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Abstract
Graph neural networks (GNNs) are increasingly
used for task planning in robot manipulation, be-
cause they work better with the inherent graph
structure of manipulation problems. We designed
a task planning problem with arbitrary numbers of
objects similar to reorganizing a pantry (in-place
reorganizing of stacked objects) and trained both
a GNN and a feed-forward neural network (NN)
to solve it. The GNN consistently generalizes
faster and achieves higher accuracy (> 90%) than
the NN and when trained with 5 objects per scene
achieves zero-shot generalization with > 85% ac-
curacy on unseen datasets with 5 to 15 objects in
the scenes.

1. Introduction
Task planning is a crucial part of robotics and solving this
problem has been of increased popularity recently. With
deep learning new possibilities in this topic arrived. Graph
neural networks (GNNs) are one specific type of neural net-
work that work natively in graph domains. Using graphs to
represent the objects in a scene and the relations between
them has proven to be a convenient representation(Scarselli
et al., 2009) and further cemented the usefulness of GNNs
for task planning. While traditional neural networks cannot
generally handle dynamic inputs due to the fixed network
structure and the fixed size of the weight matrices, the graph-
shaped inputs of GNNs can have any shape or size since
GNNs process every node independently and only the fea-
ture vectors of every node must have the same size. This
makes it possible to use a single GNNs where previously
several different networks would have to be trained for every
different input size. Chapter 3.1 presents the functionality
of GNNs in detail. In this paper we design a simple task
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planning problem and train both a feed forward neural net-
work (NN) and a GNN to solve it. We show that the GNN
seems to generalize both better and faster than the NN and
generalizes well to bigger input graphs (with more nodes)
than the graphs on which it was trained. We also set up
simulated vision and an action components which in future
can be integrated with the task planning network to create a
fully connected simulated robotic manipulation pipeline and
further confirm the applicability of GNNs to task planning
in robotic manipulation problems.

2. Related Work
Task and motion planning (TAMP) is a fundamental part
of robotics. To perform a trajectory, knowledge about the
environment and the task is required (Ren et al., 2021). The
complexity of the scene and the length of the tasks and
executions make TAMP significantly more difficult. Many
different solutions have been presented for the problem (Ren
et al., 2021).
Ren et al. have a symbolic approach in their work (Ren
et al., 2021) using symbolic top-k planning. The presented
eTAMP algorithm outperformed the compared algorithms
in performance and speed in the empirical tests.
The problem of task planning can be made more difficult by
the fact that too many objects have to be considered during
planning, which rapidly reduces the performance of the
calculation. In order to ensure an efficient calculation, Silver
et al. (Silver et al., 2020) presented a system that extracts
the relevant objects for planning from the set of all existing
objects with the help of graph neural networks. For this
purpose, they introduced the notation of object importance
scores, which predicts how relevant an object is for the task
planning calculation. The authors determined the respective
labels for the calculations through an approximation in the
test environment. These scores are then used in a supervised
learning approach to learn a graph neural network model.
In various test scenarios, the authors were able to show that
their method significantly improved the calculation time and
that the approach beats other approaches in the tests.
To create actions for solving TAMPs, Driess et al. (Driess
et al., 2020) use a photo of a scene, which together with
actions and objects is fed into a recurrent neural network
with its own encoder, which has a sequence of actions as
a result. This can eliminate the time-consuming search for
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Figure 1. An example graph with 4 nodes. Each node has a six
dimensional feature vector and is connected to neighboring nodes.
The edges have no weights.

sequences, as well as the need to constantly observe the
scene. In their experiments, the authors were able to show
that even with only two objects during training, the network
could also generalize to multiple objects.
Lin et al. (Lin et al., 2021) also achieved a generalization
by training a GNN based on expert-trajectories. The system,
which represented start and target positions as nodes in the
graph. Graph convolutions are used to select an object that
is to be moved by a pick and place action. Their system also
generalizes to multiple objects, where the number of objects
was not used during training.

