
Trust Region Optimization of Optimistic Actor Critic

Niklas Kappes 1 Pascal Herrmann 1

Abstract
The exploration-exploitation trade-off is a fun-
damental challenge in reinforcement learning.
While off-policy algorithms like Soft Actor-Critic
(SAC) yield good performance, they can strug-
gle with data efficient exploration. Optimistic
Actor-Critic (OAC) builds upon SAC by improv-
ing the exploration behavior. But the resulting
policy often samples actions at the action bound-
aries, which is not desirable if the policy should
be deployed to a real system.

We introduce Trust Region Optimistic Actor-
Critic (TROAC), a novel algorithm that interpo-
lates between the exploration behavior of SAC
and OAC by using trust region optimization. The
resulting policy is less likely to sample actions
at the limits while reaching a similar or better
performance than OAC.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 1998) is
the task of improving the policy of an agent by learning
from past experience. Control tasks in robotics and similar
domains can become quite complicated since these systems
usually have many degrees of freedom. It is therefore very
desirable to learn a policy for the system instead of tuning it
by hand. This makes RL to an indispensable discipline in
the era of machine learning.

On one hand, a RL agent can explore the state-action space
in an attempt to find a better policy. But during exploration,
the agent usually does not receive that many rewards. On the
other hand, the agent can exploit its current policy and gain
rewards by it. But the current policy might not be optimal
and the agent performs worse in the long run. This dilemma
is called the exploration-exploitation trade-off. Ideally, the

*Equal contribution 1Department of Computer Science, Technis-
che Universität Darmstadt, Germany. Correspondence to: Niklas
Kappes <niklas.kappes@stud.tu-darmstadt.de>, Pascal Herrmann
<pascal.herrmann1@stud.tu-darmstadt.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

agent should find the optimal policy as fast as possible and
then exploit it.

While current approaches have made a lot of progress in
this area, a lot of work is still left to be done. One recent
algorithm that tries to balance exploration and exploitation
is Soft Actor-Critic (SAC) (Haarnoja et al., 2018). SAC
approaches the task of reinforcement learning by using a
maximum entropy framework. Here, the agent should not
only maximize its reward but also maximize its entropy to
ensure exploration. But as (Ciosek et al., 2019) have shown,
SAC suffers from pessimistic underexploration and direc-
tional uninformedness. They try to solve these problems
by introducing Optimistic Actor-Critic (OAC). OAC uses
a separate exploration policy of which the mean is shifted
compared to the current policy. The length of the shift is
determined by a Kullback-Leibler (KL) constraint.

In this paper, we show that while OAC does improve the
performance of SAC, it also results in a bang-bang policy,
meaning that the actions are sampled at the boundaries of
the action space. This behavior is not desirable since it can
damage a real system if deployed to it. Furthermore, OAC
does not check if the exploration policy actually samples
better actions than the current policy. This can lead to sub-
optimal actions and inhibit improvement of the agent. To
tackle these issues, we introduce Trust Region Optimistic
Actor Critic (TROAC). TROAC uses trust region optimiza-
tion techniques to guarantee actions that are better or at least
not worse than those of the current policy. This also allows
TROAC to interpolate between the current policy of SAC,
and the exploration policy of OAC. We show that this also
reduces the likelihood of the agent to result in a bang-bang
policy.

We start by giving an overview of related work in section
2. We continue by looking at the theoretical background for
this paper in section 3. Here, we also analyze the tendency
of OAC to result in a bang-bang policy. In section 4, we
introduce TROAC and analyze its performance as well as its
tendency to produce band-bang policies in section 5. Then,
we discuss our results in section 6, where we give an outlook
about future work as well. Finally, we give a conclusion in
section 7.

TROAC

2. Related Work
2.1. Off-Policy

State of the art off-policy reinforcement learning algorithms
achieve high gains by reusing past experiences stored in a
replay buffer (Haarnoja et al., 2018) (Lillicrap et al., 2015).
But off-policy algorithms have to deal with several problems
and difficulties. Learning the Q-function leads to instabil-
ity and overestimation errors due to recursively applying
the Bellman backup on the learned target function (Fuji-
moto et al., 2018). Several different techniques are used
to deal with these problems. Double Q-Learning (Hasselt,
2010) and furthermore clipped double Q-learning (Fujimoto
et al., 2018) deal with the overestimation error in contin-
uous control tasks and stabilises Q-learning. Additionally
a maximum entropy objective (Haarnoja et al., 2019) en-
ables stability and leads to policies with better exploration
capabilities.

