifted towards

the target policy and consequently, limits the computed update of the target policy. Under

��

raw action space

QUCB

Qθ1

Qθ2

πT

πE

mean µ

s
t
a
n
d
a
r
d

d
e
v
ia
t
io
n

σ

Figure 5.1.: Optimization results of OAC-RepTrick in a toy example for different KL

constraints. The different exploration policies (red) are shown in the raw

action space on the left (a). The different trust regions and the underlying

objective function can be seen on the right (b).

extreme circumstances, the exploration strategy becomes nearly indistinguishable from

the target policy and disregards the potential benefits of optimistic exploration.

The experimental results in Chapter 5.2 show that the bang-bang tendency is very unlikely

as the objective function is well formed inside the action space. Therefore a lower value of �

can be chosen despite the theoretical fact, that it can produce a bang-bang like exploration

strategy. In Figure 5.1 the optimization result of the reparameterized objective function is

exemplified using a toy example. Similar to the natural gradient version of OAC in Figure

4.4, the exploration policy converges to the maximum of the UCB, is directional informed,

avoids pessimistic underexploration and does not tend to explore the state-action space

with a bang-bang exploration strategy.

The reparameterized version of OAC challenges the necessity of the natural gradient and

forms a computationally less expensive alternative. Furthermore, a bang-bang exploration

strategy is used to investigate the advantage of the uncertainty-based exploration strategy.

�.�.�. Bang-Bang exploration

In general a bang-bang exploration should benefit the learning process in tasks, where the

optimal policy itself is a bang-bang policy, as described in Chapter 2.4. Therefore, SAC is

��

modified to explore the state-action space with actions at the limit of the action space to

check if uncertainty based exploration methods like OAC and its natural gradient version

outperform a simple bang-bang exploration strategy.

The exploration actions are determined by choosing the closest action boundary to a

sampled action from the target policy, as outlined in Equation 5.3.

aE = min
a2{amin,amax}

(a� a⇡)
2

with a⇡ ⇠ ⇡�(· st+1)
(5.3)

As the alterations are limited to the exploration behavior and, consequently, the actions

stored in the replay buffer, the updates for the critics and the target policy remain un-

changed.

�.�.�. Results

The experiments are carried out with a total of 25 different random seeds for each

algorithm. The selection of hyperparameters, particularly for OAC, NGOAC, and the

reparameterized version of OAC, is determined through an extensive grid search, detailed

in Chapter 5.2 and in Appendix C. A comprehensive overview of the entire experimental

setup is available in Appendix B.

In Figure 5.2, the non-bang-bang optimality of the Cartpole task is substantiated by

the performance of the SAC-Bang-Bang exploration strategy. By restricting exploration

actions to the maximum and minimum action values, the agent struggles to learn an

effective policy, despite its capability to represent a non-bang-bang policy. This outcome

underscores the distinct nature of the Cartpole task, where a non-bang-bang policy is

more suitable for achieving successful learning outcomes.

With a well-chosen set of exploration hyperparameters, OAC effectively solves the task and

performs comparably to the baseline performance of SAC. In this context, the utilization

of the UCB does not exert a substantial influence on the results. This observation is

underpinned by the selection of a very small KL bound, which restricts the impact of the

optimistic exploration strategy, leading to a very similar exploration strategy to SAC. This

is evidenced by the analysis of the influence of the KL bound in Figure 5.6a, where higher

values of � induce a bang-bang exploration strategy. However, such a strategy is suboptimal

in the Cartpole environment, as demonstrated by the performance of SAC-Bang-Bang.

�6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

steps ×10
6

0

100

200

300

400

500
r
e
w
a
r
d

SAC

OAC

SAC-Bang-Bang

NGOAC

OAC-RepTrick

Figure 5.2.: Performance benchmark in the Cartpole environment.

The reparameterized variant of OAC, OAC-RepTrick, exhibits performance on par with OAC

and SAC. However, it is worth noting that OAC-RepTrick converges to a slightly smaller

mean reward while displaying an increased variance in the rewards when compared to

OAC and SAC.

In the Cartpole environment, NGOAC emerges as the top-performing algorithm, with

the converged mean reward surpassing that of OAC and SAC only by a slight margin.

Notably, the natural gradient version is found to be less sensitive to the fine-tuning of

hyperparameters, as further detailed in Chapter 5.2. Consequently, a higher value for

the KL bound is selected, allowing the agent to fully leverage the uncertainty-based

exploration strategy and engage in more optimistic exploration. This allows NGOAC

to achieve significantly faster convergence compared to the other exploration methods,

reaching the optimal policy after approximately 1.7 million steps. In contrast, both OAC

and SAC require around 3 million steps to converge. Moreover, NGOAC exhibits the

smallest variance in the reward, highlighting the robustness of its exploration strategy

against the inherent stochasticity of the task.

The results of the Ant environment are shown in Figure 5.3. With its bang-bang optimal

main goal of moving forward, a bang-bang exploration strategy, epxressed as SAC-Bang-

Bang, leads to mediocre performance, even though it performs not as good as SAC.

��

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500
r
e
w
a
r
d

SAC

OAC

SAC-Bang-Bang

NGOAC

OAC-RepTrick

Figure 5.3.: Performance benchmark in the Ant environment.

The different exploration strategies employed by OAC, NGOAC, and OAC-RepTrick exhibit

very similar performance to SAC. In this context, it is challenging to distinguish a clear

difference in their performance, as both their mean rewards and the variance of the return

are nearly identical.

Similar outcomes are observed in the Humanoid environment, as depicted in Figure

5.4. The bang-bang exploration strategy of SAC-Bang-Bang demonstrates noteworthy

performance, aligning with the task’s primary objective of the 3D bipedal robot, which is to

achieve forward motion in a minimal amount of time. However, when compared to SAC, it

converges to a lower mean reward. This disparity can be attributed to the limitation of the

bang-bang actions in providing sufficient information regarding the tripartite structure of

the reward, which is essential for adapting the optimal policy in this in fact non-bang-bang

optimal task. The performance of the natural gradient and the reparameterized version

cannot be distinguished from that of SAC, as all three approaches yield similar results.

Notably, OAC stands out by outperforming the other exploration strategies. In contrast to

the Ant environment, the best results of OAC in the Humanoid environment are achieved

by utilizing a higher KL bound, as investigated in Chapter 5.2. While this can introduce

a tendency toward bang-bang exploration, it proves to be beneficial in the Humanoid

environment. In general, all the results obtained from the various exploration strategies

�8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000
r
e
w
a
r
d

SAC

OAC

SAC-Bang-Bang

NGOAC

OAC-RepTrick

Figure 5.4.: Performance benchmark in the Humanoid environment.

exhibit high variance, underscoring the complexity of the tasks at hand.

