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Abstract

Imitation learning is a common way to teach new

skills to robots by learning from human demon-

strations. While many existing approaches deploy

kinesthetic teaching or teleoperation to gather

demonstrations, these methods make data collec-

tion cumbersome and laborious for the user. In

contrast, learning from external observation pro-

vides a potentially more intuitive way of teaching

new skills to a robot. Here, the robot can only ob-

serve a human demonstrating the task, without any

physical interaction or direct target action infor-

mation given. In this work, we present a method

to learn new robotic skills in task space by extract-

ing hand trajectories from human demonstration

videos. Afterwards, robotic movement skills are

encoded with Probabilistic Movement Primitives

from the recorded human trajectories. Our sys-

tem provides a simple data collection pipeline and

requires only few demonstrations to teach a new

skill. We show the feasibility of our approach

with a simulated 7-DOF Franka Emika Panda arm

by learning to draw digits and on a pick-and-place

task.

1. Introduction

In imitation learning, a policy is learned from demonstra-

tions (Osa et al., 2018; Fang et al., 2019). It is a promising

approach for quickly enabling a robot to perform a new

task without requiring the help of expert users, which would

be very useful in areas like elderly care or manufacturing.

Traditionally, the demonstrations had to be gathered using

teleoperation or kinesthetic teaching (Maeda et al., 2016).

However, these methods make data collection very labo-

rious, are difficult to use for inexperienced users and will

typically prevent naturally looking movements (Maeda et al.,
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Figure 1. Overview of the proposed pipeline. (a) RGB-D videos of

human demonstrations. (b) The human hand poses are estimated

from the videos and mapped to 6-DOF end-effector poses. (c) The

end-effector trajectories are transformed from the reference frame

of the camera to that of the robot. (d) The transformed trajectories

are used to learn ProMPs in task space. (e) The learned movements

are applied to a robot arm in simulation.

2016). A more convenient setting for the user would be if

the robot could simply be trained by watching a human

performing the task, which is the goal of learning from ob-

servation (Torabi et al., 2019). Regardless of its benefits,

learning from observation poses new challenges: Firstly, the

data lacks target action labels, i.e. at each timestep only the

visual state is given, but not the action the robot should take

(Liu et al., 2018). Secondly, the robot’s kinematics differ

greatly from those of the human demonstrating the task,

which makes translation to robot movements hard and the

demonstrated trajectories may be infeasible for the robot.

This is known as the embodiment mismatch (Torabi et al.,

2019).
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In this work, we present a system that can learn a new skill

from only a few human video demonstrations, using an

RGB-D camera. First, we build upon the FrankMocap sys-

tem (Rong et al., 2020) to measure 3D hand trajectories and

transform them to the robot task space. The demonstrations

are treated as the target robot end-effector trajectories in task

space, what reduces the problem of imitating the human mo-

tions to the default inverse kinematics problem. In order

to generalize and adapt the human demonstrations to new

situations, Probabilistic Movement Primitives (Paraschos

et al., 2013) are applied, which represent a distribution over

the demonstrated movements. We demonstrate the capabili-

ties of our approach in a simulation study by learning from

video how to draw digits and to place an object.

2. Related Work

The main challenge of learning from observation is the

lack of a directly interpretable target action for each state.

To overcome this problem, multiple formulations of the

problem have been proposed. (Yu et al., 2018) used a

meta-learning approach: During training on a dataset with

both human and robot demonstrations, the model does not

learn a specific set of behaviors, but rather how to generate

a new behavior from only a single video demonstration.

While this allows one-shot learning for new demonstrations,

which are similar to those in the training set, low general-

ization abilities to completely new motions are reported.

In contrast, time-contrastive networks (Sermanet et al.,

2018) learn a view-point independent encoding of human

video demonstrations in an unsupervised manner, which

can subsequently be transformed by a decoder into robot

joint states. (Torabi et al., 2018) showed that the generative

adversarial imitation learning algorithm (Ho & Ermon,

2016) can also be adapted to learning from observation.

While the above approaches try to learn the policy from

video directly in an end-to-end fashion, a different line

of work aims at reconstructing the target action labels

from the videos first in order to reduce the problem to the

standard imitation learning case. This can, for instance,

be achieved by learning a direct mapping from human

video demonstrations to robot trajectories (Sharma et al.,

2018). Instead, in this work we extract human poses from

the videos first and use them as the target action labels.

(Zimmermann et al., 2018) combine a module for body

pose estimation from RGB-D images with a network that

predicts the hand normal vector. The estimated 3D position

of the hand is combined with the hand normal vector to

form the target end-effector trajectory. In a second step, the

raw trajectories are transformed using a graph-based opti-

mization procedure to be successfully executed by the robot.