We use off-policies algorithms for our approach, because dif-
ferent policies can be used for exploration and exploitation
(Whitney et al., 2021). By that, we can effectively explore
the state-action space without risking that the exploitation
policy gets stuck in a local maximum.

2.2. Exploration Strategies

The close connection between sample efficiency and ex-
ploration results in different exploration approaches to im-
prove the overall learning process. Current algorithms use
an information gain given current beliefs (Russo & Roy,
2014), posterior sampling, also known as Thompson sam-
pling (Chapelle & Li, 2011), and optimistic exploration
strategies, like the upper confidence bound (UCB) (Auer
et al., 2002), to explore new actions while enforcing exploita-
tion to achieve higher rewards. Furthermore decoupling the
exploration and exploitation policy (Whitney et al., 2021)
improves pessimistic under-exploration caused by stabiliz-
ing Q-learning (Ciosek et al., 2019) and directional unin-
formedness of exploration strategies by locally optimizing
the Q-function (Ciosek et al., 2019) or using Measured-
Valued derivatives (Carvalho et al., 2021).

3. Background
3.1. Reinforcement Learning

In Reinforcement learning (RL), we consider an infinite
Markov Decision Process (MDP) (Puterman, 2014), de-
fined by the tuple (S,A, p, r, γ), where an agent observes
the current environment state st ∈ S and performs an
action at ∈ A. This leads to a new environment state
st+1 ∼ p(·|st, at), where p : S × S × A → [0,∞) repre-
sents the probability density of state transitions. For each
transition in the environment the agent receives a reward

r : S×A → R. The overall goal of the agent is to maximize
the total expected reward J =

∑
t E(st,at)∼ρπ

[r(st, at)],
where ρπ(st) and ρπ(st, at) denote state and state-action
marginals of the trajectory distribution produced by the pol-
icy π(at|st) and γ defines the discount factor. Accordingly,
a trajectory τ = (s0, a0, r0, s1, a1, r1, ...) is obtained by
sequentially generated actions from the policy (Sutton &
Barto, 1998).

3.2. OAC

Optimistic Actor-Critic (OAC) (Ciosek et al., 2019), an op-
timistic exploration algorithm based on Soft Actor Critc
(SAC) (Haarnoja et al., 2018), addresses the two problems
of pessimistic underexploration and directional uninformed-
ness. Both problems occur for state-of-the-art actor-critic
algorithms that use clipped Q-learning to reduce overesti-
mation bias by computing an approximate lower confidence
bound (Hasselt, 2010) (Van Hasselt et al., 2016) and addi-
tionally use the same policy for exploration and exploitation,
as done in Soft Actor Critic (SAC) (Haarnoja et al., 2018)
and Twin Delayed Deep Deterministic (TD3) (Fujimoto
et al., 2018).

In OAC, an upper confidence bound Q̂UB is used to achieve
an optimistic exploration strategy. The epistemic uncertainty
is modeled by a Gaussian represented by the mean µQ(s, a)
and variance σQ(s, a) of the two Q-function approximations
Q{1,2}, that are learend by clipped Q-learning. The level
of optimism is controlled by the hyperparameter βUB and
accordingly the exploration behavior.

Q̂UB(s, a) = µQ(s, a) + βUBσQ(s, a) (1)

OAC improves the exploration/exploitation trade-off by
maximizing the linear approximated upper confidence
bound Q̄UB(s, a) on the state-action value function to ob-
tain a better exploration policy (Brafman & Tennenholtz,
2002).

µE ,ΣE = argmax
µ,Σ

Ea∼N (µ,Σ)

[
Q̄UB(s, a)

]
s. t. KL(N (µ,Σ),N (µT ,ΣT)) ≤ δ

(2)

The UCB is linearly approximated around the target policy
πT and additionally a Kullback-Leibler (KL) divergence
is used to bound the optimization problem and preserve
stability of the optimization and update. This leads to a
closed-loop decoupled exploration policy, that is optimistic,
directional informed and represented by a Gaussian policy
πE :

TROAC

Figure 1. Histogram of sampled actions of SAC and OAC, evaluated in Hopper-v2 environment for 5 random seeds and hyperparameters
described in Appendix B. The x-axis show the action space while the y-axis corresponds to the density.

