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Abstract
Optimistic Actor-Critic (OAC), an optimistic ex-
ploration algorithm based on Soft Actor Critc
(SAC), addresses the problems of pessimistic un-
derexploration and directional uninformedness of
existing exploration strategies. We evaluate OAC
and analyse its key exploration behaviour. In ad-
dition we show that the first order approximation
of OAC has weaknesses and because of that, we
introduce Optimistic Actor Critic with Second Or-
der Approximation (OAC2), a second order exten-
sion of OAC.

We highlight its theoretical advantages, which
result in an exploration policy achieving
higher exploitation ability, so that the exploita-
tion/exploration trade-off of the exploration policy
can be better balanced. We evaluate it on differ-
ent robotic control tasks of the MuJoCo engine
and show practical issues, but also discuss further
potential for improvements.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 1998) algo-
rithms use different exploration methods to achieve state-of-
the-art performance. Current algorithms use an information
gain given current beliefs (Russo & Roy, 2014), posterior
sampling or also known as Thompson sampling (Chapelle
& Li, 2011) and optimistic exploration strategies like the up-
per confidence bound (UCB) (Auer et al., 2002) to explore
new actions while enforcing exploitation to achieve higher
rewards.

Optimistic Actor Critic (OAC) (Ciosek et al., 2019) intro-
duces a locally approximated exploration policy that enables
a more optimistic exploration behaviour. This addresses the
problems of pessimistic underexploration and directional
uninformedness of existing exploration strategies, which
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occur for state-of-the-art actor-critic algorithms that use
two state-action value function approximations to reduce
overestimation bias by computing an approximate lower
confidence bound (Hasselt, 2010) (Van Hasselt et al., 2016)
and the same policy for exploration and exploitation, as
used in Soft Actor Critic (SAC) (Haarnoja et al., 2018) and
Twin Delayed Deep Deterministic (TD3) (Fujimoto et al.,
2018). OAC improves the exploration/exploitation trade-off
by maximising a linear approximated upper bound on the
state-action value function to obtain a better exploration
policy (Brafman & Tennenholtz, 2002).

The optimisation problem is constrained by a trust region
(Yuan, 2000) and here, a problem of OAC arises. Due to
the linear objective, the exploration policy is determined by
the boundary of the trust region. But at that boundary, the
state-action value function does not necessarily have to have
higher values compared to the approximated point and can
even have lower values. Therefore OAC does not guarantee
an exploration policy that results in a better action based
on the current state-value function. Because of this, we
extend OAC with a second order approximation of the upper
bound. Theoretically, this second order objective leads to an
optimal solution within the trust region, which is illustrated
in Figure 1.

With the second order extension of OAC the improvements
of optimistic exploration and directional informedness are
guaranteed based on the nature of OAC. In contrast to OAC,
where the exploitation ability of the exploration policy is
limited due to the fixed step-size of the exploration update,
the second order approximation enables better exploitation,
which leads to a better exploitation/exploration trade-off of
the exploration policy, controlled by an additional entropy
constraint.

2. Preliminaries
2.1. Reinforcement Learning

In Reinforcement learning (RL), we consider an infinite
Markov Decision Process (MDP) (Puterman, 2014), de-
fined by the tuple (S,A, p, r, γ), where an agent observes
the current environment state st ∈ S and performs an
action at ∈ A. This leads to a new environment state
st+1 ∼ p(·|st, at), where p : S × S × A → [0,∞) repre-
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(a) linear objective (b) quadratic objective

Figure 1. Trust region optimisation with a linear and a quadratic objective function, where πT corresponds to the current point and πE

shows the optimised solution constrained by the trust region.

sents the probability density of state transitions. For each
transition in the environment the agent receives a reward
r : S×A → R. The overall goal of the agent is to maximise
the total expected reward J =

∑
t E(st,at)∼ρπ

[r(st, at)],
where ρπ(st) and ρπ(st, at) denote state and state-action
marginals of the trajectory distribution produced by the pol-
icy π(at|st) and γ defines the discount factor. Accordingly,
a trajectory τ = (s0, a0, r0, s1, a1, r1, ...) is obtained by
sequentially generated actions from the policy (Sutton &
Barto, 1998).

2.2. Soft Actor Critic

SAC is a model-free RL algorithm, that uses an entropy-
regularised reinforcement learning setup, such that an ad-
ditional entropy term H of the policy is added, where α
defines the trade-off coefficient to improve exploration, sim-
ilar to a temperature term.

