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Abstract
The stable tracking of 6D poses for multiple ob-
jects is important for many fields of robotics. Pre-
vious 6D pose tracking algorithms mostly focus
on the tracking of a single object at a time. This
work proposes and implements a framework for
methods that track multiple objects in RGBD-
Images that offers multiple functionalities to en-
sure the stability and accuracy. The framework
serves as a starting ground to realize and examine
various methods for their pose tracking potential.
One such method is implemented and tested in
the paper.

1. Introduction
Recent advances in Natural Language Processing and Lan-
guage Models (OpenAI, 2023) have demonstrated the value
of large text corpora available on the internet for the cre-
ation of speech-based artificial intelligence. Large amounts
of video recordings, as available on YouTube or from cus-
tom recordings, could serve to achieve a similar success in
the field of robotics by letting an AI learn the behavior of
objects subject to physics in a general way. The behavior
of rigid objects is described by the 6D pose, containing
position and orientation, and must be extracted from rgb im-
ages and possibly depth data. An additional application for
the extraction of 6D poses from images are robot grasping
problems (Yin & Li, 2022) where the perception of position
and orientation of the object to grasp is a necessary starting
point.
Both purposes require the ability of the 6D pose computa-
tion methods to work with sequences of images in a per-
formant manner but while the first application is an offline
task that can operate with less than real time performance,
the application in robot perception demands for real time
capabilities.

This work will focus on data driven methods as these domi-
nate the 6D pose computation in terms of quality. Its aim is
to develop a non-divergent and high framerate pose estima-
tor for sequences of images. It contributes the following:

• A framework for the quick implementation of pose
tracking methods with preprocessing, reinitialization

and filters.

• Ideas for the modification of existing pose tracking
algorithms to enable stable and accurate multi object
pose tracking.

• An initial demonstration of a method based on the
framework.

2. Background
2.1. Pose Estimation

In this paper pose estimation is defined as the computation
of a 6D pose on the basis of a single image. Obviously pose
estimation methods can be used on sequences of images too
but in this section we are concerned which those that work
without an initial pose and have no architecture ingredient
that is specially designed for the use on image sequences.
In addition the pose estimation methods are those that do
not emphasize the real-time capabilities of their algorithms.

Pose estimation methods can be structured by the type of
their image data, differentiating between pure RGB images
and RGBD images, and their methodology to compute a 6D
pose. In the following, three types of methodologies will be
distinguished.

Direct Pose Estimation is an approach that tries to regress
the pose information directly from images. EfficientPose
(Bukschat & Vetter, 2020) uses the bidirectional feature
pyramid network of EfficientNet (Tan & Le, 2020) as a
basis and appends a subnetworks to predict rotation and
translation as well as the class and bounding box of one
or more objects in an RGB image. For the rotation subnet
an additional convolutional refinement layer iteratively re-
gresses a correction for the initial rotation. DenseFusion
(Wang et al., 2019b) takes an RGBD image and computes
a segmentation mask to do a bitwise cropping of objects in
the color channels. The depth information is transformed
to a point cloud. Using Neural Networks local features are
computed from color image crops and point clouds before
merging them pixelwise. In a next step DenseFusion cre-
ates global features in on the basis of the local features and
concatenates both before estimating the pose. A pose refine-
ment iteration uses the transformed object point cloud to
infer a residual pose. MaskedFusion (Pereira & Alexandre,
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2020) takes a similar approach as DenseFusion but replaces
the pixelwise fusing of the depth and color features and the
subsequent computation of global features with a single fu-
sion step. The same pose refinement is used. According to
(Pereira & Alexandre, 2020) MaskedFusion achieves com-
parable results to DenseFusion in the YCB-Video dataset
and superior results in the LineMOD dataset.
The direct pose estimation methods all require a refinement
method in some form.

Pure Iterative Refinement methods require an initial pose
as input next to the image. They can be used as a refinement
step for direct pose estimation methods discussed above
but they are also quite similar to pose tracking methods
discussed in section 2.2. In this way they come close to vio-
lating the category of pose estimation as defined previously.
DeepIM (Li et al., 2019) renders an image of the CAD
model using the input pose. Both the rendered image and
the observed RGB image are feed into a Neural Network
to compute a pose increment. Iterating multiple times can
improve the final pose. (Lipson et al., 2022) present a re-
finement method for RGBD images. Other than DeepIM
not one but several renderimages are created around the
previous pose. For the combination of each renderimage
and the observed image bidirectional correspondence maps
are created. The final pose update is computed using a PnP-
Algorithm (Fischler & Bolles, 1981a). DPOD (Zakharov
et al., 2019) takes a similar refinement approach as DeepIM
with the only difference being the separation of the net-
work heads for the x,y, the z and the rotation refinement.
(Zakharov et al., 2019) report superior performance using
their refinement compared to DeepIM using the LineMOD
dataset.

