
Grasp Diffusion Network
Greif-Diffusionsnetzwerk
Master thesis by Qiao Sun
Date of submission: November 1, 2024

1. Review: Prof. Dr. Jan Peters
2. Review: M.Sc. Joao Carvalho
3. Review: M.Sc. An Thai Le
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Qiao Sun, die vorliegende Masterarbeit ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.
Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß § 23 Abs. 7 APB überein.
Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 1. November 2024
Q. Sun

Acknowledgments

I would like to express my sincere gratitude to my advisors, João Carvalho and An Thai
Le, for their invaluable guidance, support, and mentorship throughout my research. Their
expertise was instrumental in shaping this thesis, and I am deeply thankful for their
continuous encouragement.
I am also profoundly grateful to my family and friends for their unwavering support
and understanding. Their encouragement and companionship provided the strength and
motivation I needed throughout this journey.
Additionally, I would like to acknowledge the Intelligent Autonomous Systems (IAS) for
providing the opportunity, computational resources, and robotic equipment essential for
the completion of this thesis.
Thank you all for making this journey possible.

Abstract

Grasp pose generation is crucial for robotic object manipulation because it directly affects
a robot’s ability to interact with diverse objects. However, vision-based grasping faces
significant challenges such as limited viewpoints, complex grasp patterns, and insufficient
datasets, which impede the development of robust systems.
To overcome these obstacles, this thesis explores the use of generative models to learn
grasp distributions. Traditional generative models like GANs and VAEs have limitations
in producing high-quality grasp samples due to architectural constraints. In contrast,
diffusion models offer a promising alternative by effectively generating reliable grasp
distributions.
This research proposes a Grasp Diffusion Network (GDN) that operates on the Lie group
SO(3) and Euclidean space R3. Using partial point cloud features from a single camera,
our method generates accurate grasp poses. We represent the rotational component
of grasp poses on the Lie group SO(3), which naturally captures continuous rotational
symmetries and avoids the singularities and ambiguities inherent in Euclidean space.
Additionally, various strategies are employed to accelerate the sampling process and refine
the generated grasps.
Our method is evaluated using the Isaac Gym simulator and a real-world Franka Emika
Panda robot. Results demonstrate that our approach outperforms existingmethods in terms
of success rate, generation speed, and practical applicability, highlighting its potential as a
valuable tool for robotic grasping tasks.

Zusammenfassung

Die Generierung von Greifposen ist entscheidend für die robotische Objektmanipulation,
da sie die Fähigkeit des Roboters beeinflusst, mit unterschiedlichen Objekten zu interagie-
ren. Allerdings stehen visionsbasierte Greifsysteme vor erheblichen Herausforderungen
wie begrenzten Blickwinkeln, komplexen Greifmustern und unzureichenden Datensätzen,
die die Entwicklung robuster Systeme behindern.
Um diese Hindernisse zu überwinden, untersucht diese Arbeit den Einsatz generativer
Modelle zur Erlernung von Greifverteilungen. Traditionelle generative Modelle wie GANs
und VAEs haben aufgrund architektonischer Einschränkungen Schwierigkeiten, qualitativ
hochwertige Greifmuster zu erzeugen. Im Gegensatz dazu bieten Diffusionsmodelle eine
vielversprechende Alternative, indem sie zuverlässig Greifverteilungen generieren.
Diese Forschung schlägt ein Grasp Diffusion Network (GDN) vor, das auf der Lie-Gruppe
SO(3) und dem euklidischen Raum R3 operiert. Mithilfe von partiellen Punktwolken-
merkmalen einer einzelnen Kamera generiert unsere Methode präzise Greifposen. Wir
repräsentieren die Rotationskomponente der Greifposen auf der Lie-Gruppe SO(3), was
kontinuierliche Rotationssymmetrien natürlich erfasst und Singularitäten sowie Mehr-
deutigkeiten im euklidischen Raum vermeidet. Zudem werden verschiedene Strategien
eingesetzt, um den Sampling-Prozess zu beschleunigen und die generierten Griffe zu
verfeinern.
Unsere Methode wird mithilfe des Isaac Gym Simulators und eines realen Franka Emika
Panda-Roboters evaluiert. Die Ergebnisse zeigen, dass unser Ansatz bestehende Methoden
hinsichtlich Erfolgsrate, Generierungsgeschwindigkeit und praktischer Anwendbarkeit
übertrifft und sein Potenzial als wertvolles Werkzeug für robotische Greifaufgaben unter-
streicht.

Figures and Tables

List of Figures

1.1. Structures of GAN, VAE, and Diffusion Models. GANs consist of a gener-
ator and discriminator working adversarially. VAEs include an encoder
and decoder to transform data. Diffusion models uniquely add noise and
iteratively denoise to generate samples. 2

2.1. Conversion between Lie Algebras and Lie Groups. 8
2.2. The U-Net based noise prediction network for DDPM. The input xt and the

time step t are processed through the U-Net to predict the noise ϵ. 11
2.3. Simplified Flowchart of DDIM . 15

3.1. 6-DoF GraspNet generates grasps using a grasp sampler and iteratively
refines negative grasps through gradients from the grasp evaluator. 18

3.2. SE(3)-DiffusionFields Architecture: The object point cloud and grasp pose
are encoded through respective encoders to derive features, which are then
processed by a decoder to calculate the energy e. 19

3.3. Grasp Latent Diffusion Model (GraspLDM): A model combining a point
cloud encoder, a grasp decoder, and a latent diffusion module with a score
network to enable direct sampling of grasp latents and task-conditioned
generation. 22

4.1. Framework of the grasp diffusion network(GDN). 23
4.2. Forward process of the grasp diffusion network(GDN). 24

4.3. Reverse process of the grasp diffusion network(GDN). 25
4.4. Grasp generation process (from left to right). 25
4.5. Noise prediction network of the grasp diffusion network(GDN). 26
4.6. The Grasp Evaluator framework. 29
4.7. Grasp Diffusion Network(GDN) sampling process using DDIM for acceler-

ated grasp pose generation. 33

5.1. Grasp testing in the Isaac Gym simulation environment (left) and the real
world (right). 35

5.2. An example object from the ACRONYM dataset, its corresponding grasp,
and the partial point cloud sampled from the object’s mesh. 35

5.3. Performance comparison of grasp generation methods. EMD (x-axis) and
Success Rate (y-axis) are shown for CAT10 objects, with our method GDN
demonstrating superior mean performance and lower variance. 42

5.4. Comparison of grasp generation time between GDN (our method) and
SE3Diffusion (baseline). The top plot shows the average generation time
per iteration, and the bottom plot shows the cumulative grasp generation
time. 44

A.1. Evaluating GDN in the real world: the Panda robotic arm successfully grasps
a bowl using a single depth camera. 54

A.2. The GDN grasp generation (denoising) process: effective grasp distributions
are generated for objects of various shapes and categories. 55

List of Tables

5.1. Comparison of Grasp Generation Methods in terms of EMD and Success
Rate. All results are based on the test dataset. CAT10 includes 10 different
object categories. 41

Abbreviations, Symbols, and Operators

List of Abbreviations

Abbreviation Definition

GAN Generative Adversarial Network
VAE Variational Autoencoder
DDPM Denoising Diffusion Probabilistic Models
DDIM Denoising Diffusion Implicit Models
SDF Signed Distance Function
EMD Earth Mover’s Distance

List of Symbols and Operators

Symbol/Operator Definition

Rn Euclidean space
SO(3) Lie group of rotations
SE(3) Lie group of rotations and translations
so(3) Lie algebra of SO(3)

se(3) Lie algebra of SE(3)

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 4
1.3. Outline . 4

2. Background 5
2.1. Lie Groups and Lie Algebras . 5
2.2. Diffusion Models . 8

3. Related Works 17
3.1. 6-DoF Grasp Synthesis . 17
3.2. Grasp Diffusion Models . 19

4. Grasp Diffusion Network 23
4.1. Overview . 23
4.2. Grasp Generation . 24
4.3. Grasp Refinement . 27
4.4. Sampling Process Acceleration . 32

5. Experiments 34
5.1. Setup . 34
5.2. Capturing Point Cloud Features . 36
5.3. Comparative Experiments . 38
5.4. Training Implementation Details . 38
5.5. Results . 39

6. Conclusion 45

7. Discussion 46
7.1. Limitations . 46
7.2. Future Work . 46

A. Further Results 54

B. Detailed Explanation of Diffusion Model Principles 56
B.1. Derivation of DDPM in Euclidean Space . 56
B.2. Derivation of DDPM on SO(3) Space . 57
B.3. Derivation of DDIM in Euclidean Space . 58
B.4. Derivation of DDIM on SO(3) Space . 58
B.5. Pseudocode for DDPM and DDIM . 58

1. Introduction

1.1. Motivation

1.1.1. Why Use Generative Models?

In vision-based grasping tasks, objects have countless possible grasps, making the optimal
grasp distribution highly complex. Existing datasets cannot cover all optimal grasps for
every object. Generative models, a key area of unsupervised learning, address this chal-
lenge by learning and generating these complex distributions. They are designed to create
new samples resembling the training data. During training, their primary task is density
estimation—mapping probability distributions to approximate the unobservable data
distribution. Once trained, these models can generate new samples from the distribution,
providing multiple outputs from a single input and producing more samples that fit the
data distribution.

1.1.2. Why Not Other Generative Model Methods?

Explicitly modeling the density distribution for grasping tasks and updating the model
using gradient ascent and maximum likelihood is impractical due to the complexity and
high dimensionality of grasp distributions. This approach assumes a specific distribution
form, leading to costly parameter estimation and high computational demands. The rigid
structure of explicit modeling also limits flexibility in handling diverse data.
Generative Adversarial Networks (GANs) [1] suffer from mode collapse, which reduces
diversity in generated samples, and require extensive parameter tuning and experimen-
tation. Variational Autoencoders (VAEs) [2], while offering probabilistic interpretation,
often produce blurrier and lower-quality outputs compared to GANs and diffusion models.