��

�.�. Hyperparameter Search

The influence of the exploration hyperparameters for OAC and NGOAC are investigated in

all three environments using a hyperparameter search. To obtain quantitative results a

Hyperparameter Search space

KL bound � [.1, 1, 10, 100, 200, 1000]

Level of optimism �UB [0, 1, 2, 4, 8, 16, 32, 64]

Table 5.1.: Grid search of the exploration hyperparameter for OAC and NGOAC.

grid search along the KL constraint � and the level of optimism �UB is performed according

to Table 5.1. Each search pair is run for five seeds and the mean reward of the last five

evaluation episodes is reported. The full experimental setup can be found in Appendix B.

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

Figure 5.5.: Reward of OAC in the Cartpole environment for different values of the KL

bound �

��

�.�.�. Kullback-Leibler Divergence Bound

Cartpole

In OAC the KL bound directly influences the exploration strategy and consequently the

outcome of the training process. For the low-dimensional Cartpole environment the

reward in Figure 5.6 clearly indicates that a higher value of the constraint not only results

in a smaller mean reward but also increases the variance of the return.

Further insights in Figure 5.5 show that a higher KL bound seems to lead to fast exploration

in the first episodes during learning. But after about one million steps the learned policy

converge to a suboptimal solution and fails to learn a good policy on the long term. Only

the exploration policies that are optimized enforcing a smaller trust region succeed the

Cartpole task.

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

100

200

300

400

500

r
e
w
a
r
d

(a) OAC

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

100

200

300

400

r
e
w
a
r
d

(b) NGOAC

Figure 5.6.: Comparison of the reward of OAC (left) and NGOAC (right) in the Cartpole

environment for different values of the KL bound �. The reward is averaged

over the last five evaluation episodes.

This is contrasted with the result of NGOAC in Figure 5.6b. Optimizing the optimistic

objective function using the natural gradient leads to good results for all values of the

trust region constraint. Indeed, a small KL constraint can limit the update length such that

the state-action space is explored using a similar distribution as the target distribution.

This can be the case for � = 0.1 as NGOAC results in the worst mean reward. Actually,

this does not seem to influence the training process as shown in Fig 5.7. It can bee seen,

��

that the training curve for all hyperparameter values seem to converge to the same policy

with an identical learning speed.

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

Figure 5.7.: Reward of NGOAC in the Cartpole environment for different values of the KL

bound �

As described in Chapter 4.1, OAC results in a bang-bang-like exploration strategy for

sufficiently high values of the KL bound. This can be seen in Fig 5.8a as the actions

used for exploration clearly embody a bang-bang exploration strategy. Accordingly the

learned policy tends to use actions near the boundary to solve the task (see Figure 5.8c).

The Cartpole can be categorized as a non-bang-bang optimal control task, given that

the optimal control policy embodies actions of near-zero magnitude to achieve pole

stabilization. Furthermore, it is crucial to emphasize that the pole’s angular orientation

is constrained, and exceeding these limits results in the termination of the interaction

and, consequently, in a low reward. A lower KL bound typically does not result in the

development of a bang-bang exploration strategy, as theoretically depicted in Chapter 4.1.

This facilitates the agent’s ability to acquire a meaningful policy that leads to succeed

the task. In the context of Figure 5.8c, the learned policy generates actions of near-zero

magnitude, ultimately leading toward a higher reward, as evidenced in Figure 5.5.

NGOAC exhibits greater robustness across a broader range of KL constraint values, primar-

ily due to the fact that the exploration policy is not directly determined by the optimization

bound, as elucidated earlier and depicted in Figure 5.6b. With a higher KL bound, NGOAC

gains the capability to select actions within a more extensive region surrounding the cur-

rent learned policy, but is not confined to the trust region bound as its exploration policy is

��

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(a) Exploration actions with � = 0.1

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(b) Exploration actions with � = 100.0

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(c) Evaluation actions with � = 0.1

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(d) Evaluation actions with � = 100.0

Figure 5.8.: Action histogram of OAC in the Cartpole environment with different values

for �. The top row shows the actions during training, and the figures at the

bottom correspond to the actions during evaluation.

determined by the information provided by the UCB. Even with a higher KL bound NGOAC

does not lead to the adoption of a bang-bang exploration strategy, as evidenced in Figure

5.9. A higher optimization constraint incorporates sufficient information into the training

process, allowing the agent to accomplish the task effectively. In this case, the learned

policy exhibits a similar action distribution as the one associated with a lower optimization

constraint, both of which converge towards an optimal policy. This convergence is also

reflected in the reward patterns, as depicted in Figure 5.7.

��

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(a) Exploration actions with � = 0.1

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(b) Exploration actions with � = 100.0

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(c) Evaluation actions with � = 0.1

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5
a
c
t
io
n

(d) Evaluation actions with � = 100.0

Figure 5.9.: Action histogram of NGOAC in the Cartpole environment with different values

for �. The top row shows the actions during training, and the figures at the

bottom correspond to the actions during evaluation.

Because of the stabilization task and the early termination when the pole angle exceeds

the limit, the Cartpole environment is a good example for an inherently non-bang-bang

optimal task. This is also satisfied by the evaluation of the action histograms during

training and evaluation as seen above, where an agent using a bang-bang policy fails to

converge to a good solution.

��

Ant

In the Ant environment, it can be observed that OAC performs comparable to the Cartpole

environment. This similarity arises due to a strong correlation between the exploration

policy and the KL bound. Consequently, a reduced optimization constraint yields good

results, whereas a higher constraint value corresponds to decreased rewards, as depicted

in Figure 5.10a and Figure 5.11a.

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

1000

2000

3000

4000

r
e
w
a
r
d

(a) OAC

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

1000

2000

3000

4000

r
e
w
a
r
d

(b) NGOAC

Figure 5.10.: Comparison of the reward of OAC (left) and NGOAC (right) in the Ant

environment for different values of the KL bound �. The reward is averaged

over the last five evaluation episodes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

(a) OAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

(b) NGOAC

Figure 5.11.: Reward of OAC (a) and NGOAC (b) in the Ant environment for different

values of the KL bound �

��

The similarity between the results in the Ant and Cartpole environment extends to the

behavior of NGOAC. When compared to OAC, it exhibits greater resilience across a broader

range of optimization bounds. Although the mean reward remains within a moderately

rewarding range for higher hyperparameter values, there is a slight inclination toward

lower rewards. Furthermore, it is evident that an increased constraint bound results in a

higher reward variance, as exemplified in Figure 5.11b.

Humanoid

In the high-dimensional Humanoid environment the results for OAC are different to the

ones of the previous two evaluated environments. It can be clearly seen in Figure 5.10a

and in Figure 5.11a that for very low and very high values of the KL bound the agent fails

to learn a good policy. A low constraint bound limits the incorporation of optimism in the

face of uncertainty because the exploration policy behaves nearly the same as the learned

target policy. This phenomena is also indicated in the lower dimensional Ant environment

as shown in Figure 5.10a.