J = Eτ∼π

[ ∞∑
t=0

γtr(st, at) + αH(π(·|st))

]
(1)

Here, the min-double-Q trick (Hasselt, 2010) is also used to
stabilise the off-policy learning process.

Q̂LB(st, at) = min
(
Q1

θ1(st, at), Q
2
θ2(st, at)

)
(2)

Both Q functions Q1
θ(st, at) and Q2

θ(st, at) are learned by
minimising the soft Bellman residual (MSBE) using the
same target state-action value y′, where âs+t ∼ πT (·|st+1)
(Haarnoja et al., 2018).

y′ = r(st, at) + γ min
j=1,2

[
Qj

θj ,target
(st+1, ât+1)

− α log π(ât+1|st+1)
]

(3)

The policy is optimised using the reparameterisation trick,
that allows reformulation of the expectation over actions by
sampling from ε ∼ N (0, I) and squashing a deterministic
dependency of the state, policy parameters ϕ and random
noise as stated in Equation 4.

âϕ(s, ε) = tanh (µϕ(s) + σθ(s) • ε) (4)

Therefore the objective in Equation 1 can be rewritten,
where the state is sampled from a replay buffer D and the
action is obtained by Equation 4.

Jπ = Es∼D
ε∼N

[
min
j=1,2

Qj
θj
(s, âϕ(s, ε))−α log πϕ(âϕ(s, ε)|s)

]
(5)

2.3. Optimistic Actor Critic

OAC obtains an upper confidence bound Q̂UB using the
uncertainty estimate of the two Q-function approximations
and a Gaussian to model epistemic uncertainty.

µQ(s, a) =
1

2
(Q1

LB(s, a) +Q2
LB(s, a))

σQ(s, a) =
1

2
|Q1

LB(s, a)−Q2
LB(s, a)|

(6)

With βUB the level of optimism can be controlled to influ-
ence the exploration behaviour of the exploration policy.
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(a) beginning of learning (b) end of learning

Figure 2. Comparison of a Gaussian exploration policy πE with mean µE obtained by Equation 10 for different training progresses, where
the upper bound of the Q function is locally approximated around a Gaussian target policy πT with mean µT . Qπ refers to the true Q
function, whereas QLB and QUB indicate the lower and upper bound. In Figure 2a a flat Q function encodes a higher level of uncertainty
in the beginning and a sharper defined one represents a well explored state-action space in Figure 2b at the end of training, where the best
true action can be clearly obtained from.

Q̂UB(s, a) = µQ(s, a) + βUBσQ(s, a) (7)

To derive a separate exploration policy πE the upper confi-
dence bound is locally linear approximated around the cur-
rent target policy πT , that corresponds to the policy learned
by the SAC policy update in Equation 5.

Q̄UB(s, a) = aT
[
∇aQ̂UB(s, a)

]
a=µT

+ const (8)

Maximising this approximated upper bound increases the
chances of executing informative and opportunistic actions.
Since the optimisation objective is linear, a Kullback-Leibler
(KL) divergence constraint is added to bound the maximisa-
tion, preserve stability of the optimisation and the update.

µE ,ΣE = argmax
µ,Σ

Ea∼N (µ,Σ)

[
Q̄UB(s, a)

]
s. t. KL(N (µ,Σ),N (µT ,ΣT )) ≤ δ

(9)

For the linear approximation and Gaussian policies, this can
be solved in closed-form to achieve the exploration policy
defined by the mean µE and variance ΣE .

µE = µT +
√
2δ

ΣT

[
∇aQ̂UB(s, a)

]
a=µT

||
[
∇aQ̂UB(s, a)

]
a=µT

||ΣT

ΣE = ΣT

(10)

In addition OAC extends the actor update of SAC with a
modification of the lower bound to obtain more conservative

and stable policy updates, where βLB treats the level of
pessimism similar to the upper bound in Equation 7.

Q̂′
LB = µQ(s, a) + βLBσQ(s, a) (11)

OAC avoids pessimistic underexploration, since the explo-
ration policy πE is not symmetric with respect to the mean
of the target policy πT . Thereby it also solves the problem
of directional uninformedness, that can be seen in Figure 2.
Because the exploration policy is achieved every time the
agent draws an action from scratch, it does not influence the
critic directly and is only used for exploration (Ciosek et al.,
2019).

