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Abstract

Assembly tasks pose significant challenges for robots as safety must be ensured during all
physical interactions. A prominent approach for achieving this safety is impedance control,
which allows the robot to respond to external forces by mimicking the behavior of a
physical spring-damper system. Typically, the stiffness and damping of this spring-damper
system are fixed during the execution of the controller. However, recent research has
highlighted the advantages of varying robot compliance during task execution. As manually
designing such variable impedance controllers is time-consuming and costly, there has
been a growing interest in learning variable impedance profiles autonomously. This work
addresses two challenges in current research on variable impedance control: Stability and
generalization across contexts. Firstly, we propose a novel parameter transformation to
guarantee stability during the entire training process. Secondly, we employ contextualized
policy search to acquire context-dependent variable impedance profiles that not only
depend on the current state or time but also specific task properties. Through experiments,
we demonstrate that our approach is able to learn a context-dependent variable impedance
controller capable of adapting its stiffness to a wide range of different friction scenarios.
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1 Introduction

Assembly tasks, such as assembling parts in manufacturing, have long been a challenging
problem for robots [1, 2]. In these tasks, robots face the intricate challenge of manipu-
lating objects with accuracy while simultaneously guaranteeing the safety of all physical
interactions among themselves, the objects being assembled, and the surrounding environ-
ment. Accomplishing this goal necessitates the consideration of various factors, including
uncertainties that arise from potential inaccuracies in the sensors used for detecting and
locating the parts.

Manually programming a robot to handle these challenges is time-consuming and costly [3],
and the resulting solutions are inflexible: If properties of the task change, for example,
the shape or friction coefficient of a part that needs to be inserted, the robot needs to
be reprogrammed. Learning-based approaches offer a promising alternative to manual
programming by enabling robots to learn from experience, thus, allowing them to adapt
autonomously to such new scenarios [4].

Safety is a critical aspect when applying learning methods to contact-rich tasks like
assembly. It is essential to ensure that the robot’s behavior remains safe throughout the
learning process. In practice, impedance control methods [5] are often used to guarantee
safety. These methods allow the robot to respond to external forces by mimicking the
behavior of a physical spring-damper system. The compliance of the robot can be controlled
by adjusting the stiffness and damping of this system. Traditionally, in impedance control,
these stiffness and damping matrices are fixed during execution. However, recent research
has shown that humans vary their compliance during tasks [6], and learning agents can
improve their performance by adopting a similar approach [7, 8, 9]. Consequently, in
recent years there has been growing interest in autonomously learning variable impedance
profiles [10] using techniques such as reinforcement learning or imitation learning.

In this work, our objective is to learn stable variable impedance controllers for assembly
tasks. In particular, we focus on peg-in-a-hole tasks, which involve inserting a peg-like
object into a corresponding hole. To achieve our objective, we utilize a controller that
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combines motion generation and state-dependent variable impedance into a single control
law [11]. We introduce a novel parameter transformation for this controller that ensures
the stability of the dynamical system for every training rollout. Additionally, we employ
contextualized policy search to acquire impedance profiles that not only depend on the
current state but also on specific task properties, such as the friction coefficient of the
object being inserted. This contextual information allows the robot to adapt its compliance
to different assembly scenarios, improving its performance and overall flexibility.
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2 Background

In this chapter, we present an overview of the methods and concepts that are essential to
understanding the contributions of this work. We begin by introducing key concepts of
Reinforcement Learning (RL) and relevant algorithms in Section 2.1 Following, in Section
2.2, we delve into the foundations of robotics and discuss impedance control. Finally, in
Section 2.3, we summarize a recently proposed approach for stable variable impedance
control.

2.1 Reinforcement Learning

Reinforcement Learning [12] is a sub-field of machine learning where an agent has to
learn to solve a given task by interacting with an environment. In contrast to supervised
machine learning, no labeled data which explicitly indicates optimal behaviour is given
to the agent in advance. Instead, RL algorithms are designed to learn by trial and error:
The agent receives feedback in the form of rewards or penalties based on its actions. This
feedback is then used to learn an decision making function, often called policy or controller,
that maximizes the cumulative reward received over time. Learning an optimal policy in
RL is particularly challenging due to the complexity of the interaction between the agent
and its environment: The actions taken by the agent can have far-reaching consequences,
not only influencing the immediate reward but also the state of the environment and
subsequently all future rewards.

RL has gained immense popularity in recent years and has been successfully applied in
various domains such as robotics [13], gaming [14], finance [15], and healthcare [16]. In
this section, we provide a comprehensive background on RL, introducing its basic concepts
and the algorithms used throughout this work.
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Agent

Environment

Figure 2.1: Illustration of the agent-environment interaction loop. The agent observes the
current state st along with the reward rt and subsequently chooses an action
at.

2.1.1 Foundations

Reinforcement Learning (RL) problems or tasks are typically formalized asMarkov Decision
Processes (MDPs) [17]. MDPs are a mathematical framework that provides a formal way
of modeling an agent’s interaction with an environment, where the agent takes actions
based on the current state of the environment and consequently receives a reward or
penalty.

A MDP is defined as a 5-tuple (S,A,P,R, p0) where S is the set of all states, A is the set
of all actions, P is the transition probability distribution, R : S × A → R is the reward
function and p0 is the starting state distribution. For example, in a robotic task a state
s ∈ S could encode the current joint positions of the robot, while an action a ∈ A could
encode motor commands. The transition probability distribution would be given by the
dynamics of the physical environment.

MDPs are characterized by the Markov property, which states that the probability distri-
bution over the next state of the environment P(st+1|st,at, st−1,at−1, ..., s0,a0) only
depends on the current state and action, e.g. P(st+1|st,at), and consequently is inde-
pendent of any previous states or actions.

Figure 2.1 shows the interaction loop between an agent and the environment: The first
state s0 of the environment is randomly sampled from the starting state distribution p0.
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After that, the agent observes the current state st and chooses an action at to execute.
Following the environment transitions according to the transition probability function
P(st+1|st,at) and returns the new state st+1, as well as the corresponding reward rt+1 to
the agent. This interaction between the agent and the environment produces a trajectory
τ = (s0,a0, r0, s1,a1, r1, ...)