µE = µT +
√
2δ

ΣT

[
∇aQ̂UB(s, a)

]
a=µT

||
[
∇aQ̂UB(s, a)

]
a=µT

||ΣT

ΣE = ΣT

(3)

3.3. Bang-Bang Control

We call a policy, which samples actions close to or at the
action space boundaries a bang-bang policy (Bellman et al.,
1956). This emphasizes the fact that a bang-bang policy
technically only has two actions: the upper limit of the
action space and the lower limit of the action space. This
is undesirable, because, on one hand, deploying such a
policy to a real robot system would result in very high
torques which results in high wear and tear. Additionally, an
operation with high torques would be dangerous to people
standing close to the robot. On the other hand, a bang-bang
policy is undesirable intellectually. A bang-bang policy is
very simple to implement. Therefore, our sophisticated RL
algorithms would be useless, if all we need was a bang-bang
policy.

In OAC, the exploration policy is obtained by optimizing
the objective within a given trust region as described in
Equation 2. Because the underlying optimization objective

has a linear form, the length of the mean shift of the policy
is determined by the constraint and in particular by the
maximum KL divergence δ as mentioned in Equation 3.

While OAC better explores the state action space and leads
to a slightly better performance compared to SAC (Ciosek
et al., 2019) as shown in Figure 3, with an arbitrarily large
maximum KL divergence, the trust region can be expanded
in such a way that the policy results in a bang-bang policy.
By design this makes OAC very sensitive to good hyperpa-
rameter choice and requires careful hyperparameter-tuning.
Additionally, as discussed, this makes OAC difficult to de-
ploy to a real robot system. Although there are several
methods to smooth exploration when applied on a real sys-
tem (Raffin et al., 2022), having a bang-bang policy makes
it even more difficult.

This can be examined by looking at the sampled actions that
are used to explore the environment.

In addition to the one-legged jumping robot Hopper, the
experiments were also carried out on the two-legged cheetah
robot HalfCheetah and the four-legged walking robot Ant of
the Multi-Joint dynamics with Contact (MuJoCo) physics
engine (Todorov et al., 2012). All agents are trained for 1.5
million steps in the environment and further hyperparame-
ters can be found in Appendix B.

TROAC

All actions that are used for exploring the environment dur-
ing training are used to estimate the probability density
represented as a histogram in Figure 1 for the Hopper and in
addition in Figure 6 and Figure 7 for the other two environ-
ments Ant and HalfCheetah. The action densities are plotted
for each dimension individually to evaluate the action spaces
independently and averaged over 5 random seeds.

Especially in the Hopper and HalfCheetah, the tendency of
OAC to generate a bang-bang control can be clearly seen,
since the actions at the action boundary have the highest
density. Although SAC also has a tendency to use actions
for exploration that are at the action limits, OAC has a much
more dominant behavior. Even in the Ant the tendency of
OAC to sample actions at the action limit can be clearly
seen, but not as distinct as in the other two environments.

4. Trust Region Optimization of Optimistic
Actor Critic

4.1. Idea and Motivation

In general, OAC achieves a better performance than SAC
using an extended exploration strategy by maximizing an
upper confidence bound. But as stated above, sampling
actions at the action limit results in a bang-bang like control
and if OAC is applied in a real environment it could damage
the agent or it makes it difficult to combine it with strategies
for learning in real world environments.

This problem can be addressed by improving the sensitivity
of the hyperparameter δ in Equation 2. One possible way
could be an automated adjustment of the KL-divergence sim-
ilar to the automated entropy adjustment in SAC (Haarnoja
et al., 2019). Since this would not solve the problem directly,
it can be obtained by, e.g., decreasing the trust region with
increasing number of steps in the environment. Therefore,
it could lead to smaller mean shifts for each action sampling
process and accordingly to a reduced probability of sam-
pling actions near the action limits. As this does not tackle
the main issue, especially in the first few training steps,
another option is used to adapt the optimization problem
to be more robust to different hyperparameter values and
guarantee at least the same exploration properties.

Trust Region Optimization methods are one of the most im-
portant numerical optimization methods and usually uses
a quadratic model to approximate the original objective
function in the region around the current best solution (Sun
& Yuan, 2006). OAC corresponds to Trust Region Opti-
mization without evaluating the quality of the intermediate
solution and therefore uses only one iteration of improving.

