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Abstract
One problem of modern robotics is that teaching a robot to perform a particular task
requires expert knowledge, time, and many physical trials within its workplace. We as
humans can learn a new skill much more efficiently by simply watching another human
once. The aim of this thesis is to introduce a complete pipeline from data collection to
execution, which enables training a robot with the information encoded in a video of a
single human demonstration. Previous methods rely on large amounts of prior training of
complex visual detection networks or access to many optimal executions for meta
learning. However, we propose a one-shot approach that lies in the domain of visual
imitation learning. To this end, we introduce a method for efficient data extraction from
RGBD video, a graph-based task-representation that allows for robust generalization, and
finally, a model predictive control algorithm using a composition of task-related costs as
well as functions enforcing auxiliary requirements of robot manipulation. We present
solutions to problems arising from visual inference, the human-robot dynamics gap,
inaccuracies in the system model, and executions within novel environments. We also
study our results on a Pybullet simulation of the Franka Panda robot with demonstration
videos captured in the real world that revolved around the interesting task domain of the
social game “Ubungo”.

5



1 Introduction

Learning by watching others is an integral way of human skill acquisition. Adapting this
technique for robots has become a big topic in machine learning recently because it
would enable them to learn complicated tasks from human experts in a way that is very
natural for their teachers. Humans already show the great potential of this method. We
have the impressive ability to imitate another human being after watching him perform a
new skill once while also adapting the motion to our morphology and external
environment [1]. Thousands of hours of tutorial videos being uploaded on modern video
platforms already encode knowledge about every conceivable task, which allows remote
learning of new skills with just a few clicks. Unlocking this database for machine learning
approaches or finding a way to transport knowledge from a human teacher in the same
way would leverage the need for manual programming or complicated software to train a
robot on a new task. We propose a framework covering every aspect of this approach,
from capturing a demonstration video with depth data to the imitation of the shown skill
by an arbitrary robot. Our method works within a one-shot setting only a single video
demonstration of the task and requires no prior training. Our technique also can
generalize the seen execution to the workspace of a given robot and is invariant against
differences in initial poses of task-relevant objects. Combined, this allows the
demonstration to be captured in an environment that is natural for a human teacher, like
a cluttered office desk, but executed in the environment of the robotic agent.
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Figure 1.1: Scope of this work, which includes the collection of demonstration data in
the form of a video (left), a graph-based representation of the demonstrated
task (middle) and learning as well as execution of control policy to facilitate
imitation by a given robot (right)

To accomplish these goals we propose i) data collection pipeline, ii) an improvement of
graph-based task-representation introduced in this work [2] and iii) a method to learn a
state-based cost function from it. This cost is part of a model predictive control algorithm
to iv) facilitate the imitation of the demonstrated skill under the consideration of general
side-goals of robot manipulation. We show v) results with a simulated Panda robot that
could be recreated in a real system in the future without requiring great effort. We only
assume an RGB-D video with pre-labeled objects as training data and an approximate
dynamics model for the agent’s environment.

1.1 Related work

Learning from demonstration is a common strategy in Reinforcement Learning (RL), with
Behavior cloning [3] and Inverse Reinforcement Learning [4] being the most prominent
approaches. While both aim to infer knowledge from observing an expert execution of a
given task, the first derives an optimal state-action mapping, while the latter tries to learn
a cost function. However, many of these techniques require that the given demonstration
consists of kinesthetic teaching [5] [6], i.e., physically guiding the robot in the same
environment, it is supposed to perform the skill in. This requirement assures that the
expert in the demonstration has the same dynamics, action-space, and state-space as the
agent during the imitation [7], which does not hold up for learning from video data,
especially when a human executes the task. This problem is further compounded by the
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difficulty of inferring system states or expert actions from video data in the first place,
while humans can do this naturally [8]. Some approaches circumvent the visual inference
problem by using full-frame image encodings as latent state representations [9] [10], but
in turn, require a setup of complex neural networks that need to be trained with large
amounts of training data. They also suffer from biases in observations, such as changes in
background or viewing angle. Object or feature-centered state representations [11] have
been shown to increase data efficiency, with graph-based approaches [2] [12] being quite
popular. However, even very data-efficient learning approaches, known as few-shot or
one-shot methods, rely on multiple previous experiments as priors, for example, to derive
system models [13] or establish a library of primitive movements [14]. These pre-learned
parameters are commonly adjusted to a novel scenario in a single learning phase. We
have decided not to use any prior training in a given setting to keep the users’ effort as
low as possible. Accordingly, we want to derive a control policy from a single optimal task
execution that has to be generalized enough to work in unseen environments, and for an
arbitrary agent. We also require our control method to suffice general challenges of robot
manipulation such as collision- and singularity avoidance, smooth trajectories, and
reactivity. These conditions can be problematic for approaches that only output high-level
actions [15], but cost-based techniques like model predictive control [16] [17] allow for
the parallel completion of multiple side goals while completing a task. They are based on
a composition of different goal-specific cost functions and online computation of control
policies that are locally optimal regarding the current state of the environment.
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2 Foundations

2.1 Hand Detection And Pose Estimation

Our task representation relies on the pose of the human expert’s hand during each frame.
To estimate it, we use the state-of-the-art detection framework MediaPipe Hands [18],
which consists of two stages. First, a palm detector is run over the whole image to locate
the hand center. Afterward a more precise model will determine the exact locations of
specific landmarks, as seen in fig 2.1. This approach makes the technique is quite robust
against partial invisible hands and self-occlusions. However, we discovered during our
experiments that there are troubles with long sleeves, which is probably caused by a bias
in the training data. We use this framework to get the locations of the three landmarks
THUMB_TIP, INDEX_FINGER_TIP, and INDEX_FINGER_MCP in pixel coordinates for each
frame. These coordinates can be transformed into spatial 3D coordinates, based on the
point cloud provided by our Microsoft Azure Kinect DK RGBD camera.