The agent decides what action to take in a given state based on a decision making function,
usually called policy. This policy can be either deterministic at = π(st) or stochastic
at ∼ π(a|st). In order to solve the MDP the agent has to find a policy π which maximizes
the expected cumulative reward [12]

J(π) = E

[︄ ∞∑︂
t=0

γtR(st,at)

⃓⃓⃓⃓
⃓s0 ∼ p0,at ∼ π(a|st), st+1 ∼ P(s|st,at)

]︄
,

where γ is a value between 0 and 1 which is typically called the discount factor. This
discount factor determines how much the agent should discount future rewards relative
to immediate rewards.

A common practice in Reinforcement Learning is to describe the policy as a parameterized
function πθ, where the output of the policy depends on a set of parameters θ that can be
adjusted to change its behavior. RL algorithms aim at finding a set of parameters such
that πθ maximizes the expected cumulative reward. The central optimization problem of
RL [12] can thus be expressed as

θ∗ = arg max
θ

J(θ),

where J(θ) = J(πθ) is the expected cumulative reward of the policy parameterized by
θ. A variety of approaches to find an optimal policy have been developed, with notable
examples being value-based methods [18, 19] that estimate the value of state-action pairs
and policy gradient methods [20, 21] that directly optimize the policy by adjusting its
parameters.
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2.1.2 Episodic Relative Entropy Policy Search

Episodic Relative Entropy Policy Search (EREPS) [22] is a Reinforcement Learning algo-
rithm that employs an information-theoretic approach to mitigate information loss during
policy updates, preventing premature convergence. EREPS utilizes two distinct policies: A
lower-level policy that deterministically maps states to actions at = πθ(st) (corresponding
to the policy in the previous sections) and an upper-level policy θ ∼ πw that determines
the parameters of the lower-level policy.

Rather than directly optimizing the lower-level policy parameters, EREPS optimizes a
parametric probability distribution defined by the upper-level policy. Specifically, EREPS
maximizes the average return by optimizing the upper-level policy while simultaneously
ensuring a smooth and stable learning process by constraining the Kullback-Leibler (KL)
divergence [23] between the new and old upper-level policy. This update process can be
formulated as the constrained optimization problem

max
π

∫︂
π(θ)R(θ)dθ

s.t. ϵ ≥
∫︂
π(θ)log

π(θ)

q(θ)
dθ

1 =

∫︂
π(θ)dθ,

where R(θ) is the cumulative reward of the lower-level policy with parameters θ and q(θ)
is the old upper-level policy. The first constraint ensures that the KL divergence between
the old and new upper-level policy is smaller that ϵ while the second constraint ensures
that the new upper-level policy is still a valid probability density.

Using the method of Lagrange multipliers [24], a closed-form solution for this constrained
optimization problem can be obtained. The new upper-level policy π is given by the
soft-max distribution

π(θ) ∝ q(θ) exp

(︃
R(θ)

η

)︃
, (2.1)

where the temperature η is given by the Lagrangian multiplier corresponding to the
KL-divergence constraint. The optimal value for η can be obtained by minimizing the dual
function

g(η) = ηϵ+ η log

∫︂
q(θ) exp

(︃
R(θ)

η

)︃
dθ.
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The dual-function is smoothly differentiable and convex in η and can therefore be effi-
ciently minimized with any standard optimization algorithm such as, for example, the
Broyden–Fletcher–Goldfarb–Shannon (BFGS) method [25]. In practice, it is infeasible
to compute the integral in the dual function and, hence, it is approximated using Monte
Carlo integration

g(η) = ηϵ+ η log
∑︂
i

1

N
exp

(︄
R(θ[i])

η

)︄
. (2.2)

The resulting algorithm, thus, first generates a set of parameter vectors θ[i] using the
current policy and evaluates them to obtain the corresponding returns R(θ[i]). Subse-
quently, the dual function given by Equation 2.2 is minimized to obtain the Lagrange
multiplier η. Utilizing this multiplier η, a weight d[i] is computed for each parameter
vector θ[i] using the soft-max distribution given by Equation 2.1. Finally, the new policy is
obtained by fitting a new parametric distribution to the weighted samples using weighted
maximum-likelihood estimation. This process is then repeated until convergence. The
pseudo-code of the full algorithm is outlined in Algorithm 1.

Algorithm 1 Relative Entropy Policy Search
1: j = 0
2: while not converged do
3: for i = 0, ..., N do
4: Sample parameter vector θ[i] ∼ πw(θ)
5: Evaluate θ[i] and obtain R(θ[i])
6: end for
7: Compute η by minimizing (2.2)
8: for i = 0, ..., N do
9: Compute d[i] using (2.1)

10: end for
11: Compute wj+1 by weighted MLE
12: j = j + 1
13: end while
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2.1.3 Contextual Relative Entropy Policy Search

Contextual Relative Entropy Policy Search (CREPS) [26] is an extension of EREPS designed
for environments where the optimal policy depends on a context variable s. It introduces
an extension to the upper-level policy π(θ|s) that incorporates the context variable s to
select the lower-level policy parameters θ. Like the standard episodic formulation, CREPS
aims to maximize the expected cumulative reward while simultaneously constraining the
expected KL-divergence between the new and old policy. The update process of CREPS
can be formulated as the constrained optimization problem

max
π

∫︂
µ(s)

∫︂
π(θ|s)R(θ, s)dθds

s.t. ϵ ≥
∫︂
µ(s)KL(π(θ|s)||q(θ|s))ds

∀s : 1 =

∫︂
π(θ|s)dθ,

where R(θ, s) is the cumulative reward of the lower-level policy with parameters θ in
context s, q(θ|s) is the old upper-level policy and µ(s) is the context distribution. However,
solving this optimization problem is infeasible as this formulation would require access to
multiple parameter vector samples θ[i]

i=1,...,N for a single context variable s[i]. Moreover,
the number of constraints would be infinite for environments with a continuous context
variable.