1

The reconstruction loss in VAEs results in less detailed samples, insufficient for the high
precision required in robotic grasping.
Diffusion models [3] overcome these issues by generating new samples through a process
of adding noise and training the model to denoise it in reverse. This approach ensures
stable training and avoids mode collapse. The gradual denoising allows for finer recovery
of data details, producing more realistic and diverse samples. Additionally, it enables
adjusting the direction of data generation at each step, allowing for higher quality or
expectation-aligned distributions. For example, using gradient-guided grasp generation
based on grasp success rate prediction networks or avoiding table collisions by considering
the distance to the table. Therefore, we choose diffusion models to generate high-quality
grasps that meet our requirements.

Figure 1.1.: Structures of GAN, VAE, and Diffusion Models. GANs consist of a generator
and discriminatorworking adversarially. VAEs include an encoder and decoder
to transform data. Diffusionmodels uniquely add noise and iteratively denoise
to generate samples.

2

1.1.3. Why Represent Rotation on Lie Groups Instead of in Euclidean Space?

Accurate rotation representation is crucial in robotic grasping for generating and computing
grasp poses. The Lie group SO(3) (Special Orthogonal Group) offers distinct advantages for
3D rotations, making it preferable over Euler angles or quaternions due to its mathematical
properties and computational convenience.
Euler angles represent rotations using three angles (roll, pitch, and yaw) but suffer
from gimbal lock—a singularity where degrees of freedom are lost at certain angles,
causing instability. Quaternions, although free from gimbal lock, present optimization
and integration challenges. With four components but only three degrees of freedom,
quaternions can deviate from the unit sphere during optimization, leading to invalid
rotations.
Using Lie groups for rotation representation avoids these issues. SO(3) has a well-defined
differential structure, and its Lie algebra so(3) naturally represents rotation differentials,
facilitating optimization and control. The exponential and logarithmic mappings between
Lie groups and Lie algebras allow for effective operations like interpolation. Therefore,
we use Lie groups for rotation representation, as demonstrated in related works [4, 5, 6],
which show their superiority over Euler angles and quaternions.

1.1.4. Why Use Partial Point Clouds Instead of Complete Point Clouds?

Obtaining and processing point cloud data is fundamental for pose generation in robotic
grasping. While complete point clouds offer comprehensive information about the target
object, acquiring them in practical applications is often unrealistic. Deploying multiple
cameras increases costs and system complexity. Real-world robots may face spatial and
perspective limitations, making it difficult to obtain complete point clouds—for example,
the underside of objects on a table cannot be captured. Therefore, we aim to work with a
single camera, enabling the model to generate grasps based on partial point clouds from a
single viewpoint. This approach reduces deployment costs but increases implementation
difficulty, as incomplete point clouds may lower success rates. Improving the success
rate under these conditions is part of our work, making our method easily applicable in
practice.

3

1.2. Contributions

This thesis makes the following key contributions:
Introduction of Grasp Diffusion Network (GDN): We present a novel Grasp Diffusion
Network designed for vision-based grasping tasks. GDN generates high-quality grasps for
target objects using partial point cloud data from random viewpoints.
Adherence to DDPM Principles: Our approach closely follows the principles and formulas
of Denoising Diffusion Probabilistic Models (DDPM) [3]. By directly modeling and scaling
the noise, our method outputs denoised vectors, enhancing grasp generation.
Leveraging DDIM Techniques: Using an architecture inspired by DDPM, our method
incorporates techniques from Denoising Diffusion Implicit Models (DDIM) [7], significantly
accelerating the sampling process.
Optimization of Generated Grasps: We refine the generated grasps using a grasp evalua-
tion network and classifier guidance, improving overall performance and reliability.

1.3. Outline

The remainder of this thesis is structured as follows:
Chapter 2 explains relevant theories, providing a foundation for the subsequent content.
Chapter 3 discusses other related works, compares their advantages and disadvantages.
Chapter 4 details the Grasp Diffusion Network (GDN) method.
Chapter 5 describes the evaluation of our approach against other baselines.
Chapter 6 summarizes the key points and main contributions of this thesis.
Chapter 7 explores the limitations of our method and potential future work.
The appendix presents additional visual results and Diffusion Model details.

4

2. Background

This chapter provides the necessary background for the methods proposed in this thesis.
In Section 2.1, we introduce the concepts of Lie Groups SO(3) and Lie Algebras so(3),
laying the mathematical foundation. Section 2.2 explores the original Denoising Diffusion
Probabilistic Model (DDPM) in Euclidean space, its extension to Lie Groups SO(3), and
other optimized diffusion model variants such as DDIM and classifier guidance.

2.1. Lie Groups and Lie Algebras

This section delves into the mathematical foundation necessary for implementing diffusion
models on the Lie Group SO(3). We begin by introducing Lie Groups and Lie Algebras,
focusing on SO(3) and its corresponding Lie algebra so(3), which are essential for our
proposed method. For a comprehensive explanation of these theories and their application
in robot state estimation, the reader is referred to [8].

2.1.1. Lie Groups

To understand Lie Groups, we first review the concept of a group. A group is a set G
equipped with an operation ∗ satisfying the following conditions:

• Closure: For all X,Y ∈ G, X ∗ Y ∈ G.
• Associativity: (X ∗ Y) ∗ Z = X ∗ (Y ∗ Z) for all X,Y, Z ∈ G.
• Identity: There exists an element E ∈ G such that E ∗ X = X ∗ E = X for all
X ∈ G.

5

• Invertibility: For each X ∈ G, there exists an inverse element X−1 ∈ G such that
X ∗X−1 = X−1 ∗X = E.

SO(3) =
{︂
R ∈ R3×3 | RR⊤ = I, det(R) = 1

}︂
SE(3) =

⎧⎨⎩T =

⎡⎣ R t

0⊤ 1

⎤⎦ ∈ R4×4 | R ∈ SO(3), t ∈ R3

⎫⎬⎭
A Lie Group G is a smooth manifold that is also a group, where the group operations of
multiplication and inversion are smooth functions. A smooth manifold is a space that
locally resembles Euclidean space and allows for calculus operations. Each point on the
manifold has a unique tangent space, a linear space where calculus can be performed.
The Special Orthogonal Group SO(3) is a Lie Group consisting of rotation matrices, which
are orthogonal matrices with determinant equal to one. Including both rotations and
translations, we obtain the Special Euclidean Group SE(3). In these groups, the group
operation is matrix multiplication.

2.1.2. Lie Algebras

so(3) =
{︁
ϕ ∈ R3 | ϕ∧ ∈ R3×3

}︁
, ϕ∧ =

⎡⎢⎢⎢⎣
0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

⎤⎥⎥⎥⎦

se(3) =

⎧⎨⎩ξ =

⎡⎣ρ
ϕ

⎤⎦ ∈ R6 | ρ ∈ R3, ϕ ∈ so(3), ξ∧ =

⎡⎣ϕ∧ ρ

0⊤ 0

⎤⎦ ∈ R4×4

⎫⎬⎭
The tangent space of a Lie Group at the identity element is called the Lie algebra of
that group. The Lie algebra so(3) corresponding to the Special Orthogonal Group SO(3)
consists of skew-symmetric matrices. Similarly, the Lie algebra se(3) corresponding to the
Special Euclidean Group SE(3) includes both skew-symmetric matrices and translation
vectors.

6

2.1.3. Conversion Between Lie Algebras and Lie Groups

We now focus on the relationship between Lie Groups and Lie Algebras, particularly
the conversion between them. For SO(3), a rotation matrix R evolves over time, and its
corresponding Lie algebra elementϕ consists of skew-symmetric matrices. The exponential
and logarithmic mappings facilitate the conversion between an element in SO(3) and its
Lie algebra so(3), allowing operations performed in the Lie algebra to be transformed
back to the Lie group. The following derivation demonstrates this relationship:
Given R(t) ∈ SO(3),

R(t)R(t)⊤ = I ⇒ Ṙ(t)R(t)⊤+R(t)Ṙ(t)⊤ = 0 ⇒ Ṙ(t)R(t)⊤ = −
(︂
Ṙ(t)R(t)⊤

)︂⊤

Since Ṙ(t)R(t)⊤ is skew-symmetric, it can be represented as:

Ṙ(t)R(t)⊤ = ϕ(t)∧ ⇒ Ṙ(t) = ϕ(t)∧R(t)

Using Taylor expansion near t = t0:

R(t) ≈ I + Ṙ(t)(t− t0)

This leads to:
Ṙ(t) = ϕ∧

0R(t)

Solving the differential equation with R(0) = I:

R(t) = exp
(︁
ϕ∧
0 t
)︁

This demonstrates the exponential map between the rotation matrix R(t) and its corre-
sponding Lie algebra element ϕ∧

0 .
For the logarithmic map, given a rotation matrix R:

ϕ∧ = log(R)

Here, ϕ∧ is the skew-symmetric matrix that corresponds to the vector ϕ ∈ R3.
In practical applications, such as computer graphics, robotics, and control systems, the
vector representation of Lie algebras is more compact and computationally efficient. The
conversion between vector and matrix forms is achieved using the Hat (∧) and Vee (∨)
operators. Our Grasp Diffusion Network (GDN), which we will introduce in the next
chapter, utilizes this vector form.

7

Figure 2.1.: Conversion between Lie Algebras and Lie Groups.

To address the non-closure of addition in Lie groups, we use exponential and logarithmic
mappings. By converting Lie group elements to Lie algebra elements, we can perform
addition in the Lie algebra, then convert the result back to the Lie group. For example,
combining two rotation matrices R1 and R2:

R3 = R2R1 = exp (log(R1) + log(R2)) = exp (a1 + a2)

where ai = log(Ri). The Adjoint mapping is used to move vectors between tangent spaces
before addition:

ετ = Adχ
χτ

This conversion relationship is crucial for interpolation (scaling from 0 to 1) in the linear
Lie algebra space and subsequent conversion back to the Lie group, forming the basis of
our core algorithm:

λ(γ,x) = exp (γ log(x))

2.2. Diffusion Models

In the previous chapter, we explored the rationale for selecting diffusion models over other
generative models, such as GANs and VAEs, for generating grasping actions. This section
delves into the principles of implementing diffusion models in both Euclidean space and
on Lie groups, along with related optimization techniques.