3. Preliminaries
In this section we give a short introduction to GNNs and de-
scribe the building blocks of a robotic manipulation pipeline.

3.1. Graph neural networks - GNNs

In many application areas, such as image analysis, scene
description, software engineering, and natural language
processing, data naturally has a graph structure or a non-
euclidean structure which can easily be represented by a
graph (Scarselli et al., 2009). A graph consists of different
nodes N, as well as edges E, which connect the nodes re-
spectively. Also, each node ni has a feature vector xi of the
same dimension m. Edges can be assigned different weights,
which can also be understood as costs for actions between
the nodes. The nodes do not have to be connected in pairs,
but the graph and the connections between the nodes can
be defined freely. The set of neighboring nodes of node i is
denoted as Ni. An example graph is shown in figure 1.

Depending on the use case, the structure of a GNN may
differ. In this paper, we consider the case where for each
node ni the initial feature vector xi of dimension m is trans-
formed to a target vector x̃i of a chosen dimension m̃. This
can also be called node prediction, since a feature vector
is to be predicted for each node. The construction of the
features is carried out according to a fixed principle. As
a first step, the individual nodes send their current feature

Figure 2. Each node sends its own feature vector to the neighboring
nodes in the message passing step. Highlighted are the messages
that reach the middle right node. You can see how the neighboring
nodes send their own feature vectors to this node.

vector to all nodes to which it is connected via edge. The
nodes each collect all incoming messages from their direct
neighbors. This step is called message passing. In figure 2
the message passing for a node is illustrated. Once all mes-
sages with feature vectors have been received, they are put
into a so-called convolution. This is similar to a convolution
layer in a convolutional neural network, a function that com-
bines the current feature vector with the incoming feature
vectors. By linear or also non-linear transformations and
multiplications with weight matrices features of different
dimension can be achieved. As an example, since it is also
used in this work, the convolution GraphConv of Weisfeiler
et al. (Morris et al., 2019) is presented. A new feature x′

i

for node i is computed with

x′
i = Θ1xi +Θ2

∑
j∈N (i)

ej,i · xj

where Θ1 and Θ2 are weight matrices with respective size
(m′,m). This maps a feature vector of dimension m to
dimension m′ with a linear matrix multiplication. All re-
ceived feature vectors of neighbors j are multiplied by the
edge weight ejni between the current node i and the sending
node j, and the individual features are summed element by
element. Then, the summed feature vector is multiplied by
the weight matrix Θ2 and the two transformed vectors are
added to form the final, updated feature vector x′

i. Similar
to neural networks, the computed feature vectors can be
given by linear or non-linear activation functions as well as
further regularization methods like batch normalization or
dropout can be applied. Figure 3 shows how a node puts the
entire feature vectors into a function and generates the new
feature vector from it.

By applying the message passing, convolutions and acti-
vation steps multiple times, feature vectors can also be
propagated and aggregated over multiple node hops, with
enough convolutions even over very long distances. Like-
wise, known loss functions from the NN domain can be
applied to the feature vectors and learning the individual
parameters also works by backpropagation.
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Figure 3. The node has collected all incoming feature vectors and
now applies an arbitrary function Σ to feature vectors, resulting in
a new feature vector.

3.2. Robotic Manipulation Pipeline

A full robotic manipulation pipeline needs vision to
recognize objects in images and discover their location
and orientation, task planning to decide how to manipulate
which object, and a simulated environment and robot arm
with a pick-and-place algorithm to manipulate the chosen
object according to the planned task. Here we describe
a simulated pipeline, but in a real world pipeline the
components are similar, just the simulation is replaced by
real objects, a camera, and a robot arm.