Correspondence/KeyPoint Matching methods compute
either key points or correspondence maps on the observed
images and a renderimage and aim to infer the 6D pose
through this information. The last step often uses an PnP
algorithm and least square fitting. The previously men-
tioned DPOD for example uses separated encoder decoder
networks to compute a correspondence map and segmenta-
tion map and PnP+RANSAC (Fischler & Bolles, 1981b) to
compute the pose. Perspective Flow Aggregation (Hu et al.,
2022) avoids the necessity for a refinement process by ren-
dering a set of sample poses of an object offline, computing
a correspondence map for the closest N sample poses to the
observed RGB image and inferring the 6D pose from cor-
respondences from all N correspondence maps. ZebraPose
(Su et al., 2022) modifies such an approach by introducing a
hierarchy of coarse and fine correspondence maps on RGB
images. GDR-Net (Wang et al., 2021) also uses dense corre-
spondence maps computed with neural networks and render
images but uses a learnable Patch-PnP algorithm resulting
in a truly end-to-end learnable algorithm. GDR-Net is at
the time of this writing the top performing method in most

benchmarks of the BOP Challenge. (Hodan et al., 2018).
While the previously presented methods used dense cor-
respondence maps there is also the possibility to use key
points for the pose estimation. KeypointCascadeVoting (Wu
et al., 2022) uses encoder-decoder networks to predict key
points instead of dense correspondence maps.
PVN3D (He et al., 2020) uses a encoder-decoder structure
for the color and for the depth channels and fuses the fea-
tures of both networks before computing keypoints for each
object, segmenting them for different objects and inferring
the 6D pose by least-squares fitting. FFB6D (He et al., 2021)
follows the overall structure of PVN3D but replaces the sin-
gle dense fusion network of the color and depth features by
multiple bidirectional fusion stages in every encoder and
decoder step before concatenating the features. Through
key point detection and least square fitting the 6D pose is
computed. The FFB6D outperforms PVN3D on both the
YCB-Video and LineMOD dataset.

2.2. Pose Tracking

In contrast to pose estimation this paper defines pose track-
ing as a method that is designed to work on sequences of
images and offers an inference time that allows for real-
time application. 6-PACK (Wang et al., 2019a) relies on
keypoint matching to compute the pose increment for sub-
sequent RGBD frames. The authors report an inference
frequency of 10Hz on a consumer GPU. BundleTrack (Wen
& Bekris, 2021) uses key points too, but additionally stores
novel poses in a memory pool to improve the pose update
process. They achieve a similar inference frequency as 6-
PACK. Some Pose Tracking methods have similarities to
pure iterative refinement methods. Inversely, one can of-
ten use iterative refinement methods as a starting point for
the solution pose tracking problems. Se(3)-TrackNet (Wen
et al., 2020) adapts the idea of DeepIM (Li et al., 2019) to
a RGBD pose tracking setting and achieve a frequency of
90Hz. Instead of refining the pose iteratively, the method
is used to compute a pose update for every frame. A ren-
der image of the previous pose and the observed image
are feed into separate encoders before being merged into a
feature fusion network. At the end a translation and a rota-
tion head predict the pose increment for the current frame’s
timestep. 6DCenterPose (Herrmann, 2023) tries to enable
multi object tracking with a modified Se(3)-TrackNet. It
adds a decoder for the object center heat map to the Se(3)-
TrackNet structure and tries to predict the center location
and the bounding box size in addition to the pose. Other
than the Se(3)-TrackNet 6DCenterPose does feed cropped
images into its network but the complete image. It achieves
an inference frequency of 12.8 Hz.
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2.3. Semantic Segmentation

Semantic Segmentation aims to parse a visual scene by as-
signing an object class label for every pixel. PIDNet (Xu
et al., 2023) achieves this result by using three separate
network branches analogue to PID controllers (Ang et al.,
2005). (Xu et al., 2023) use the proportional branch to
extract detailed, high resolution information, the integral
branch supplies the global, long-range dependencies and
the derivative branch extract the high frequencies at object
class boundaries. PIDNet is implemented to be configurable
into three different size classes offering a trade-off between
inference speed and accuracy. The most accurate config-
uration enables inference with a frequency of 30Hz while
the least accurate and smallest configuration achieves an
inference frequency over 90Hz.

