Balloon Estimators for Improving and Scaling the
Nonparametric Off-Policy Policy Gradient

Fabio d’Aquino Hilt' JanNiklas Kolf! Christian Weiland' Jodo Carvalho? Samuele Tosatto >

Abstract

The Nonparametric Off-Policy Policy Gradient
(NOPG) introduces an algorithm to solve rein-
forcement learning tasks in continuous environ-
ments with low sample complexity. NOPG uses
nonparametric regression and Kernel Density Es-
timation (KDE) methods to model the reward and
state transition function. In previous work, only
fixed bandwidth Gaussian Kernels and KDE was
used. In this work, we investigate the use of an
adaptive bandwidth estimator - the Balloon Esti-
mator. This estimator has higher performance in
estimating sparse and multi-modal data in com-
parison to Gaussian KDE. We provide a proof of
concept for using Balloon Estimators with NOPG
and compare the results and performance to Gaus-
sian KDE in the continuous mountain car task.

1. Introduction

Reinforcement Learning (RL) for low dimensional and dis-
crete environments has been successful for a long time. In
recent years, a lot of progress has been made to create ap-
proaches for high dimensional, continuous environments,
e.g. the Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al., 2019). The majority of these algorithms are
on-policy and with high sample complexity, which limits the
real world applicability. The Nonparametric Off-Policy Pol-
icy Gradient (NOPG) (Tosatto et al., 2020) was introduced
to tackle some of these issues. In order to make Reinforce-
ment Learning strategies applicable to the real world, the
policy needs to be learned offline. Offline policy training
allows to decouple training and data sampling from the real
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world application and is therefore much safer to use. NOPG
derives the gradient of deterministic and stochastic policies
from a nonparametric Bellman equation, which allows the
computation of the closed form gradient of the policy. Using
gradient ascent, the policy is updated in order to increase
the expected return of the policy. The paper demonstrates
the usage of the algorithm with a generic fixed-bandwidth
Gaussian kernel for the system estimations. In this paper,
we investigate the usage of an adaptive bandwidth estimator
for NOPG. An adaptive bandwidth estimator computes the
bandwidth either per evaluation point or per sample point in
order to adapt to the density of the training data. We propose
to use the Balloon Estimator (Terrell & Scott, 1992), which
computes an individual bandwidth for each evaluation point
and use it in for Gaussian kernel. In this paper, we introduce
the Balloon Estimator for NOPG and investigate the advan-
tages and disadvantages of such an estimator in comparison
to the fixed bandwidth Gaussian Kernel Density Estima-
tion. We show that the Balloon Estimator can be used for
NOPG, but introduces other difficulties such as the need for
continuous state and action spaces and data preprocessing.

2. Related Work

The Balloon Estimator is just one example of adaptive band-
width estimators, which seems to deliver good estimations,
since the bandwidths change continuously with the test point.
This means that on one hand the bandwidths are more pre-
cisely tailored to the point that is evaluated, but on the other
hand this might create a pathological non-integrable density
function. The use of the distance to the kth nearest neighbor
as bandwidth for density estimation was first introduced by
Loftsgaarden and Quesenberry (Loftsgaarden & Quesen-
berry, 1965). Terrell and Scott picked up on the idea and
collected a variety of Kernel Density Estimators with vari-
able bandwidth (Terrell & Scott, 1992). A different adaptive
bandwidth estimator that could work with NOPG is the
Sample Point Estimator, which computes the bandwidths
for each test point only among the test data. This means
that on evaluation, the bandwidths are already fixed for each
data point and do not have to be recomputed for each evalu-
ation and the resulting density function is integrable. The
downside of this Estimator is that far away training points
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Figure 1. The Agent-Environment Interaction Cycle. The agent
executes action a; at time step ¢t. The environment returns the
new state s¢41 with reward r:41 which are based on the executed
action. Graphic based on (Sutton & Barto, 2018).

with a large bandwidth can have a bigger impact on the
density at the evaluation point than close-by points with
small bandwidths. This effect is called non-locality (Terrell
& Scott, 1992). That could become an issue with Reinforce-
ment Learning tasks, as the data is often clustered around
the start and the goal position.

Even though there are a few options of adaptive bandwidth
Kernel Density Estimators, the use of any of them in combi-
nation with Reinforcement Learning is not known to us.