The significance of making an appropriate choice of the optimization constraint is evident

even in the case of the NGOAC, as illustrated in Figure 5.12b. Notably, for higher KL

values, the agent does not exhibit as pronounced bad behavior as observed with the OAC.

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

1000

2000

3000

4000

r
e
w
a
r
d

(a) OAC

0.1 1.0 10.0 100.0 200.0 1000.0

KL bound �

0

1000

2000

3000

r
e
w
a
r
d

(b) NGOAC

Figure 5.12.: Comparison of the reward of OAC (left) and NGOAC (right) in the Humanoid

environment for different values of the KL bound �. The reward is averaged

over the last five evaluation episodes.

�6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

(a) OAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

r
e
w
a
r
d

0.1

1.0

10.0

100.0

200.0

1000.0

(b) NGOAC

Figure 5.13.: Reward of OAC (a) and NGOAC (b) in the Humanoid environment for

different values of the KL bound �.

In comparison to both the Cartpole and Ant environments, it is evident that the variance

in the rewards is significantly more significant. This phenomenon is visually depicted in

Figure 5.13 and can be attributed to the higher-dimensional state-action space inherent

in the more challenging tasks of the Humanoid. This increased dimensionality leads to a

less precisely defined state-action value function.

��

�.�.�. Level of Optimism

The degree of optimism is introduced through the hyperparameter �UB and directly

impacts the UCB. This influence on the UCB is essential for optimizing the exploration

policy, as detailed in Equation 3.5 and Equation 4.1. Given that the UCB is rooted in

the Optimisim in the Face of Uncertainty principle, a higher value for �UB empowers the

agent to explore regions within the state-action space where the variance of both critics

is elevated. This exploration occurs even if the means of these regions are lower than in

other areas.

In the Cartpole environment, the grid search conducted along the optimism level closely

resembles the outcomes associated with the results of the KL bound, as previously discussed

in Chapter 5.2.1. This similarity is visually depicted in Figure 5.14 when focusing solely

on the mean values.

Nevertheless, it is important to note that the results, particularly for OAC, exhibit a

substantial variance in rewards, encompassing both the maximum and minimum reward

values of the environment. In general the grid search encompasses all combinations of

hyperparameters, including the KL bound � and the level of optimism �UB. Consequently,

the rewards associated with each set of hyperparameters are averaged over the other

hyperparameter. As a result, it becomes challenging to definitively assert whether the

level of optimism has a direct and causative impact on the agent’s success, as its influence

0 1 2 4 8 16 32 64

βUB

0

100

200

300

400

500

r
e
w
a
r
d

(a) OAC

0 1 2 4 8 16 32 64

βUB

0

100

200

300

400

r
e
w
a
r
d

(b) NGOAC

Figure 5.14.: Comparison of the reward of OAC (a) and NGOAC (b) in the Cartpole

environment for different values of the level of optimism �UB. The reward

is averaged over the last five evaluation episodes.

�8

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

4000

r
e
w
a
r
d

(a) OAC

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

4000

r
e
w
a
r
d

(b) NGOAC

Figure 5.15.: Comparison of the reward of OAC (a) and NGOAC (b) in the Ant environment

for different values of the level of optimism �UB. The reward is averaged

over the last five evaluation episodes.

is intertwined with the effects of the other hyperparameter based on the performed grid

search.

Indeed, the action histogram, which aggregates the sum of actions across all KL bound

values for each �UB, provides no additional insights into a possible dependency between

the level of optimism and the reward. For a comprehensive examination, these results are

available in the Appendix C.1, along with the reward for each hyperparameter value.

In the case of NGOAC, it appears that the level of optimism may not have a clear and direct

influence on the agent’s success. However, due to the substantial variance observed in the

results, as depicted in Figure 5.14b, it becomes challenging to make precise qualitative

statements regarding this relationship, at least within the range covered by the performed

grid search. The high variance in outcomes underscores the complexity of assessing the

impact of the level of optimism on the agent’s performance in this context.

In the high-dimensional tasks of the Ant environment (Figure 5.15) and the Humanoid

environment (Figure 5.16), the variance in rewards doesn’t provide a basis for drawing

any qualitative conclusions regarding the hyperparameter sensitivity of OAC and NGOAC.

Furthermore, when considering the stochasticity of the experiments, the mean rewards

for the various values of �UB fall within a similar range.

��

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

4000

r
e
w
a
r
d

(a) OAC

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

r
e
w
a
r
d

(b) NGOAC

Figure 5.16.: Comparison of the reward of OAC (a) and NGOAC (b) in the Humanoid

environment for different values of the level of optimism �UB. The reward

is averaged over the last five evaluation episodes.

�.�.�. Results

Table 5.2 presents the best hyperparameter pairs of the grid search for OAC, considering

both the KL bound and the level of optimism. As previously discussed, it’s evident that

across all environments, the majority of the best-performing hyperparameter pairs involve

a lower value for the optimization constraint �. This observation highlights a consistent

trend where lower values of � tend to be associated with improved performance in

various environments. Additionally, it’s worth noting that among the best-performing

hyperparameter pairs, the top five encompass a diverse range of values for �UB. This

observation suggests that the level of optimism, as represented by �UB, does not exert a

significant and deterministic influence on the agent’s performance. Instead, it appears

that other hyperparameters, such as the optimization constraint �, play a more prominent

role in determining the agent’s success.

The best hyperparameter pairs for NGOAC (Table 5.3) reaffirm the observations discussed

earlier. These hyperparameter pairs encompass a wide spectrum of KL bound values

within each environment. This characteristic aligns with the notion that NGOAC, as a

less hyperparameter sensitive optimization method, is less inclined to generate a bang-

bang exploration policy. The inclusion of a wide range of KL bound values in these

best hyperparameter pairs underscores the robustness of NGOAC in avoiding extreme

exploration policies. Much like in the case of OAC, the natural gradient variant, NGOAC,

results in a relatively low sensitivity to the selection of the level of optimism. This is

��

Cartpole

�UB � reward

8 1 472.46

0 10 470.12

1 10 467.39

16 1 467.26

32 0.1 457.25

Ant

�UB � reward

16 1 3482.42

64 1 3355.51

4 1 3101.25

1 0.1 3075.84

32 0.1 3057.30

Humanoid

�UB � reward

1 100 3237.31

4 10 2940.09

1 200 2846.45

8 1 2472.41

4 1 2283.93

Table 5.2.: Best hyperparameter pairs of OAC

substantiated by the inclusion of �UB values that span the full range, from the minimum

to the maximum, within the best hyperparameter pairs. This comprehensive coverage

of �UB values among the optimal pairs underscores the limited impact of the level of

optimism on the agent’s performance, as described in Chapter 5.2.2.

For the sake of completeness, the comprehensive results of the grid search are available in

their entirety in Appendix C.3.