Vision - The first part of the pipeline consists of detection of
objects and their positions. In a simulated environment the
image of the emulated camera is used to detect the positions
and orientations of the objects in the scene. Tremblay et
al. have shown (Tremblay et al., 2018) how deep learning
can be used to predict the position and orientation of YCB
objects (Calli et al., 2017). The 6-degree-of-freedom
prediction enables systems to give robots more precise
grasping instructions and place objects more accurately.
The network architecture used is a one-short fully con-
volutional neural network with a multistage architecture.
It produces a belief map and a vector field for individual
vertices of the bounding box. From the created features, the
system extracts a bounding box that encloses the object,
from which the position and orientation of the object is
calculated.
To determine the positions of the provided image by the
environment, the pretrained neural network by Tremblay et
al. is used (Tremblay et al., 2018).

Task planning - The second part of a pipeline is planning
and deciding which object should be placed where. Such
operations are called ”task planning”.
A fully observable, deterministic task planning problem
is described by the formal language PDDL (Fox & Long,
2003) as a tuple ⟨A, s0, g⟩, where A is a set of actions
defined by preconditions and effects, s0 is an initial state of
the domain and g is a set of goal conditions. This means

a sequence of actions consists of actions a0, . . . , an, and
a sequence of states consists of s0, . . . , sn+1. A state
transition follows the common term st+1 = f (st, at),
where the next state st+1 is reached by performing action
at in state st, following the state transition function f . The
solution to the planning problem is an action sequence
where st satisfies the preconditions of at for t = 0, . . . , n
and sn+1 satisfies the goal state g. The task planner can
also be used in an iterative fashion to find not an action
sequence, but only the next action at for the current state st.
Executing the task planner and the state transition function
in a loop results in the same action sequence as before, but
with a fixed size output of the task planner. This approach is
especially interesting for neural networks which have fixed
output sizes.

Simulation of environment and robot arm - Simulations
are the go-to way for experiments and testing of new meth-
ods and models. They ensure a controlled environment in
which no hardware can be destroyed and allow for quicker
development speed since the environment is simpler and
easier to control, and potential safety breaches can be ex-
cluded at first. At the same time, a simulation is not a
completely accurate representation of the real world and
therefore a transformation of the model and application to
the real world brings new problems and errors. An example
simulation framework is CoppeliaSim (CoppeliaRobotics),
which can be combined with models and control software
for simulated robot arms, like ikida (IAS) for a panda robotic
arm with a Franka gripper (ORI). Simulation environments
are often well integrated with the Robot Operating System
(ROS), which is used in real robots. This helps to deploy a
working model timely to a real robot.

4. Investigations
In this section, the process as well as the details of imple-
mentation, data generation, and the structure of the GNN
as well as the NN are presented, and key research questions
are considered and answered.

4.1. Experimental Setup

Environment - The environment is assumed to be a flat sur-
face with defined width and depth on which various objects
are stacked. The goal is to develop scenarios that can be
simulated with the YCB data set. A typical household task
is to move objects and place them at specific target posi-
tions. The task planner must therefore be able to determine
when and how objects can or cannot be moved. An object
is movable if no other object is standing on it and it is not
completely surrounded by other objects.Therefore, it is not
movable if other objects are standing on it or if the object
is otherwise obscured. However, it is not always useful to
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move an arbitrary free object, but preferably a free object,
which can be moved to the target position in one move. De-
pending on the scenario, this can be a very challenging task
for the task planner.