Figure 2.1: Hand landmarks as specified by MediaPipe Hands
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2.2 Object Pose Estimation

To facilitate object pose estimation from video data and during task execution, we chose
a popular approach in Computer Vision: Fiducial markers. More specifically, we worked
with the ArUco library [19] in OpenCV[20]. Although this approach has lower accuracy
and a high vulnerability to occlusions, it requires a minimal setup in turn compared to
similar methods like Optitrack[21]. After pre-generating a set of fiducial markers and
placing them on task-relevant objects, we can estimate their 6D poses directly from 2D
images. Since we calculate the pose of the marker, the user has to specify a manual
translation and rotation to the origin of the object coordinate axes system. This
transformation can be calculated for individual objects since each marker encodes a
unique id.

Figure 2.2: Visualization of ArUco marker pose estimation
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2.3 Measuring Distances Between Orientations

Orientations of entities, in general, can be described as the rotation from the world axes
onto their local axes. A common method in robotics and computer graphics to represent
rotations in three-dimensional space is using unit quaternions. We will denote these
quaternions, their norm and their conjugate as:

q = q0 + iq1 + kq2 + lq3

||q|| =
√︂

q20 + q21 + q22 + q23 = 1

qH = q0 − iq1 − kq2 − lq3

Other forms of expression, Euler Angles for example, suffer from noncontinuous spaces
and more time-intensive calculations. Our cost function partly relies on distances
between orientations, which requires a robust formulation of this distance. One metric is
the magnitude of the rotation that transforms one orientation into the other. We define
the mentioned rotation as the unit quaternion qDiff, which solves the constraint:

qDiffq1 = q2 ⇔ qDiff = qH1 q2 (2.1)

We require our magnitude || · ||mag to be proportional to the size of the rotation angle θ

encoded in q and direction invariant, while still being normalized:

lim
|θ|→0

||q||mag → 0

lim
|θ|→π

||q||mag → 1,

This angle in is tied to q by q0 = cos θ
2 . Accordingly, we formulate || · ||mag as

||q||mag = 1− |q0| (2.2)

which suffices the constraints above. We combine (2.1) and (2.2) to a distance function
dO : Q× Q→ [0, 1]:

d(q1,q2) = ||qH1 q2||mag

Proof that || · ||mag suffices the mathematical properties of a true metric can be found in
the appendix.
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2.4 Graph-Based Task Representation

The basis of our task representation are Visual Entity Graphs (VEGs) introduced in this
work [2]. They encode a video that contains optimal task execution by a human expert,
into a sequence of T graphs [G0

D, G
1
D, ..., G

T
D ], with T being the total amount of frames.

During the imitation, the agent encodes its environment into a VEG GI at every time step.
Each graph Gt = {V t, ϵt} contains three types of different nodes representing different
observations: Vh for the human hand or robot gripper in GI respectively, Vo for each
task-relevant object currently detected, and Vp for visual key points on those objects.
They all share the same type of embedding, which consists of the respective entity’s
position in 3D (X, Y, Z) coordinates denoted as xi.
An edge is tied between any pair of two nodes making the whole graph a clique. Each
edge also defines an attention value that denotes whether a corresponding connection is
active, i.e., considered relevant for the current motion or inactive. An edge is active if
connects to an anchor object. At a specific time step, the anchor object is defined as the
object that is currently in motion. Or if none are at the moment, the object that will be
next. On the one hand, this formulation essentially allows a description of the desired
agent trajectory in the object’s frame that he is supposed to manipulate. On the other
hand, this encodes a time-dependent focus on a single object whose relations to the
environment will primarily impact the cost function. A similar technique is used to
describe trajectories in this approach [22], but the concept of attention allows for the
sequential manipulation of multiple objects. Edges connected to key point nodes Vp are
only active if tied to a node representation Vo corresponding to the object from which
they have been sampled.
The same work, which formulated the VEGs, also proposes a cost function used for policy
optimization in a Reinforcement Learning (RL) problem. This cost is based on
graph-similarity and compares the relative distances between visual entities in the
demonstration graph Gt

D with the corresponding relations in the current imitation graph
GI. Using a metric that relies on relative displacements makes the resulting policy
invariant against absolute displacements of the whole object set and, to a certain degree,
individual variations. This formulation also encodes orientations with distances of key
point Vp nodes to their respective object center Vo. Adding edge weights ω ϵ [0, 1], that
dependent on tied node types, this cost function is postulated as:

C(GI, Gt
D) =

n
∑︂

i=1

n
∑︂

j=i+1

ω(ϵDi,j) · att(ϵDi,j) · ||(xDi − xDj )− (xIi − xIj)||,

12



with the attention function att(ϵ)→ {0, 1} . We improve upon the graph-based task
representation and the cost function in the method section.

2.5 Imitation Learning With Model Predictive Control

We base our description of the Imitation Learning problem, and its solution on the
formulations from this paper [16].

2.5.1 Problem Definition

We formalize our learning problem as a Markov Decision Process (MDP) with finite
horizon H. An MDP consists of the state space S, the action space A, the distribution
P (st+1|st, at), which determines the probability that action a in state s at time t will lead
to state st+1. as well as a per step incurred cost c(st, at). We are trying to find a policy
π(at|st) that optimizes

π∗ = argmin
πϵΠ

Eπ,P

[︄

H−1
∑︂

t=0

c(st, at)
]︄

,

with Π being the space of all policies. This equation is a classical Reinforcement Learning
problem [23]. H is much smaller than the total range of the motion, and the resulting
policy will be optimal in regard to the next H steps in time.
Imitation learning is introduced to this problem by shaping a task-specific cost function
c(st, at). Akin to Inverse Reinforcement Learning approaches [24], we learn a cost function
from not necessarily optimal expert demonstrations. We base our task-related cost
function on dissimilarity between states observed in the human demonstration and those
encountered during imitation at the corresponding phase of the task. This function will
be combined with more cost terms to achieve the general side goals of robot
manipulations. More about that in the method section.
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2.5.2 Solving The Optimization Problem