In certain circumstances it can also be shown that line search
methods are special variants of trust region methods and
therefore improving the intermediate steps using backtrack-

Figure 2. The upper confidence bound of the Q function is linearly
approximated. Qmean refers to the ”true” Q function computed by
the mean of both state-action value approximations, whereas QLB

and QUB indicate the lower and upper confidence bound. µT is
the target policy around which the upper bound is approximated.
µE is the exploration policy.

ing line search while satisfying the trust region constraint
is an efficient way to obtain a fast and good optimization
solution. In terms of policy optimization, this has been
successfully applied in Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015), where the Natural Policy
Gradient (Kakade, 2001) is extended by backtracking line
search. It can be shown that OAC, which is not used to
update the target policy but to generate a local exploration
policy, resembles the Natural Policy Gradient.

The extension of OAC by using multiple iterations to im-
prove the objective, and in this case the upper confidence
bound QUB , can be seen in Figure 2. In order to stay com-
putational efficient and obtaining a closed form solution,
the objective is linearly approximated, as done in OAC. To
improve the intermediate results of the trust region optimiza-
tion, the upper confidence bound is evaluated and afterwards
backtracking line search is applied. Therefore, the first iter-
ation, which corresponds to the exploration policy obtained
by OAC and determined by the KL-divergence constraint,
is the most left policy colored in slightly transparent blue.
Evaluating the UCB, backtracking line search with a fixed
step size reduction of a half is applied. This process is ter-
minated when a higher UCB value at the exploration mean
compared to the value at the target policy mean is achieved.

Whereas OAC guarantees to sample actions with a higher
approximated UCB value, using backtracking line search
generates actions with a higher real UCB value.

TROAC

Figure 3. Comparision of SAC, OAC and TROAC, evaluated in Ant, HalfCheetah and Hopper environment for 5 random seeds and
hyperparameters described in Appendix B. The x-axis shows the steps in the environment while the y-axis corresponds to the average
reward R. The mean and the two-sigma confidence interval are visualized.

4.2. Derivation

Combining better exploration behavior of OAC and the
benefits of backtracking line search applied on trust region
optimization, we introduce the novel algorithm Trust Region
Optimistic Actor Critic (TROAC). As described in 4.1, the
UCB objective in Equation 2 is maximized resulting in better
actions for exploration. To evaluate the actual improvement
of the upper confidence bound QUB , we compare its value
at the mean of the exploration policy µE with its value at
the mean of the target policy µT . If this is the case, this
results in the same exploration policy as OAC and the max-
imum update length is applied. Otherwise we perform a
backwards line search by moving the mean of the explo-
ration policy closer to the mean of the current policy and
therefore reducing the length of the mean shift between the
target and exploration policy. We iterate this procedure until
we either obtain an exploration policy, which has a higher
upper confidence bound value than the current target policy,
or the exploration policy converges to the target policy. To
ensure determinism, the algorithm is limited to K iterations.
After that, the target policy is used for exploration. In each
iteration the reduction of the length of the mean shift is con-
trolled by the hyperparameter α ∈ (0, 1) ⊂ R. Keeping the
variance of the current policy fixed, the exploration policy
of TROAC is described as

µE = µT + αj
√
2δ

ΣT

[
∇aQ̂UB(s, a)

]
a=µT

||
[
∇aQ̂UB(s, a)

]
a=µT

||ΣT

ΣE = ΣT ,

(4)

where j = 0, 1, ..,K refers to the jth iteration of the line
search. The pseudo-algorithm can be found in Algorithm 1.

By design, TROAC has an exploration policy that results
in equal or better upper confidence bound values than the
target policy µT and additionally, it tends to sample actions
that are closer to the target policy than OAC.

5. Experiments
TROAC is evaluated in comparison to SAC and OAC for the
one-legged jumping robot (Hopper), the two-legged cheetah
robot (HalfChetah) and the four-legged walking robot (Ant)
in the environments of the Multi-Joint dynamics with Con-
tact (MuJoCo) physics engine (Todorov et al., 2012), similar
to the experiments described in section 3.3. All agents are
trained for 1.5 million steps in the environment with 5 ran-
dom seeds and, for a better comparability, OAC and TROAC
are implemented using the same hyperparameters that can
be found in Appendix B.

5.1. Performance

The performance can be compared using the average reward
in each episode shown in Figure 3. According to (Ciosek
et al., 2019), OAC outperforms SAC in all three environ-
ments. Especially in the first iterations the benefits of OAC
can be clearly seen, even if OAC does not guarantee a better
exploration policy due to the linear objective of the trust
region optimization, which can result in worse actions. This
can be justified by the additional randomness of OAC, which
is encoded in the optimistic upper bound and is also applied
in TROAC, since unexplored and low-expected Q-function
values can also lead to faster exploration of the state-action
space and thus to an increase in performance.