8

2.2.1. Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPM) generate high-quality samples from
complex distributions, showing remarkable results in audio synthesis and image applica-
tions. Inspired by non-equilibrium thermodynamics, DDPM defines a Markov diffusion
chain that gradually adds random noise to the data, learning to reverse this process to
reconstruct data samples from the noise. Unlike VAEs, diffusion models operate through a
fixed process where latent variables retain the same high dimensionality as the original
data. By mastering the denoising process, diffusion models achieve higher precision
compared to GANs. As the number of samples and the duration of training increase, these
models exhibit improved performance. The majority of current diffusion models are based
on the work "Denoising Diffusion Probabilistic Models" [3] or its variants.
The diffusion model comprises two main processes: the forward process and the backward
process.

Forward Process

In the forward process, Gaussian noise is continuously added to the original data x0 until
it becomes random noise xT . This process is modeled as a one-step transition density
of an inhomogeneous discrete-time Markov chain, where each state depends only on its
immediate predecessor.

q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I)

q(xt | x0) = N
(︁
xt;
√
ᾱtx0, (1− ᾱt)I

)︁
where αt (t = 1, . . . , T) represents a variance schedule, and ᾱt =

∏︁t
s=1 αs. Given suitable

conditions, the terminal value xT is expected to follow a Gaussian distribution such that
q(xT) ≈ N (0, I).
The proportions of the original data and added noise are controlled by parameters αt and
βt = 1−αt. As time steps increase, the original data proportion decreases while the noise
proportion increases, approximating Gaussian noise at large time steps. This allows for
direct data restoration from Gaussian noise during the backward process.
A noise prediction network is trained to predict the noise added at each time step. The
procedure involves sampling original data x0, selecting a random time step t, and adding
noise from a normal distribution. The mean squared error (MSE) loss function between

9

the actual and predicted noise is used to update the network. The equation xt =
√
ᾱtx0 +√

1− ᾱtϵ represents the data with added noise at time step t.

Algorithm 1 Training of DDPM
repeat

Sample x0 ∼ q(x0)
Sample t ∼ Uniform({1, . . . , T})
Sample ϵ ∼ N (0, I)
Take gradient descent step on

∇θ

⃦⃦
ϵ− ϵθ

(︁√
ᾱtx0 +

√
1− ᾱtϵ, t

)︁⃦⃦2
until converged;

Backward Process

The backward process reverses the forward process, removing noise step by step. By
learning this reverse process, the model can generate data by transforming noise back
into its original structure.

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Using the trained noise prediction network, the backward process begins by sampling
from a Gaussian distribution to obtain xT . The process then reverses the time steps from
T to 1, iteratively removing noise and reconstructing the data xt−1.

10

Algorithm 2 Sampling of DDPM
Sample xT ∼ N (0, I)
for t = T, . . . , 1 do

if t > 1 then
Sample ϵ ∼ N (0, I)

else
ϵ = 0

end
Update xt−1 using

xt−1 =
1√
αt

(︂
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)︂
+ σtϵ

end
return x0

Noise Prediction Network

DDPM employs the U-Net [9] architecture for encoding and decoding, enhanced with
self-attention layers to improve global modeling capabilities. Each network layer includes
embedding layers to predict noise at each time step t.

Figure 2.2.: The U-Net based noise prediction network for DDPM. The input xt and the
time step t are processed through the U-Net to predict the noise ϵ.

While we omit the complex derivations here, the probability density functions for the

11

forward and backward processes are based on normal distributions in Euclidean space.
Specifically, the convolution of two normal distributions yields another Gaussian distribu-
tion, presenting challenges for implementing the diffusion model on the Lie group SO(3).
The subsequent section will address this issue.

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ22)

Despite DDPM’s advantages, it requires incremental noise additions, necessitating a large
number of sampling steps and resulting in relatively slow generation speeds.

2.2.2. DDPM on SO(3)

In the previous section, we discussed that the original DDPM method relies on the proper-
ties of Gaussian distributions in Euclidean space. An isotropic Gaussian distribution on
SO(3) (IG) [10] exhibits similar properties, enabling the use of diffusion models on Lie
groups [11].

IGSO(3)(R1, ϵ1) ∗ IGSO(3)(R2, ϵ2) = IGSO(3)(R1R2, ϵ1 + ϵ2)

Forward Process

In the forward process, we incrementally add noise to the original data x0. Here, both
the original data x0 and the noise represent rotations. Similar to DDPM, the forward
process Markov chain q(xt) depends solely on the previous state q(xt−1). A scaling factor
ensures that as time progresses, the influence of the original data diminishes while the
noise contribution increases.

q(xt | x0) = IGSO(3)

(︁
λ
(︁√
ᾱt,x0

)︁
, 1− ᾱt

)︁
where ᾱt =

∏︁t
s=1 αs and 0 < αt < 1.

Scaling is achieved through exponential and logarithmic mappings between Lie groups
and Lie algebras, as discussed in Section 2.1. Combining two rotational matrices in Lie
group form is done via matrix multiplication, and scaling is performed in the Lie algebra.

12

Algorithm 3 Training of DDPM on SO(3)

repeat
Sample t ∼ Uniform({1, . . . , T})
Sample x0 ∼ q(x0)
Sample R ∼ IGSO(3)

(︁
I,
√
1− ᾱt

)︁
Compute S(v) = log(R)√

1−ᾱt

Compute xscale = exp (
√
ᾱt logx0)

Update xt = Rxscale
Take gradient descent step on

∇θ ∥v − ϵθ (xt, t)∥2

until converged;

Here, S(v) denotes the skew-symmetric matrix in the Lie algebra so(3) corresponding to
vector v.

Backward Process

The backward process mirrors the forward process, converting the noise back into the
original data structure.

pθ(xt−1 | xt) = IGSO(3)

(︂
µ̃(xt,x0), β̃t

)︂
where

µ̃(xt,x0) = λ
(︂√

ᾱt−1βt

1−ᾱt
,x0

)︂
λ
(︂√

αt(1−ᾱt−1)
1−ᾱt

,xt

)︂
The algorithm is as follows:

13

Algorithm 4 Sampling of DDPM on SO(3)

Sample xT ∼ USO(3) for t = T, . . . , 1 do
if t > 1 then

Sample R ∼ IGSO(3)

(︂
I, β̃t

)︂
else

R = I
end
Compute v = ϵθ(xt, t)

Compute a1 = exp
(︂

1√
αt

log(xt)
)︂

Compute a2 = exp
(︂
S
(︂

1√
αt
v
)︂)︂

Compute x̃0 = a1a
−1
2

Update xt−1 = ν̃(xt, x̃0)R
end

Although this method enables a diffusion model on SO(3), sampling from the isotropic
Gaussian distribution (IG) on SO(3) involves integrating the cumulative distribution
function (CDF), which affects the sampling speed.

2.2.3. Denoising Diffusion Implicit Models (DDIM)

In practical applications, especially for the real-time requirements of robotic operations,
we desire a faster generation process. Diffusion models like DDPM require many sampling
steps due to their principles, and the use of the cumulative distribution function (CDF)
also causes each sampling step to take longer. Therefore, reducing the number of sampling
steps is crucial for accelerating the generation process.
The denoising diffusion implicit models (DDIM) [7] method addresses this issue by
breaking the Markov chain, allowing xt−1 to be represented using xt and x0 while still
meeting the conditions for reverse inference in DDPM. This approach significantly reduces
the number of required sampling steps.
The update equation in DDIM is:

xt−1 =
√
αt−1

(︂
xt−

√
1−αtϵθ(xt)√

αt

)︂
+
√︂
1− αt−1 − σ2t · ϵθ(xt) + σtϵ

14

where σt controls the amount of noise added at each step. When σt = 0, the generation
process becomes deterministic, and the model is referred to as DDIM.
Since DDIM does not require strict incremental Markov steps in the forward process, a
shorter forward process can be defined by sampling a subsequence from the original
Markov sequence.

Figure 2.3.: Simplified Flowchart of DDIM

2.2.4. Classifier Guidance

Classifier Guidance [12] enables diffusion models to produce outputs targeted to specific
classes. This concept was later expanded to Semantic Diffusion [13], allowing diffusion
models to generate content conditioned on image, text, and multimodal inputs. For
instance, stylization can be directed by using gradient guidance from both content and
style.
Classifier Guidance involves adding the classifier’s gradient to the process of conditional
generation. By considering the score function and applying Bayes’ theorem, the conditional
generation probability can be decomposed:

∇xt log p(xt | y) = ∇xt log p(xt) +∇xt log p(y | xt)

Here, ∇xt log p(xt) represents the unconditional score, while ∇xt log p(y | xt) denotes the
gradient from the classifier.

15

This approach requires training a classifier on noisy data and computing the classifier’s
gradient at every time step. With classifier guidance, the denoising process leverages the
classifier’s gradient, making the generation more responsive and adaptive. The classifier’s
feedback allows the generation process to adjust the denoising direction dynamically at
different stages, effectively enhancing control over the output.
In our approach, we train a grasp evaluation network to estimate the likelihood of a
successful grasp. The evaluation network’s gradients guide the generation, improving
efficiency and accuracy. As a result, the final generated grasp pose has a higher probability
of success.
The diffusion algorithms incorporating classifier guidance for DDPM and DDIM are as
follows:

Algorithm 5 Classifier-Guided Diffusion Sampling
Input: Diffusion model (µθ(xt),Σθ(xt)), classifier pϕ(y | xt), scale s, class label y
Sample xT ∼ N (0, I)
for t = T, . . . , 1 do

Compute µ,Σ← µθ(xt),Σθ(xt)
Update xt−1 ← Sample from N (µ+ sΣ∇xt log pϕ(y | xt), Σ)

end
return x0

Algorithm 6 Classifier-Guided DDIM Sampling
Input: Diffusion model ϵθ(xt), classifier pϕ(y | xt), scale s, class label y
Sample xT ∼ N (0, I)
for t = T, . . . , 1 do

Compute ϵ̂← ϵθ(xt)−
√
1− ᾱt∇xt log pϕ(y | xt)

Update xt−1 ←
√
ᾱt−1

(︂
xt−

√
1−ᾱtϵ̂√
αt

)︂
+
√
1− ᾱt−1ϵ̂

end
return x0

This chapter has discussed relevant diffusion model methods, which will be applied in
Chapter 4 to our Grasp Diffusion Network (GDN).

16

3. Related Works

This chapter reviews related works and contrasts them with our proposed method GDN.