2.4. Object Detection

Object Detection detects objects of a certain type in images
and regresses a bounding box around them in the image.
YOLOX (Ge et al., 2021) splits the image processing into
two neural network branches. One learns to capture the
object class while the other regressed the bounding box of
this object. Like PIDNet, YOLOX can be used in different
network sizes resulting in inference frequencies ranging
from 57Hz to more than 80Hz on images.

3. Towards multi object pose tracking
Evaluations of 6DCenterPose (Herrmann, 2023) showed
results that were worse than Se(3)-TrackNet on the same
dataset. We assume that the reasons for the bad results lay
in the modification done by 6DCenterPose. While the Se(3)-
TrackNet uses a cropped part of the image as an input to its
neural network the 6DCenterPose uses the whole image as
input. This prevents the 6DCenterPose network from focus-
ing on the object that is supposed to be tracked. (Herrmann,
2023) tries to make up for this deficit by adding a heatmap
to the input data that marks the objects centers. The prob-
lem is that an object center information is insufficient to
give the network the ability to focus on the objects rotation
behavior as this mainly depends on the image projection of
the objects shape. Using only the center information, the
network can not extract the objects shape projection as a fea-
ture. This reasoning is supported by the fact that (Herrmann,
2023) specifically reports the failure of his method to track
the orientation of objects while their location is estimated
more precise.
To prevent this problem we propose a modified 6DCenter-

Pose. Instead of the object center heat map a segmentation
map of the current image is used as the third input branch.
This segmentation map could be defined as:

Figure 1. Modification concept of 6DCenterPose. Base concept
and image taken from (Herrmann, 2023). Replacement of object
center heatmap by segmentation maps as input to give focus to the
network. The previous frame input feeds a rendering of the pose
of the previous timestep to the network and the current frame input
feeds the current image to the network. These inputs remain the
same as in the base concept of (Herrmann, 2023).

I(x, y) =

{
0 (x, y) is background
i ∈ [1, ..., 255] (x, y) is object i

This would allow for up to 255 different objects for an 8 bit
image and would enable the network to attend to the shape
of the objects and therefore improve the orientation results.
The inference frequency would not increase. A visualization
of the idea can be seen in figure 1.

Another possibility to adapt a pose tracking method to a
multi object setting is to enable the basic Se(3)-TrackNet ar-
chitecture to track multiple objects with one Se(3)-TrackNet
instance and one set of weights. We propose to add an addi-
tional input next to the render image and the observed image
that signals the object type to the network. Together with an
increased depth of the networks this might enable the multi
object Se(3)-TrackNet to learn pose tracking for different
objects. During inference multiple objects would be feed
into the multi object Se(3)-TrackNet simultaneously keep-
ing inference time low. Figure 3 shows that the inference
frequency of the Se(3)-TrackNet is not affected for batch
sizes up to 10.

The third option is to do multi object tracking by using multi-
ple instances of Se(3)-TrackNets. For each object type in the
dataset a different set of weights is trained. Investigations
in the memory consumption and the inference frequency of
multiple Se(3)-TrackNet shows that the memory consump-
tion scales by:

Allocated GPU Memory(n) ≈ 50MB · n
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Figure 2. Modification concept of Se(3)-Tracknet. Base concept
and image taken from (Wen et al., 2020). Addition of object ID
input branch to enable the network to learn object pose track for
multiple objects with the same set of weights. The two inputs for
the render of the previous pose and the input of the current RGBD
image stay the same as in the base concept.

where n is the number of Se(3)-TrackNet instances. As a
result even entry level GPUs have enough memory to fit
10 instances of the Se(3)-TrackNets (Nvi). Running mul-
tiple Se(3)-TrackNet simultaneously reduces the inference
frequency. Figure 3 shows that for up to 10 instances the fre-
quency does not drop below 30 Hz. This inference time does
not take the necessary render time of the Se(3)-TrackNet
method into account.

Figure 3. Comparison of GPU memory consumption and inference
frequency over the number of se(3)-TrackNets used simultaneously
for a batch size of 1 and 10. Vertical axis are logarithmically scaled.

4. A framework for multi object pose tracking
with correction

The objective of this work is to create a framework that
computes the 6D pose of multiple objects of different types
for a sequence of RGBD images. This framework aims to
achieve the following goals:

• A framework architecture that allows for the simple
modifications of its segments without the need for any
changes in other segments or the overlying algorithm.