Based on the results, TROAC seems to perform better than
OAC due to the guarantee of sampling actions with a higher

TROAC

Figure 4. Histogram of sampled actions of TROAC, evaluated in Hopper-v2 environment for 5 random seeds and hyperparameters
described in Appendix B. The x-axis show the action space while the y-axis corresponds to the density.

upper confidence bound value. In the HalfCheetah environ-
ment an improvement can be clearly noticed. Although it
seems to perform equally good in the Ant environment, it is
hard to distinguish if TROAC leads to better results in the
Hopper environment.

Overall, this shows that TROAC encodes at least as good
exploration behavior as OAC and tends to outperform it.
This confirms the proposition in Section 4.1.

5.2. Action density

In relation to the considerations about the problem of sam-
pling actions near the action limits in Section 3.3, we evalu-
ate the sampled actions generated by TROAC in Figure 4
compared to the corresponding diagrams for SAC and OAC
in Figure 1. While only the Hopper environment is shown
here, the action densities for the Ant and HalfCheetah can
be found in Appendix A.

At first glance it does not look like TROAC will improve
the sensitivity of the KL divergence constraint limit, but a
closer look at the scaling reveals a difference in magnitude
although not in shape. TROAC clearly reduces the density
of actions near the boundary and increases the density mass
between the action limits. This can be seen in the Hopper
and HalfCheetah environment. Although a bang-bang like
control exists for TROAC, it is not quite as pronounced
as for OAC. However, in relation to the performance in
Figure 3, that does not mean that TROAC behaves worse in
exploration.

Especially the result of TROAC in the Ant environment show
the trade-off between sampling actions at the trust region
boundary, as done in OAC, and sampling pessimistic actions,
as generated by SAC. For example in the first and fourth
action dimension in Figure 6 for SAC, both densities have
a clear maximum. In the case of OAC the density is much
flatter and accordingly TROAC interpolates between these

two, because the backtracking line search in Equation 4
enables TROAC interpolating between both extremes.

5.3. Discontinuity cost

In relation to the action density, a bang-bang like control can
also be evaluated in terms of the discontinuity cost between
two consecutive actions at and at+1:

ct = ||at+1 − at||2 (5)

In Figure 5 the discontinuity cost is averaged over each
epoch for the Ant, HalfCheetah and Hopper environment.

While the lowest cost is obtained by the pessimistic ex-
ploration of SAC, OAC performs the worst and generates
the highest change in consecutive actions for all three envi-
ronments. Similar to the results in Section 5.2 and without
minimizing the discontinuity cost directly, TROAC naturally
reduces the change of consecutive sampled actions. Com-
bined with the performance results in Figure 3, TROAC
improves the trade-off between optimistic exploration, re-
sulting in better performance, and small discontinuities in
actions, resulting in less bang-bang-like policies.

6. Discussion
6.1. Pessimistic Upper Confidence Bound

Nevertheless it could be expected that TROAC better in-
terpolates between SAC and OAC and therefore generates
more actions that are between the action limits.

Because the upper confidence bound in Equation 1 is com-
puted using the empirical uncertainty estimate of the learned
state-action value function approximations, it highly de-
pends on the clipped Q-learning of the two bootstraps. In
SAC this is done using the min double Q-trick (Haarnoja
et al., 2018). Therefore, the upper confidence bound is pes-

TROAC

Figure 5. Comparision of SAC, OAC and TROAC, evaluated in Ant, HalfCheetah and Hopper environment for 5 random seeds and
hyperparameters described in Appendix B. The x-axis shows the steps in the environment while the y-axis corresponds to the average
action discontinuity cost in Equation 5. The mean and the two-sigma confidence interval are visualized.

simistic by design, since both Q function approximations are
updated with the same target value. This is done by a shared
minimum and accordingly uncertainty is only captured in
state-action pairs, where no data is observed (Ghasemipour
et al., 2021). Transferring these theoretical observation to
optimistic exploration methods as OAC and TROAC that
rely on a good upper confidence bound estimation, the ob-
served behavior of sampling actions near the action limits
can be explained as follows.