3.1. 6-DoF Grasp Synthesis

Data-driven approaches to dexterous grasp sampling commonly include methods based
on prior work [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], reinforcement
learning techniques [28, 29], grasp strategies learned from human demonstrations [30],
and various grasp synthesis methods [31]. A significant limitation of these methods is the
assumption of complete object observations, which is challenging in real-world scenarios.
Additionally, the scarcity of grasp training data and the simulation-to-reality gap hinder
their practical application.
Grasp synthesis involves finding stable grasp poses based on sensor data and varies with
different gripper types. Generalizable six-degree-of-freedom (6-DoF) grasp synthesis is a
current research focus [14] and is typically categorized into discriminative and generative
methods. Discriminative methods use manual pose sampling and learn to distinguish
successful grasps from unsuccessful ones using loss functions as metrics [32]. In contrast,
as discussed in Chapter 1, generative methods [30, 33, 15] directly learn to generate
grasp poses from observations [34, 35] through implicit sampling, allowing for more
efficient direct sampling from learned models [34]. Some studies on 6-DoF grasping also
incorporate auxiliary tasks like shape completion and 3D reconstruction to enhance grasp
generation [36]. Unlike these methods, we propose a generative approach that models a
continuous distribution of object-centric grasps conditioned on point clouds.
Our method is inspired by 6-DoF GraspNet [34], which generates diverse grasps for
unknown objects using three main components: a grasp sampler, a grasp evaluator, and a
grasp refinement module. Initially, a Variational Autoencoder (VAE) served as the grasp

17

sampler to generate grasp poses. While the VAE captured a variety of grasp patterns, it
often produced unsuccessful grasps in practice, necessitating an additional pose refinement
stage. Subsequent work [37] extended this approach by incorporating a learned network
for collision checking, yet the VAE still underperformed compared to discrete regression
models [35].

Figure 3.1.: 6-DoF GraspNet generates grasps using a grasp sampler and iteratively re-
fines negative grasps through gradients from the grasp evaluator.

In contrast to [34], which utilizes a VAE for grasp sampling, we employ diffusion models
for grasp generation. As detailed in Chapter 1, diffusion models offer advantages over
other generative models.
Since the generator is trained only on successful grasps, it may inadvertently produce
unsuccessful ones. To detect these negative grasps, a grasp evaluator is trained to predict
the success probability P (S | g,X) based on the grasp pose g and the point cloudX, using
cross-entropy loss between true labels and predicted probabilities.
The findings in [34] indicate that sampled grasps with low evaluator scores are often near
higher-scoring grasps in the grasp space, suggesting that local refinement can enhance
success probability. This refinement uses the gradient of the predicted success probability
from the evaluator to adjust the grasp pose, transforming near-successful negative grasps
into successful ones. By iteratively refining and discarding grasps below a certain threshold,
a set of high-quality grasps is obtained. Building on this insight, we incorporate the concept
of local refinement [38] into our method.
For point cloud processing, they utilized PointNet++ [39], a neural network architecture
designed for handling point sets in metric space. Since grasping requires only local features
rather than full reconstruction, only the encoder part is employed. This approach offers
advantages such as rotational invariance, improving the stability of grasp generation from
partial point clouds. We integrate this method into our approach.

18

3.2. Grasp Diffusion Models

Building on the advantages of diffusion models over VAEs and GANs, this section compares
several studies that employ diffusion models for grasp generation.

3.2.1. SE(3)-DiffusionFields

SE(3)-DiffusionFields [40] introduces an algorithm for learning data-driven cost functions
in task space. It generates robot motion by optimizing a set of combined cost functions
through joint gradient-based optimization. By employing diffusion learning, this method
learns smooth cost functions that facilitate joint grasping and motion optimization.

Figure 3.2.: SE(3)-DiffusionFields Architecture: The object point cloud and grasp pose
are encoded through respective encoders to derive features, which are then
processed by a decoder to calculate the energy e.

As illustrated in Figure 3.2, SE(3)-DiffusionFields relies on an energy model that maps
object and grasp poses to energy values, effectively measuring grasp quality. In contrast,
our method directly models the noise, outputting a denoised vector in the Lie algebra (i.e.,
a gradient in SO(3) space). This approach is more consistent with the standard operation
of Denoising Diffusion Probabilistic Models (DDPM) and reduces computation time by
avoiding backpropagation through energy-based models. It also eliminates the need to
compute SO(3) gradients, thereby reducing computational complexity and enhancing
stability.

19

Algorithm 7 Grasp SE(3)-DiF Training
Data: θ0: initial parameters for z, F0, D0; Datasets: D0 : {m,H0

u} (object IDs and poses),
Dm

sdf : {x, sdf} (3D positions x and SDF values for object m), Dm
g : {H} (successful

grasp poses for object m);
Result: Optimized parameters θ∗;
for s← 0 to S − 1 do

Sample k, ok ← [0, . . . , L];
Sample m,H0

u ∈ D0;
z ← shape codes(m);

SDF Training
Sample x, sdf ∈ Dm

sdf;
sdfpred ← −F0(H

0
u, x, z, k);

Lsdf ← Cmse(sdfpred, sdf);

Grasp Diffusion Training
Sample H ∈ Dm

g ;
ϵ ∼ N (0, σkI);
Ĥ ← H Expmap(ϵ);
xn0 ← Hx̂;
sdfn, ϕn ← F0(x

n
0 , z, k);

ψ ← Flatten(sdfn, ϕn);
e← D0(ψ);
Ldsm ← Cdsm(e, Ĥ,H, σk);

Parameter Update
L← Ldsm + Lsdf;
θs+1 ← θs − α∇L;

end
return θ∗;

As indicated by the algorithm step Ĥ ← H Expmap(ϵ), SE(3)-DiffusionFields does not
employ a scaling factor related to αt to control the data-to-noise ratio when adding noise,
unlike DDPM or DDPM on SO(3). As a result, it cannot achieve the effect where the noised
data asymptotically approaches pure noise as the time step approaches infinity.

20

SE(3)-DiffusionFields samples complete point clouds from objects and processes the fea-
tures using a Vector Neuron Network (VNN) encoder. However, as discussed in Chapter 1,
utilizing partial point clouds is more practical. For partial point clouds, methods like the
VNN encoder are unsuitable because their encodings vary with object rotation, potentially
leading to unstable grasp poses. Therefore, we adopt the rotationally invariant PointNet++
method to handle partial point clouds.

3.2.2. GraspLDM

GraspLDM [41] is a generative framework for object-centric six-degree-of-freedom (6-DoF)
grasp synthesis using latent diffusion. This framework employs a diffusion model as a
prior in the latent space of a VAE, learning a generative model of object-centric SE(3) grasp
poses conditioned on point clouds. The lower quality of samples produced by VAE methods
is often due to the prior gap problem, especially when the encoding distribution does
not match the prior [38]. Unlike 6-DoF GraspNet [34], which relies on grasp refinement,
GraspLDM bridges the gap between the VAE’s prior and posterior distributions during
training. It achieves this by using a Denoising Diffusion Model (DDM) in a low-dimensional
latent space to learn the distribution of successful grasps on object point clouds, retraining
a task-specific denoising network. Similar to our method, GraspLDM also utilizes diffusion
models based on DDPM [3], employing Denoising Diffusion Implicit Models (DDIM) to
accelerate the sampling process with minimal performance loss.
GraspLDM performs diffusion in the Euclidean latent space and then projects the diffusion
back to SO(3) using Modified Rodrigues Parameters (MRP). In contrast, our method
performs diffusion directly in the tangent space of rotations—the Lie algebra space. This
approach better leverages the properties of diffusion models. For instance, we combine
gradients to progressively guide the generation process because we aim to learn noise
related to the gradient of the log-probability:

ϵθ(xt) = −
√
1− ᾱt∇xt log pθ(xt)

Unlike GraspLDM, we do not train a VAE by maximizing the Evidence Lower Bound
(ELBO). Instead, we formulate the problem as diffusion in the pose space. Additionally, to
prevent the strict ELBO objective from causing the Kullback-Leibler (KL) divergence term
DKL to become extremely small in the early stages of training, GraspLDM needs to use
linear annealing of the λ parameter, which increases computational cost.

21

Figure 3.3.: Grasp Latent Diffusion Model (GraspLDM): A model combining a point cloud
encoder, a grasp decoder, and a latent diffusion module with a score network
to enable direct sampling of grasp latents and task-conditioned generation.

While other grasp generation methods yield good results, our approach offers advantages
in practicality, stability, and success rate. In the next chapter, we will delve into the
implementation details of our method.

22

4. Grasp Diffusion Network

In the previous chapters, we discussed our motivations, background, and related work. In
this chapter, we provide a detailed explanation of our approach. Section 4.1 presents an
overview of our method. Section 4.2 outlines the grasp generation process, and delves into
the diffusion process and the architecture of our neural network. Section 4.3 describes the
use of classifier guidance for refining the grasp generation process. Section 4.4 explains
acceleration techniques of our method.

4.1. Overview

Figure 4.1.: Framework of the grasp diffusion network(GDN).

Our method’s framework is illustrated in Figure 4.1. We begin by capturing RGB and depth
images using the Azure Kinect DK depth camera. The RGB image undergoes segmentation
to produce a mask that isolates the object of interest. Using this mask, we extract the
object’s depth information and convert it into a point cloud representation. This object
point cloud is then encoded into point cloud features using the PointNet++ encoder [39],
which serves as one of the conditional inputs for our grasp diffusion network.

23

In addition to grasp generation, we train a grasp evaluation network to estimate the
success probability of each grasp. During the denoising process, we apply classifier
guidance [12] at each timestep, using gradients from the evaluation network to steer
the grasp generation towards higher success rates. This approach effectively refines the
generated grasps. Finally, we sample from the learned distribution to determine the final
grasp pose.

4.2. Grasp Generation

We utilize a diffusion model [3, 11, 7] to generate grasps from partial point clouds through
a forward and reverse process.

4.2.1. Forward Process

Figure 4.2.: Forward process of the grasp diffusion network(GDN).

As outlined in Chapter 2, diffusion models involve both a forward and a reverse process.
Unlike basic Diffusion Probabilistic Models (DDPM) [3], our approach incorporates both
the translation and rotational components of the grasp pose. In the forward process, noise
is added at each timestep, modifying both the translation and rotation of the grasp pose.
By knowing the added noise and the grasp pose at each step, we train a Noise Prediction
Network to estimate the noise at each timestep. The loss is calculated as the mean squared
error between the predicted and actual noise.