In order to avoid theses challenges, CREPS optimizes for the joint probability distribution
p(θ, s) instead and resorts to matching feature expectations rather than single probabilities.
The resulting optimization problem is given by

max
p

∫︂∫︂
p(θ, s)R(θ, s)dθds

s.t. ϵ ≥
∫︂∫︂

p(θ, s) log
p(θ, s)

µ(s)q(θ|s)
dθds

ϕ̂ =

∫︂∫︂
p(θ, s)ϕ(s)dθds

1 =

∫︂∫︂
p(θ, s)dθds,

where ϕ(s) is a feature transformation of the context variable and ϕ̂ is the observed
context feature expectation. Again, using the method of Lagrange multipliers, a closed-
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form solution for the constrained optimization problem can be obtained

p(θ, s) ∝ q(θ|s)µ(s) exp
(︃
R(θ, s)− ϕ(s)T v

η

)︃
, (2.3)

where η and v are Lagrange multipliers. The context dependent baseline V (s) = ϕ(s)T v
which is subtracted from the cumulative rewards can be interpreted as a value func-
tion [26]. Similar as in the standard episodic formulation the Lagrange multipliers can be
obtained by minimizing the dual function

g(η, v) = ηϵ+ ϕ̂T v + η log

(︄∑︂
i

1

N
exp

(︄
R(θ[i], s[i])− ϕ(s[i])T v

η

)︄)︄
, (2.4)

where the integrals are approximated using Monte Carlo methods.

The resulting algorithm, first generates parameter vectors θ[i] using the current policy
π(θ|s) and the observed context variables s[i] and evaluates them to obtain their cumulative
return R(θ, s). After that, the dual function given by Equation 2.4 is minimized to obtain
the Lagrange multiplier η and v. Using these multiplies a weight d[i] is computed for each
parameter vector θ[i] using the soft-max distribution given by Equation 2.3. Finally, the
new policy is obtained by fitting a new parametric distribution to the weighted samples
using weighted maximum-likelihood estimation. This process is then repeated until
convergence. The pseudo-code of the full algorithm is given in Algorithm 2.

2.2 Robotics

Robotics is a rapidly evolving sub-field of computer science and engineering that focuses
on the development of machines that automate tasks and assist humans in a variety
of ways [27]. With the advancements in technology, robots are increasingly being uti-
lized in various domains like for example manufacturing [28], transportation [27] and
assembly [2].

In this section we first introduce key concepts in robotics software and following describe
impedance control, a control method often used in contact-rich tasks.
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Algorithm 2 Contextualized Relative Entropy Policy Search
1: j = 0
2: while not converged do
3: for i = 0, ..., N do
4: Observe context variable s[i]

5: Sample parameter vector θ[i] ∼ πw(θ|s[i])
6: Evaluate θ[i] and obtain R(θ[i], s[i])
7: end for
8: Compute η and v by minimizing (2.4)
9: for i = 0, ..., N do

10: Compute d[i] using (2.3)
11: end for
12: Compute wj+1 by weighted MLE
13: j = j + 1
14: end while

2.2.1 Foundation

In this work, we consider robots that consists of a series of rigid bodies or links which are
connected by spherical or prismatic joints. Moreover, we assume that the robot is an open
kinematic chain meaning that the first link of the robot is fixed and the last link is free to
move in space.

In order to control a robot its joint can be actuated to achieve a desired rotation or
translation. The current rotation or translation of the joints is called the joint configuration
and is typically denoted by a vector q. The corresponding joint velocities and accelerations
are typically denoted as q̇ and q̈ respectively. For practical applications it is often more
desirable to control the cartesian position and rotation of the robots last link, instead of
the angles of the joints. This last link is called the end-effector and its cartesian position
and rotation is typically denoted as x, the corresponding velocities and accelerations as ẋ
and ẍ respectively.

The relationship between the joint configuration of a robot and the position and orientation
of the end-effector is described by the kinematics equations: Using the geometric properties
and arrangements of the robots links and joints one can derive a mapping x = f(q) from
joint positions to the cartesian position and orientation of the end-effector, which is called
the forward kinematics. The reverse mapping q = f−1(x), which computes joint positions
for a given position and orientation of the end-effector, is called inverse kinematics. The
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process of inverse kinematics is generally more complex compared to forward kinematics
due to the non-uniqueness of the inverse mapping.

The relationship between joint velocities q̇ and end-effector velocities ẋ can be described
using the time-derivative of the kinematics equations

ẋ =
d

dt
f(q) =

df(q)

dq

dq

dt
= J(q)q̇,

where J(q) is a matrix which is usually called the Jacobian of the robot. For robots that
are open kinematic chains, this Jacobian matrix can be computed using the transformation
matrices provided by the forward kinematics.

In general, kinematics is only concerned with geometric aspects of a motion and does not
consider the forces and torques which caused the motion. The analysis of the forces and
torques acting on the robot and its components is called robot dynamics. A dynamics
model of a robot can be used to compute the forces and torques required to achieve a
desired motion of the robot and, thus, to design control algorithms. A general formulation
of the dynamics model of an uncontrolled robot is given by

τ = M(q)q̈ +C(q, q̇) + g(q) + τext, (2.5)

where M(q) represents the Mass matrix, C(q, q̇) represents the Coriolis and Centripetal
forces, g(q) represents the gravity and τext represents the external forces from the
environment.

2.2.2 Impedance Control

Impedance control [5] is a technique often used to control robots in contact-rich tasks.
It allows the robot to prevent damage and ensure safety by controlling how the robot
behaves during the presence of external forces. The key idea of impedance control is to
model the robot as an impedance to its environment using a spring-damper system. By
adapting the stiffness and damping of this spring-damper system the compliance of the
robot can be specified: Lower stiffness and damping allows for safe interaction, but also
results in large tracking error and slow movements. Vice-versa high stiffness and damping
allow low tracking errors and fast movements, but lead to unsafe interaction.