Solving for a complex globally optimal policy is hard, especially since the task objective c
could be sparse or difficult to optimize. Model predictive control can be viewed as a
practically motivated strategy that simplifies the overall problem by focusing only on the
states the robot encounters online during execution and rapidly re-calculating a “simple”
locally optimal policy [16]. It also doesn’t require the exact dynamics of the system, but
can work with an approximate dynamics model F̃ .
We are working with an existing implementation of Model Predictive Path Integral
Control[25] using Covariance Variable Importance Sampling (MPPI) [26] as a basis for
our control algorithm. Sampling-based MPC iteratively optimizes simple policy
representations such as time-independent Gaussians over open-loop controls with
parameters θt such that Πθt = ΠH−1

h=0 πθt,h . Here, θt represents the sequence of means
µt = [µt,0, ..., µt,H−1] and a parameterized covariance Σ at every step along the horizon
H.
At every iteration, the optimization proceeds by sampling a batch of N control sequences
of length H, un ϵ [0, N), h ϵ [0, H), from the current distribution, followed by rolling out
the approximate dynamics function F using the sampled controls to get a batch of
corresponding states x̃nϵ[0,N),hϵ[0,H) and costs c̃nϵ[0,N),hϵ[0,H). The policy parameters are
then updated using a sample-based gradient of the objective function. After K ≥ 1
optimization iterations, we execute the mean of the resulting distribution. We describe
how the distribution is updated next. Consider the function

C̃(xt, ut) =

H−1
∑︂

h=0

γh c̃ (x̃t,h, ut,h)

where γ ϵ [0, 1] is a discount factor that is used to favor immediate rewards. We do not
specify a terminal cost q(x̃t,H , ut,H) for the sake of simplification.
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A widely used objective function is the exponentiated utility or the risk-seeking objective,

L = Eπθ,P̃

[︃

exp
(︃

−1

β
C̃(xt, ut)

)︃

| x̃0 = xt

]︃

,

where β is a temperature parameter. For this choice of objective, the mean is updated
using a sample-based gradient as,

µt,h = (1− αµ)µt−1,h + αµ

∑︁N
i=1 ωiut,h
∑︁N

i=1 ωi

where αµ and ασ are step-sizes that regularize the current solution to be close to the
previous one. With

ωi = exp
(︄

−1

β

H−1
∑︂

h=0

γh c̃(x̃t,h, ut,h)

)︄

increasing the weight of successful action sequences.
We provide pseudocode for our algorithm here, using the parameters total length T,
number of samples N, number of optimization cycles K, horizon length H, initial
distribution parameters θ0 and the approximate system dynamics F̃ (x̃t, ut)→ x̃t+1. We
denote a sampled control sequence batch (u0...N,0, u0...N,1, ..., u0...N,H−1) as ut, a
computed batch of state sequences (x0...N,0, x0...N,1, ..., x0...N,H−1) as xt and resulting
batch of cost sequences (c0...N,0, c0...N,1, ..., c0...N,H−1) as ct. Since a distinct distribution is
defined for each step within the horizon we define a sequence of distribution parameters
((µ0,Σ), (µ1,Σ), ..., (µH−1,Σ)) as θt.

for t = 1 ... T do
x0 ← GET_CURRENT_STATE()
πθt ← SHIFT(θt−1)
for i = 1 ... K do

ut ← SAMPLE_CONTROLS(πθt , H,N)
xt, ct ← COMPUTE_ROLLOUTS(F, H,N, x0,ut)
θt ← UPDATE_DISTRIBUTION(ct,ut)

end for
EXECUTE(µ0(θt))

end for
Algorithm 1: Sampling-Based MPC Algorithm
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3 Method

3.1 Improvements On The Graph-Based Task Representation

We propose an improvement upon the task representation described in the foundation
section. We also use a VEG sequence to encode a given video demonstration. However,
we made significant changes to the embeddings of the involved VEGs and to the inferring
of underlying data. We only consider two types of nodes for each graph, with Vh
representing the human hand or robot gripper, while Vo represents each task-relevant
object in the demonstration. Additional to the entity’s 3D (X, Y, Z) position, we also
include its orientation directly into each node embedding, expressed as a unit quaternion.
This formulation simplifies data collection since we do not rely on time-consuming
pre-trained keypoint detectors, which also reintroduce issues that we explicitly try to
avoid with an object-centered task representation. Furthermore, the properties of
quaternions allow for a much more intuitive and reliable metric for the distance
measurement between two orientations, as shown in the foundation section. Finally,
having a streamlined graph embedding enables us to make hand-crafted modifications,
which influence the optimization goal during critical motion phases.
We use the edges from the original postulation except for the tied weights. We drop these
since they no longer serve a purpose due to our reduced node variety.
We also keep the attention function and its purpose, but with a changed definition of an
anchor object. We consider the anchor to be the object currently manipulated by the
human expert or if none are at the moment, the object that will be next. Consequently,
we infer the entity of the greatest importance by proximity to the human hand, while the
original approach derives relevance based on motion saliency as postulated here [11].
Our approach is supposed to be more robust against estimation errors and occlusion.
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Figure 3.1: Example of a visual entity graph constructed during step t of a task demon-
stration. Depicted is the representation of the human hand Vh and 3 nodes Vo1,
Vo2, Vo3 corresponding to relevant objects. The green piece with a T-shape is
currently considered to be the anchor because the human expert manipulates
it. Consequently, all edges connected to it are considered active in this VEG.

To derive a task-related cost function, we use graph similarity as a basis. We require a
one-to-one correspondence between nodes in both graphs, assuming a set of n a priori
labeled objects in video. These entities must be reliably detected during the imitation and
must be represented in every graph. Data from single steps in the demonstration, where
specific entities are not detected or show a significant amount of pose estimation error, is
interpolated to ensure the continuous presence of entities. If an object can not be
properly detected during the execution, we use its last known pose as its embedding.
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The modified graph structure allows the cost function to be split into a component
dependent on positions:

CP(GI, Gt
D) =

n
∑︂

i=1

n
∑︂

j=i+1

att(ϵD,ti,j ) · ||(xD,ti − xD,tj )− (xIi − xIj)||

We also require another component that depends on orientation:

CO(GI, Gt
D) =

n
∑︂

i=1

n
∑︂

j=i+1

att(ϵD,ti,j ) · dO
(︂

(qD,ti )HqD,tj , (qIi)HqIj
)︂

,

which are linearly combined with the weights ωP, ωO ϵ R+ to encode importance of the
respective aspect and to bridge their gap in scale. We formulate the resulting cost
function as:

C(GI, Gt
D) = wPCP(GI, Gt

D) + wOCO(GI, Gt
D)

We use this function as an incentive for online policy optimization. Its input consists of
hypothetical imitation graphs, which the robot action could induce within the present
environment and the current optimization goal VEG from the encoded demonstration.