24

4.2.2. Reverse Process

Figure 4.3.: Reverse process of the grasp diffusion network(GDN).

Once the Noise Prediction Network is trained, we employ the reverse diffusion process
to reconstruct a clean grasp pose from the noisy one, iterating backward through the
timesteps until the final grasp pose is obtained.
By progressively reducing noise, we transform a noisy distribution into a specific grasping
distribution. As illustrated in Figure 4.4, the entire denoising or grasp generation process
moves sequentially from left to right.

Figure 4.4.: Grasp generation process (from left to right).

4.2.3. Noise Prediction Network

The Noise Prediction Network takes as input the translation and rotation matrices, the
current timestep, and the object’s point cloud. The output is represented as a rotation and
translation vector in Lie algebra. The timestep and point cloud features act as conditional
inputs, allowing the model to account for the variability in noise at different stages and
adapt to the object features accordingly.
To handle these conditional inputs, we use ResNet [42] and Feature-wise LinearModulation
(FiLM) [43]. ResNet’s residual connections help mitigate common training issues like
gradient vanishing or explosion, improving training stability and efficiency. This is crucial
for our deep model as it needs to capture complex, nonlinear relationships effectively.

25

Figure 4.5.: Noise prediction network of the grasp diffusion network(GDN).

FiLM is employed to dynamically adjust feature representations based on conditional
inputs, linearly modulating intermediate features to incorporate timestep and point cloud
data. This enables the model to flexibly adapt to varying timesteps and object features,
resulting in more accurate noise predictions.
ResNet enhances stable deep feature extraction, while FiLM provides the flexibility to
adjust based on conditional inputs. Together, these components enable the Noise Prediction
Network to handle complex data and accurately predict noise in the grasp pose.
For noise representation, we utilize either a matrix or a 6D vector form. When work-
ing with SO(3), we found that directly predicting noise vectors is more effective than
learning residual rotations, as it simplifies capturing the stochastic nature and uncertain-
ties of rotation. For SE(3), we chose to learn noise vectors over the 6D representation
because working with noise in a linear space avoids the complications of optimizing
high-dimensional constraints, making the learning process more stable and efficient.
Directly learning noise vectors also allows for better adaptation to the data distribution,
particularly given the varying nature of noise at each timestep in diffusion models. This
approach helps the model capture the complex variations and uncertainties inherent
in vision-based grasping tasks. Consequently, this method improves learning efficiency,
simplifies training, and enhances the model’s ability to express uncertainty in both rotation
and translation, leading to better performance overall.

26

4.3. Grasp Refinement

4.3.1. Classifier Guidance

We employ a classifier-guided optimization strategy [44] within the diffusion model to
refine the grasp. This choice is motivated by several key reasons.
In diffusion-based generation without classifier guidance, the denoising process relies
solely on the capabilities of the Noise Prediction Network. In contrast, classifier guidance
leverages an additional quality gradient provided by a classifier, offering an extra guiding
signal during generation. This gradient helps adjust the direction of each denoising
step, ensuring a gradual improvement in the quality of the generated result. Without
classifier guidance, the generation process can suffer from mode collapse or instability. By
incorporating classifier guidance, we provide supplementary information on generation
quality at each timestep, enabling the model to converge towards higher-quality outcomes.
In the context of grasp generation, we specifically avoid using classifier-free guidance be-
cause its approach to handling "bad" grasps contradicts our task objectives. Classifier-free
guidance requires the model to learn both conditional and unconditional distributions
during training, which means it learns to generate not only "successful" grasps but also
"failed" ones. However, generating failed grasps holds no practical value for our task, as
our primary goal is to maximize the success rate of grasps. Unlike image generation tasks,
where there is no definitive distinction between "good" and "bad" outcomes, grasp genera-
tion inherently has a clear objective—to maximize success. Generating unsuccessful grasp
postures reduces overall system performance and increases the likelihood of ineffective
actions. Therefore, we employ classifier guidance to provide quality gradients that guide
the generation towards higher success rates, effectively optimizing both the quality of
generated grasps and the overall success rate.

4.3.2. Grasp Evaluator Guidance

Similar to 6-DOF GraspNet, we use a classifier trained on the ACRONYM dataset—referred
to as the Grasp Evaluator—to predict the success rate of grasps. The detailed workflow is
as follows:
In the network architecture diagram (Figure 4.6), we illustrate the design of the deep
learning model for grasp evaluation and generation. The model consists of two main

27

components: the Grasp Evaluator module and the diffusion model module described
earlier. These two modules work together to enhance the quality of grasp generation.

Grasp Evaluator Module

The Grasp Evaluator module is designed to score each potential grasp. The evaluation
process involves several steps:

1. Point Cloud Input and Feature Extraction: The point cloud data is processed
through a point cloud encoder, which consists of a linear layer, batch normalization,
and a ReLU activation layer. These components extract features from the raw 3D
point cloud, resulting in a feature vector z.

2. Grasp Feature Encoding: The grasp features, including rotation and translation
information, are encoded through a grasp feature encoder. This encoder also uses
linear layers, batch normalization, and ReLU activation to process the grasp features.

3. Feature Fusion and Prediction: The point cloud features and grasp features are
concatenated and input into the prediction network. The prediction network contains
two residual blocks (ResNet Block 1 and ResNet Block 2) and a final linear layer to
predict the quality score and confidence of the grasp.

4. Output Quality Score: The prediction network outputs a quality score and confi-
dence value for the grasp, which are then used in the subsequent noise adjustment
process.

Here, fencoder and gencoder represent the point cloud encoder and grasp feature encoder,
respectively, while hpredictor represents the prediction network. The predicted quality score
is denoted as q̂, and the confidence is denoted as ĉ.

Diffusion Model Module

In the diffusion model module, the score provided by the Grasp Evaluator is used to
guide and optimize the generation process. At each timestep of the diffusion model,
the predicted noise value is adjusted based on the gradient information from the Grasp
Evaluator. This adjustment can be represented as follows:

ϵnew = ϵpred − w1 · ∇x log p(y|x)

28

Figure 4.6.: The Grasp Evaluator framework.

29

where ϵnew is the updated noise value for the reverse sampling process, ϵpred is the original
noise predicted by the diffusion model, w1 is the guidance coefficient, and ∇x log p(y|x) is
the gradient provided by the Grasp Evaluator to adjust the grasp posture towards higher
success probability.
The subtraction term reflects the fundamental opposition between the predicted noise
ϵpred and the gradient-guided correction. In this context, the noise ϵpred represents the
inherent uncertainty in the generation process, while the gradient ∇x log p(y|x) works
to guide the sample toward the desired outcome, i.e., a successful grasp. By subtracting
the gradient, we actively reduce noise components that may lead to failed grasps, thereby
shifting the generation process toward states that increase the probability of success. This
relationship between noise and gradient correction can be viewed as:

ϵnew = ϵpred −
√
1− ᾱt · ∇x log p(y|x),

where the term √1− ᾱt scales the gradient as per the current timestep t, aligning the
adjustment with the denoising process over time. The negative sign is critical in ensuring
that the gradient opposes the noise, guiding the sample toward minimizing the likelihood
of grasp failure.
In this formulation, the gradient term ∇Ht log p(y|Ht, t, O) represents the rate of change
in the success probability p(y|Ht, t, O) of the grasp posture Ht at the current timestep
t, with partial point cloud information O. This gradient, computed through Bayesian
inference, indicates the optimal direction for improving the grasp.
The combined network of the Grasp Evaluator and the diffusion model aims to generate
high-quality grasps through iterative refinement. The Grasp Evaluator serves as a scorer,
providing gradient information to the diffusion model, which guides the optimization
process. This collaborative mechanism effectively prevents issues like mode collapse
during generation, thereby enhancing the diversity and stability of the generated grasps.

Table-SDF Guidance

In addition to classifier guidance, we integrate other mechanisms like the Signed Distance
Function (SDF) [44] to prevent collisions with the environment, such as the table. By
combining the quality gradient from the Grasp Evaluator with the collision avoidance
gradient from the SDF, we achieve a multi-objective optimization that enhances grasp
quality while ensuring safety.

30

Collision Avoidance Using SDF The SDF describes the distance between a point and
a surface. For grasp generation, we use SDF to ensure the gripper avoids collisions with
the environment. First, we segment the table and obtain its depth information to create a
Box-SDF that describes the table’s location and boundaries. By computing the table’s SDF
gradient, we determine a direction for collision avoidance, which is used to optimize the
grasp pose.

Gradient-Guided Optimization During grasp generation, the diffusion model predicts a
grasp pose and a corresponding noise correction at each timestep. By incorporating both
the feedback from the Grasp Evaluator (grasp quality gradient) and the SDF (collision
avoidance gradient), we can optimize the grasp effectively. The updated noise is given by:

ϵnew = ϵpred − w1 · ∇x log p(y|x)− w2 · ∇xSDFtable

where w1 and w2 control the influence of the quality and collision avoidance gradients,
respectively. The negative sign ensures that both gradients contribute to reducing noise in
a direction that improves grasp success and avoids collisions.

Collaborative and Adversarial Guidance The gradients from the Grasp Evaluator and
the SDF may either conflict or complement each other:

• If a grasp pose has high quality but risks collision, the SDF gradient pushes it away
from the table until the collision is eliminated.

• If there is no collision risk but the grasp quality is poor, the Grasp Evaluator’s gradient
guides it towards higher quality.

This multi-objective optimization allows the diffusion model to adjust noise at each
timestep, ensuring safe and high-quality grasp generation. This collaborative mechanism
enhances grasp effectiveness while avoiding issues like mode collapse, ultimately increasing
the diversity and stability of the generated results.

31

4.4. Sampling Process Acceleration

In our Grasp Diffusion Network, we extend the acceleration techniques of Denoising
Diffusion Implicit Models (DDIM) [7] to reduce computational cost while enhancing
precision. By tailoring the diffusion and sampling processes specifically for grasping tasks,
we introduce several enhancements that outperform traditional DDIM methods. These
key modifications are detailed in the following subsections.