Consider the control law

τ = S(qd − q) +D(q̇d − q) +M(q)q̈d +C(q, q̇) + g(q), (2.6)
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Figure 2.2: Block diagram illustrating an often used impedance control framework. It
consists of two distinct control loops: An inner control loop for impedance
control and an outer control loop for motion planning.

where S is the stiffness matrix, D is the damping matrix and qd, q̇d, q̈d are desired values
for the joint angles, velocities and accelerations. Inserting 2.6 into the robot dynamics 2.5
yields an equation for the closed-loop system

τext = S(qd − q) +D(q̇d − q) +M(q)(q̈d − q̈).

Clearly, the robot behaves as a spring-damper system to its environment and the stiffness
and damping of the system are defined by the matrices S and D. Thus, the compliance of
the robot can be controlled by adapting these matrices. Alternatively, by leveraging the
robot’s Jacobian, it is possible to define the spring-damper system in Cartesian space [29]

τ = J(q)TF +M(q)q̈d +C(q, q̇) + g(q)

F = S(xd − x) +D(ẋd − ẋ).

This is often preferable as it provides a more intuitive way to determine suitable stiffness
and damping values because the compliant behavior can be defined in terms of forces in
cartesian space, instead of in joint space.

In practice, impedance control is typically combined with a second control-loop, for
example a feedback controller, which handles motion generation by setting the desired
values for the joint angles, velocities and accelerations of the impedance controller. This
allows the robot to follow a predefined reference trajectory while controlling its compliance
using the impedance law. A block diagram of an impedance controller with feedback
motion planning is shown in Figure 2.2.
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Figure 2.3: Comparison between a classical impedance control architecture and the
IMOGIC control architecture. In contrast to the classical architecture, IMOGIC
unifies motion generation and impedance control into a single control loop.
This simplifies the global stability analysis of the system significantly.

2.3 Integrated Motion Generation And Impedance Control

Integrated Motion Generation And Impedance Control (IMOGIC) [11] is a recently pro-
posed framework for stable variable impedance control. In contrast to previous approaches
which rely on two distinct control loops for motion generation and interaction control,
IMOGIC unifies motion generation and impedance control into a single control law. Figure
4.1 compares the unified control loop used by IMOGIC with a classical two-loop architec-
ture. Robot motions are modeled as a time-invariant dynamical system which consists of
a nonlinear weighted combination of several linear spring-damper systems. Consequently,
the nominal trajectory of the robot motion and the impedance profile are described by
a single set of parameters, which simplifies stability analysis and allows the derivation
of sufficient conditions for global asymptotic stability of the overall system by Lyapunov
analysis.

2.3.1 Definition

The control law consists of several spring-damper terms which are combined using a state-
dependent weighting function. The first spring-damper term is always active (implying a
weight of 1) and has the origin as attractor point. The other spring-damper terms can
have arbitrary attractors and are only active in certain sub-spaces of the state-space. The
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overall control law is given by

τ = −S0x−D0ẋ−
K∑︂
k=1

ωk(x)
[︂
Sk(x− xk) +Dkẋ

]︂
= −S̄(x)(x− x̄(x))− D̄ẋ

= f(x, ẋ),

where {Sk}k=0,...,K are the Stiffness matrices, {Dk}k=0,...,K are the Damping matrices,
{xk}k=1,...,K are the attractor points and ωk(x) is the state-dependent weighting function.
The state x and ẋ can be either defined in joint or operational space. The control law can
be seen as a state-dependent variable impedance controller which varies the stiffness of the
spring and the viscosity of the damper across the state-space. In addition, the equilibrium
position of the spring, also, varies across the state-space. The weighting function ωk(x) is
always greater or equals to zero and is defined as the product of two positive scalars

ωk(x) = αk(x)βk(x).

The scalars αk(x) and βk(x) are parameterized by Sk,xk, lk and are designed such that
the accumulation of the several spring-damper systems does not create any unwanted
attractors and does not cause instability

αk(x) =

{︄
xTSk(x− 2xk) if xTSk(x− 2xk) ≥ 0

0 if xTSk(x− 2xk) < 0
,

βk(x) = e−
lk

4
(αk(x))2 .

When certain constraints on the parameters θ =
{︁
S0,D0,Sk,Dk,xk, lk

}︁
k=1,...,K

are
ensured, the system is globally asymptotically stable at the origin, as outlined in the
following sub-section.

2.3.2 Stability

The conditions for global asymptotic stability can be derived using Lyapunov’s direct
method [30]: First a non-negative Lyapunov function needs to be defined. Second, it
needs to be verified that this function always decreases throughout the motion and vanishes
at the target location. In [11] the authors propose the Lyapunov function

V (x, ẋ) =
1

2
xTS0x+

K∑︂
k=1

1

lk
(1− βk(x)) +

1

2
ẋTM(x)ẋ,

15



where M(x) is the mass matrix of the robot and S0, lk, βk(x) are defined as in f(x, ẋ).
This Lyapunov function has a unique global minimum at the origin, shares the same set
of parameters as f(x, ẋ) and can be evaluated in closed-form. By following Lyapunov’s
direct method it can be shown that the gravity-compensated robot motion driven by the
control law τ = f(x, ẋ) + g(x) is globally asymptotically stable at the origin if

S0 = (S0)T ≻ 0

D0 ≻ 0

Sk = (Sk)T ⪰ 0

Dk ⪰ 0

lk > 0.

Thus, the control law is globally asymptotically stable at the origin if the state-varying
stiffness S̄ and damping D̄ remains positive definite. Note that globally asymptotically
stability is only guaranteed for free-space movement. For example, when an object that is
present in the environment is preventing the robot to move towards the target position,
asymptotic stability is lost. However, when interacting with an passive, non-actuated
environment f(x, ẋ) remains stable (but not asymptotically stable).

2.4 Related Work

Methods for learning variable impedance controllers were extensively studied in prior re-
search [10]. The learned impedance profiles are typically either state- or time-dependent
and are obtained by trial-and-error using reinforcement learning or from human demon-
strations using imitation learning.