Furthermore, the grid search has also been conducted for the reparameterized extension of

OAC, as detailed in Appendix C.2. Notably, the performance of this reparameterized version

Cartpole

�UB � reward

64 10 473.79

16 200 470.91

16 100 470.12

16 1000 467.88

2 200 467.05

Ant

�UB � reward

64 0.1 3665.76

2 1000 3567.46

2 100 3430.24

0 0.1 3278.47

4 100 3258.78

Humanoid

�UB � reward

1 100 2543.68

1 1000 2524.69

1 10 2507.57

64 0.1 2162.46

2 0.1 2149.48

Table 5.3.: Best hyperparameter pairs of NGOAC

��

closely resembles that of NGOAC, as no discernible correlation between the rewards and

hyperparameter values is apparent across all grid searches. Consequently, it can be inferred

that the exploration policy remains largely unaffected by the choice of the hyperparameters

� and �UB. Hence, it is noteworthy that OAC RepTrick exhibits a propensity to avoid

generating a bang-bang exploration policy in the non-bang-bang optimal Cartpole tasks.

This is justified in the evaluation of � in Figure C.6. In general, � defines the loss associated

with the KL divergence that is incorporated into the optimization objective outlined in

Equation 5.1. For both extreme values of the grid search over � the agent converges to

an optimal policy, producing actions characterized by a low magnitude and effectively

addresses the task of stabilizing the cart pole.

��

�.�. Prioritized Experience Replay

The introduced exploration methods focus on optimizing an optimistic objective function

to derive an exploration policy. Consequently, the actions used to explore the state-action

space are determined based on the current approximation of the state-value function.

In theory, it can be justifiable to directly incorporate these sampled actions into the off-

policy update of the agent, as they provide valuable exploration information based on

the current critic approximation. Prior research has explored similar ideas, showing that

incorporating on-policy data into the update of an off-policy agent using experience replay

can lead to improved performance, as demonstrated by Schmitt et al. [66]. To achieve

this, an informed sampling method is employed to select actions from the replay buffer.

This prioritized replay buffer is designed to facilitate the agent in effectively leveraging

the informed exploration strategy, ultimately resulting in faster convergence during the

learning process.

The sampled actions used for the agent update are categorized into two parts. Online

actions are drawn from a smaller replay buffer of the size defined by the hyperparameter

onlineSize containing actions from the most recent steps in the environment, while offline

actions are sampled from the entire replay buffer.

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(a) Cartpole

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(b) Ant

Figure 5.17.: Reward of OAC in the Cartpole (a) and Ant (b) environment for different

prioritized replay buffers.

��

aB = aB,offline + aB,online

aB,online ⇠ replayBuffer[idx� onlineSize : idx]

aB,offline ⇠ replayBuffer[0 : max]

(5.4)

The number of actions drawn from both replay buffers is determined by the batch size

and a factor ↵, which specifies the proportion between offline and online samples.

onlineBatchSize = ↵ · batchSize

offlineBatchSize = batchSize� onlineBatchSize
(5.5)

The subsequent experiments are conducted for OAC, NGOAC, and OAC-RepTrick with

different online-offline proportions, each across five seeds. For more comprehensive

experimental details, please refer to the information provided in Appendix D.

Employing a prioritized replay buffer for OAC to prioritize the latest actions in the agent’s

update process does not yield any additional improvement. As shown in Figure 5.17a for

the Cartpole environment, a lower value of the online-offline fraction ↵ results in a more

stable outcome after the policy has converged to the optimal policy. Conversely, a higher

value of ↵ leads to slightly inferior results. In the Ant environment, as depicted in Figure

5.17b, there is no noticeable distinction in the performance between different values of ↵.

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(a) Cartpole

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(b) Ant

Figure 5.18.: Reward of NGOAC in the Cartpole (a) and Ant (b) environment for different

prioritized replay buffers.

��

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(a) Cartpole

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

1000

2000

3000

4000

r
e
w
a
r
d

0.05

0.1

0.2

0.5

(b) Ant

Figure 5.19.: Reward of OAC-RepTrick in the Cartpole (a) and Ant (b) environment for

different prioritized replay buffers.

This observation also holds for the Humanoid environment, where the detailed results are

available in Appendix D.

Like OAC, the incorporation of online data into the offline update of SAC does not result

in any performance improvement for both the natural gradient extension and the repa-

rameterized version. This lack of improvement is evident in Figure 5.18 for NGOAC and in

Figure 5.19 for OAC-RepTrick. Further results pertaining to the Humanoid environment

can be found in Appendix D.

The results are quite evident: a prioritized replay buffer that emphasizes the latest sampled

actions of the exploration policy does not accelerate the convergence speed and does not

surpass the base version, as demonstrated in Chapter 5.1. It is noteworthy that for OAC

in the Cartpole environment, emphasizing recent actions can lead to post-convergence

instabilities.

��

6. Conclusion

OAC relies on an uncertainty-based exploration strategy to enhance both convergence

speed and agent performance. However, a significant challenge arises due to its sensitivity

to the KL bound, which can lead to the generation of a bang-bang exploration policy. This

issue is theoretically demonstrated in a simple example and further investigated in the

Cartpole task by evaluating the action histogram.

Experimental results emphasize the sensitivity to the hyperparameter, which can make

OAC challenging to apply in other environments without a comprehensive hyperparameter

search. In general, non-bang-bang optimal tasks are characterized by either a task goal

that necessitates a non-bang-bang policy or the inclusion of a quadratic action cost term

in the reward structure. In environments that are non-bang-bang optimal by default,

such as the Cartpole, OAC may encounter difficulties. Nevertheless, it excels in inherently

bang-bang optimal tasks, like Ant and Humanoid.

To address these challenges, the natural gradient variant of OAC is introduced. NGOAC

optimizes the UCB with a natural gradient while relying solely on first-order gradient infor-

mation, maintaining computational efficiency comparable to OAC. Theoretical strengths

of NGOAC are demonstrated through a toy example where the optimum is better approxi-

mated and the exploration policy is not directly determined by the KL constraint. As a

result, a higher value of the optimization constraint enables a more flexible optimization of

the exploration policy, allowing it to better utilize the optimistic exploration information.

Building upon the foundation of OAC, the natural gradient extension also enables direc-

tional informed exploration, mitigates pessimistic underexploration, and, importantly,

does not inherently tend to produce a bang-bang exploration strategy.

Experimental results showcase that NGOAC is in general less sensitive to the hyperparam-

eters, especially to the KL bound of the optimization problem, leading to good results

across a wide range of hyperparameter values. Notably, in the Cartpole environment,

NGOAC outperforms SAC and OAC in terms of exploration speed, stability, and robustness.