3. Analysis of Exploration in OAC
3.1. Optimistic exploration

To evaluate the pure exploration benefits of OAC, we first
omit the changes on the lower bound in Equation 11 by
setting βLB = −1, as it makes it harder to distinguish be-
tween the impact of the optimised exploration policy based
on the usage of the upper bound and the more pessimistic
lower bound in comparison to SAC. As shown in Figure 5
OAC achieves better exploration as SAC and beyond better
performance on the evaluated environments. Especially in
the first period of the training process the benefits can be
clearly seen.

In theory a trust region optimisation with a linear objec-
tive only results in an optimal update direction, whereas
the length or in this case the shift between the target and
exploration policy is fixed by the maximum allowed KL-
divergence as shown in Figure 1, since the constraint is
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always active (Ciosek et al., 2019).

Accordingly this results in a sub-optimal exploration policy
and furthermore makes the exploration sensitive in relation
to the maximum shift parameter δ in Equation 9 as it de-
termines the shift between the mean of the exploration and
target policy in Equation 10.

In the beginning of the learning of the agent, the Q func-
tion is more shallow due to the random initialisation of the
underlying neural network. Assuming a good converging
learning process, with progressive learning the Q function
gets more defined and converges to the optimal / true Q
function exemplified in Figure 2. Contemporaneously the
mean of the target policy converges to the maximum of the
optimal Q function due to the actor update in SAC (Equation
5). In addition the entropy shrinks naturally, especially in
the automated entropy adjusted version of SAC (Haarnoja
et al., 2019).

This leads to better exploration in the beginning, but to ex-
ploration of known suboptimal actions at the end of training,
when the action space is sufficiently good explored. Be-
cause the exploration policy indirectly influences the target
policy, this can increase potentially instabilities, when the
agent converges to a good solution.

Figure 3. OAC evaluated in the HalfCheetah-v2 environment with
different lower bounds generated by βLB ∈ [−7,−6, ...,−1],
evaluated for 5 random seeds and hyperparameters described in
Appendix B. The x-axis shows the number of steps while the y-axis
shows the average reward.

3.2. Examination of βLB

(Ciosek et al., 2019) introduced an extension of the lower
confidence bound by using the hyperparameter βLB in Equa-

tion 11, that replaces the min-double-Q trick in Equation 2.
In general lowering the lower bound βLB < −1 for the
target Q function value of the MSBE in Equation 3 and for
the policy update in Equation 5 amplifies the phenomenon
of pessimisitc underexploration, described in (Ciosek et al.,
2019). Accordingly it makes it harder to learn the true Q
function, since the lower bound becomes much smoother
and prevents the agents to exploit a good solution after sev-
eral training steps.

As (Ciosek et al., 2019) found an optimal hyperparameter
value βLB = −3.65, this seems to contradict the pessimistic
underexploration described above. In contrast, our results
in Figure 3 for the HalfCheetah-v2 environment (Todorov
et al., 2012) best describes the impact of the adaption of the
lower bound, whereby similar results are shown Figure 6
for the Ant-v2 and Hopper-v2 environments.

It can be seen, that βLB = −1 performs best in all three
environments. For the Hopper-v2 and HalfCheetah-v2, the
performance drops monotonically with decreasing values
of βLB , while Ant-v2 shown not the exact, but a similar
behaviour. With this in mind, we can not comprehend the
results of (Ciosek et al., 2019), since βLB = −3.65 does
not correspond to the best performance. Hence we do not
make use of the adaption of the lower bound for the fol-
lowing experiments, keeping the original lower bound from
Equation 2, that is equivalent to βLB = −1 (Ciosek et al.,
2019).

Figure 4. The upper bound of the Q function is approximated
quadratically. Qπ refers to the true Q function, whereas QLB

and QUB indicate the lower and upper bound. µT is the target
policy around which the upper bound is approximated. µE is the
exploration policy.