The application of reinforcement learning to learn variable stiffness and damping profiles
has been explored using various policy representations and training algorithms. For
instance, in [31] the natural actor-critic algorithm is employed to determine the optimal
time-dependent impedance parameters of a 2-link manipulator along a given reference
trajectory. In contrast, in [32] the authors simultaneously optimize the gain schedule of a
impedance controller and the reference trajectory, represented by a dynamic movement
primitive, using the PI2 algorithm. These methods, however, rely on small parameter
spaces in order to reduce the search space.

Notably, recent advancements have integrated impedance control with deep neural net-
works: In [7, 8, 9], different action spaces for mapping outputs of deep neural network
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policies to robot commands are compared, demonstrating that reinforcement learning
agents can benefit from allowing the policy to control the stiffness and damping parame-
ters of an impedance controller. Another approach proposed in [33] introduces a neural
network architecture that represents a hybrid position-force controller capable of achiev-
ing adaptive impedance implicitly using sensed forces. This network is then optimized
through a model-based reinforcement learning approach. In [34], an ensemble of neural
networks is employed to learn an interaction dynamic model, which is then utilized to
optimize the variable stiffness and damping parameters using model-predictive control
and the cross-entropy method

Similar to the control framework used throughout this work, in [35], a variable impedance
control law is realized through a mixture of proportional-derivative systems. The parame-
ters are optimized using expectation-maximization based reinforcement learning. Closest
to our work, in [36] stable state-dependent variable impedance policies are learned using
a controller which unifies motion generation and impedance control into a single control
law, and episodic reinforcement learning. In contrast to previous work, which largely
disregarded the issue of stability, in [36] stability throughout the whole training process
is guaranteed by restricting the exploration distribution to assign zero probability mass to
unstable parameter vectors.

Another research direction focuses on learning variable impedance profiles from human
demonstrations. For example, in [37], a method is proposed to learn force-based variable
impedance skills by probabilistically encoding sensed forces and estimated stiffnesses using
a Gaussian mixture model. In [38], the stiffness matrices of a variable impedance controller
are estimated from kinesthetic demonstrations using Gaussian mixture regression. In the
work presented in [39], dynamic movement primitives (DMPs) are employed to learn
position and force trajectories from human demonstrations. Subsequently, a control policy
which maps position and force to the desired change in robot impedance is learned through
deep reinforcement learning. By utilizing inverse reinforcement learning, the method
proposed in [40] learns both the variable impedance profile and the reward function from
expert demonstrations.

While the existing literature has primarily focused on state- or time-dependent impedance
profiles, we address the limitations of such approaches and explore the advantages of
incorporating context variables into the impedance profile. By adapting the compliance
of the controller based on the current context, we aim to enhance the performance and
safety of robotic insertion tasks across diverse scenarios.
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3 Context-Dependent Variable Impedance
Control With Stability Guarantees

In this work, we propose a novel framework to learn context-dependent variable impedance
controllers for robot insertion tasks with stability guarantees. To accomplish this, we
utilize a controller that unifies motion generation and state-dependent variable impedance
into a single control law. We propose a novel parameter transformation for this controller
which allows us to guarantee the stability of the dynamical system for every training rollout.
Furthermore, we leverage contextualized policy search to acquire impedance profiles that
are not solely dependent on the current state but also on specific task properties, such as
the friction coefficient of the object being inserted.

In this chapter we provide a detailed explanation of our approach. First, in section 3.1 we
introduce the aforementioned controller parameter transformation. Following, in section
3.2 we explain how contextualized policy search can be used to learn context-dependent
variable impedance profiles.

3.1 Stable Training

While the issue of stability remains unaddressed in most research on variable impedance
controllers, stability guarantees are crucial for widespread adoption to real world robotic
tasks: Unstable controllers can lead to unsafe behaviour of the robot which, in the worst
case, can damage the system or its environment. In contrast, stability guarantees make
the movement of the robot more predictable, prevent erratic behaviour and, thus, increase
safety. Moreover, asymptotic stability provides a strong bias during training. Insertion
tasks are goal-orientated, meaning that a successful controller must move the robots
end-effector to a goal position which is predefined by the position of the hole in which
the object needs to be inserted. While unstable controllers are able to reach almost
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any final position, asymptotic stability guarantees that every rollout converges to this
predefined goal position, assuming no object in the environment blocks its movement.
Thus, asymptotic stability restricts the training process to a smaller, more promising area
of the full workspace and thereby increases sample-efficiency.

Consider the IMOGIC controller, as discussed in Section 2.3. The controllers tune-able
parameters are given by

θ =
{︂
S0,D0,Sk,Dk,xk, lk

}︂
k=1,...,K

,

and the controller is guaranteed to be globally asymptotically stable when all matrices
{Sk}k=0,...,K , {Dk}k=0,...,K are positive definite and lk > 0, ∀k = 1, ...,K. Directly opti-
mizing these parameters using an off-the-shelf episodic reinforcement learning algorithm
is not viable as unrestricted updates of the parameters may lead to the loss of the positive
definiteness of the matrices, thereby compromising the system’s stability properties. In
contrast to previous work [36] which ensures that the constraints on θ are met by re-
stricting the search distribution, our approach guarantees stability for every rollout by
transforming the parameter space of the policy. For that, we introduce a set of auxiliary
parameters

ϕ =
{︂˜︂s0,˜︂d0,˜︂sk,˜︂dk,˜︂xk, ˜︁lk}︂

k=1,...,K
,

along with a bijective mapping f : Φ → Θ. The bijectiveness of this mapping is crucial
as it guarantees that every possible set of parameters θ ∈ Θ can be represented by a
corresponding set of auxiliary parameters ϕ ∈ Φ, and vice versa. Importantly, the mapping
is designed to ensure that the aforementioned parameter restrictions for θ are always
fulfilled, while no specific restrictions need to be imposed on the auxiliary parameters
ϕ. This approach enables us to leverage off-the-shelf episodic reinforcement learning
algorithms, such as EREPS, to learn the controller parameters while preserving global
asymptotic stability throughout each rollout.