�6

To assess the need for the natural gradient in optimizing the UCB, an alternative approach

involves optimizing a reparameterized objective function using SGD. In theory, OAC-

RepTrick provides a superior optimization solution compared to OAC as it also incorporates

gradient information into the update of the policy’s variance. Much like the natural

gradient, it avoids generating a bang-bang-like exploration policy. However, it differs in

that the attained optimum is not constrained to remain within the trust region defined by

the KL bound. Furthermore, OAC-RepTrick introduces an additional hyperparameter that

governs the extent of trust region violation. The empirical findings support the notion

that optimizing the reparameterized objective function is less susceptible to variations in

hyperparameters. Nevertheless, in the Cartpole environment, where NGOAC demonstrates

superior performance in terms of convergence speed and stability, OAC-RepTrick exhibits

performance levels similar to OAC and the baseline results of SAC.

The potential advantages of a prioritized replay buffer in incorporating a greater proportion

of online data into the off-policy update procedure of SAC have been explored. The

experimental results unequivocally demonstrate that the implementation of a prioritized

replay buffer does not yield any benefits; it neither accelerates the convergence speed nor

enhances the performance of OAC and its variants. In fact, it can potentially introduce

instabilities into the learning process.

In future research, there is an opportunity to delve deeper into the approximation of

the UCB. One avenue to explore involves employing ensemble methods to obtain a more

accurate estimation of the epistemic uncertainty associated with the state-value function.

Additionally, the work by [51] underscores the significance of ensemble independence

when estimating uncertainties for Offline RL. In the context of SAC, this can be achieved

by employing an ensemble of independent min-double Q function approximators. Since

uncertainty estimation significantly impacts the quality of the UCB, these efforts have

the potential to yield further advancements in optimistic exploration. Moreover, with a

precisely defined objective function, multiple optimization iterations can be executed to

obtain a better optimum, consequently yielding an enhanced exploration strategy.

��

Bibliography

[1] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and

management science, vol. 2, pp. 331–434, 1990.

[2] R. Bellman, “A markovian decision process,” Journal of mathematics and mechanics,

pp. 679–684, 1957.

[3] R. Sutton and A. Barto, “Reinforcement learning: An intro,” 1998.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-

national conference on machine learning, pp. 1928–1937, PMLR, 2016.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-

mum entropy deep reinforcement learning with a stochastic actor,” in International

conference on machine learning, pp. 1861–1870, PMLR, 2018.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[8] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292,

1992.

[9] S. Levine and V. Koltun, “Guided policy search,” in International conference on

machine learning, pp. 1–9, PMLR, 2013.

[10] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial

and review,” arXiv preprint arXiv:1805.00909, 2018.

�8

[11] A. Abdolmaleki, R. Lioutikov, J. R. Peters, N. Lau, L. Pualo Reis, and G. Neumann,

“Model-based relative entropy stochastic search,” Advances in Neural Information

Processing Systems, vol. 28, 2015.

[12] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning

and teaching,” Machine learning, vol. 8, pp. 293–321, 1992.

[13] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient neural

reinforcement learning method,” in Machine Learning: ECML 2005: 16th European

Conference on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16,

pp. 317–328, Springer, 2005.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through

deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv

preprint arXiv:1511.05952, 2015.

[16] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement learning with

less data and less time,” Machine learning, vol. 13, pp. 103–130, 1993.

[17] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel ddpg method with prioritized

experience replay,” in 2017 IEEE international conference on systems, man, and

cybernetics (SMC), pp. 316–321, IEEE, 2017.

[18] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling

network architectures for deep reinforcement learning,” in International conference

on machine learning, pp. 1995–2003, PMLR, 2016.

[19] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” arXiv

preprint arXiv:1611.05397, 2016.

[20] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,

A. Sendonaris, I. Osband, et al., “Deep q-learning from demonstrations,” in Proceed-

ings of the AAAI conference on artificial intelligence, vol. 32, 2018.

[21] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,

B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep rein-

forcement learning,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 32, 2018.

��

[22] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and

D. Silver, “Distributed prioritized experience replay,” arXiv preprint arXiv:1803.00933,

2018.

[23] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneer-

shelvam, M. Suleyman, C. Beattie, S. Petersen, et al., “Massively parallel methods

for deep reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015.

[24] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang, “Exploration

in deep reinforcement learning: From single-agent to multiagent domain,” IEEE

Transactions on Neural Networks and Learning Systems, 2023.

[25] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement

learning with deep predictive models,” arXiv preprint arXiv:1507.00814, 2015.

[26] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by

self-supervised prediction,” in International conference on machine learning, pp. 2778–

2787, PMLR, 2017.

[27] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,” Advances in

neural information processing systems, vol. 24, pp. 2249–2257, 2011.

[28] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via bootstrapped

dqn,” Advances in neural information processing systems, vol. 29, 2016.

[29] I. Osband, B. Van Roy, D. J. Russo, Z. Wen, et al., “Deep exploration via randomized

value functions.,” J. Mach. Learn. Res., vol. 20, no. 124, pp. 1–62, 2019.

[30] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,

D. Hassabis, O. Pietquin, et al., “Noisy networks for exploration,” arXiv preprint

arXiv:1706.10295, 2017.

[31] T. Rückstiess, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber, “Ex-

ploring parameter space in reinforcement learning,” Paladyn, vol. 1, pp. 14–24,

2010.

[32] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,

P. Abbeel, and M. Andrychowicz, “Parameter space noise for exploration,” arXiv

preprint arXiv:1706.01905, 2017.

[33] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” in

International conference on machine learning, pp. 22–31, PMLR, 2017.

��

[34] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft, “Safe exploration for reinforce-

ment learning.,” in ESANN, pp. 143–148, 2008.

[35] W. F. Whitney, M. Bloesch, J. T. Springenberg, A. Abdolmaleki, and M. A.

Riedmiller, “Rethinking exploration for sample-efficient policy learning,” ArXiv,

vol. abs/2101.09458, 2021.

[36] W. F. Whitney, M. Bloesch, J. T. Springenberg, A. Abdolmaleki, K. Cho, and M. Ried-

miller, “Decoupled exploration and exploitation policies for sample-efficient rein-

forcement learning,” arXiv preprint arXiv:2101.09458, 2021.

[37] T. Seyde, I. Gilitschenski, W. Schwarting, B. Stellato, M. Riedmiller, M. Wulfmeier,

and D. Rus, “Is bang-bang control all you need? solving continuous control with

bernoulli policies,” Advances in Neural Information Processing Systems, vol. 34,

pp. 27209–27221, 2021.

[38] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”

in 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–

5033, IEEE, 2012.

[39] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep

energy-based policies,” in International conference on machine learning, pp. 1352–

1361, PMLR, 2017.

[40] M. Toussaint, “Robot trajectory optimization using approximate inference,” in Pro-

ceedings of the 26th annual international conference on machine learning, pp. 1049–

1056, 2009.

[41] R. Fox, A. Pakman, and N. Tishby, “Taming the noise in reinforcement learning via

soft updates,” arXiv preprint arXiv:1512.08562, 2015.