4. Optimistic Second Order Approximation
4.1. Motivation

Based on the insights of trust region optimisation exampli-
fied in Figure 1, we can apply the quadratic objective on
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Algorithm 1 Optimistic Actor Critic with Second Order Approximation (OAC2)

Require: θ1, θ2, ϕ {Initial parameters θ1, θ2 of the critic and ϕ of the target policy πT }
1: θ̌1 ← θ1, θ̌2 ← θ2,D ← ∅ {Initialize target network weights and replay pool}
2: for each iteration do
3: for each environment step do
4: Q̄UB ≈ Q̂UB {second-order approximation (12)}
5: if Q̄UB is concave then
6: πE ← (14) {Maximisation of quadratic approximation}
7: else
8: πE ← (10) {Maximisation of linear approximation}
9: end if

10: at ∼ πE(at|st) {Sample from the exploration policy}
11: st ∼ p(st+1|st, at) {Sample transition from the environment}
12: D ← D ∪ {(st, atR(st, at), st+1)} {Store the transition in the replay pool}
13: end for
14: for each training step do
15: for i ∈ {1, 2} do {Update two bootstraps of the critic}
16: update θi with ∇̂wi

||Q̂i
LB(st, at)−R(st, at)− γmin(Q̌1

LB(st+1, a), Q̌
2
LB(st+1, a))||22

17: end for
18: update ϕ with∇ϕĴ

α
Q̂′

LB

{Policy gradient update}
19: θ̌1 ← τθ1 + (1− τ)θ̌1, θ̌2 ← τθ2 + (1− τ)θ̌2 {Update target network}
20: end for
21: end for
output θ1, θ2, ϕ {Optimised parameters}

OAC. As OAC obtains the exploration policy by optimising
a linear approximation in Equation 8, we use a quadratic
objective. The impact of a second order approximation
instead of a linear approximation in Equation 8 can be ex-
emplified by comparing Figure 2b and 4. As mentioned
before, the optimisation of the linear approximation only
lead to an optimal direction, but does not scale the direction
length of the updated, that determines the exploration pol-
icy. Accordingly the update length is defined by the active
KL-divergence constraint.

In Figure 2b, this would lead to a worse action than just us-
ing the target policy action, since the value of the Q-function
is smaller. The quadratic approximation in Figure 4, on the
other hand, approximates the Q-function very well around
the target policy. Accordingly to the optimisation of the
quadratic objective, this not only leads to a optimal update
direction, but also to a better update length, since the opti-
mal approximated Q value lies within the KL-divergence
constraint. Therefore the exploration policy obtained by the
quadratic approximation naturally exploits the true optimal
Q value better.

4.2. Second Order Approximation

First of all we derive the second order approximation of the
upper bound given in Equation 7. Therefore we introduce
the following abbreviations to facilitate the derivation: Let

H be the second order and h the first order derivative of
Q̂UB w.r.t a, both for a given state s and evaluated for
a = µT . Then, the second order approximation is given as
follows.

Q̄UB(s, a) =
1

2
(aTHa− 2aTHµT + µT

THµT )+

aTh+ µT
Th+

[
Q̂UB(s, a)

]
a=µT

with H =
[
∇2

aQ̂UB(s, a)
]
a=µT

h =
[
∇aQ̂UB(s, a)

]
a=µT

(12)

4.3. Optimisation of the Second Order Approximation

The optimisation objective keeps similar to the optimisa-
tion of the linear approximation in Equation 9, where we
maximise the expectation of the approximated upper bound
Q̄UB(s, a).

Proposition 1 (Optimization objective for the second order
approximation).
The optimisation objective for the second order approxima-
tion is:
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J =µT 1

2
Hµ+

1

2
tr(ΣH) + µT (h−HµT )+

1

2
µT
THµT − µT

Th+
[
Q̂UB(s, a)

]
a=µT

.
(13)

Proof. See Appendix A.1.

To ensure that the exploration policy does not collapse to
zero variance, as it is the case when optimising the origi-
nal problem in Equation 9 using a quadratic objective, we
add an additional entropy constraint (Abdolmaleki et al.,
2015). Through this, the exploration policy would take dif-
ferent actions, when the underlying state-action function
approximations do not change, e.g. after few training steps.
Accordingly this prevents the exploration policy from purely
exploitation and controls the exploration/exploitation trade-
off of the exploration policy by guaranteeing a minimum
entropy ϵ.

µE ,ΣE = argmax
µ,Σ

E[Q̄UB(s, a)]

s. t. KL(N (µ,Σ),N (µT ,ΣT )) ≤ δ,

H(N (µ,Σ)) ≥ ϵ

(14)

The stated optimisation problem can not be solved com-
pletely in closed form, in contrast to the closed form solu-
tion of OAC in Equation 10. Therefore it can only be solve
numerically using any constrained nonlinear optimiser.

Furthermore, this can be improved by optimising the dual
formulation, as the exploration policy can be expressed in
terms of Lagrange multipliers (Abdolmaleki et al., 2015).