3. Preliminaries
3.1. Reinforcement Learning

Reinforcement learning describes the learning of appropri-
ate action sequences in an environment to achieve a given
goal as successfully as possible (Sutton & Barto, 2018).
This is modeled by having an agent take the position of the
learner, whose task is to interact with the environment and
achieve the goal. The environment in which the agent inter-
acts has a state, which models how the agent’s environment
is constructed and can be changed by the interactions. These
interactions are called actions and are available for the agent
to choose from. At a given time, the agent can choose an
appropriate action from the set of actions. This action is
executed in the environment and changes its state. Likewise,
the agent receives a reward after interacting successfully
with the environment. This specifies how well a certain
action is suited for a given state to achieve the given goal.
Performing one-step optimal actions does not always have
a direct positive impact on what happens. It is also often
necessary to try suboptimal decisions in order to find better
paths to the goal in the long run.

To model the environment with its states, actions and the re-
wards the agent receives, a Markov Decision Process (MDP)
is used (Hao Dong, 2020). An MDP consists primarily of
a set of states S of the environment, a set of actions A that
an agent can perform, a transition function p (sy41|s¢, a;)
that gives the probability of transitioning to state s;11 € S
when performing action a; € A in state s; € S. The reward

function 7 (s;, a;) describes the reward received for choos-
ing action a; in state s;.

The agent that chooses an appropriate action for a given
state is usually called a policy. The goal of reinforcement
learning is to learn an appropriate policy for the environ-
ment modeled to describe the task. The policy is denoted
as 7 and can be deterministic (a; = 7 (s;)), or it can be
stochastic, i.e. a matching action is sampled from the pol-
icy with a certain probability (a; ~ 7 (-|s;)). To compute
the future possible, or future achievable reward R under a
policy 7*, one can either compute the final reward based on
the current state only, or based on the current state and the
chosen action for this state.

The value function V;; (s) describes the long term reward
received when starting in state s and following the policy
m. The state-action value function @ (s, a) describes the
long-term reward received when starting in state s, taking
action a, and subsequently following the policy 7. This
state-action value function describes how good it would be
if the policy were to to perform that action in the current
state.

With the help of these two functions a policy can be learned.
It is not always helpful to use only known states, but also to
explore the environment to see if there are unknown states,
which allows the collection of a higher reward. The method
of optimizing the policy to take the best action given the
current knowledge is called exploitation, the trying out of
unknown states and actions exploration. Both procedures
are necessary and must be used appropriately. To use them,
it is possible to use the last learned policy to make decisions
for individual states and to navigate through the environ-
ment. The states visited and the experience gained then only
fit that policy exactly, as another policy might have decided
differently. Therefore, in this procedure the current policy
must always be used for navigating the environment and
only current experience and rewards can be used to improve
the policy. This procedure is called on-policy, because the
policy is used directly for exploration and exploitation. In
contrast, there are also off-policy procedures, where there
two different policies are used for exploration (sampling the
environment) and exploitation (learning to maximize the
expected reward). With the off-policy approach, the data
collected by the exploration policy can be reused.

3.2. Kernel Density Estimation

In many areas of machine learning, data samples X arise
from unknown distributions px (-) (Murphy, 2012). Kernel
Density Estimation (KDE) is concerned with the reconstruc-
tion of the original probability density function px (-) with
nonparametric methods. However, in scenarios where the
sample density is low, it can be very difficult if not impos-
sible to reconstruct a suitable distribution (Bishop, 2011),
which gets even worse in high-dimensional or continuous
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contexts.

To estimate the probability px (x) of an arbitrary point z,
the already known samples x; can be used to determine
whether the point x is close to other points or not. A higher
density of data points around x indicates towards a higher
probability density in the unknown distribution. To realize
this, kernel functions are used which model the likelihood
K (xz — z;) that x is sampled near a given point x;. They
are symmetric, non-negative and integrable functions K (-).
Often normalized kernels are used, whose integral value is 1.
The approximated probability function can now be written
as a sum of kernels (Murphy, 2012):

ﬁx(x):%ZK(x—xi).