[42] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al., “Maximum entropy inverse

reinforcement learning.,” in Aaai, vol. 8, pp. 1433–1438, Chicago, IL, USA, 2008.

[43] B. D. Ziebart, Modeling purposeful adaptive behavior with the principle of maximum

causal entropy. Carnegie Mellon University, 2010.

[44] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” in International conference on machine learning, pp. 1587–1596,

PMLR, 2018.

��

[45] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,

A. Gupta, P. Abbeel, et al., “Soft actor-critic algorithms and applications,” arXiv

preprint arXiv:1812.05905, 2018.

[46] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[47] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-prop: Sample-

efficient policy gradient with an off-policy critic,” arXiv preprint arXiv:1611.02247,

2016.

[48] E. Cetin and O. Celiktutan, “Learning pessimism for reinforcement learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 6971–6979,

2023.

[49] K. Ciosek, Q. Vuong, R. Loftin, and K. Hofmann, “Better exploration with optimistic

actor critic,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[50] T. Moskovitz, J. Parker-Holder, A. Pacchiano, M. Arbel, and M. Jordan, “Tactical

optimism and pessimism for deep reinforcement learning,” Advances in Neural

Information Processing Systems, vol. 34, pp. 12849–12863, 2021.

[51] K. Ghasemipour, S. S. Gu, and O. Nachum, “Why so pessimistic? estimating un-

certainties for offline rl through ensembles, and why their independence matters,”

Advances in Neural Information Processing Systems, vol. 35, pp. 18267–18281, 2022.

[52] H. Sun, L. Han, R. Yang, X. Ma, J. Guo, and B. Zhou, “Exploit reward shifting

in value-based deep-rl: Optimistic curiosity-based exploration and conservative

exploitation via linear reward shaping,” Advances in Neural Information Processing

Systems, vol. 35, pp. 37719–37734, 2022.

[53] S.-I. Amari and S. C. Douglas, “Why natural gradient?,” in Proceedings of the 1998

IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98

(Cat. No. 98CH36181), vol. 2, pp. 1213–1216, IEEE, 1998.

[54] M. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava, “Fast and

scalable bayesian deep learning by weight-perturbation in adam,” in International

conference on machine learning, pp. 2611–2620, PMLR, 2018.

[55] M. Opper and C. Archambeau, “The variational gaussian approximation revisited,”

Neural computation, vol. 21, no. 3, pp. 786–792, 2009.

��

[56] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” The

annals of Statistics, pp. 1135–1151, 1981.

[57] W. Lin, M. E. Khan, and M. Schmidt, “Stein’s lemma for the reparameterization trick

with exponential family mixtures,” arXiv preprint arXiv:1910.13398, 2019.

[58] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,

N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance gpu-

based physics simulation for robot learning,” 2021.

[59] D. Makoviichuk, “Rl games: High performance rl library.” https://github.com/

Denys88/rl_games. [Accessed 11-09-2023].

[60] IAS TU Darmstadt, “Experiment launcher.” https://git.ias.informatik.

tu-darmstadt.de/common/experiment_launcher. [Accessed 08-10-

2023].

[61] SchedMD, “Slurm workload manager.” https://slurm.schedmd.com/

documentation.html. [Accessed 11-10-2023].

[62] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that

can solve difficult learning control problems,” IEEE transactions on systems, man,

and cybernetics, no. 5, pp. 834–846, 1983.

[63] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” arXiv preprint

arXiv:1506.02438, 2015.

[64] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors

through online trajectory optimization,” in 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 4906–4913, IEEE, 2012.

[65] D. Bertsekas, Dynamic programming and optimal control: Volume I, vol. 4. Athena

scientific, 2012.

[66] S. Schmitt, M. Hessel, and K. Simonyan, “Off-policy actor-critic with shared expe-

rience replay,” in International Conference on Machine Learning, pp. 8545–8554,

PMLR, 2020.

��

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://git.ias.informatik.tu-darmstadt.de/common/experiment_launcher
https://git.ias.informatik.tu-darmstadt.de/common/experiment_launcher
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html

A. Implementation Details

The implementation of the OAC and its variants are based on SAC as described in Algorithm

1. They only differ in the computation of the exploration policy. Further implementation

details can be found in the following. In the case of SAC, the exploration policy is the

same as the target policy ⇡E = ⇡T .

Algorithm 1 Soft Actor Critic

Require: ✓1, ✓2,� B Initial parameters

1: ✓̄1 ✓1, ✓̄2 ✓2 B Initialize target network weights

2: D ; B Initialize replay buffer

3: for each iteration do

4: for each environment step do

5: ⇡E exploration strategy B Compute exploration policy

6: at ⇠ ⇡E(at|st) B Sample action

7: st ⇠ p(st+1|st, at) B Sample transition from the environment

8: D D [{(st, at, r(st, at), st+1)} B Store transition in the replay pool

9: end for

10: for each training step do

11: ✓i ✓i � �Qr✓iLQ(✓i,D) for i 2 {1, 2} B update Q function parameters

12: � �⇡r�J⇡(�) B update policy weights

13: ✓̄i ⌧✓i + (1� ⌧)✓̄i for i 2 {1, 2} B Update target network weights

14: end for

15: end for

16: return ✓1, ✓2,� B Optimized parameters

��

A.�. Optimisitic Actor Critic

The computation of the exploration policy in OAC that is used in the SAC framework in

Algorithm 1 can be found in Algorithm 2.

Algorithm 2 OAC - exploration policy

Require: Q1, Q2,⇡T
1: �µ =

⇥

raQ̂UB(s, a)
⇤

a=µT
B Compute gradient

2: µE = µT +
p
2�

k�µk⌃T

⌃T�µ B Update mean

3: ⌃E = ⌃T B Update variance

4: return ⇡E (µE ,⌃E) B Exploration policy

A.�. Natural Gradient Optimisitic Actor Critic

The exploration policy of NGOAC is optimized as decribed in Chapter 4 and the imple-

mentation details can be found in Algorithm 3.

Algorithm 3 NGOAC - exploration policy

Require: Q1, Q2,⇡T
1: �⌃ = r⌃J(µ,⌃) = E [raQUCB(s, a)]
2: �µ = rµJ(µ,⌃) =

1
2E

⇥

⌃
�1(a� µ)raQUCB(s, a)

T
⇤

3: � 1 B Set initial update length

4: for each linesearch step do

5: ⌃
�1 = ⌃

�1
⇡ � 2��⌃ B Update variance

6: µ = µ⇡ + �⌃�µ B Update mean

7: if KL(N (µ,⌃),N (µT ,⌃T)) <= � then

8: break

9: end if

10: � bracketing search algorithm

11: end for

12: return ⇡E (µ,⌃) B Exploration policy

��

A.�. Optimisitic Actor Critic - RepTrick

The reparameterized version of OAC requires a fixed hyperparameter � that defines the

influence of the KL bound as described in Chapter 5.1.1 and also the learning rate ↵ of

the gradient update.