Proposition 2 (Optimisation of the dual formulation).
The exploration policy resulting from Equation 14 has the
form πE = N (µE ,ΣE), where

µE = (λΣ−1
T − 2R)−1(λΣ−1

T µT + r)

ΣE = (λΣ−1
T − 2R)−1(λ+ ω)

with the Lagrangian multipliers λ and ω obtained by opti-
mising the dual formulation in Equation 15.

Proof. See Appendix A.2.

4.4. Non-concave Maximisation

Since we use a quadratic approximation, the curvature of
the optimisation objective in Equation 14 can become non-
concave, especially for high-dimensional state-action spaces.
In this case the optimal solution is defined by the active
KL-divergence constraint, assuming that the entropy of the
target policy satisfies the entropy constraint. This leads to

the closed form solution of the original OAC, using a linear
approximation on the upper bound.

In Table 1 can be seen, that the objective is more likely to be
non-concave. Especially in the higher-dimensional Ant-v2
environment, the objective is almost always non-concave,
through with the optimisation is only solved using the linear
approximation.

Table 1. Number of optimisation problems with concave objec-
tive as a percentage of the total number of steps in the evaluated
environments for OAC2.

ENVIRONMENT CONCAVE OBJECTIVE

HALFCHEETAH-V2 5.95± 0.49%
HOPPER-V2 15.11± 0.33%
ANT-V2 0.21± 0.20%

The second order extension of OAC including the curvature
evaluation of the objective function is defined as Optimistic
Actor Critic with Second Order Approximation (OAC2) in
Algorithm 1.

If the exploration policy is optimised using the dual formu-
lation accordingly to the Proposition 2, then the Lagrange
multiplier λ in Equation 15 can be increased, such that F
becomes positive definite (Abdolmaleki et al., 2015). There-
fore the objective of the dual optimisation stays convex
and the benefits of the second order approximation can be
applied more often in practise.

4.5. Evaluation of OAC2

We evaluate OAC2 in comparison to SAC and OAC in Fig-
ure 5, whereby we optimise the original maximisation prob-
lem stated in Equation 14 and do not make use of the dual
formulation.

For a better comparison, we train SAC, OAC and OAC2 on
a one-legged jumping robot (Hopper), a two-legged chee-
tah robot (HalfChetah) and a four-legged walking robot
(Ant) environment of the Multi-Joint dynamics with Contact
(MuJoCo) physics engine (Todorov et al., 2012).

All agents are trained for 1 million steps in the environ-
ment with the same lower bound βLB = −1 for the policy
update to ensure the comparability of the pure exploration
behaviour between the optimistic exploration methods OAC
and OAC2 and the implementation of SAC as described in
Section 3. Additionally we use the same tuned hyperparam-
eters for the upper bound βUB and the shift coefficient δ
of (Ciosek et al., 2019). The entropy hyperparameter ϵ of
the second order optimisation extension of OAC2 in Equa-
tion 14 is also tuned and can be found in the Appendix B,
accordingly to the other parameters of the experiments.

Accordingly to (Ciosek et al., 2019), OAC outperforms SAC
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Figure 5. Comparison of OAC2, OAC and SAC, evaluated in the Ant-v2, HalfCheetah-v2 and Hopper-v2 environment for 25 random
seeds2 and hyperparameters described in Appendix B. The x-axis shows the number of steps while the y-axis shows the average reward.

after 1 million steps for all three environments. Especially
in the first iterations the benefits of OAC can be clearly seen,
even if OAC does not guarantee a better exploration policy
due to the linear objective of the trust region optimisation
that can result in worse action at the optimisation boundary.
This can be justified by the additional randomness of OAC,
which is encoded in the optimistic upper bound, since un-
explored and low-expected Q-function values can also lead
to faster exploration of the state-action space and thus to an
increase in performance.

Based on the results, OAC2 seems to perform a bit better
than OAC due to the second order approximation which
guarantees a better exploration policy compared to OAC
and also ensures fast exploration of the state-action space by
using an optimistic upper bound. Nevertheless the influence
of the theoretical improvements of the second order approx-
imation is not as much as expected, which can be seen in
the very similar behaviour of OAC2 and OAC. Especially
in the HalfCheetah-v2 environment the differences are not
noticeable. This corresponds to the low number of concave
optimisation steps in Table 1, whereby the second order
approximation is only used a few times. In the Hopper-v2,
the second order approximation is used for about 15% of the
steps in the environment and accordingly the improvement
is small, but noticeable. Regarding the evaluation of the con-
cave objective in Table 1, the improvement of OAC2 in the
Ant-v2 environment is higher than expected as the second
order approximation is only applied in 0.21% of the steps.
This is based on the higher- dimensional state-action space
of the environment in comparison to the low dimensional
hopper-v2.