This sums up for all given points the weighting by the kernel
based on the distance from z to all other data points and
normalizes this based on the size of the data set. What
value the kernel returns is based on the distance between
the two points. To increase or decrease the range of the
influence of the distance on the density, the bandwidth h can
be chosen. With a small bandwidth, only points that are very
close to x are considered for the density calculation. Points
further away have very little influence and the value of the
kernel for these points goes towards 0. Smaller bandwidths
tend to create wiggly density estimations. If a very high
bandwidth value is used, the influence of more distant points
is increased. Thus the resulting probability density function
is smoother. In Figure 2 an example using Gaussian Kernels
with different bandwidths is shown. The smoothness of
the resulting KDE is dependent on the chosen bandwidth
h and the smoothness of the training data. Kernel Density
Estimation with a bandwidth h can be written as follows
(Bishop, 2011):

px (z) = nth;K(x_hx)

Choosing the right bandwidth A is a hard task and there
are several heuristics and selection methods using e.g. as-
sumptions over the underlying density of the data. This can
sometimes lead to mediocre tradeoffs, e.g. if the unknown
density contains steep peaks and heavy tails. To prevent
such tradeoffs there are approaches to change the bandwidth
depending on the location of the evaluation point (balloon
estimators) or data point (sample point estimator), the for-
mer being introduced in more detail in chapter 4. In Figure
3 we can see a fixed bandwidth and the balloon estimator
(both with Gaussian kernels) estimating the density of the
same data.

3.3. NOPG

NOPG is a recent nonparametric off-policy policy gradient
algorithm to solve reinforcement learning problems (Tosatto
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Figure 2. Given samples are located on x axis in range between
1 and 5. The grey bars show the histogram of the underlying
data. Each of the four Gaussian Kernel Density Estimators has a
different bandwidth. The lower the bandwidth value h, the less
smooth and more bumpy is the KDE curve. If the bandwidth is
higher, the KDE is smoothed out and is not capable of covering
two peaks of the dataset.

et al., 2020). It learns from off-policy samples and does not
need any knowledge about the behavioural policy used to
collect them, which makes it possible to learn from human
demonstrations. It reuses those samples for sample effi-
ciency. It has a lower variance than other semi-gradient
methods using importance sampling, since it uses the full-
gradient to update the policy, and is also unbiased. It is
based on the closed-form solution of a nonparametric Bell-
man equation.

The environment is modeled as a Markov decision pro-
cess (MDP) with a state space S = R%, an action space
A = R, a state transition probability p (s'|s, a), a dis-
count factor v, and a mean reward r(s,a). The policy
7o (s,a) can be stochastic or deterministic and is param-
eterized by parameters 6. Since we have focused our work
only on deterministic policies, we will omit the stochastic
formulations of the following equations. The value function
resulting from the Bellman equation

Ve (s) =1 (s,mg(s)) + W/S Ve () p(s'|s, 7 (s))ds

is used to define the expected return

Jr = /S,uo (s) Vr (s)ds

where g (s) is defined as the probability of starting in
state s € S. To solve the Bellman equation in closed-
form, the mean reward r (s, a) and the transition conditional
p (s'|s, a) are approximated by the Nadaraya-Watson regres-
sion and kernel density estimation, respectively
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Figure 3. Balloon and Gaussian Estimators estimate a Gaussian
mixture ground truth (means= (3, 7), stddevs= (2.5, 0.4)). The
Balloon Estimator uses the distance to the kth nearest neighbor
from the evaluation point, where k = |34/n|. The Gaussian Esti-
mator uses a fixed bandwidth of h = 0.7. The Balloon Estimator
covers the right peak of the data better than the Gaussian Estimator.
It is evident that the former is a better estimation, since the short-
comings are common: they both oversmooth the well at x = 6 and
after the peak where x > 8.
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where ¢ : S xS — RT, o : A x A — R* and
¢ : S xS — RT are normalized, symmetric and posi-
tive definite kernel functions. Assuming a dataset of ob-
servations s;, a;, i, s, we also define v¥; (s) := 9 (s, s;),
©i (s) := ¢ (a,a;), and ¢; (s*) := ¢ (', s}). By inserting
the approximations into the value function, we obtain the
non-parametric Bellman equation for deterministic policies,
where the vector of responsibilities €7 (s) is introduced to
encapsulate the dependence on the parameterized policy:

Zz 05 (s goj ?77(9)())) (*
v /S i (') Va (Sl)ds/)
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From Theorem 1 in (Tosatto et al., 2020) we know that:

where the following definitions are used

A :=1— PA,r

p. ;:7/ 6(s) el (s') ds’
S

qr ‘= Ailr

o= [ m (el is)ds
l‘l’ﬂ' = A;Ts‘ﬂ' 0

The analytical gradient of the expected return can be com-
puted as

. (0 9 -
VoJr = (8(9677’0) + g (80 ) Q-

To compute the gradients of €] , and P, w.rt. 6, by the
chain rule the kernels have to be differentiated w.r.t. 6 as
well. Actually it is only the action kernel ¢; (g (s)) which
depends on 6 but it is assumed that all kernels have the same
kernel function, which has to be differentiable.