Algorithm 4 OAC RepTrick - exploration policy

Require: Q1, Q2,⇡T ,�,↵

1: �µ = rµ

⇥

Ea⇠N (µ,⌃)

⇥

QUCB(s, a)
⇤

� � · KL(N (µ,⌃),N (µT ,⌃T))
⇤

2: �⌃ = r⌃

⇥

Ea⇠N (µ,⌃)

⇥

QUCB(s, a)
⇤

� � · KL(N (µ,⌃),N (µT ,⌃T))
⇤

3: µE µT + ↵ ·�µ

4: ⌃E ⌃T + ↵ ·�⌃

5: return ⇡E (µ,⌃) B Exploration policy

�6

B. Experimental Setup

If not otherwise stated, the experiments are conducted using the following settings for

the environments in Table B.1 and for SAC in Table B.2. The setup of OAC in Table B.3,

for NGOAC in Table B.4 and OAC-RepTrick in Table B.5 extend the settings of SAC.

Environment Number of parallel environments

Cartpole 512

Ant 4096

Humanoid 4096

Table B.1.: Number of parallel environments

��

Hyperparameter Value

Maximum number of epochs epochsmax 1000

Steps per episode nsteps 8

discount factor � 0.99

Learning rate entropy ↵entropy 5e-3

Learning rate actor ↵actor 5e-4

Learning rate critic ↵critic 5e-4

Exponential target smoothing ⌧critic 0.005

Batch size B 4096

Actor updates per step nupdates 12

Warmup episodes nwarmup 5

Replay buffer size sbuffer 1000000

Table B.2.: Experiment setting of SAC

Hyperparameter Value

Optimization constraint � s. hyperparameter search

Level of optimism �UB s. hyperparameter search

Table B.3.: Experiment setting of OAC

�8

Hyperparameter Value

MC samples nmc 100

Bracketing searches nbs,max 1000

Optimization constraint � s. hyperparameter search

Level of optimism �UB s. hyperparameter search

Table B.4.: Experiment setting of NGOAC

Hyperparameter Value

MC samples nmc 100

Learning rate exploration policy ↵expl 0.05

Constraint loss � s. hyperparameter search

Level of optimism �UB s. hyperparameter search

Table B.5.: Experiment setting of OAC-RepTrick

��

C. Hyperparameter Search

C.�. Level of Optimism for OAC and NGOAC

The reward for different values of �UB are illustrated for both, OAC and NGOAC, in the

following Figures for the Cartpole (Figure C.1), Ant (Figure C.2) and Humanoid (Figure

C.3). They

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(a) OAC

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(b) NGOAC

Figure C.1.: Reward of OAC (a) and NGOAC (b) in the Cartpole environment for different

values of the level of optimism �UB.

6�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(a) OAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(b) NGOAC

Figure C.2.: Reward of OAC (a) and NGOAC (b) in the Ant environment for different

values of the level of optimism �UB.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(a) OAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

(b) NGOAC

Figure C.3.: Reward of OAC (a) and NGOAC (b) in the Humanoid environment for differ-

ent values of the level of optimism �UB.

C.�. OAC RepTrick

In this section, the grid search over the hyperparameters of OAC RepTrick is depicted in

the subsequent figures. In the context of hyperparameter sensitivity, the reparameterized

optimization approach demonstrates resilience across all hyperparameter pairs within

each of the three environments.

6�

C.�.�. Cartpole

0.01 0.1 1.0 10.0

0

100

200

300

400

500

r
e
w
a
r
d

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0.01

0.1

1.0

10.0

Figure C.4.: Reward of OAC-RepTrick in the Cartpole environment for different values of

�. The reward over the steps is shown on the right and the averaged reward

over the last five evaluation episodes is shown on the left.

0 1 2 4 8 16 32 64

βUB

0

100

200

300

400

500

r
e
w
a
r
d

0 1 2 3 4

steps ×10
6

0

100

200

300

400

500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

Figure C.5.: Reward of OAC-RepTrick in the Cartpole environment for different values

of �UB. The reward over the steps is shown on the right and the averaged

reward over the last five evaluation episodes is shown on the left.

6�

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(a) Exploration actions with � = 0.01

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(b) Exploration actions with � = 10.0

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(c) Evaluation actions with � = 0.01

0 1 2 3 4

steps ×10
6

−0.5

0.0

0.5

a
c
t
io
n

(d) Evaluation actions with � = 10.0

Figure C.6.: Action histogram of OAC-RepTrick in the Cartpole environment with different

values for �. The top row shows the actions during training, and the figures

at the bottom correspond to the actions during evaluation.

6�

C.�.�. Ant

0.01 0.1 1.0 10.0

0

1000

2000

3000

r
e
w
a
r
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0.01

0.1

1.0

10.0

Figure C.7.: Reward of OAC-RepTrick in the Ant environment for different values of �.

The reward over the steps is shown on the right and the averaged reward

over the last five evaluation episodes is shown on the left.

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

r
e
w
a
r
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

3500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

Figure C.8.: Reward of OAC-RepTrick in the Ant environment for different values of �UB .

The reward over the steps is shown on the right and the averaged reward

over the last five evaluation episodes is shown on the left.

6�

C.�.�. Humanoid

0.01 0.1 1.0 10.0

0

1000

2000

3000

r
e
w
a
r
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

r
e
w
a
r
d

0.01

0.1

1.0

10.0

Figure C.9.: Reward of OAC-RepTrick in the Humanoid environment for different values

of �. The reward over the steps is shown on the right and the averaged

reward over the last five evaluation episodes is shown on the left.

0 1 2 4 8 16 32 64

βUB

0

1000

2000

3000

r
e
w
a
r
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

r
e
w
a
r
d

0

1

2

4

8

16

32

64

Figure C.10.: Reward of OAC-RepTrick in the Humanoid environment for different values

of �UB. The reward over the steps is shown on the right and the averaged

reward over the last five evaluation episodes is shown on the left.

6�

Cartpole

�UB � reward

2 0.01 477.04

4 0.1 471.36

2 0.1 470.95

32 0.1 470.82

64 10 467.79

Ant

�UB � reward

4 0.1 3496.05

4 10 3383.76

32 0.1 3249.92

2 1 3227.60

0 0.01 3196.13

Humanoid

�UB � reward

32 10 2037.12

2 1 1879.80

4 0.01 1820.67

32 1 1797.80

4 10 1790.08

Table C.1.: Best hyperparameter pairs of OAC-RepTrick.

66

C.�. Detailed Results

In this section the results of all hyperparameter runs are stated.