Uncertainty, or in this case expressed as optimism, is higher
in areas where no actions are sampled. With ongoing train-
ing success more and more state-action pairs are sampled
such that the uncertainty within a specific region gets lower
and the uncertainty outside of the region, where no state-
action pairs are sampled, increases. Since the exploration
policy encodes a Gaussian policy, the sampled raw actions
are passed through a tanh non-linearity to ensure that the
actions are within the action limits, which is a common
implementation technique and is also applied in the experi-
ments above. Therefore, passing raw actions that fall outside
a certain large region through the non-linearity always result
in actions close to the action limits. This corresponds to the
sensitivity problem described in Section 3.3. In combina-
tion with the fact, that the upper confidence at unobserved
and thus uncertain state-action pairs can be higher than the
value at observed pairs, this leads to an optimization prob-
lem, that has its maximum at or nearby the action limits.

This lack of a correct uncertainty estimate caused by sta-
bilized Q-learning and reduction of overestimation, results
in an incorrect upper confidence bound that affects the ob-
jective of the optimization in Equation 2. Accordingly,
this potentially increases exploring actions near the action
limits.

6.2. Future work

Having a good estimate of the UCB is essential for UCB-
based methods like TROAC and OAC. As discussed, this is
currently not the case.

In order to improve the upper confidence bound estima-
tion and the described lack of correctness of the uncertainty
estimation in Section 6.1, independent state-action value
function approximations can be learned similar to Model
Standard-deviation Gradients (MSG) (Ghasemipour et al.,
2021). Closely related to this, the quality in terms of expres-
siveness of the upper confidence bound can be optimized by
using an ensemble of Q-function approximations. Ensemble
methods are already used for upper confidence bound explo-
ration (Lee et al., 2021) (Chen & Kumar, 2020), but differ
in how the target value is computed when each Q-function
approximation is updated in the ensemble. While updates
with shared targets contradicts the theoretical derivations in
(Ghasemipour et al., 2021), using an ensemble of indepen-
dent double-Q bootstraps seems very promising to bridge
the gap between stabilizing Q-learning and ensuring correct
uncertainty estimation. Accordingly, initial experiments by
ensembles with a shared target value justify these ideas and
the need for independent Q-function updates.

Besides improving the upper confidence bound estimation,
the initial idea of automatically adapting the trust region
as described in Section 4.1 can be used to globally con-
straint the action space such that the upper confidence bound
estimations outside of this global region is not taken into
account when the exploration policy is optimized. There-
fore, exploration policies that result in very similar actions
near the action limit due to the tanh non-linearity will be
avoided.

TROAC

7. Conclusion
In this work, we introduce TROAC, an off-policy RL al-
gorithm whose exploration policy interpolates between the
exploration behavior of SAC and OAC. We have shown that
OAC results in a bang-bang-like policy for the evaluated
environments. We continued to show that TROAC reduces
this problem, while still performing similar or even better
than OAC. We highlight the problem of an pessimistic up-
per confidence bound of the Q-function and propose ideas
to improve this problem. But the implementation of these
ideas will be reserved for future work.

References
Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time

analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Bellman, R., Glicksberg, I., and Gross, O. On the “bang-
bang” control problem. Quarterly of Applied Mathemat-
ics, 14(1):11–18, 1956.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Carvalho, J., Tateo, D., Muratore, F., and Peters, J. An
empirical analysis of measure-valued derivatives for pol-
icy gradients. In 2021 International Joint Conference on
Neural Networks (IJCNN), pp. 1–10. IEEE, 2021.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. Advances in neural information processing
systems, 24:2249–2257, 2011.

Chen, S. and Kumar, R. Efficient exploration via actor-critic
ensemble. Dec 2020. URL https://www.sihao.
dev/assets/CS287_Report.pdf.

Ciosek, K., Vuong, Q., Loftin, R., and Hofmann, K. Better
exploration with optimistic actor-critic, 2019.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587–1596.
PMLR, 2018.

Ghasemipour, S. K. S., Gu, S. S., and Nachum, O. Why so
pessimistic? estimating uncertainties for offline rl through
ensembles, and why their independence matters. 2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications,
2019.

Hasselt, H. Double q-learning. Advances in neural informa-
tion processing systems, 23:2613–2621, 2010.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. Sunrise: A
simple unified framework for ensemble learning in deep
reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR, 2021.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Raffin, A., Kober, J., and Stulp, F. Smooth exploration for
robotic reinforcement learning. In Conference on Robot
Learning, pp. 1634–1644. PMLR, 2022.