4.4.1. Adaptive Skip-Step Sampling Strategy

We propose an adaptive skip-step sampling strategy that adjusts based on task complexity.
Unlike the fixed skip patterns used in traditional DDIM methods (e.g., uniform, quadratic,
exponential), our approach dynamically identifies critical time points based on the unique
characteristics of the grasping scenario. This adaptive selection captures essential state
changes with fewer sampling steps, ensuring efficiency without sacrificing precision. The
selection of time steps is adjusted based on task complexity, allowing more sampling steps
in regions with greater complexity to effectively model critical changes.

4.4.2. Dynamic Noise Control for Enhanced Determinism

To enhance determinism during the generation process, we introduce a dynamic noise
control mechanism. Unlike the fixed parameter η used in DDIM, our approach adjusts η
based on the grasping stage. As the generated grasp approaches the target, η is gradually
reduced, increasing determinism and enhancing precision in the final output.

Algorithm 8 Dynamic Noise Control
Input: Time step t, Current stage stage
Output: Noise parameter η
if far_from_target(t) then

η ← high value (exploration phase)
else if near_to_target(t) then

η ← low value (exploitation phase)
end
return η

32

This dynamic adjustment of η reduces uncertainty when the model is near the target,
resulting in more precise and stable grasp poses.

Figure 4.7.: Grasp Diffusion Network(GDN) sampling process using DDIM for accelerated
grasp pose generation.

33

5. Experiments

In this chapter, we evaluate our proposed method through experiments. We detail the
setup, environments, dataset, comparative analysis, training procedures, and evaluation
results.

5.1. Setup

5.1.1. Environments

Our research aims to develop a grasp diffusion model based on partial point cloud fea-
tures. To validate its effectiveness, we created benchmark environments that significantly
influence the model’s learning ability and the quality of generated grasps. We tested our
model in both the Isaac Gym simulation environment and the real world, as shown in
Figure 5.1. Various objects were placed at the center of a table, with a fixed camera at the
side. Using partial point cloud data, our model generated grasp poses to control a Panda
robotic arm. We measured the success rate of these grasps and compared the generated
grasp distributions against ground truth data using the Earth Mover’s Distance (EMD).

5.1.2. Dataset

We trained and evaluated our model using the ACRONYM dataset [45], which contains
approximately 177 million parallel gripper grasps across 8,872 objects in 262 categories,
each labeled as successful or failed. Each category contains training and testing subsets,
respectively used for model training and evaluation. To improve data quality and grasp
evaluation accuracy, we further preprocessed the object mesh models.

34

Figure 5.1.: Grasp testing in the Isaac Gym simulation environment (left) and the real
world (right).

Starting with raw object meshes from ShapeNet [46], we used the Manifold tool to make
the models watertight, generating closed meshes without holes. This step is crucial for
reliable collision detection and accurate grasp pose evaluation, as watertight meshes better
represent object shapes and reduce errors in grasp quality assessment. We also simplified
the meshes to lower model complexity and speed up training and evaluation.
We combined the watertight, simplifiedmeshes with grasp information from the ACRONYM
dataset, ensuring each grasp file correctly referenced its corresponding object model.
Focusing on categories such as "Mug" and "Cup," we divided the dataset into training and
testing sets for evaluation. With this carefully prepared data, we effectively trained the
Grasp Diffusion Network.

Figure 5.2.: An example object from the ACRONYM dataset, its corresponding grasp, and
the partial point cloud sampled from the object’s mesh.

35

5.2. Capturing Point Cloud Features

5.2.1. Depth Map to Point Cloud

We converted depth maps into point clouds to capture the three-dimensional structure
of objects. This process involved reading pixel depth values and mapping each pixel to
real-world coordinates using the camera’s projection and view matrices.
To improve accuracy and avoid background interference, we first performed object seg-
mentation. In the Isaac Gym simulation environment, we used the rendering ID of each
pixel for direct segmentation, resulting in depth maps containing only the target object.
In the real world, we applied the FastSAM [47] segmentation method on RGB images,
then used the segmentation result on the depth map to extract the target object’s depth
information. This provided a depth map of only the target object, which we transformed
into a point cloud.
Each pixel in the depth map represents its distance from the camera. Using the camera’s
intrinsic parameters, we converted the 2D pixel coordinates (u, v) and depth value Z into
3D points (Xc, Yc, Zc) in the camera coordinate system:

Xc =
(u−cu)Z

fu
, Yc =

(v−cv)Z
fv

, Zc = Z

Here, fu and fv are the camera’s focal lengths, and cu and cv are the coordinates of the
optical center on the image plane. In simulation environments like Isaac Gym, these
parameters are available through the API. In real-world scenarios, we obtained them
through camera calibration, often using a chessboard pattern from multiple viewpoints.
After converting to the camera coordinate system, we transformed the point cloud to
the world coordinate system using the camera’s extrinsic parameters (the view matrix).
The view matrix describes the camera’s position and orientation in the world coordinate
system. Using its inverse, we mapped points from the camera to the world coordinate
system:

Pworld = V −1Pcam

For linear transformations, we represented point clouds in homogeneous coordinates
by adding an additional dimension, converting them into (X,Y, Z, 1). This facilitates

36

transformations like translation and rotation, allowing the point cloud to be transferred
from the camera coordinate system to the environment coordinate system for subsequent
analysis.
In the simulation environment, intrinsic and extrinsic camera parameters are obtained
directly from the API, simplifying the conversion. In the real world, these parameters are
determined through camera calibration, with the intrinsic matrix K defined as:

K =

⎡⎢⎢⎢⎣
fu 0 cu

0 fv cv

0 0 1

⎤⎥⎥⎥⎦
The extrinsic parameters, including the rotation matrixR and translation vector t, describe
the camera’s orientation and position. With these parameters, we accurately mapped each
pixel in the depth map to 3D world coordinates.

5.2.2. Point Cloud to Point Cloud Features

To process the point cloud data and extract low-dimensional features from high-dimensional
input, we used the PointNet++ encoder [39]. PointNet++ is a neural network with
rotational invariance and local feature extraction capabilities, well-suited for handling
partial point clouds. By progressively sampling and aggregating local point features,
PointNet++ generates a compact, representative feature set that effectively captures the
object’s shape and spatial relationships.
Its rotational invariance makes PointNet++ highly advantageous for grasp generation in
partial point cloud scenarios, as the grasp must be robust to various object orientations.
The extracted features effectively describe the geometry, supporting grasp generation and
other 3D tasks.
Using object segmentation to preprocess depth maps significantly improved point cloud
accuracy. By focusing depth information on the target object and minimizing background
noise, we enhanced the quality of the point clouds. PointNet++ then extracted low-
dimensional features from the high-dimensional point cloud, which were crucial for our
grasp generation tasks.

37

5.3. Comparative Experiments

5.3.1. Experimental Setup

To evaluate the performance of various methods in grasp generation, we conducted com-
parative experiments involving different grasp generators. This comprehensive exploration
aimed to compare their performance in handling different point cloud data distributions
and grasp pose generation tasks.

5.3.2. Grasp Generator Comparison

We evaluated the performance of several grasp generators, including existing methods
and our proposed approach:

• GraspGeneratorVAE (Alternative generative method) [41]: This generator em-
ploys a variational autoencoder (VAE) architecture to model the distribution of
feasible grasps and generate corresponding configurations.

• GraspGeneratorSE3Diffusion (Baseline) [40]: Serving as our baseline, this method
adapts SE(3) diffusion models into an energy-based framework for grasp generation,
capturing necessary spatial transformations.

• GraspGeneratorGDN (Our method): Our proposed Grasp Diffusion Network (GDN)
leverages diffusion processes to synthesize grasps, aiming to enhance generation
quality and performance over existing methods.

5.4. Training Implementation Details

5.4.1. Data Loading and Batching

Each batch consisted of 32 objects, each with 32 grasp poses, resulting in a total batch
size of 1,024. We used 16 worker threads to parallelize data loading and speed up the
preparation process.

38

5.4.2. Training Environment and Configuration

We conducted the training on a Slurm cluster using either an NVIDIA RTX3090 or A5000
GPU. Each task was assigned one GPU and eight CPU cores.

5.4.3. Training Epochs and Learning Rate Scheduling

During the initial 100,000 epochs, we did not apply learning rate decay to stabilize
early optimization. Afterward, we used a lambda-based scheduling strategy with cosine
annealing restarts for dynamic adjustment, starting with an initial learning rate of 0.0003.

5.5. Results

5.5.1. Comparison of EMD and Success Rate Across Methods

Table 5.1 and Figure 5.3 compare the performance of SE3Diffusion (baseline), Variational
Autoencoder (VAE), and our proposed Grasp Diffusion Network (GDN) across multiple
object categories: Bowl, Cup, Mug, and a broader set called CAT10, which includes Book,
Bottle, Hammer, Milk Carton, Rubik’s Cube, Shampoo, Teapot, and the aforementioned
objects. We evaluate the models using two primary metrics: Earth Mover’s Distance (EMD)
and success rate. A lower EMD indicates a closer alignment between the predicted and
ground-truth grasp distributions, while a higher success rate reflects more reliable grasp
generation. Figure 5.3 visualizes these results, plotting EMD on the x-axis and success
rate on the y-axis for the CAT10 objects.

Earth Mover’s Distance (EMD): EMD measures the difference between the predicted and
ground-truth grasp distributions; lower values indicate better performance. As shown in
Table 5.1 and Figure 5.3, GDN generally achieves lower median EMD values compared to
SE3Diffusion across various categories. For instance, in the mug category, GDN’s median
EMD is 0.140, outperforming SE3Diffusion’s 0.154. However, VAE achieves a slightly lower
median EMD of 0.139 in this category. In the CAT10 category, GDN achieves a median
EMD of 0.135, which is lower than SE3Diffusion’s 0.154. These results demonstrate the
robustness of GDN across diverse object shapes.

39

Success Rate: Success rate measures the proportion of successful grasps generated by
the model; higher values indicate better grasp quality. BothTable 5.1 and Figure 5.3 show
that GDN generally performs better than the baseline models in terms of success rate. In
the mug category, GDN achieves a median success rate of 0.860, surpassing SE3Diffusion’s
0.790 and VAE’s 0.800, indicating superior reliability in practical grasping scenarios. In the
CAT10 category, GDN’s median success rate is 0.840, which is higher than SE3Diffusion’s
0.800, reflecting improved performance across different objects.