• Offering a segment to integrate any image preprocess-
ing step required by the main pose tracking algorithm.

• An object association algorithm that allows for the
tracking and distinguishment of multiple objects of the
same type regardless of any capabilities of the specific
pose tracking method.

• Enabling a reinitialization of the tracked pose with a
high accuracy method that may have a longer inference
time than the basic pose tracker. This allows to tune
any method based on the framework to be tuned for
the optimal trade-off between accuracy and inference
speed.

• Allowing for the asynchronous execution of the pre-
viously mentioned high accuracy method but hide the
asynchronous implementation to ease the integration
of the high accuracy method.

• A database implementation that allows for the inser-
tion of pose information at the current and any previous
timestep. The implementation must allow for the in-
tegration of any filtering process to smooth out noisy
pose information, allow for high accuracy but delayed
updates of the track and enable stable pose predictions.

The resulting framework is shown in figure 4. Every frame
of the RGBD sequence is feed into the algorithm and results
in one or more pose information for every object in the
frame. The Object Detection segment is necessary to allow
the Object Association to associate objects in the current
frame with in previous images detected objects to ensure
the continuity of the pose track. The Pose Tracker and
the Pose Estimator segments are necessary to allow the
implementation of very high accuracy high latency pose
computation algorithm in the Pose Estimator segment and
a high accuracy low latency pose computation algorithm
in the Pose Tracker. It is important to notice that the Pose
Estimator runs asynchronously and its results might be
delayed by k steps with regard to the overall iteration. The
computed pose information is feed into the pose database
before working on the next frame or delayed after multiple
following frames.

Every RGBD-image is initially processed synchronously
by the Object Detection segment of the framework.
This architecture segment offers a base class for the
implementation of any preprocessing step required by
following pose computation algorithms. FFB6D (He et al.,
2021) for example demands for segmentation maps of the
RGBD-Image. These maps can be computed by integrating
PIDNet (Xu et al., 2023) segment. In addition to detect
objects entering the frame requires a object detection
mechanism. This can be realized by integrating YOLOX
(Ge et al., 2021) into the Object Detection segment of the
framework.
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Figure 4. The multi object pose tracking algorithm framework depicted in an abstract form.

The Object Detection results in a list of objects that
have to be associated with objects seen in previous images
as provided by the pose database. The Object Association
achieves this by first separating objects with different types.
This results in a linear assignment problem for each object
type where the detected objects of the given type have to
be matched to the previously known objects of this type.
The cost function is given by a distance metric between
the detected object’s image coordinates and the predicted
object’s image coordinates. The linear assignment problem
is solved using the Hungarian method (Kuhn, 1955) with an
upper threshold regarding the distance. Objects that can not
be associated are marked as new.

The Set Reinitialization allows for the implementa-
tion of a custom method that decides which old object
requires a pose reinitialization by a high accuracy method.

The Pose Tracker is the basis for the integration of
pose tracking methods with a fast inference speed. It is
executed synchronously for all objects that are not new and
not set for reinitialization. This segment in the framework
is the place to integrate the concepts given in section 3.
It is the main ingredient of a realized multi object pose
tracking algorithm and therefore dominates the accuracy of
the computed poses and the inference speed.

The Pose Estimator segment of the framework en-
ables the integration of high accuracy, slow inference time
pose estimators. The implementation is asynchronous. For
new objects the frameworks blocks until the inference is

completed because a valid pose is necessary to continue
with fast inference pose tracking methods. For objects that
were set to reinitialization the pose estimator is not required
to complete before the next RGBD-Image is processed but
can finish at any time. The Pose estimator is queried for
completed poses. Due to the asynchronous execution these
pose belong to a previous timestep.