Russo, D. and Roy, B. V. Learning to optimize via infor-
mation directed sampling. CoRR, abs/1403.5556, 2014.
URL http://arxiv.org/abs/1403.5556.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Sun, W. and Yuan, Y.-X. Optimization theory and methods:
nonlinear programming, volume 1. Springer Science &
Business Media, 2006.

Sutton, R. and Barto, A. Reinforcement learning: An intro,
1998.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

https://www.sihao.dev/assets/CS287_Report.pdf
https://www.sihao.dev/assets/CS287_Report.pdf
http://arxiv.org/abs/1403.5556

TROAC

Whitney, W. F., Bloesch, M., Springenberg, J. T., Abdol-
maleki, A., Cho, K., and Riedmiller, M. Decoupled
exploration and exploitation policies for sample-efficient
reinforcement learning. arXiv preprint arXiv:2101.09458,
2021.

TROAC

Supplementary Material
A. Action density evaluation

Figure 6. Histogram of sampled actions of SAC, OAC and TROAC, evaluated in Ant-v2 environment for 5 random seeds and hyperparam-
eters described in Appendix B. The x-axis show the action space while the y-axis corresponds to the density.

Figure 7. Histogram of sampled actions of SAC, OAC and TROAC, evaluated in HalfCheetah-v2 environment for 5 random seeds and
hyperparameters described in Appendix B. The x-axis show the action space while the y-axis corresponds to the density.

TROAC

B. Hyperparameters
The following hyperparameters are used for the MuJoco environments HalfCheetah-v2, Ant-v2 and Hopper-v2, that are used
to evaluate the different algorithms in the result plots.

Table 1. SAC Hyperparameters

HYPERPARAMETER VALUE

HORIZON 100
DISCOUNT FACTOR γ 0.99
TARGET SMOOTHING COEFFICIENT τ 0.005
EPOCHS 50
STEPS/EPISODE 3000
EPISODES EVALUATION 10
BATCH SIZE 256
WARMUP TRANSITION 10000
MAX REPLAY SIZE 106

CIRITIC NETWORK [256, 256] RELU
ACTOR NETWORK [256, 256] RELU
OPTIMIZER ADAM 1

LEARNING RATE ACTOR απ 3× 10−4

LEARNING RATE CRITIC αQ 3× 10−4

Table 2. OAC Hyperparameters - extending the hyperparameters of SAC in Table 1

HYPERPARAMETER VALUE

SHIFT MULTIPLIER δ 23.5298
UPPER CONFIDENCE BOUND βUB 4.66
LOWER CONFIDENCE BOUND βLB -1.0

Table 3. TROAC Hyperparameters - extending the hyperparameters of SAC in Table 1

HYPERPARAMETER VALUE

BACKTRACKING REDUCTION COEFFICIENT α 0.5
MAXIMUM BACKTRACKING STEPS K 10

1(Kingma & Ba, 2017)

TROAC

C. Pseudo-Algorithm

Algorithm 1 Trust Region Optimization of Optimistic Actor Critic (TROAC)

Require: KL-divergence limit δ, backtracking coefficient α, maximum number of backtracking steps K
input Initial parameters θ1, θ2 of critics, ϕ of target policy

1: for each environment step do
2: Compute exploration policy using backtracking line search by optimizing Equation 2

µE = µT + αj
√
2δ

ΣT

[
∇aQ̂UB(s, a)

]
a=µT

||
[
∇aQ̂UB(s, a)

]
a=µT

||ΣT

ΣE = ΣT ,

3: Sample action and store transition to replay buffer

at ∼ πE(at|st)
st ∼ p(st+1|st, at)
D ← D ∪ {(st, atR(st, at), st+1)}

4: end for
5: for each training step do
6: Update critic bootstraps with parameters θi by clipped Q-learning (Haarnoja et al., 2018)

∇̂wi ||Q̂i
LB(st, at)−R(st, at)− γmin(Q̌1

LB(st+1, a), Q̌
2
LB(st+1, a))||22

7: Update policy with parameter ϕ by∇ϕĴ
α
Q̂′

LB

(Haarnoja et al., 2018)
8: Update target network parameters by exponentially smoothing

θ̌1 ← τθ1 + (1− τ)θ̌1

θ̌2 ← τθ2 + (1− τ)θ̌2

9: end for
output θ1, θ2, ϕ {Optimized parameters}