Mean, Standard Deviation, and Median Analysis: Analyzing the mean, standard de-
viation, and median values for both EMD and success rate highlights GDN’s strengths
in terms of accuracy and consistency. GDN consistently shows lower EMD values and
higher success rates compared to the baselines, with reduced variability across object
categories. As depicted in Figure 5.3, GDN achieves a balance between low EMD and high
success rate, demonstrating superior mean performance and lower variance compared to
SE3Diffusion, particularly in the CAT10 object category. This underscores GDN’s robust-
ness and suitability for real-world grasping tasks, where both accuracy and reliability are
critical.
In summary, the results across both metrics demonstrate that GDN generally outperforms
both SE3Diffusion and VAE, particularly in terms of achieving lower EMD values and
higher success rates with reduced variance. These findings validate the effectiveness of
GDN in generating accurate and dependable grasps across various object categories.

40

Table 5.1.: Comparison of Grasp Generation Methods in terms of EMD and Success Rate.
All results are based on the test dataset. CAT10 includes 10 different object
categories.

Methods Category EMD (Mean/Std/Median) Success Rate (Mean/Std/Median)

GroundTruth Bowl 0.101/0.015/0.102 0.854/0.202/0.920
SE3Diffusion (Baseline) Bowl 0.168/0.089/0.134 0.735/0.318/0.890
VAE Bowl 0.134/0.038/0.121 0.737/0.262/0.840
GDN(Our) Bowl 0.145/0.045/0.129 0.700/0.261/0.810
GroundTruth Cup 0.130/0.016/0.126 0.896/0.128/0.950
SE3Diffusion (Baseline) Cup 0.172/0.043/0.157 0.881/0.149/0.940
VAE Cup 0.168/0.026/0.160 0.850/0.087/0.880
GDN(Our) Cup 0.171/0.031/0.168 0.875/0.107/0.900
GroundTruth Mug 0.110/0.016/0.108 0.954/0.045/0.960
SE3Diffusion (Baseline) Mug 0.164/0.039/0.154 0.751/0.166/0.790
VAE Mug 0.144/0.029/0.139 0.779/0.106/0.800
GDN(Our) Mug 0.143/0.024/0.140 0.834/0.111/0.860
GroundTruth CAT10 0.108/0.023/0.105 0.857/0.195/0.940
SE3Diffusion (Baseline) CAT10 0.162/0.051/0.154 0.721/0.244/0.800
VAE CAT10 0.144/0.039/0.135 0.703/0.197/0.775
GDN(Our) CAT10 0.145/0.042/0.135 0.755/0.225/0.840

41

Figure 5.3.: Performance comparison of grasp generation methods. EMD (x-axis) and
Success Rate (y-axis) are shown for CAT10 objects, with our method GDN
demonstrating superior mean performance and lower variance.

42

5.5.2. Comparison of Grasp Generation Speed Across Methods

Figure 5.4 compares the grasp generation speeds of our proposed Grasp Diffusion Network
(GDN) and the baseline model SE3Diffusion. The top plot shows the average time per
iteration, while the bottom plot illustrates the cumulative grasp generation time over all
iterations.
GDN achieves a per-iteration time approximately 0.3 seconds faster than SE3Diffusion.
While this difference may seem minimal, it accumulates significantly over multiple iter-
ations. This cumulative advantage is evident in the bottom plot, where the total time
difference between GDN and SE3Diffusion widens progressively. By the final iteration,
GDN demonstrates a substantially lower cumulative time, underscoring its efficiency.
This efficiency gain offers a significant advantage for robotic manipulation tasks requiring
real-time responsiveness. The faster performance of GDN makes it more suitable for
applications where rapid and reliable grasp generation is critical, positioning it as a
superior alternative to SE3Diffusion.

43

Figure 5.4.: Comparison of grasp generation time between GDN (our method) and
SE3Diffusion (baseline). The top plot shows the average generation time per
iteration, and the bottom plot shows the cumulative grasp generation time.

44

6. Conclusion

This thesis addressed the challenge of vision-based robotic grasping, specifically focusing
on learning generalized grasp representations from demonstrations. To achieve this goal,
we introduced the Grasp Diffusion Network (GDN), a novel framework for grasp generation.
GDN is among the few data-driven approaches capable of directly generating grasp poses
from partial point clouds, enabling efficient learning of complex, object-centered 6-DoF
grasp distributions.
We conducted extensive simulations to evaluate GDN’s performance, which demonstrated
superior results, particularly in sampling speed, compared to baseline methods. Com-
pared to existing generative modeling approaches, GDN effectively generated grasps and
exhibited strong scalability to large object sets. Additionally, we validated our approach by
training the GDN model on synthetic single-view point clouds and testing it in real-world
environments, demonstrating effective transfer from simulation to reality.
Given the improvements introduced by diffusion models in GDN, we believe this approach
can be extended to address other complex dexterous manipulation tasks, such as in-hand
object manipulation or grasping in cluttered environments. Addressing these challenges
and the current limitations of our method represents a promising direction for future
research.

45

7. Discussion

7.1. Limitations

Despite its contributions, the proposed method has several notable limitations:
1. The grasp generation relies on partial point clouds from a single viewpoint, poten-

tially reducing the quality and success rate of the generated grasps.
2. Even with acceleration strategies like DDIM, the diffusion model remains compu-

tationally intensive, posing challenges for tasks that require high real-time perfor-
mance.

3. The approach does not account for complex environmental constraints, such as
avoiding collisions with other objects; therefore, both simulation and real-world
experiments were conducted in relatively simple environments.

4. Sampling from an isotropic Gaussian distribution in SO(3) necessitates integrating
the cumulative distribution function, which is computationally expensive and lacks
a closed-form solution.

7.2. Future Work

To overcome the current limitations, we plan to focus our future work on several key
areas:

1. Improving Grasp Quality and Success Rates: Currently, our diffusion model
uses partial point clouds from single viewpoints, which limits performance. To
address this, we intend to reconstruct more complete object models from these
limited observations using techniques such as Iterative Closest Point (ICP) [48],

46

Neural Radiance Fields (NeRF) [49], and Point Completion Networks (PCN) [50].
Enhancing the input data quality through these reconstruction methods should
significantly improve grasp accuracy and success rates.

2. Speeding Up the Sampling Process: While we have utilized DDIM to accelerate
sampling, we plan to explore additional techniques to further enhance the diffusion
model’s sampling speed. Methods such as automated diffusion optimization [51]
and progressive distillation [52] could reduce the number of diffusion steps required
without compromising performance.

3. Adapting to Complex Environments: To improve adaptability in complex settings,
we plan to incorporate additional constraints, such as classifiers or guidance terms,
inspired by conditional diffusion models. This approach should enhance the model’s
robustness and performance in diverse environments.

4. Improving Efficiency in Rotational Transformations: Addressing inefficiencies
in sampling rotations is a priority. We will investigate efficient numerical methods
tailored for rotation groups like SO(3), such as Runge-Kutta-Munthe-Kaas (RK-MK)
integrators [53], to enhance sampling efficiency in rotational transformations.

5. Exploring Alternative Generative Models: Finally, to further optimize model
efficiency and broaden applicability, we will assess other generative models—such as
flow matching [54] and recent diffusion model variants—for their potential benefits
in specific tasks.

47

Bibliography

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural infor-
mation processing systems, vol. 27, 2014.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[3] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in
neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[4] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation represen-
tations in neural networks,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5745–5753, 2019.

[5] F. S. Grassia, “Practical parameterization of rotations using the exponential map,”
Journal of graphics tools, vol. 3, no. 3, pp. 29–48, 1998.

[6] V. De Bortoli, “Convergence of denoising diffusion models under the manifold
hypothesis,” arXiv preprint arXiv:2208.05314, 2022.

[7] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint
arXiv:2010.02502, 2020.

[8] J. Sola, J. Deray, and D. Atchuthan, “Amicro lie theory for state estimation in robotics,”
arXiv preprint arXiv:1812.01537, 2018.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pp. 234–241, Springer, 2015.

[10] T. Savjolova, “Preface to novye metody issledovanija tekstury polikristalliceskich
materialov,” Metallurgija, Moscow, vol. 4, no. 2, pp. 6–2, 1985.

48

[11] A. Leach, S. M. Schmon, M. T. Degiacomi, and C. G. Willcocks, “Denoising diffusion
probabilistic models on so (3) for rotational alignment,” 2022.

[12] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances
in neural information processing systems, vol. 34, pp. 8780–8794, 2021.

[13] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-
conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125,
vol. 1, no. 2, p. 3, 2022.

[14] R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner, J. Bohg,
A. Morales, T. Asfour, D. Kragic, et al., “Deep learning approaches to grasp synthesis:
A review,” IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3994–4015, 2023.

[15] V. Mayer, Q. Feng, J. Deng, Y. Shi, Z. Chen, and A. Knoll, “Ffhnet: Generating multi-
fingered robotic grasps for unknown objects in real-time,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 762–769, IEEE, 2022.

[16] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dexterous grasping via eigengrasps: A
low-dimensional approach to a high-complexity problem,” in Robotics: Science and
systems manipulation workshop-sensing and adapting to the real world, 2007.

[17] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H.
Yang, “Diffusion models: A comprehensive survey of methods and applications,”
ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.

[18] P. Li, T. Liu, Y. Li, Y. Geng, Y. Zhu, Y. Yang, and S. Huang, “Gendexgrasp: General-
izable dexterous grasping,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 8068–8074, IEEE, 2023.

[19] J. Lu, H. Kang, H. Li, B. Liu, Y. Yang, Q. Huang, and G. Hua, “Ugg: Unified generative
grasping,” arXiv preprint arXiv:2311.16917, 2023.

[20] A. Wu, M. Guo, and C. K. Liu, “Learning diverse and physically feasible dex-
terous grasps with generative model and bilevel optimization,” arXiv preprint
arXiv:2207.00195, 2022.

[21] S. Ottenhaus, D. Renninghoff, R. Grimm, F. Ferreira, and T. Asfour, “Visuo-haptic
grasping of unknown objects based on gaussian process implicit surfaces and deep
learning,” in 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), pp. 402–409, IEEE, 2019.