Defining the mapping function for the parameters {lk}k=1,...,K ⊂ θ is straightforward:
We adopt a log-space representation and the transformation is, thus, defined using the
exponential function, i.e.

l1 = e
˜︁l1 .

For the positive definite matrices {Sk,Dk}k=0,...,K ⊂ θ the mapping can be defined
using the Cholesky decomposition: Any real positive definite matrix can be expressed as
the product of a lower triangular matrix with real and positive diagonal entries, and its
transpose. This lower triangular matrix is unique for each positive definite matrix and,
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hence, the cholesky decomposition can be used to define a bijective mapping. Exemplary
for S0 ∈ θ, the mapping can be defined as

S1 =

⎛⎜⎜⎜⎝
e
˜︁s11 0 0˜︁s12 e

˜︁s14 0˜︁s13 ˜︁s15 e
˜︁s16

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e
˜︁s11 0 0˜︁s12 e ˜︁s4 0˜︁s13 ˜︁s15 e

˜︁s16

⎞⎟⎟⎟⎠
T

. (3.1)

By leveraging the proposed parameter transformation, we are now able to utilize EREPS
to learn the controller parameters while maintaining global asymptotic stability during
every rollout. First, we define the upper-level policy as a probability distribution over the
auxiliary parameters ϕ. While any probability distribution could be used, in this work we
stick to a simple Gaussian distribution, i.e. N (ϕ|µ,Σ). Next, we define the lower-level
policy using the IMOGIC controller alongside the proposed bijective mapping function:
For a given sample ϕ[i] ∼ N (ϕ|µ,Σ) the mapping is used to compute the controllers
parameters θ[i] = f(ϕ[i]) and the cumulative reward R(ϕ[i]) = R(θ[i]) is obtained using
the stable parameter set θ[i]. Finally, using the described policies, we employ the standard
EREPS algorithm as described in Section 2.1.2 to optimize the upper-level policy.

3.2 Context-Dependent Variable Impedance

As discussed in Section 2.4, previous research has extensively explored the learning of
impedance profiles that vary depending on the state or time. However, it is important to
recognize that an optimal impedance profile may not exclusively rely on the environments
state or time variables. In fact, there are several scenarios where it can be highly advanta-
geous to learn a variable impedance controller that adjusts its compliance based on the
current context.

In many real-world applications, the desired behavior of a controller is influenced by
contextual factors or environmental properties. For example, consider an assembly robot
tasked with inserting various objects that have significantly different properties. In practice,
it is desirable to find a suitable balance by setting the stiffness as low as possible to ensure
safety while maintaining a sufficiently high stiffness to effectively solve the insertion task.
However, determining this optimal balance may depend on the specific properties of the
object at hand: For instance, when dealing with an object characterized by a very low
friction coefficient, utilizing a low-stiffness impedance profile would be suitable. On the
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other hand, an object with high friction would require a higher stiffness to overcome the
insertion-related friction. Consequently, employing a fixed impedance profile without
considering the context could lead to suboptimal performance for different insertion
tasks. By incorporating a context variable into the impedance profile, the controller can
adapt its behavior to accommodate such diverse situations. As a result, the controller
can dynamically adjust its impedance to ensure effective and safe interactions for a wide
range of insertion objects.

In this work, we consider context variables that are fixed during the execution of the
controller, e.g. during a single insertion. Our objective is to learn a function that predicts
the suitable variable impedance profile for a given context prior to task execution. To
accomplish this, we leverage CREPS and IMOGIC along with the parameter transfor-
mation proposed in the previous section. This enables us to learn context-dependent
variable impedance profiles while, again, maintaining global asymptotic stability during
every rollout. Similar as in Section 3.1 we define the upper-level policy of CREPS as
a probability distribution over the auxiliary parameters ϕ. However, we now utilize a
Gaussian distribution whose mean is given by a linear function of the context variable,
i.e. N (ϕ|wTψ(s),Σ) where ψ(s) represents a user-defined feature transformation of the
context variable s. While any feature transformation could be used, in this work we utilize
radial basis functions. The lower-level policy is defined using the IMOGIC controller along-
side the bijective mapping function, following the procedure discussed in the previous
section. Using these policies, we employ the standard CREPS algorithm as described
in Section 2.1.3 to optimize the upper-level policy. After convergence, the sought-after
context-mapping is given by the mean of the upper-level policy, wTψ(s), which can be
utilized to predict appropriate variable impedance profiles for a given context.
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4 Experiments

In this chapter, we showcase the experiments conducted to evaluate the proposed method.
In Section 4.1 we explain the process of setting up the environments and provide imple-
mentation details. After that, in Section 4.2, we present and discuss the results for both
tasks.

4.1 Environments

The primary objective of this research is to develop context-dependent variable impedance
controllers specifically designed for insertion tasks. In order to evaluate the effectiveness
of the proposed method, it is crucial to create benchmark environments that incorporate
contextual factors which influence desired behavior of the controller and, thereby, the
optimal impedance profile.

To accomplish this, we implemented two robotic tasks utilizing the PyBullet [41] simulation
engine: Insertion2D and InsertionPanda. Figure 4.1a depicts the Insertion2D
task, a simple toy task chosen to reduce complexity and provide fast results. It features
a 3-dimensional box which is controlled by two prismatic joints along the x- and y-
axis. The box’s z-axis position and orientation remain fixed. Figure 4.1a provides a
visual representation of the Insertion2D task, which was intentionally designed to
reduce complexity and provide fast results. This task involves a 3-dimensional box that is
manipulated by two prismatic joints along the x- and y-axis. The policy moves the box in
the x-y plane by controlling these two joints. The position and orientation of the box along
the z-axis remain fixed throughout the task. For a more realistic evaluation, we introduced
the InsertionPanda task, as shown in Figure 4.1b. This task involves a Panda robot
equipped with 7 spherical joints, with a box attached to its end-effector. Although the
policy has the capability to control all joints of the Panda robot, we specifically utilize
an operational space impedance controller with fixed gains for orientation. Our primary
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(a) Insertion2D (b) InsertionPanda

Figure 4.1: Screenshots of the implemented environments. (a) shows the Insertion2D
task, which features a 3-dimensional box which is controlled by two prismatic
joints along the x- and y-axis. The box’s z-axis position and orientation remain
fixed. (b) shows the Insertion2D task, which features the 7-dof panda robot
with a box attached to its end-effector. In both tasks, the goal is to insert the
box into the hole as safely as possible.
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focus is on learning a variable impedance profile for Cartesian translation, leveraging the
proposed method.