3.1.1 Human To Robot Domain Transfer

Imitating human expert demonstrations is limited by mismatches in dynamics,
view-point, and embodiment from teacher to robot [1]. Because we extract object and
hand poses from visual data first and before learning from them, our task representation
is invariant against changing viewing angles. However, differences in the embodiment,
dynamics, and state and action spaces remain significant. For example, a human hand
can grasp an object from every angle and at every point, due to its freely configurable
fingers. A robot with a simple gripper made of two prismatic joints has to find a point of
attack that fits its hardware constraint. The resulting grasping pose might significantly
diverge from the human demonstration.
There are multiple approaches to overcome these issues in RL, such as learning a direct
state to state mapping or learning a correspondence model between observations and
robot actions [27]. We resolved to solve the dynamics problem by completely dropping
observed actions from the task representation. Similar to this work [6], we incentivize
the imitation agent to recreate the state sequence observed in the human demonstration.
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This approach, in turn, requires a one-to-one mapping between demonstrator and
imitator state space.
We achieve this in two ways. First of all, we break down observations of the human hand
into a 6D pose and a grasping state per time step, and since we only have access to the
positions of specific landmarks, we have to design a corresponding pose. The goal is to
enable the robot gripper to follow the human trajectory and imitate its grasping approach
as much as possible.

Figure 3.2: Extracted human hand pose that serves as an optimization target for the
panda gripper (left). This pose consists of a centroid represented by the black
dot and x-axis red, y-axis green, z-axis blue. This inferred pose is determined
by the detected positions of the 3 annotated landmarks INDEX, THUMB, and
INDEX_MCP

Our method has been developed with the gripper of the Panda robot in mind but applies
to many standard gripper models.
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We use the cartesian coordinates of three specific points on the human hand as a basis for
our pose derivation. We estimate their positions per frame as described in the foundation
section.
We denote their (X Y Z) coordinates as IP for the INDEX mark, TP for the THUMB mark,
and MP INDEX_MCP mark, as shown in figure 3.2. The local x-axis of the human hand is
determined by the direction of the other axis and the right-hand rule:

x = y× z

We choose the local y-axis as the connecting vector between fingertip and thumb tip:

y = IP − TP

The z-axis is constructed in a such a way that it runs orthogonal to y while having a
common interception point. It is also required that the point INDEX_MCP lies on z, which
together can be expressed as:

s = 1−
y · (MP − TP)
||y||2 z = (1− s) · y− (MP − TP)

Afterwards we have to compute the quaternion representation of the calculated hand
orientation, which is defined by the rotation matrix constructed with the local axes:

R =

(︃ x
||x||

y
||y||

z
||z||

)︃

The origin of this axes system, i.e the inferred hand position p is chosen to be the mean of
the detected thumb and index tip positions:

p =
IP + TP

2

Note that this method assumes that a plane can be spanned between all 3 landmarks and
that the INDEX_MCP point is located between THUMB and INDEX. Due to estimation
errors, these conditions are violated sometimes. The hand orientation for the respective
time steps is interpolated with surrounding valid values as described in the data
collection section. The resulting pose is used as the embedding of the hand nodes Vh.

20



The other way we bridge the dynamics gap is by making hand-crafted modifications to
the inferred grasping approaches. While the described pose extraction allows the robot to
imitate the human hand movements to a reasonable degree, it can not compensate for the
flexibility of the human hand. Since a static gripper can only pick up objects from very
specific angles and high precision is required to achieve a proper grasp, we can not
directly follow the approach taken by the human demonstrator. Fig 3.2 shows an edge
case where direct imitation would be possible, but this can not be assumed because the
human teacher may choose a different way to grasp an object.
The solution is applying hand-crafted modifications to graph embeddings around
detected grasping events tgrasp, i. e., the grasp state switches from open to closed. These
modifications allow us to rely on precise relative trajectories during critical moments
while keeping the same optimization method.
For example, we define an optimal grasping angle for each object. We formulate this
angle as an alignment of zgripper with yobject and ygripper with zobject assuming optimal
placement of the corresponding Aruco marker. To enforce this configuration as an
optimization target, we overwrite the encoded orientation of hand nodes that belong to
demonstration graphs near tgrasp. We chose the grasped object’s center as an optimal
point of attack, and the position of the hand node is set to it accordingly.
We introduce complex support for grasping and releasing objects by splitting such
motions into multiple distinct phases, where demonstration graph embeddings and
control parameters are modified. In this way, high-level action planning is introduced into
our control algorithm. We make use of the following phases that modify a range of VEGs
each, which we denote as rphase respectively:
Moving To Pre-Grasp Position: We modify VEGs in the interval
[tgrasp − rpre_grasp − rmove_to_grasp, tgrasp − rmove_to_grasp − 1] for this phase. The position of
the hand node is set to a specified height hpre_grasp above the position of the anchor
object’s node. The hand node’s orientation is set to the optimal grasping angle as
described above. We do not set a new optimization target until the robot has reached the
desired position within a certain tolerance.
Moving To Grasp Position: We modify VEGs in the interval
[tgrasp − rmove_to_grasp, tgrasp − 1] for this phase. The position of the hand node is set to the
object center while its orientation is kept as before. We do not set a new optimization
target until the robot has reached the desired position within a certain tolerance.
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Closing The Grasp: We modify the VEG at tgrasp for this phase. The Position and
orientation of the hand node stay the same. The endeffector movement is disabled. We
do not continue until the robot’s gripper has closed below a certain width threshold,
which is encouraged by the regular cost function without further modification.
Lifting Post-Grasp: We modify VEGs in the interval [tgrasp + 1, tgrasp + rlift_grasp] for this
phase. To avoid shifting the held object and collision with the surface we set its spatial
embedding to hpre_grasp above its previous position.