The Pose Database stores all pose observations and
offers predictions for non-observed poses. On the basis
of the pose database multiple filtering processes can be
realized.
The simplest implemented approach is pose averaging com-
bined with the nearest neighbor prediction. Pose averaging
is implemented using the Slerp approach (Shoemake, 1985)
while the prediction just used the averaged pose observation
from timestep t − 1 to predict a pose for timestep t. This
filter approach can handle multiple, irregular observations
does not achieve any benefit from asynchronous, high
accuracy pose estimation.
An alternative filter implementation can achieve benefit
from asynchronous reinitialization. Instead of averaging
multiple pose observations, high accuracy, delayed
observations are used to reset the observed pose trajectory.
Assume at timestep t − k a pose reinitialization is started.
This reinitialization ends at timestep t and provides
the highly accurate pose Th

t−k while the pose tracker
has continued to compute the poses [Tt−k, ..., Tt]. To
compute an updated pose trajectory the pose increment
is computed using the formula ∆Tj→j+1 = Tj+1 (Tj)

−1.
Using this pose increment one can compute an up-
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dated pose trajectory
[
Th
t−k, T

u
t−k+1, ..., T

u
t

]
using

the operations Tu
t−k+1 = ∆Tt−k→t−k+1Tt−k and

Tu
t+j = ∆Tt+j−1→t+jTt+j−1 ∀j ∈ [−k + 2, ..., 0].

Although this approach allows a correction of the pose
trajectory using delayed pose observations it remains
questionable because it treats pose increments as a function
of the timestep t rather than as a function of the previous
pose Tt−1 and the current image observation. It assumes
that, for example in the case of the se(3)-TrackNet (Wen
et al., 2020), if the equality incr(T ) = se(3)(T ) holds for
one T , with incr(T ) = ∆T · T and se(3)(T ) being the
inference in the se(3)-TrackNet, it will hold for any T . This
assumption is not true in general.
The third alternative filter implementation is the usage of a
Kalman filter (Zarchan & Musoff, 2015) to predict a pose.
This approach can incorporate delayed observations in his
predictions but it remains questionable if an additional
high accuracy observation at timestep t − k will have a
significant influence on prediction t + 1 regarding the
influence of the numerous, intermediate low accuracy
predictions.

The multi object pose tracking framework is implemented
in a object oriented fashion and relies heavily on abstract
classes. Modifications can be realized by creating child
classes from the abstract classes and reusing or overwrit-
ing member functions. With this implementation style the
previously listed goals have been achieved.

5. Experiments
A possible setup for the developed framework only uses the
FFB6D as a pose estimator for the computation of poses
without any pose tracker. The necessary modification for
this is to overwrite the Set Reinitialization function to re-
turn true for all objects. The resulting multi object pose
estimation method can compute 0.9 frames per second on
average on a Intel(R) Core(TM) i5-4670K @ 3.40GHz pro-
cessor with a NVIDIA GeForce RTX 4090 gpu. The FFB6D
was used with the pretrained weight provided by (He et al.,
2021). The YCB-Video dataset provided by (He et al., 2021)
was used for evaluation.
To evaluate the overall accuracy of this multi object pose

tracking method the ADD results of multiple videos are
collected and ordered by the tracked object type. The ADD
is computed according to ADD = 1

m

∑
x∈M ∥Rx + t −

(R′x+ t′) ∥. To make YCB videos of different length com-
parable the ADD result sequences where normalized to the
same length. In a next step if multiple ADD tracks for the
same objects exist the maximum operator is applied to get
a picture of the maximally existing error. Figures 6 and 7
shows the ratio of the ADD score over the maximal diame-

Figure 5. Implementation of a pose tracking method using the
framework show in figure 4. Only FFB6D is used for pose es-
timation. No pose tracker is implemented. The method does not
need additional preprocessing methods, so no object detection
methods are integrated. There is only one pose observation per
timestep and no asynchronous pose update so there is no need for
a filter based on the pose database.

ter of the object for every frame in the sequence. Usually
papers treat any pose with an ADD / max Object Diameter
of more than 0.1 as false (He et al., 2021). This margin is
show in figures 6 and 7 by a black dashed line. While the
objects in figure 7 show acceptable results the ones in figure
6 exceed the margin regularly and by a large amount. This
shows that this realization of a multi object pose tracker does
not achieve the accuracy goals on half the objects although
it uses FFB6D (He et al., 2021) with the original neural
network weights on the training dataset. The results do not
match with the accuracy reported on the original paper (He
et al., 2021).

6. Conclusion
This work presents a framework for the efficient realization
of multi object 6D pose estimation with optional image
preprocessing, asynchronous reinitialization of object poses
and filters that allow delayed observation updates. Using
this framework a method was realized using only a pose
estimation method. This methods accuracy was shown on
one testcase. The future objective is to use this framework
to realize more advanced pose tracking methods that fully
utilize the capabilities of the pose tracker, the filter and the
asynchronous reinitialization. In addition we aim to realize
methods that achieve a higher frame per second rate than
the one show on section 5. One example for that will be the
multi se(3)-TrackNet approach described in section 3.
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