49

[22] J. Lundell, E. Corona, T. N. Le, F. Verdoja, P. Weinzaepfel, G. Rogez, F. Moreno-
Noguer, and V. Kyrki, “Multi-fingan: Generative coarse-to-fine sampling of multi-
finger grasps,” in 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4495–4501, IEEE, 2021.

[23] J. Lundell, F. Verdoja, and V. Kyrki, “Ddgc: Generative deep dexterous grasping in
clutter,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6899–6906, 2021.

[24] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans, “Learning
continuous 3d reconstructions for geometrically aware grasping,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 11516–11522, IEEE,
2020.

[25] Q. Lu, M. Van der Merwe, and T. Hermans, “Multi-fingered active grasp learning,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 8415–8422, IEEE, 2020.

[26] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans, “Multifingered
grasp planning via inference in deep neural networks: Outperforming sampling by
learning differentiable models,” IEEE Robotics & Automation Magazine, vol. 27, no. 2,
pp. 55–65, 2020.

[27] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha, “Generating grasp poses for a
high-dof gripper using neural networks,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1518–1525, IEEE, 2019.

[28] W. Wei, D. Li, P. Wang, Y. Li, W. Li, Y. Luo, and J. Zhong, “Dvgg: Deep variational
grasp generation for dextrous manipulation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 1659–1666, 2022.

[29] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Generalizable point cloud rein-
forcement learning for sim-to-real dexterous manipulation,” in Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

[30] M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger, “Grasping unknown
objects using an early cognitive vision system for general scene understanding,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 987–
994, IEEE, 2011.

[31] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in Proceedings
2000 ICRA. Millennium conference. IEEE international conference on robotics and

50

automation. Symposia proceedings (Cat. No. 00CH37065), vol. 1, pp. 348–353, IEEE,
2000.

[32] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg,
“Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.

[33] C. Choi, W. Schwarting, J. DelPreto, and D. Rus, “Learning object grasping for soft
robot hands,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2370–2377,
2018.

[34] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational grasp generation
for object manipulation,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 2901–2910, 2019.

[35] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-graspnet: Efficient
6-dof grasp generation in cluttered scenes,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 13438–13444, IEEE, 2021.

[36] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies between affordance
and geometry: 6-dof grasp detection via implicit representations,” arXiv preprint
arXiv:2104.01542, 2021.

[37] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof grasping for
target-driven object manipulation in clutter,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6232–6238, IEEE, 2020.

[38] Y. Zhou and K. Hauser, “6dof grasp planning by optimizing a deep learning scoring
function,” in Robotics: Science and systems (RSS) workshop on revisiting contact-
turning a problem into a solution, vol. 2, p. 6, 2017.

[39] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” Advances in neural information processing
systems, vol. 30, 2017.

[40] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “Se (3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion,” in
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 5923–
5930, IEEE, 2023.

[41] K. R. Barad, A. Orsula, A. Richard, J. Dentler, M. Olivares-Mendez, and C. Martinez,
“Graspldm: Generative 6-dof grasp synthesis using latent diffusion models,” arXiv
preprint arXiv:2312.11243, 2023.

51

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[43] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual reasoning
with a general conditioning layer,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 32, 2018.

[44] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning
continuous signed distance functions for shape representation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

[45] C. Eppner, A. Mousavian, and D. Fox, “Acronym: A large-scale grasp dataset based
on simulation,” in 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6222–6227, IEEE, 2021.

[46] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al., “Shapenet: An information-rich 3d model repository,”
arXiv preprint arXiv:1512.03012, 2015.

[47] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and J. Wang, “Fast segment
anything,” arXiv preprint arXiv:2306.12156, 2023.

[48] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-icp: A globally optimal solution to 3d icp
point-set registration,” IEEE transactions on pattern analysis and machine intelligence,
vol. 38, no. 11, pp. 2241–2254, 2015.

[49] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,
“Nerf: Representing scenes as neural radiance fields for view synthesis,” Communica-
tions of the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[50] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point completion network,”
in 2018 international conference on 3D vision (3DV), pp. 728–737, IEEE, 2018.

[51] L. Li, H. Li, X. Zheng, J. Wu, X. Xiao, R. Wang, M. Zheng, X. Pan, F. Chao, and
R. Ji, “Autodiffusion: Training-free optimization of time steps and architectures for
automated diffusionmodel acceleration,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7105–7114, 2023.

[52] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion models,”
arXiv preprint arXiv:2202.00512, 2022.

52

[53] Y. Jagvaral, F. Lanusse, and R. Mandelbaum, “Unified framework for diffusion
generative models in so (3): applications in computer vision and astrophysics,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 12754–12762,
2024.

[54] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le, “Flow matching for
generative modeling,” arXiv preprint arXiv:2210.02747, 2022.

53

A. Further Results

Figure A.1.: Evaluating GDN in the real world: the Panda robotic arm successfully grasps
a bowl using a single depth camera.

54

Figure A.2.: The GDN grasp generation (denoising) process: effective grasp distributions
are generated for objects of various shapes and categories.

55

B. Detailed Explanation of Diffusion Model
Principles

B.1. Derivation of DDPM in Euclidean Space

B.1.1. Forward Diffusion Process

In Denoising Diffusion Probabilistic Models (DDPM), the forward diffusion process gradu-
ally adds Gaussian noise to a data sample x0 over discrete time steps. At each time step t,
the noisy sample xt is generated from xt−1 using:

q(xt | xt−1) = N (xt |
√
αt xt−1, (1− αt)I) ,

where αt ∈ (0, 1) controls the noise scale, and I is the identity matrix.
By composing these steps, the distribution of xt conditioned on x0 becomes:

q(xt | x0) = N
(︁
xt |
√
ᾱt x0, (1− ᾱt)I

)︁
,

with ᾱt =
∏︁t

s=1 αs.

B.1.2. Reverse Diffusion Process

The reverse diffusion process aims to recover xt−1 from xt. Using Bayes’ theorem, the
conditional distribution is:

q(xt−1 | xt, x0) = N
(︂
xt−1 | µ̃t(xt, x0), β̃tI

)︂
,

56

where:
µ̃t(xt, x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

β̃t =
1− ᾱt−1

1− ᾱt
βt, βt = 1− αt.

B.1.3. Reconstructing the Original Sample x0

By training a neural network ϵθ(xt, t) to predict the added noise, we can estimate x0 from
xt as:

x̂0 =
1√
ᾱt

(︁
xt −

√
1− ᾱt ϵθ(xt, t)

)︁
.

B.2. Derivation of DDPM on SO(3) Space

B.2.1. Forward Diffusion Process

Extending DDPM to the rotation group SO(3), we define the forward process using the
exponential map:

q(Rt | Rt−1) = exp

(︃
−1

2
σ2t

⃦⃦⃦
log

(︂
RtR

⊤
t−1

)︂⃦⃦⃦2)︃
,

where Rt, Rt−1 ∈ SO(3), σ2t = 1− αt, and log(·) denotes the matrix logarithm.

B.2.2. Reverse Diffusion Process

The reverse process on SO(3) utilizes the logarithmic and exponential maps:

Rt−1 = exp

(︃
log(Rt)−

βt√
1− ᾱt

ϵθ(Rt, t)

)︃
,

where ϵθ(Rt, t) predicts the noise in the Lie algebra associated with SO(3).

57

B.3. Derivation of DDIM in Euclidean Space

B.3.1. Reverse Sampling Process

In Denoising Diffusion Implicit Models (DDIM), the deterministic reverse process is:

xt−1 =
√
ᾱt−1 x̂0 +

√︁
1− ᾱt−1 ϵθ(xt, t).

B.4. Derivation of DDIM on SO(3) Space

B.4.1. Reverse Sampling Process

For SO(3), the DDIM reverse process becomes:

Rt−1 = exp
(︂√︁

1− ᾱt−1 ϵθ(Rt, t)
)︂
R̂0,

where R̂0 = Rt exp
(︁
−
√
1− ᾱt ϵθ(Rt, t)

)︁.
B.5. Pseudocode for DDPM and DDIM

B.5.1. DDPM on SO(3) Training Algorithm

Algorithm 9 Training DDPM on SO(3)

repeat
Sample time step t ∼ Uniform({1, . . . , T});
Sample R0 from the data distribution;
Sample noise ϵ from a suitable distribution on so(3);
Compute Rt = R0 exp

(︁√
1− ᾱt ϵ

)︁;
Predict ϵ̂ = ϵθ(Rt, t);
Update θ to minimize ∥ϵ− ϵ̂∥2;

until converged;

58

B.5.2. DDPM on SO(3) Sampling Algorithm

Algorithm 10 Sampling from DDPM on SO(3)

Initialize RT from the uniform distribution on SO(3);
for t = T, . . . , 1 do

Predict ϵ̂ = ϵθ(Rt, t);
if t > 1 then

Sample noise ϵ from a distribution on so(3);
else

Set ϵ = 0;
end
Update Rt−1 = exp

(︂
− βt√

1−ᾱt
ϵ̂
)︂
Rt exp

(︁√
βt ϵ

)︁
; end

B.5.3. DDIM on SO(3) Sampling Algorithm

Algorithm 11 Sampling from DDIM on SO(3)

Initialize RT from the uniform distribution on SO(3);
for t = T, . . . , 1 do

Predict ϵ̂ = ϵθ(Rt, t);
Compute R̂0 = Rt exp

(︁
−
√
1− ᾱt ϵ̂

)︁;
Update Rt−1 = exp (

√
1− ᾱt−1 ϵ̂) R̂0; end

return R0;

59

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Lie Groups and Lie Algebras
	Diffusion Models

	Related Works
	6-DoF Grasp Synthesis
	Grasp Diffusion Models

	Grasp Diffusion Network
	Overview
	Grasp Generation
	Grasp Refinement
	Sampling Process Acceleration

	Experiments
	Setup
	Capturing Point Cloud Features
	Comparative Experiments
	Training Implementation Details
	Results

	Conclusion
	Discussion
	Limitations
	Future Work

	Further Results
	Detailed Explanation of Diffusion Model Principles
	Derivation of DDPM in Euclidean Space
	Derivation of DDPM on SO(3) Space
	Derivation of DDIM in Euclidean Space
	Derivation of DDIM on SO(3) Space
	Pseudocode for DDPM and DDIM