Data generation - The data as well as the individual data
sets consist of scenes. All scenes of a dataset consist of a
fixed, given number of objects. For most of the experiments,
the number of objects was arbitrarily fixed at n = 5, which
seemed a reasonably small number where objects already
start to stack on top of each other. Also the dataset gets
possible object sizes and the size of the workspace given.
A scene is created by sampling a starting position from the
workspace for each object, which is either on an already
placed object or where the object to be placed has no over-
lap with other objects. This procedure is also repeated for
the target positions. Start and target positions are therefore
independent of each other.
Through an algorithm that takes into account the current po-
sitions and the target positions, the labels are created for all
objects in the scene. The target labels for each object are ⟨
Move object to target⟩ , ⟨Leave object standing⟩ and ⟨Move
object to intermediate position⟩. The features of the respec-
tive objects in a scene consist of the three-dimensional start
position ⟨x, y, z⟩start as well as the three-dimensional target
position ⟨x, y, z⟩goal and therefore form a six-dimensional
feature vector. An object forms a node in the graph where
each node is connected to all other nodes in the graph, form-
ing a fully connected graph.
The next scene is generated by moving an object from the
current scene. If possible, an object is moved to its target
position and if this is not possible, an object is moved to
a free intermediate position. This iterative procedure is
repeated until all objects are on their target positions. If
this is the case, a completely new scene with new start and
target positions is generated and solved again by the itera-
tive procedure. If an object is supposed to be moved, left
standing or moved to an intermediate position in a step of
the solution procedure, the respective value is set to 1 in the
three-dimensional ground truth vector while the remaining
values remain at 0. In total, about 1000 scenes were created
for one data set. A created example of how a scene could
look like can be seen in figure 4.

Workflow details - For the training of the networks, only
one created data set with 1000 scene graphs with 5 objects
each was used. The graphs were randomly shuffled and
70% of the data was used for training, 20% fot testing, and
10% for validation. For final evaluation on datasets, 1000
scenes were again created and the performance metrics were
evaluated on these entirely new data points. These data
points were not used for training and the network or system
had not seen these scenes in advance. Both neural networks
were trained with the same hyperparameters which work
reasonably well for both.

Figure 4. Example scene setup. The initial positions of the objects
are marked with SX while the goal positions of the respective
objects are labeled as GX. The objects and their positions were
created randomly.

Graph neural networks - The Graph neural network uses
as convolution two GraphConv layers, each followed by a
ReLU, in a row, the first with a matrix size of ⟨6, 50⟩ and the
second GraphConv uses a weight matrix size of of ⟨50, 50⟩.
This is followed by a Linear layer with a layer size of ⟨50, 3⟩.
The network uses cross-entropy loss as a loss function. The
prediction label is the class that has the largest value within
the three-dimensional output. A learning rate of 3e−3 was
chosen with Adam as the optimizer.

Neural networks - Since the neural network requires a fixed
input size, the six dimensional features of each of the five
objects were concatenated into a vector. Therefore, the NN
has an input size of 30. The network has a similar struc-
ture to the GNN with Linear⟨30, 50⟩, ReLU, Linear⟨50, 50⟩,
ReLU, Linear⟨50, 15⟩. Cross-entropy loss was again used
as the loss function, with the target vectors also concate-
nated to match the fifteen dimensional output vector. As
learning rate 3e−3 gave the best results still with Adam as
the optimizer.

Investigations - We divide our investigations into three
parts:

(a) We show that GNNs have significantly better perfor-
mance than NNs in both achieved accuracy and learn-
ing efficiency.

(b) We show that the GNN is able to generalize to unseen
scenarios and unseen numbers of objects even if the
system has only been trained on a single fixed number
of objects.

(c) We show that missing structures in scenarios lead to
the collapse of accuracy and what impact this has on
task planners.
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4.2. GNNs beat NNs in performance and efficiency