4. Balloon Estimator for NOPG

Adaptive bandwidth estimators are generally better at esti-
mating the density of multimodal data with different heights,
since it is difficult to find a single bandwidth working well
for a steep and a shallow peak (Minnotte, 1993). As NOPG
is designed to work on multi dimensional data, an adaptive
bandwidths density estimator should be able to improve the
density estimation additionally compared to the Gaussian
kernel density estimator with a fixed bandwidth, since it
could take advantage of the multi-dimensionality of the data.
We use the Balloon Estimator to compute the bandwidth for
a given data point, given the training data. This bandwidth is
computed as the distance to the kth nearest data point using
k-nearest neighbors (Loftsgaarden & Quesenberry, 1965).
For the Balloon estimator proposed by Loftsgaarden for
one-dimensional data, a rectangular kernel is used, which
creates very spiky density estimations. Instead, we chose
to use a Gaussian kernel. This creates smoother densities
and provides an informative derivative. The resulting kernel
density estimation follows the equation:

f (x TLhk d Z (
where hy, () is the euclidean distance to the kth nearest
neighbor, n number of training points and d the dimensions
of the system.
The number of neighbors & used to calculate the bandwidth
is an important hyper parameter. Generally a good order
for k£ is a multiple of the square root of the number of

K (z) = (fv|07 1)
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training samples n, therefore k € O (y/n) (Loftsgaarden &
Quesenberry, 1965). In order to have better control over the
bandwidth and to test the impact of different values of k,
we introduce a bandwidth-factor m such that k = [m+/n].

Importance of Data Preprocessing - The Balloon
Estimator has one major flaw: it fails with duplicate
data points. If too many data points are at the same
location, the distance to the kth nearest neighbor hy, will
collapse to almost zero, which creates a huge spike in the
estimated density, which obfuscates the densities elsewhere.
Therefore we had to preprocess the data, in order to remove
duplicate entries, which is counter intuitive for a density
estimation and possibly introduces a bias.

Implementation Details - To our best knowledge
there exists no common implementation of the Balloon
Estimator yet, so we implemented it ourselves. To do so, we
used the PyTorch framework (Paszke et al., 2019), which
generally provides Tensor computations for Deep Learning,
but also an implementation to retrieve the distances to the
kth nearest neighbors. To compute the gradient of the
not differentiable bandwidth, because it uses kth nearest
neighbors, we implemented a backwards function using the
finite first order forward difference to approximate it. The
calculation of the bandwidth is done for every test point in
every iteration. In our case, this was easier to integrate into
the existing codebase. The downside of this implementation
is the increase in time complexity from computing the
kth nearest neighbor distances in every iteration and has a
significant impact on execution time compared to the fixed
bandwidth kernel.

5. Investigations

In this section we will describe our experimental setup,
then present our observations and measurements and finally
analyze them in context.

5.1. Experimental Setup

Environment - To be able to compare and test different
algorithms efficiently and in a standardised way, various
frameworks have been developed. In this work we use
the OpenAl Gym framework (Brockman et al., 2016)
to test NOPG with different density estimators. For
our experiments, we used the continuous mountain car
environment. In this environment the agent controls an
underactuated car that is initially placed in a valley between
two mountains. The goal is to reach the flag located on top
of the right hill. Since the slope of the mountains are too
steep to simply drive uphill, the car has to gain momentum
by swinging up and down the mountains. The environment
is set to return a reward of » = —1 for each state-action
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Figure 4. Analysis of mean log-likelihood for different bandwidth-
factors for Balloon Estimator and Gaussian (bandwidth) for the
action density estimation, calculated with 5-Fold-Cross-Validation.
The analysis shows that the mean log-likelihood is greatest at
bandwidth-factor m = 4 for the Balloon estimator and h = 0.4
for the Gaussian KDE.

pair, that has not reached the goal. The reward accumulated
over time should be maximised or, put in other words, the
penalty should be minimized by reaching the goal with as
few actions as possible.

Data generation - Since NOPG is an offline learn-
ing procedure, trajectories of the environment must be
created in advance. To obtain smooth trajectories, we
mapped the mouse location on the screen to an action in the
simulation. To get a better generalisation of the data and to
avoid duplicate actions when the mouse stops moving, we
applied Gaussian noise to the actions. We created a total of
10 trajectories, from which 5 were randomly selected for all
learning processes. The 5 selected trajectories contained
~ 505 data points, out of 994 total data points in all 10
trajectories. Each of the 10 generated trajectories bring the
car to the goal state, which is a critical requirement, as there
is no other indication of how good the current state is, since
the reward function is constant.