Figure 3.3: Visualization of optimal gripper poses in the relation to the object of interest
during the different grasping phases. These phases consist of i) moving to
the pre-grasp position, ii) continuing to the final grasping position, iii) closing
the gripper, and finally iv) lifting the object vertically.

Moving To Pre-Release pose: We modify VEGs in the interval
[trelease − rpre_release, trelease − 1] for this phase. Orientation of the current anchor object
node is set to the optimal release angle. Its position remains the same. We consider the
optimal release angle the closest orientation, where one of the local object axes is aligned
with the normal vector of the workplace surface.

22



Open gripper: We modify the VEG at time step trelease for this phase. We set the Position
and orientation of the hand node as in the previous phase. The endeffector movement is
disabled. We do not progress to the next step until the gripper has opened above a certain
width threshold, which is encouraged by the regular cost function without further
modification.
Lifting Post-Release: We modify VEGs in the interval [trelease + 1, trelease + rlift_release] for
this phase. Any rotation of the endeffector is disabled. To avoid toppling over the released
object, we set the position of the hand node to hpost_release above the release position.

Figure 3.4: Visualization of hand-crafted release phases. These phases consist of fol-
lowing the unpolished demonstrated trajectory (top), manipulating the object
pose in a way that aligns one of its axes with the table normal vector (middle),
opening the gripper, and releasing the object (bottom)

Following the trajectory of the human hand, instead of only recreating the object
trajectories, is serving the purpose of guiding the robot into a pose where it can smoothly
transition into those hand-crafted approaches. Also, overwriting VEGs in a reasonable big
range surrounding grasping and releasing events assures that we continue to imitate the
human motion only when having a safe distance to the object involved in manipulation.

23



3.2 Data Collection

3.2.1 Capturing A Demonstration

Creating demonstration data consists of recording a video of optimal task execution.
However, we added some more functionality to this process for debugging purposes and
the automatic removing of data, which is not actually related to the task. To achieve the
first goal, we save demonstration videos with annotations that display the results of our
pose estimation, i.e., detected hand landmarks and object axes. To facilitate the cutting
of irrelevant data, we define a starting point and an endpoint in the recording. Video
frames outside this range are not encoded into the graph sequence. The demonstration
start is specified as the time step, where all fingers can be cleanly detected for the first
time. The content end is set to the frame that contains the last valid detection. This
formulation eliminates the need for a precise starting and stopping of the recording by
allowing the user to physically cover the camera until he has reached a good initial
position. The teacher can also terminate the recording in the same way. This method
made any manual cutting of the raw data unnecessary during our experiments.
The graph embeddings are stored in camera coordinates and have to be transformed with
an externally provided robot camera transformation before an imitation occurs. This
approach allows the demonstration to be captured outside the robot’s workplace.

Figure 3.5: Single frame of a captured demonstration video. The results of our object
estimation and the outputs of the hand detection framework are annotated
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3.2.2 Filtering And Interpolation

Since pose estimations solely based on visual data are quite prone to errors, we have
introduced multiple stages of data filters, which are applied to object and hand landmark
trajectories.
We use the following techniques to filter spacial data. First of all, we deal with a type of
error that is prominent in our hand detection outputs, i.e., groups of outlier points with
very large positive values. W chose an outlier filter to eliminate these, as described in the
“Novelty and Outlier Detection” section of scikit-learn [28] since common methods like
average filters or B-Splines are more suitable for errors that are Gaussian in nature or
consist of single spikes. Our outlier filter is applied on a set N of neighboring data points.
We choose a subset S from this group, with µS being their mean, i.e., the center of this
subgroup. This selection is determined to contain minimal variance:

S = argmin
S

∑︂

(µS − s)2 , S ⊂ N

Afterwards, we compute the average
_
D of all malhanobis distances D(s, µS) [mahlhab

source] in S regarding its center. Every point n in N that does not suffice

D(n, µS) ≤ f ·
_
D, f ϵ R+

is considered to be an outlier and will be replaced by interpolated data later.
To remove regular Gaussian noise and smooth the trajectories, we apply a median filter
combined with a Savitzky-Golay filter [source savgol] afterward.
We purify collected orientation data by using a modified average filter. Our goal is to
recompute each rotation trajectory to reduce sudden jumps caused by estimation errors
without diminishing ground truth angular velocities. Since we represent the orientation
for each entity by quaternions, we can use spherical linear interpolation (SLERP)[29].
SLERP is a widespread technique in computer graphics to generate smooth animations by
computing intermediate steps between distant orientations. We use it similarly to
calculate a point qt̃ on the unit quaternion hypersphere that lies on the shortest path
between the previous orientation qt−1 and the current detection qt:

qt̃ = SLERP (qt−1,qt, ω) ,

with the parameter ω ϵ [0, 1] determining how close the result is to the target quaternion
qt. We achieved good results by making ω anti-proportional to the actual distance
between a given pair of orientations.
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Accordingly, we define a temperature parameter β ϵ R and calculate ω as:

ω = 1− exp
(︃

−
1

β
dO(qt−1,qt)

)︃

,

This formulation works essentially like a weighted mean that reduces large jerks and
keeps true angular velocities. Note that we do need not apply any complex
transformations on our demonstration data, such as Whitening or PCA.

Raw data Filtered data

Figure 3.6: Visualization of raw and filtered data differences. We compare inferred spatial
data from an object labeled U, thumb, index finger, middle finger, ring finger,
and pinky finger

Discarded or missing data points are interpolated in the final data processing step. For
spacial data, we use cubic splines, which are a well-known method to get smooth
trajectories. To compute missing orientations we once again utilize SLERP by calculating
intermediate rotations between valid data points.
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3.3 Control Algorithm

3.3.1 State And Action Design

We define our state x̃t ϵ R
N as the concatenation of the endeffector position xee, the

endeffector orientation as a quaternion qee, its gripper width g and a similar 6D pose
[xo,qo] for every involved object. With N objects this results in the vector
[xee,qee, g, [xo1,qo1] , ... , [xon,qon]] of the length N = 3 + 4 + 1 + n · (3 + 4).
Let the actions ut ϵ R

7 be [∆xee,∆yee,∆zee,∆yawee,∆pitchee,∆rollee,∆g], which are
displacements of the endeffector as well as a change in the gripper width ∆g. We specify
the desired rotation of the endeffector in Euler angles because they are a lot easier to
sample than unit quaternions.
Using this design allows us to forgo any calculation of the robot kinematics or kinetics,
which will be done by the robot controller when executing the displacement commands.
The construction of an imitation graph is also straightforward with this state
representation because it contains the embedding of all involved nodes already.