Overall, the impact of the second order approximation can
not be clearly examined, but shows the potential for im-
provement despite the low level of application of the second

order approximation.

5. Conclusion
In this paper we extended OAC by a second order approx-
imation of the upper confidence bound on the Q function
and introduced OAC2. While the theoretical potential of
the second order approximate is manifestly, in practice, the
poor applicability due to the curvature of the optimisation
objective, as seen in Table 1, prevents a clear conclusion as
to whether OAC2 improves OAC. Nevertheless, small im-
provements can be seen in all three evaluated environments.

This problem can be improved by optimising the dual func-
tion to gain more control over the curvature of the optimi-
sation objective. This would increase the number of usages
of the second order approximation in higher dimensional
state-action spaces and therefore the impact of OAC2 on
the entire learning process. Accordingly, the theoretical
advantages of OAC2 are more often applied and we expect
higher improvements in the experiments.
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Supplementary Material
A. Proofs
A.1. Proof of Proposition 1

Proposition 1 (Optimization objective for the second order approximation).
The optimisation objective for the second order approximation is:

J = µT 1

2
Hµ+

1

2
tr(ΣH) + µT (h−HµT ) +

1

2
µT
THµT − µT

Th+
[
Q̂UB(s, a)

]
a=µT

.

Proof. The second order approximation of QUB is:

Q̄UB(s, a) =
1

2
(aTHa− 2aTHµT + µT

THµT ) + aTh+ µT
Th+

[
Q̂UB(s, a)

]
a=µT

.

Using the trace, this can be rearranged to

Q̄UB(s, a) =
1

2
(tr(aTHa)− 2aTHµT + µT

THµT ) + aTh+ µT
Th+

[
Q̂UB(s, a)

]
a=µT

=
1

2
(tr(aaTH)− 2aTHµT + µT

THµT ) + aTh+ µT
Th+

[
Q̂UB(s, a)

]
a=µT

.

The objective is then to maximise this approximation. Here, we use the linearity of the trace and the expectation.

J = E[Q̄UB(s, a)] =
1

2
(tr(E[aaT ]H)− 2µTHµT + µT

THµT ) + µTh+ µT
Th+

[
Q̂UB(s, a)

]
a=µT

=
1

2
(tr(µµTH) + tr(ΣH)− 2µTHµT + µT

THµT ) + µTh− µT
Th+

[
Q̂UB(s, a)

]
a=µT

= µT 1

2
Hµ+

1

2
tr(ΣH) + µT (h−HµT ) +

1

2
µT
THµT − µT

Th+
[
Q̂UB(s, a)

]
a=µT

A.2. Proof of Proposition 2

Proposition 2 (Optimisation of the dual formulation).
The exploration policy resulting from Equation 14 has the form πE = N (µE ,ΣE), where

µE = (λΣ−1
T − 2R)−1(λΣ−1

T µT + r)

ΣE = (λΣ−1
T − 2R)−1(λ+ ω)

with the lagrangian multipliers λ and ω obtained by optimising the dual formulation in Equation 15.

Proof. Consider the rewritten second order approximation of the upper confidence bound of Equation 12:
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Q̄UB(s, a) =aT
1

2

[
∇2

aQ̂UB(s, a)
]
a=µT︸ ︷︷ ︸

R

a+ aT

[
∇aQ̂UB(s, a)

]
a=µT

−
[
∇2

aQ̂UB(s, a)
]
a=µT

µT︸ ︷︷ ︸
r

+

[
Q̂UB(s, a)

]
a=µT

−
[
∇aQ̂UB(s, a)

]
a=µT

µT +
1

2

[
∇2

aQ̂UB(s, a)
]
a=µT

µ2
T︸ ︷︷ ︸

r0

=aTRa+ aT r + r0

Given the multivariate gaussian policies with dimension p

π = N (µ,Σ) = ((2π)p det(Σ))
− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
and the entropy

H(N (µ,Σ)) =
p

2
+

p

2
log (2π) +

1

2
log (det(Σ)) .