Both the used GNN and the used NN use the same data,
approximately similar hyperparameters and have a similar
network structure with a similar number of possible param-
eters. However, as can be seen in figure 6, the GNN has
a much better performance right from the start and can in-
crease it significantly over several epochs. The NN model
can catch up to the initial performance of the GNN, but it
cannot improve the test accuracy over many epochs. To in-
crease the accuracy, the network structure would have to be
changed significantly and the number of parameters would
have to be increased, which leads to more training effort.
The NN has a test accuracy of approximately 80% while the
GNN can achieve an accuracy of over 95%. The GNN has
a much higher scatter than the NN across different seeds,
but still performs better with this scatter. As a reference,
an input-independent baseline model was trained, which
always received zero vectors as input and the respective
ground truth labels as target labels. This gives an insight
into the accuracy of a random model trained without inputs
and shows what the possible achievable accuracy is by pure
guessing on the data. The baseline model achieved an ac-
curacy of about 62%. Since the accuracies of both the NN
and GNN are much higher than this baseline accuracy it ap-
pears they have learned the problem using the training data.
The learned models have achieved a significant increase in
accuracy, with the GNN showing more efficient training
behavior as well as achieving better results. The GNN can
make much better use of the structure of the data and bet-
ter combine individual features through message passing.
However, this also leads to more floating point operations
in this case. GNNs are therefore superior to classical NN
architectures in this considered case not only because of the
flexible number of objects.

4.3. The generalization ability of the GNN

The GNN was only trained on nearly 700 graphs with five
objects. However, it shows that the system also performs
approximately well on scenes whose number of objects
the network has not seen. In figure 5 it can be seen how
the system achieves an accuracy of over 85% even for the
number of objects from 6 to 15. This accuracy was achieved
on each 1000 of newly generated data points. This shows
how good the generalization performance of the system is.
It managed to handle three times the number of objects
almost as well. Also, no loss in performance is visible over
the increasing number of objects, but it remains at a similar
level. Thus, the generalization is also achieved with a strong
stability and reliability.

4.4. Lack of structure leads to loss of performance

However, it was also noticed in the tests that the system can
handle less than five objects much worse and can only reach
the performance of guessing with one object. The missing
structure of many objects that have to be left standing as well
as moved to intermediate positions results in the system’s
performance suffering. The GNN has problems with few
nodes within the graph, since less exchange between nodes
takes place. In the case of the single node, there is no input
via the combined feature vectors of the neighboring nodes,
so these weights do not provide any input.

Figure 5. Accuracy of GNN trained on dataset with 5 objects per
scene applied to unseen new datasets (different seed) with different
numbers of objects per scene.

5. Conclusion and Future Work
In this work, a system for task planning with graph neural
networks was implemented. Trained only on 700 scenes
with 5 objects each, the GNN has shown absolutely stable
zero-shot generalization performance on 1000 scenes with
15 objects. It was shown how GNN outperform normal
NN in such tasks and show better and faster training perfor-
mance. The potential of GNN in the area of task planning
was shown.
In future it would be interesting to train different types of
GNNs for this problem to see if they perform differently,
especially in the generalization to more objects in the scene
than trained on.
To improve the generalization of the GNN to a variable
number of objects per scene the datasets could be populated
by scenes with multiple numbers of objects.
Also a better intermediate position management could be
implemented, where the intermediate positions are chosen
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Figure 6. Test set accuracy (min, mean, and max of 10 seeds) of
NN and GNN trained on the same data and with the same learning
rate of 3e−3.

such that e.g. the travel distance of the robotic arm is min-
imized. Right now they are placed on the far end of the
table in a fixed free space. In an optimized scenario, objects
would be placed anywhere they fit without interfering with
the other objects and their goal positions.
An obvious future step is to complete the simulation pipeline
by connecting the pretrained vision network with the task
planning network and the environment and robot simulation
to see how the GNN works in a loop.
In the future, the performance of the task planning system
needs to be reviewed and tested throughout the pipeline.
The simulations in CoppeliaSim should be replaced with
links to reality and a real robot arm. Also the Azure Kinect
DK camera (Microsoft-Azure) can be used to detect real
data and situations.
There is always a difference between simulation and the
real world, which could weaken the results of this paper and
the usage of GNNs for task planning. For example if there
turned out to be catastrophically wrong decisions among the
expected errors of the model, it might be necessary to adapt
the loss function to reflect the gravity of the single classifica-
tion decisions and it is unclear how the GNN would perform
in such a different scenario.
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