3.3.2 Approximate Dynamics Function

We can make do with a very simplified model of the environment and object interactions
without taking into account any friction, weights, robot dynamics, joint singularities, or
collisions by relying on the error-correcting property of the MPC Paradigm, which allows
for computationally cheap re-optimizing of the policy at every time step. This is
reasonable for our work because we focus on pick- and place tasks and displacement
controls are executed by a robust hardware controller. Fringe cases such as collision,
where our proposed dynamics would break down, are also avoided by introducing
incentives into our MPC cost function, Smaller uncertainties are compensated by the
mentioned properties of this algorithm.
Our dynamics function consists of updating the pose of the endeffector according to the
displacement commands, while also applying the same translation and rotation to the
pose of the currently held object. If any object is considered grasped is determined by
thresholding the robot gripper width, which is also contained in our state. What object is
held, is derived from the anchor object in the current target demonstration VEG.
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This computation can be done in parallel for whole state and control batches, which
improves computational efficiency significantly. However, F hast to be applied
sequentially for every step along the horizon.
Pseudocode for this function is given below:

INPUT x̃t,ut, I : anchor_obj_idx
PARAMETER gth : grasping_treshhold, gmin : minimal gripper width, gmax: maximal
gripper width

xee,t+1 = xee,t + [∆xee,∆yee,∆zee]
qee,t+1 = QUATERNION(∆yawee,∆pitchee,∆rollee) · qee,t
gt+1 = MAX(MIN(gt + ∆g, gmin), gmax)

for n in N do
[︁xon,t+1,qon,t+1

]︁ = [︁xon,t,qon,t
]︁

end for

if gt ≤ gth then
xoI,t+1 += xoI,t + [∆xee,∆yee,∆zee]
qoI,t+1 = QUATERNION(∆yawee,∆pitchee,∆rollee) · qoI,t

end if

return [︁xee,t+1,qee,t+1, gt+1,
[︁xo1,t+1,qo1,t+1

]︁

, ... ,
[︁xoN,t+1,qoN,t+1

]︁]︁

Algorithm 2: Approximate dynamics function F
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3.3.3 Cost Function

Our cost function c̃ is a linear combination of multiple cost functions that induce different
high level behaviours each:

c̃(x̃t,h, ut,h) = c̃task(x̃t,h, ut,h) +
∑︂

c̃side goal,i(x̃t,h, ut,h)

These components either serve a task related goal or a specific auxiliary requirement.
Their calculation is explained in the next section.

Task-Related Cost

This cost enforces task completion by inducing relative object and manipulator
trajectories as well as grasping according to observations from the optimal execution. It
consists of the step depended on graph-similarity-based component C(GI , G

t
D) previously

proposed and a function cgrasp(ũt,h) that compares the change of the robot gripper width
with the human grasping intention at the corresponding point in the demonstration:

c̃task(x̃t,h, ut,h) = C(GI(x̃t,h), G
t,h
D ) + cgrasp(∆gt,h),

with the VEG GI being generated from the current state x̃t,h, i.e. the agent’s observations,
while G

t,h
D represents the optimal state at step t+ h. We have extrapolated this

optimization target from data extracted from the expert demonstration. We ensure time
alignment of imitation to the human motion by tying t to a global optimization step,
which is increased every time a command is issued to the robot. This progression is
modified during the previously mentioned high-level motion phases.
The grasp cost cgrasp(ũt,h) ensures that the robot is punished for having a different
grasping intention than the expert at the corresponding time step. We formulate it as:

cgrasp(∆gt,h) =

⎧

⎨

⎩

ωgrasp, δ(t+ h) ·∆gt,h ≥ 0,

0, else

δ(t) is a function being evaluated for every time step t of the demonstration so that is 1 if
the expert is observed to be grasping at t and −1 otherwise. We base this cost on the
change of gripper width instead of its current state to keep it steady at its maximum or
minimum value respectively.
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We dismissed first using thresholding to determine whether the robot manipulator is
open or closed and afterward comparing this state to the human grasp, as we did in our
dynamics. We made the experience that this would encourage small oscillations in the
gripper span within the respective range set by the threshold, which in turn made the
held object drop sometimes or lead to toppling it over during a release attempt.

Side Goal-Related Cost

In our setting we were able to achieve good results with a single auxiliary requirement
enforced by our costs, namely avoiding floor collision. We ensure that the robot
manipulator, or the held object respectively, always stays above a parameterized height
hmin relative to the world origin. We formulate the corresponding cost as:

ccoll(x̃t,h) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ωcoll, g > gth
⋀︁

zee ≤ hmin

ωcoll, g ≤ gth
⋀︁

zo ≤ hmin

0, else

zee and zo are representing the z-components of the robot gripper or carried object
respectively.

3.3.4 Sampling Strategy For Control Sequences

We further expand on the basic sampling strategy implemented in the MPPI framework.
The method used to generate controls from the optimized Gaussian policy has to enforce
fast convergence as well as smooth trajectories and furthermore ensure a good hot start
for the next optimization cycle. We continue taking the mean of the final Gaussian
distribution as the next action as in the basic implementation, but apply a Savgol filter
along the horizon of each dimension to smooth the sampled trajectories. Since this
framework, as most MPPIs on real systems [Mppi src1] [Mppi src2 ], does not employ any
kind of covariance update for the sampling distribution, commands in dimensions with
low impact on the total error show large oscillations around zero. To reduce the resulting
jitter of the endeffector we additionally make use of a median filter.
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Plot of total cost at corresponding time step
during execution. Reaching of initial position is
marked in blue

Plot of x-axis component of the robot endeffec-
tor positions at corresponding time step during
execution

Figure 3.7: Visualization of sampling strategy effects on the overall cost as well as end-
effector trajectory. Values in green correspond to modified action sampling,
while the value in red belongs to execution with raw Gaussian sampling. We
can reduce total cost during execution significantly (left graph) and get much
smoother trajectories at the same time (right graph).