Accordingly the KL divergence between the a exploration πE and target πT policy is states as:

KL(N (µ,Σ),N (µT ,ΣT )) =
1

2

[
tr
(
Σ−1

T Σ
)
+ (µT − µ)TΣ−1

T (µT − µ)− p+ log

(
detΣT

detΣ

)]
Using the original optimisation problem in Equation 14 with the second order approximation and an additional entropy
constraint, we can reformulate the Lagrangian function, introducing the Lagrangian multipliers λ and ω.

L(µ,Σ, λ, ω) =Ea∼N (µ,Σ)

[
aTRa+ aT r + r0

]
+ λ

(
δ − 1

2

[
tr
(
Σ−1

T Σ
)
+ (µT − µ)TΣ−1

T (µT − µ)− p+ log

(
detΣT

detΣ

)])
+

ω

(
p

2
+

p

2
log (2π) +

1

2
log (detΣ)− ϵ

)
=µTRµ+ tr(ΣR) + µT r + r0 + λ

(
δ − 1

2

[
tr
(
Σ−1

T Σ
)
+ (µT − µ)TΣ−1

T (µT − µ)− p+ log

(
detΣT

detΣ

)])
+

ω

(
p

2
+

p

2
log (2π) +

1

2
log (detΣ)− ϵ

)
The optimal mean and variance of the exploration policy can be obtained by maximising the Lagrangian function:

∇µL(µ,Σ, λ, ω) = 2µR+ r − λΣ−1
T (µ− µT )

1
= 0

=⇒ µ⋆ = (λΣ−1
T µT + r)(λΣ−1

T − 2R)−1

∇ΣL(µ,Σ, λ, ω) = R+
λ

2

(
Σ−1 − Σ−1

T

)
+

ω

2
Σ−1 !

= 0

=⇒ Σ⋆ = (λΣ−1
T − 2R)−1(λ+ ω)

By making use of the following substitutions F = (λΣ−1
T − 2R)−1 and f = (λΣ−1

T µT + r) we can obtain the dual
formulation as followed:

g(λ, ω) = L(µ⋆,Σ⋆, λ, ω) = λδ − ωβ +
1

2

(
fTFf − λµT

TΣ
−1
T µT − λ log |2πΣT |+ (λ+ ω) log |2π(λ+ ω)F |

)
(15)

Accordingly the exploration policy πE = N (µ⋆,Σ⋆) can be expressed as πE(a) = N (Ff, F (λ+ ω)).
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B. Environment Setup and Hyperparameters
The following hyperparameters are used for the MuJoco environments HalfCheetah-v2, Ant-v2 and Hopper-v2, that are used
to evaluate the different algorithms in the result plots.

Table 2. SAC Hyperparameters

HYPERPARAMETER VALUE

HORIZON 100
DISCOUNT FACTOR γ 0.99
TARGET SMOOTHING COEFFICIENT τ 0.005
EPOCHS 100
STEPS/EPISODE 1000
EPISODES EVALUATION 10
BATCH SIZE 256
WARMUP TRANSITION 10000
MAX REPLAY SIZE 106

CIRITIC NETWORK [256, 256] RELU
ACTOR NETWORK [256, 256] RELU
OPTIMIZER ADAM 3

LEARNING RATE ACTOR απ 3× 10−4

LEARNING RATE CRITIC αQ 3× 10−4

Table 3. OAC Hyperparameters - extending the hyperparameters of SAC in Table 2

HYPERPARAMETER VALUE INTERVAL FOR SEARCH4

SHIFT MULTIPLIER
√
2δ 6.86 [0, 12]

UPPER CONFIDENCE BOUND βUB 4.66 [0, 7]
LOWER CONFIDENCE BOUND βLB -1.0 [-7, -1]

Table 4. OAC2 Hyperparameters - extending the hyperparameters of SAC in Table 2 and OAC in Table 3

HYPERPARAMETER VALUE INTERVAL FOR SEARCH

ENTROPY ϵ -6.0 [-8, 0]

3(Kingma & Ba, 2017)
4(Ciosek et al., 2019)
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C. Baselines and additional results

Figure 6. OAC evaluated in the Ant-v2 and Hopper-v2 environment with different lower bounds generated by βLB ∈ [−7,−6, ...,−1],
evaluated for 5 random seeds and hyperparameters described in Appendix B. The x-axis shows the number of steps while the y-axis shows
the average reward.