Workflow details - In order to be able to test the
density estimation procedure, we tried various parameters.
We selected different values based on Figure 4. For
the Balloon Estimator we tested the bandwidth-factors
m € {1,4,7}. Bandwidth-factor m = 1 serves as a
baseline, while m = 4 is the best value based on the
cross-validation and m = 7 serves as additional test.
For Gaussian KDE we used h € {0.1,0.4,0.7}. These
bandwidth-factors are applied to the action estimation only,
as the action estimation has the biggest impact on the opti-
mization. For the state and next state estimators, we chose a
fixed bandwidth factor of m = 1 for the Balloon estimator
and h = 0.3 for the Gaussian KDE. For all methods, we
chose the learning rates 0.01,0.001,0.0001,0.00001 and
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optimized for 50000 iterations.

Evaluation metrics - To test the quality of the solu-
tion, we compared the loss and the required iterations to
reach the goal. The undiscounted accumulated return is
returned from the environment and is equal to the number of
iterations needed to reach the goal, since the reward r of any
state-action pair is constant at r = —1. We also consider
the convergence of the individual methods based on the
number of iterations required until the goal is reached by
the agent.

Gradients - As seen before, the bandwidth of the
Balloon Estimator hg () is dependent on the current
evaluation point z. When when computing the gradient of
the kernel K (x) with respect to x, the derivative of hy, ()
w.r.t.  should be incorporated. But this involves taking the
gradient of kth nearest neighbors, which is not differentiable
everywhere (i.e. when changing neighbors) and the gradient
itself might be non-informative (either 1 or —1). But not
considering the gradient of the bandwidth might create an
incomplete gradient and worsen the performance of the
gradient based optimization method. Therefore we denote
the Balloon Estimator where the gradient of the kernel
incorporates the gradient of the bandwidth as Balloon-V.
As mentioned in section 4 currently the gradient of the
bandwidth is computed via forward finite differences.

Investigations -
three parts:

We divide our investigations into

(a) We show that the log-likelihood of the Balloon Esti-
mator is higher than that of the Gaussian Estimator
and that parameter estimation is important for Balloon
Estimators.

(b) We investigate the performance of Balloon Estimators
in comparison to Gaussian Estimators. We also look at
the stability and dispersion of the solutions found.

(c) We investigate to what extent incorporating the deriva-
tive of the Balloon Estimator’s bandwidth for the indi-
vidual data points influences the stability of the learn-
ing procedure.

5.2. Log-Likelihood and crucial parameter estimation

Since Balloon Estimators can approximate multi-modal data
much better and can vary the weighting per data point to
a great extent, the probability density function can change
a lot. This leads to problems in a gradient-based learning
procedure, as the procedure gets stuck in deep valleys. This
can also be seen in Figure 6 and Figure 7, as for m = 1,
NOPG does not make any progress with the Balloon Estima-
tor and generally does not find a solution. If the bandwidth

factor m and thus the smoothness of the kernels is increased,
the method can influence the learning process much better.
The Gaussian kernel does not have this problem, as a much
smoother result is produced even at smaller bandwidths.

5.3. Performance Comparison

Figure 6 shows that Balloon and Gaussian Estimators have
similar performance in reducing the loss. However, the Bal-
loon Estimator has a much higher dispersion of the loss and
does not manage to keep the loss smoothly at one level like
the Gaussian Estimator. However, the policies found are
more stable than those of Gauss. With suitable learning rates
of 0.001 and 0.0001, the Balloon Estimator produces stable
policies and reaches the target much faster on average than
Gaussian, whose trajectories and policy results vary greatly,
as seen in Figure 7. Likewise, the Balloon Estimator arrives
at an acceptable solution much faster than the Gaussian Es-
timator. Gaussian finds a solution within 20000 iterations
that is comparable to the Balloon Estimator solution found
between 5000 and 10000 iterations. This also shows that the
calculated loss does not always perfectly reflect the quality
of the solution. Based on the solutions found, the Balloon
Estimator has shown better performance despite more un-
stable loss curves and there lower convergence speed.

5.4. Gradient Influence

As can be seen in Figure 8, the balloon estimator using
the gradient of the bandwidth determination reaches higher
return values faster than the balloon estimator without gra-
dient. Especially at the learning rates 0.001 and 0.0001 the
learning process stagnates without gradient calculation. At
the learning rate of 0.00001, the influence of the gradient
on the learning performance is also clearly visible. There-
fore, it seems advantageous to include the gradient of the
bandwidth in the learning procedure.