In both tasks, an action a consists of desired torques or forces for each joint. The state
s includes the current joint positions and velocities. To predict joint torques based on
their positions and velocities, the policy is designed as explained in Section 3. The initial
position of the box or the end-effector is deliberately set laterally away from the hole.
An episode terminates either when the insertion is successfully completed or when a
predefined maximum number of environment steps is reached. The objective in both tasks
is to learn a policy that achieves fast insertion while ensuring safety by using minimal
torques or forces in regions of the state-space where collisions might occur. The reward
function is carefully crafted to incentivize this behavior and is represented by the equation,

R(s,a) = αdist(s, sg) + β

{︄
0 if dist(s, sg) > ϵ

∥a∥ else

where dist is a function that measures the distance between its two inputs and ϵ is set
such that the torque penalty is only active in regions of the state-space where a potential
collision may occur, such as near the goal position. Consequently, an optimal policy will
exhibit high stiffness during free-space movement of the task and low stiffness when the
box approaches the goal position.

In both tasks, the friction coefficient of the insertion is not fixed, but rather determined
by a context value which gets sampled from a context distribution which spans over the
range [0.3, 1.5] at the beginning of each episode. This necessitates that the optimal policy
must be able to adapt it behaviour based on this context variable: The controller’s goal is
to achieve an optimal balance by setting the stiffness as low as possible for safety while
maintaining sufficient stiffness to effectively perform the insertion task. However, this
balance depends on the current context value. For example, when dealing with an object
characterized by a very low friction coefficient, a low-stiffness impedance profile would
be suitable. Conversely, an object with high friction would require a higher stiffness
to overcome the insertion-related friction. Therefore, the controller needs to adapt its
stiffness to the observed friction coefficient to achieve an optimal balance across all possible
context values.
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Figure 4.2: Illustration of the results achieved on the InsertionPanda task. The results
are averaged over 10 random seeds, and the plots depict the mean as well as
the standard deviation. (a) shows the average episode return and (b) shows
the average success rate. While the REPS algorithm was unable to solve
the task, the CREPS algorithm reaches a 100 percent success rate across all
seeds.

4.2 Experiments

To empirically evaluate our approach, we employ CREPS, as described in Section 3.2,
to train the context-dependent variable impedance controller in both environments. We
compare this approach to training without context-dependency using EREPS. In each
iteration of both algorithms, we utilize 10 rollouts. The algorithms are executed until
convergence or a maximum of 25 iterations. The KL-divergence bound is set to 1.0. After
each iteration we evaluate the current policy in terms of returns and success rate by
executing it on 10 randomly sampled context values.

The results obtained from the Insertion2D and InsertionPanda tasks are presented
in Figure 4.2 and Figure 4.3 respectively. The results are averaged over 10 random seeds,
and the plots depict the mean as well as the standard deviation.

First and foremost, it is evident that the REPS algorithm was unable to successfully solve
the tasks. This failure can be attributed to the algorithm’s inherent incapability to handle
the significant stochasticity introduced by the context variable. The contextual nature of
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Figure 4.3: Illustration of the results achieved on the InsertionPanda task. The results
are averaged over 10 random seeds, and the plots depict the mean as well as
the standard deviation. (a) shows the average episode return and (b) shows
the average success rate. While the REPS algorithm was unable to solve
the task, the CREPS algorithm reaches a 100 percent success rate across all
seeds.
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the tasks presents a challenge for REPS, as it is unable to adapt its parameters to the current
context. This limitation is problematic as a policy that exhibits proficiency in a low context
value scenario may struggle to achieve successful insertions when faced with a high context
value, resulting in lower returns and success rates. One potential approach to mitigate
this issue could be to evaluate each parameter vector sample using a diverse range of
context values and subsequently averaging the returns across these contexts to determine
the parameter vector sample’s overall performance. However, this approach faces practical
feasibility challenges due to the significant increase in the number of required episodes.
Furthermore, even if implemented, EREPS would still learn a context-independent set of
parameters and the resulting policy would still be suboptimal, because of the inability to
lower the gains of the controller according to the context value.

In contrast, the CREPS algorithm demonstrates remarkable performance, achieving a 100
percent success rate across all seeds. CREPS is specifically designed to effectively handle
the stochasticity in the returns introduced by the context variable. By incorporating the
context-dependency into the learning process, CREPS is able to adapt its parameters to the
varying contexts, resulting in superior performance compared to EREPS. These findings
highlight the significance of context-dependency in successfully learning insertion tasks
with varying environmental properties like friction. By effectively adapting to the changing
contexts, these algorithms provide a more reliable and versatile approach to tackle the
challenges posed by such tasks.

Figure 4.4 illustrates the temporal evolution of the norm of the stiffness matrix for multiple
friction contexts. The plot compares the learned context-dependent variable impedance
controller with hand-tuned fixed gain impedance controllers. The solid lines represent
the variable gain controllers, whereas the fixed gain controllers are represented by dotted
lines.