We also introduce a basic covariance update for the spatial displacements by distributing
the combined initially specified covariances Σ0 across the corresponding action
dimensions according to their respective share in the total positional task-related error.

Σ∆xee =
CP,x
CP
· 3Σ0, Σ∆yee =

CP,y
CP
· 3Σ0, Σ∆zee =

CP,z
CP
· 3Σ0

This increases exploring in directions with a large distance to the optimal position while
reducing movement in well-met axes. We have only introduced this update for the spatial
dimensions because we can directly infer their individual impact on the total task-related
error.
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4 Experiments

4.1 Task Domain

We have chosen to demonstrate the capabilities of our framework within a task domain
that incorporates many challenges from robot manipulation. We chose to let our robot
play the social game “Ubongo”, which basically consists of solving geometric 3D puzzles
by finding the correct arrangement of building blocks. These pieces feature a fairly
complex shape. This game combines pick- and place with peg-in hole manipulation tasks
while solving each puzzle even requires high-level action planning. It is also an
interesting field for computer vision applications such as pose estimation, due to having
colorful predefined objects, but also having to deal with a lot of occlusions.

Figure 4.1: Example of a solved “Ubongo” puzzle made up of complex individually colored
pieces
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We have decided to focus on the pick and place aspect of this game since it is more
appropriate for our achieved level of precision and is reasonably well approximated by
our proposed system dynamics.
We faced the problem that the original “Ubungo” blocks were too small for the Panda to
manipulate. That’s why we first created CAD models of every object, up-scaled these, and
used a 3D printer with colored filaments to print bigger versions. Each piece is
structurally made of an arrangement of cubes, which we re-scaled to have a side length of
3.5 cm. We also ensured easy manipulability by keeping them at a low weight, which
requires a design with minimal internal support structure.

Figure 4.2: Photo of a manually printed “Ubongo” piece with increased scale. The new
dimensions per cube are 3.5 cm × 3.5 cm × 3.5 cm as annotated
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4.2 Implementation Details

We have tested our work in a Pybullet [30] simulation using a model of the Franka robot
Panda. We have also created models for each “Ubongo” piece involved in our tests.
Demonstration videos are captured in the real world and their graph representations are
pre-computed once. Our online policy optimization takes approximately 0.5 seconds to
calculate a single command but has not been fully optimized for compatibility with GPU
yet. A complete list of hyperparameters for every aspect of our pipeline can be found in
the appendix. This set of parameters does not have to be set for individual experiments
specifically but has achieved good results across different tasks in the pick and place
domain.

4.3 Evaluation On Pick And Place Tasks

Through our experiments, we aim to analyze whether our framework can successfully
imitate a task execution in the domain of pick and place if provided solely with an RGBD
video of a human demonstration. Furthermore, we want to show that our method
generalizes the observed skill performance to a new environment, adapts to varying
initial configurations of involved objects, and can compensate for the different
embodiment of the human teacher, especially during grasping. The completion of the task
has to suffice task-unrelated side goals, as mentioned in the previous section.
As a direct measurement of our policy optimization quality, we plot the value of our
formulated cost function for each system state reached during the imitation. We also
compare different parts of the human motion and corresponding robot approaches to
show that we reproduce demonstrated trajectories as close as possible, while also
adapting to the robot’s hardware and its auxiliary requirements.
To this end, we first analyze a demonstration video of a simple pick and place task
involving only 2 “Ubongo” pieces, since the resulting cost function is quite intuitive. This
scenario also allows for the biggest variation in the initial configuration of the scene,
which includes the starting pose of the human hand i.e the robot gripper, absolute object
poses as well as relative object poses. The given task consists of picking up one of the
objects, moving it with a specific trajectory, and placing it back down. This is done
relative to the other static object. We consider the imitation done as soon as our global
optimization step reaches the last VEG in the extracted task representation.

34



Figure 4.3: Initial Configurations: Corresponding time steps are marked in green

Figure 4.4: Reaching Initial Human Pose
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Figure 4.5: Directly Imitating Demonstrated Task Execution

Figure 4.6: Reaching The Pre-Grasp Positon
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Figure 4.7: Moving To Grasping Position

Figure 4.8: Closing The Gripper
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Figure 4.9: Lifting The Object

Figure 4.10: Directly Imitating Demonstrated Task Execution
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Figure 4.11: Directly Imitating Demonstrated Task Execution

Figure 4.12: Reaching Pre-Release Pose
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Figure 4.13: Releasing The Held Object

Figure 4.14: Directly Imitating Demonstrated Task Execution
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Second, we intend to show that we can sequence multiple distinct pick and place tasks
involving different objects within a demonstration. The conditions of this experiment are
similar to the previous, but we introduce the constraint that initial relative object poses
have to be equal to their counterparts in the observed execution since the generalization
capability of our method is limited for multiple involved objects. The results of our
imitation are provided below, with a visualization of individual entity orientations and
the next action to be executed.