6. Conclusion and Future Work

We implemented the adaptive bandwidth Balloon KDE vari-
ant which is able to optimize sub-optimal trajectories for
the Nonparametric Off-Policy Policy Gradient and com-
pared the results to the fixed bandwidth Gaussian KDE. We
showed that the Balloon Estimator is able solve the moun-
tain car environment on par with the Gaussian Estimator
and even has some slight advantage in the resulting perfor-
mance.

The Balloon Estimator should theoretically perform even
better in higher dimensional environments (Terrell & Scott,
1992), but the way NOPG is currently implemented the
dimensions of the environment are split into individual ker-
nels. To boost the performance of the Balloon Estimator, the
current implementation could be adapted, to support higher
dimensional environments natively. In the same way, the
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Figure 5. With 10 demonstrations, NOPG is able to learn a policy
that brings the mountain car to the goal for the Gaussian kernel as
well as the Balloon kernel. The x-axis shows the Position of the
car, with the starting position being x = —0.5. At the left side,
there is a border at x = —1.2, while the goal state is at x = 0.45.
The y-axis shows the velocity of the car, with positive values
being a velocity in positive/right direction and negative values in
negative/left direction. The Balloon-learned policy chooses smaller
actions at the beginning and stays longer in the valley, while the
Gaussian-learned policy takes greater actions which results in
running against the border on the opposite side of the goal.

Balloon Estimator could be applied to other higher dimen-
sional environments, for example the LunarLander from
OpenAl Gym. It is however notoriously difficult to choose
an appropriate bandwidth matrix. The bandwidth of multi-
dimensional KDE is generally a matrix, often chosen to be
a scaled identity of diagonal matrix for simplicity (Terrell &
Scott, 1992).

Choosing a good bandwidth factor is crucial to a good den-
sity estimation, both for Balloon and Gaussian Estimators,
and should not be left to chance. To tackle this NOPG could
be complemented by a cross-validation or similar approach
to choose a good bandwidth. This would simplify the setup
and remove a hyper-parameter. To create confidence in the
bandwidth selection it might also be interesting to further
analyze the influence of the bandwidth in the optimization
process.

The approximation of the bandwidth gradient is currently
being computed with first order forward differences, which
might be too simplistic. Before expanding it to a more so-
phisticated numerical approximation, it might be worth to
analyze which values the bandwidth gradient takes and the
effect this has on the full gradient of the policy. It could also
be worth trying to see if it is possible to have PyTorch com-
pute the exact gradient of the bandwidth with its automatic
gradient computation.

Another point of interest could be the use of other adaptive
bandwidth methods. Investigating the Sample Point Esti-
mator could be interesting as the bandwidth for this type
of estimator depends only on the training data and does
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Figure 6. Comparison of the loss between Balloon Estimator with
gradient calculation (left column) and Gaussian Estimator (right
column) with different learning rates. Learning rates used: (a)-
(b)= 0.01, (c)-(d)= 0.001, (e)-(f)= 0.0001, (g)-(h)= 0.00001

not change with the evaluation point, thus the kth nearest
neighbor can be pre-calculated, which accelerates training
with the Sample Point Estimator.

To accelerate the execution of the Balloon Estimator it
should be possible to store the data in a k-d tree or a ball
tree to accelerate the kth nearest neighbors computation.
As NOPG uses offline learning methods, the dataset would
be valid across all iterations. In return this strategy would
increase the space complexity and might not be easily exe-
cutable for huge datasets, though this depends on the data
structure chosen and would have to be analyzed specifically.
With this approach, Balloon Estimator might not be signifi-
cantly slower than NOPG with Gaussian KDE anymore.
Right now the preprocessing removes duplicate data points
to prevent collapsing bandwidths and thus exploding den-
sities. Arguably this removes points which could help de-
scribe the unknown density. It could be interesting to an-
alyze if this creates a bias in the density estimation and
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Figure 7. Comparison of accumulated return between Balloon Es-
timator with gradient calculation (left column) and Gaussian Es-
timator (right column) with different learning rates. Learning
rates used: (a)-(b)= 0.01, (c)-(d)= 0.001, (e)-(f)= 0.0001, (g)-
(h)= 0.00001

how this bias scales with the number of dropped points rela-
tive to the total points. Note however that this should have
no noticeable impact on our results, since the used dataset
contains less than 2% duplicates.
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