Firstly, it can be observed that the learned controller exhibit a desirable initial characteristic
for all contexts, whereby they start with a high stiffness in the free-space movement phase
of the task and lower it when approaching the goal position. This varying of the impedance
parameters based on the current state allows the learned controller to achieve successful
insertions with significantly fewer timesteps compared to the fixed gain controllers, as
depicted in Figure 4.5. The figure shows the needed time in seconds averaged over multiple
context values. Importantly, this reduction in timesteps is achieved without compromising
safety as both the fixed gain and learned controllers maintain an similar level of stiffness
near the goal position, where collisions are likely to occur. This similarity in stiffness
profiles implies comparable levels of safety for the learned and hand-tuned controllers.
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Figure 4.4: Comparison of the temporal evolution of the norm of the stiffness matrix
between the learned context-dependent variable impedance controller and
hand-tuned fixed gain controllers. The solid lines represent the variable gain
controllers, whereas the fixed gain controllers are represented by dotted lines.
The learned controller starts with a high stiffness in the free-space movement
phase of the task and lowers it when approaching the goal position. Moreover,
the learned controller proves to be successful in autonomously utilizing a
lower stiffness for lower friction contexts.

Moreover, our method successfully learned a context-dependent variable impedance
controller capable of adapting its stiffness to a wide range of different friction scenarios.
Specifically, the learned controller exhibited reduced stiffness when dealing with objects
characterized by very low friction coefficients and increased stiffness for objects with
high friction By employing a lower stiffness when appropriate, the controller can mitigate
excessive torques, thereby minimizing the risk of collisions and ensuring safe and reliable
execution of the insertion task. While the fixed gain controllers require manual tuning
for each specific context, the learned controller successfully adapts to varying contexts
without the need for manual adjustment. This ability to generalize across contexts presents
a significant advantage of the learned controller. By automatically adjusting its stiffness
based on the context, the learned controller demonstrates robustness and adaptability,
enabling it to effectively handle insertion tasks with varying friction properties.
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Figure 4.5: Comparison of the amount of time needed for an successful insertion. The
plot shows the needed time in seconds averaged over multiple context val-
ues. ’Variable Impedance’ refers to the learned context-dependent variable
impedance controller, ’Fixed Impedance’ refers to fixed gain controllers which
were hand-tuned to every context. The learned variable impedance controller
needs significantly less time for a successful insertion.
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5 Conclusion

This thesis addressed the challenge of learning stable context-dependent variable impedance
controllers for assembly tasks, with a specific focus on peg-in-a-hole insertion tasks. The
primary objective was to enable robots to autonomously adapt to different insertion
scenarios, thereby improving performance and overall flexibility.

To achieve this goal, we proposed a framework for learning context-dependent variable
impedance controllers with stability guarantees. We utilized a controller that integrates
motion generation and state-dependent variable impedance into a single control law
and proposed a novel parameter transformation for this controller to ensure stability of
the system during training rollouts. This parameter transformation enabled the use of
standard episodic reinforcement learning algorithms to learn the controllers parameters,
while preserving stability properties. Furthermore, we employed contextualized policy
search, specifically CREPS, to learn impedance profiles that incorporate context variables,
such as the friction coefficient of the object being inserted. This allowed us to account
for the impact of contextual factors on the optimal impedance profile. To evaluate our
method, we conducted experiments in two benchmark environments where the agent
had to insert a box into a hole. In these environments, the optimal impedance profile was
not solely determined by the state or time variables but also by the friction coefficient
of the insertion object Our results demonstrate that our method successfully learned a
context-dependent variable impedance controller capable of adapting its stiffness to a
wide range of different friction scenarios. Specifically, the controller exhibited reduced
stiffness when dealing with objects characterized by very low friction coefficients and
increased stiffness for objects with high friction.

However, our proposed method does have certain limitations that should be considered.
Firstly, the controller learned by the approach is always asymptotically stable at the
origin. This means that the goal position must be known in advance, because the state
space needs to transformed such that the origin represents the desired goal position.
Consequently, an accurate and reliable sensor is necessary for estimating the goal pose.
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The reliance on such a sensor introduces a dependency on its performance and availability.
Furthermore, our method is limited to simple contexts and controllers with a small state-
space. Compared to more recent methods like deep reinforcement learning, CREPS can
only handle relatively small parameter spaces. The dimension of the parameter space of the
upper-level policy depends on both the dimension of the context’s feature representation
and the dimension of the controller’s parameters. Thus, using CREPS becomes impractical
for overly complex controllers or contexts. Lastly, the number of rollouts required until
the algorithm converges can be demanding. The current approach may necessitate a large
number of rollouts during training, which can be time-consuming and computationally
expensive. A more sample-efficient approach would be desirable to reduce the training
time and resource requirements.

In future work, our primary objective is to evaluate the proposed method on an real robot.
However, this transition presents several challenges that must be carefully addressed. One
key distinction between simulation and reality is the inability to arbitrarily set the friction
of an object. To address this, we plan to involve a human operator in the training process,
who can replace objects in the environment with materials possessing the requested
friction value after each rollout. As objects, only materials for which the exact friction
properties are known, will be used. Alternatively, if the exact friction properties are not
known, we can order the available objects based on their supposed friction coefficient
and assign increasing context values to each object, ensuring a consistent context for
training. For instance, we would assign the lowest context value to the object with the
lowest supposed friction coefficient and the highest context value to the object with the
highest supposed friction coefficient However, it remains to be determined whether the
generalization capabilities observed in simulation will effectively transfer to the real-world
setting, as only a discrete set of objects will be available. Furthermore, in the real world
the goal position needs to be estimated using sensors and, thus, the exact goal position
will not be known. To address this, we plan to extend our approach by incorporating the
learning of a transformation that maps the state-space, placing the goal position at the
origin. This adaptation will enable the method to handle sensor inaccuracies and still
effectively accomplish the task. Lastly, for a successful application in a real-world scenario,
reducing the number of required rollouts would be desirable. We intend to improve the
sample efficiency of the proposed method by employing a better initialization for the
initial control parameters. This initialization could be obtained from simulation results or
through manual tuning, enabling the method to converge faster and require fewer rollouts.
Despite these challenges, we firmly believe that our approach holds significant promise
for real-world scenarios. The stability properties it offers provide a secure exploration
process, which is crucial for safety. Additionally, the ability to learn controllers that can
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autonomously adapt to diverse assembly scenarios would be highly desirable for achieving
full autonomy in the future.
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