Figure 4.15: Simulation of the resulting imitation. Shown here is the first Pick and Place
task in the sequence with (top left) initial configuration, (top right) first pre-
grasp pose, (bottom left) first grasp, (bottom right) first release
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Figure 4.16: Simulation of the resulting imitation. Shown here is the second Pick and
Place task in the sequence with (top left) imitating human transition, (top
right) second pre-grasp pose, (bottom left) second grasp, (bottom right)
second release
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5 Conclusion

5.1 Discussion

The global convergence of our cost indicates that we can generalize from a single observed
execution to a novel scenario quite well, even if different tasks are sequenced within a
single demonstration. However, if more than 2 objects are present, we require their
relative poses to be consistent with those observed. Otherwise, our method will optimize
for a mean of relative distances. Furthermore, we can efficiently modify critical motion
aspects to fit our robot’s embodiment better and achieve smooth transition by imitating
the approach of the human hand in between. As demonstrated, we allow the teacher of a
particular skill to perform it as naturally as possible, i.e., in an arbitrary environment and
with a grasping approach of his choosing. This freedom is still restricted partially by our
pose estimation techniques, which require all Aruco markers to be unoccluded and that as
much as possible of the human hand is visible. Despite using a very basic dynamics model,
our MPC implementation has proven to produce policies than can quickly minimize the
overall cost as well as local spikes. The latter is caused by changes in the optimization
target, which on a small scale correspond to a natural progression of the human motion
or on a big scale to the beginning of high-level motion phases. Our control algorithm also
enforced desired high-level behaviors parallel to task completion.
We proposed a framework for visual imitation learning that can work with single human
video demonstrations per task. We introduced a graph-based task representation that is
invariant against many problems of visual inference, bridges the human-robot domain
gap, and allows for hand-crafted modifications of the motion to be integrated directly. We
also described how to extract and purify the relevant data from RGBD video to make its
collection as easy as possible. Furthermore, we have formulated a composition of cost
functions that incentivizes the reproduction of relative object and gripper trajectories
while also encouraging more general goals of robot manipulation. This function was used
as part of a control algorithm based on model predictive control, which can make do with
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simple system models and efficiently derive locally optimal policies online. We finally
showed the combination of each element to a complete pipeline, that robot imitation of a
performed skill within a few minutes, without requiring expert knowledge or prior
training.

5.2 Future Work

Object Detection: Our current framework relies on Aruco markers to facilitate 6D pose
estimation of task-related objects. Unfortunately, fiducial-based methods break down
immediately when any degree of occlusion occurs, which happens regularly during
grasping motions and if multiple objects are involved in a task. Replacing this method
with a more reliable pose estimation technique is a straightforward improvement. Since
we are using a predefined set of colorful rigid objects with known CAD-Models, the
generation of large amounts of synthetic training data is relatively easy. We also assume
access to RGBD input, which meets the requirements for more sophisticated
learning-based tracking methods as [31] that are trained on specific object models and
estimate their most likely pose under the current observation. These are very robust
against occlusion, use previous detections as priors and also require no physical
preparations.
Refining the MPC control: Since we use a composite cost for our MPC algorithm, the
addition of more individual terms, which enables the completion of more side goals, is
quite easy and only requires tuning of the corresponding weights as well as a proportional
increase of the MPC’s sample size. Desirable objectives in robot manipulation are collision
avoidance with objects, path planning around joint singularities, or staying within certain
velocity or acceleration limits. Also, more sophisticated sampling strategies that employ
permanent covariance updates in all action dimensions, low discrepancy sampling of the
control sequences, and efficient smoothing could significantly speed up the optimization
process and improve the resulting trajectories. All previous points have been extensively
explored in this work [16], which uses a wide array of auxiliary non-task-related
requirements, Halton-sampling, and enforcement of low-jerk trajectories to achieve good
results with little computation time.
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Learning edge attention from metadata: A very interesting direction of future
extension is meta-learning of edge attention based on the task relevance of a specific
object-object relation across multiple demonstrations of the same task. This learned
attention encodes a fundamental understanding, which would leverage the current
limitations of generalizability and also remove uncertainties included in our heuristic to
measure human attention. Our setup already allows for the collection of great amounts of
processed training data in a short time, which is one of the main requirements for
meta-learning approaches.
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6 Appendix

6.1 Proof Of Metric Properties

We have introduced a distance metric dO : Q× Q −→ [0, 1] in the unit quaternion space
Q, which is formulates as follows:

dO(q1,q2) = ||qH1 q2||mag
||q||mag = 1− |Re{q}|

We are going to proof now that this function suffices all required properties of a metric.
These properties are valid for all quaternions in Q:

qH1 q2 = ||q1||2 ⇔ q1 = q2 (6.1)
||q|| = 1 (6.2)

Given (6.1) and (6.2) proving the identity of indiscernibles is straightforward:

0 = 1− |Re{1}| = dO(q1,q2)⇔ q1 = q2
We use the antihomomorphism of conjugations and:

||qH||mag = 1− |Re{qH}| = 1− |Re{q}| = ||q||mag

to show that our metric is symmetric:

dO(q1,q2) = ||qH1 q2||mag = ||
(︁q2qH1

)︁H
||mag = ||q2qH1 ||mag = dO(q1,q2)

For the proof of the triangle inequality we refer to this work [32] (Algorithm 5), which
presents a mathematically equivalent metric.
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6.2 Experiment Hyperparameters

6.2.1 Data Collection

Hyperparameter Value

FPS Camera 15
Object Labels R, T

Relevant Hand Landmarks THUMB, INDEX,
INDEX_MCP

Marker Length 5 mm
Grasp Detection Threshold 4 cm

6.2.2 Filtering and Interpolation

Hyperparameter Value

Savgol Window Length 51
Savgol Polynomial Order 3
Savgol Interpolation Mode Interp
Median Filter Kernel Size 19
Distance Temperature 1
Outlier Group Size 7
Maximum Malhanobis Distance Factor 5
Robot Control Rate 100 Hz
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6.2.3 Task Representation Modifications

Hyperparameter Value

Pre-Grasp Range 40
Grasp Range 10
Lift Range 20
Pre-Release Range 30
Post-Release Range 20
Pre-Grasp Height 5 cm
Post-Release Height 5 cm
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6.2.4 Cost and Control

Hyperparameter Value

Spatial Cost Weight 15
Orientation Cost Weight 380
Grasp Cost 300
Floor Contact Cost 60
Minimal Height 5 cm
Phase Position Precision 1 cm
Maximum Endeffector Displacement 5 cm
Maximum Endeffector Rotation 5 ◦

Sample Size N 100
Horizon Length H 5
Distribution Variance Σ 0.03
MPC Temperature β 0.05
Minimum Gripper Width 0 cm
Maximum Gripper Width 8 cm
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