C.�.�. Cartpole

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 430.8 424.8 470.1 446.1 294.2 424.2

1 434.1 428.0 467.4 440.1 436.1 360.8

2 433.6 332.7 307.3 244.3 440.2 168.7

4 444.7 443.1 92.7 215.3 278.3 323.2

8 455.9 472.5 139.6 66.7 40.6 66.7

16 365.2 467.3 71.7 52.3 22.0 73.9

32 457.3 449.0 73.9 18.4 30.9 19.7

64 366.1 454.7 85.1 22.8 42.0 82.6

Table C.2.: Mean rewards of OAC in the Cartpole environment

6�

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 461.0 374.4 405.2 403.1 464.4 463.3

1 442.9 432.3 431.8 424.8 434.1 433.6

2 334.1 456.8 427.9 389.8 467.0 329.2

4 392.2 440.9 453.8 436.3 374.1 420.1

8 408.0 448.1 448.8 454.5 458.0 459.1

16 452.4 436.7 465.6 470.1 470.9 467.8

32 409.5 410.9 424.3 463.9 464.1 466.5

64 420.2 463.3 473.7 455.4 446.9 431.3

Table C.3.: Mean rewards of NGOAC in the Cartpole environment

�UB

�
0.01 0.1 10.0 100.0

0 193.7 453.3 466.3 450.8

1 453.0 457.4 442.3 413.7

2 477.0 470.9 453.4 447.3

4 432.7 471.3 399.2 444.1

8 330.3 195.3 371.6 458.8

16 243.6 454.7 467.0 433.5

32 467.7 470.8 345.3 455.4

64 466.2 431.0 437.1 467.7

Table C.4.: Mean rewards of OAC-RepTrick in the Cartpole environment

68

C.�.�. Ant

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 2473.5 2208.2 2540.3 1535.7 1687.4 1564.4

1 3075.8 2904.9 2350.1 1885.1 1881.5 1135.2

2 2907.1 2084.8 2543.9 1822.6 1099.2 1120.2

4 2410.5 3101.2 2273.1 1495.0 1435.0 512.4

8 2900.0 2907.4 2650.7 1470.0 962.5 275.8

16 2351.8 3482.4 2400.8 1613.7 544.8 194.7

32 3057.3 2811.1 2401.6 1464.6 729.1 528.0

64 2807.3 3355.5 2480.9 914.6 437.6 659.6

Table C.5.: Mean rewards of OAC in the Ant environment

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 3278.4 2511.7 2613.6 2583.1 2100.8 2334.5

1 2560.7 2440.3 2540.3 2615.0 2582.2 2420.3

2 2789.3 2648.9 2499.7 3430.2 2833.1 3567.4

4 2986.6 3031.3 3204.9 3258.7 1918.8 3156.5

8 2895.1 2980.7 2017.4 2239.5 2113.0 1822.9

16 3088.6 2295.1 2754.6 2446.7 1836.8 2107.1

32 2731.5 2546.5 2820.4 2115.5 1704.8 618.7

64 3665.7 2654.5 2718.5 1166.4 1053.4 368.6

Table C.6.: Mean rewards of NGOAC in the Ant environment

6�

�UB

�
0.01 0.1 10.0 100.0

0 3196.1 2271.2 2894.7 2531.3

1 2804.5 2393.7 3093.7 2729.8

2 3074.4 2908.9 3227.5 3039.6

4 2389.3 3496.0 2444.2 3383.7

8 2733.2 3016.1 2648.2 2513.8

16 2777.0 2752.6 3188.2 2988.6

32 2731.5 3249.9 2960.1 2868.8

64 2754.1 2701.8 2707.3 2333.1

Table C.7.: Mean rewards of OAC-RepTrick in the Ant environment

C.�.�. Humanoid

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 592.0 760.6 1796.2 2013.9 1111.5 776.4

1 489.6 1698.9 2218.0 3237.3 2846.4 556.4

2 2233.2 1300.5 1950.6 887.6 1523.5 857.7

4 791.9 2283.9 2940.0 1360.3 1204.8 387.1

8 1515.0 2472.4 1236.3 615.9 536.3 484.3

16 1929.9 1689.4 2254.4 617.2 524.7 395.9

32 1038.9 2268.6 1217.1 250.0 434.4 436.3

64 788.5 1868.3 1339.4 447.9 482.5 512.9

Table C.8.: Mean rewards of OAC in the Humanoid environment

��

�UB

�
0.1 1.0 10.0 100.0 200.0 1000.0

0 1985.8 1688.7 1913.1 1093.3 1066.6 870.1

1 1037.3 1610.2 2507.5 2543.6 1893.7 2524.6

2 2149.4 1833.1 651.4 958.1 1171.9 704.7

4 569.0 2093.1 1621.6 1312.1 425.1 938.8

8 1947.3 1854.0 1929.0 536.3 863.2 195.8

16 1210.6 2025.7 1097.9 352.2 361.9 948.6

32 628.5 1885.4 1446.3 370.4 372.6 1053.8

64 2162.4 1497.2 917.5 539.8 1097.9 844.9

Table C.9.: Mean rewards of NGOAC in the Humanoid environment

�UB

�
0.01 0.1 10.0 100.0

0 1044.2 876.5 1502.8 669.1

1 1018.7 847.2 701.5 673.3

2 1353.7 577.7 1879.8 1297.3

4 1820.6 1427.4 1030.9 1790.0

8 1548.6 575.9 676.6 875.6

16 1426.9 1730.0 999.2 596.1

32 1161.4 770.8 1797.8 2037.1

64 944.5 713.3 749.3 1316.3

Table C.10.: Mean rewards of OAC-RepTrick in the Humanoid environment

��

D. Prioritized Replay Buffer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

3000

r
e
w
a
r
d

0.05

0.1

0.2

0.5

Figure D.1.: Reward of OAC in the Humanoid environment for different prioritized replay

buffers.

��

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

2500

r
e
w
a
r
d

0.05

0.1

0.2

0.5

Figure D.2.: Reward of NGOAC in the Humanoid environment for different prioritized

replay buffers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

steps ×10
7

0

500

1000

1500

2000

r
e
w
a
r
d

0.05

0.1

0.2

0.5

Figure D.3.: Reward of OAC-RepTrick in the Humanoid environment for different priori-

tized replay buffers.

��

	Introduction
	Related Work
	Actor Critic Methods
	Experience Replay
	Exploration in Reinforcement Learning
	Bang-Bang Optimal Control

	Preliminaries
	SAC
	OAC

	Natural Gradient Optimistic Actor Critic
	Bang-Bang Exploration induced by Optimism
	Natural Gradient Descent

	Experiments
	Performance Benchmark
	Hyperparameter Search
	Prioritized Experience Replay

	Conclusion
	Implementation Details
	OAC
	NGOAC
	OAC - RepTrick

	Experimental Setup
	Hyperparameter Search
	Level of Optimism for OAC and NGOAC
	OAC RepTrick
	Detailed Results

	Prioritized Replay Buffer