In contrast to the work of (Zimmermann et al., 2018) we

decided to use only a hand joint position estimator instead

of one for the whole body for the following reasons: First,

this allows to measure demonstrations even if the whole

body is not fully visible. This facilitates the recording of

typical application scenarios of imitation learning with

a single robot arm like pick-and-place, since they are

often performed on top of a table, where the requirement

to film the whole body would conflict with the optimal

recording of the actually important actions above the table.

Second, the whole body information would be helpful to

fully understand the human movement, but transferring

the human joint positions to the robot is hard due to the

embodiment mismatch, i.e. it would be hard to transfer the

human arm joint positions to the 7-DOF robot arm. Hand

pose estimation has been used in imitation learning (Sieb

et al., 2020) or in the context of teleoperation (Kofman

et al., 2007; Li et al., 2019).

2.1. Hand Pose Estimation

Hand pose estimation refers to the computer vision problem

of estimating the position of each hand joint. This can be

done either from depth (Moon et al., 2018; Xiong et al.,

2019; Huang et al., 2020) or RGB images (Zimmermann

& Brox, 2017; Panteleris et al., 2018; Rong et al., 2020).

While the problem is considered to be easier using depth

data (Doosti, 2019), RGB methods have the advantage

that cameras are much more widespread than depth image

sensors and hence a much larger amount of data is publicly

available. Estimating a 3D pose from 2D images is ill-posed

and imposes ambiguities, for example regarding the scale

(Zimmermann & Brox, 2017). (Zimmermann & Brox,

2017) presented the first learning based approach to the

problem and resolve some of the ambiguities using deep

learning to incorporate a learned prior. The output of their

system is, however, not in world or camera coordinates,

but in a normalized coordinate system relative to the hand.

(Panteleris et al., 2018) try to overcome this by formulating

an inverse kinematics problem and can thus predict absolute

3D joint positions, but report a large error on the axis

perpendicular to the camera, which underlines the difficulty

to estimate the depth from RGB images. Another possibility

to reconstruct the absolute 3D position is to use RGB video

instead of a single image and apply energy minimization

to integrate, among other loss terms, temporal consistency

constraints (Mueller et al., 2018).

The recently presented FrankMocap system (Rong

et al., 2020) provides a full and publicly available pipeline

to estimate the 3D hand joint position and 3D hand shape.

It uses a hand bounding box detector (Shan et al., 2020) to

get the relevant image crops for the subsequent hand pose

estimator. The hand pose estimator uses an encoder-decoder

architecture to predict the hand pose, shape parameters and

global orientation. The predictions are fed into the SMPL-X
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body model (Pavlakos et al., 2019) to estimate a mesh

representation of the hand and to ensure realistic hand joint

configurations. FrankMocap is optimized to work under

in-the-wild situations, for example by using motion blur

data augmentation. Since their hand pose estimator showed

state-of-the-art performance and the system is published as

open-source, we decided to use this system to predict the

hand trajectories from human demonstration videos.

2.2. Learning Skills using Movement Primitives

Complex tasks in robotics are often solved by combining

multiple basic movements. Movement primitives (MPs)

enable a compact representation of such basic movements

using a set of learned parameters (Paraschos et al., 2013).

A powerful MP formulation should allow for a parallel

activation and smooth blending of several MPs, their adap-

tation to varying target positions, velocities and via points

or the execution of movements at different speeds. Many

of these properties can be incorporated using deterministic

MP representations such as Dynamic Movement Primitives

(DMPs) (Kober, 2014; Ude et al., 2010). Such representa-

tions, however, only capture the mean of the demonstrations

of the teacher (Gomez-Gonzalez et al., 2020). In contrast,

probabilistic MP formulations also encode the correlations

between different degrees of freedom of the robot as well

as the variability of the demonstrations and thus can enable

a more sensible exploration for robotic systems. For our

work, we use Probabilistic Movement Primitives (ProMPs)

(Paraschos et al., 2013) which represent a MP as a probabil-

ity distribution over robot trajectories.

A MP can be represented either in joint space or in task

space. (Prasad et al., 2021) used the joint angle trajectories

extracted from 3D skeleton data of human demonstrations to

learn ProMPs in joint space. They justified their choice with

the similarity of the kinematic structure between the human

skeleton and the humanoid robot used in their work. In con-

trast, we are working with a non-humanoid Franka Emika

Panda robot arm and mapping directly to joint positions

is not possible. As the used FrankMocap system returns

3D hand poses and our learned movements will potentially

be adapted to reach desired 3D locations - which is easier

when formulating ProMPs in task space (Gomez-Gonzalez

et al., 2020) - we choose the task space representation. This,

however, involves the risk of not being able to properly

perform the learned movements due to the kinematic limita-

tions of the robot. On the other hand, this kind of problem

arises whenever trying to map a given task space trajectory

to a kinematically feasible joint space trajectory and thus

could also not be avoided when using the joint space ProMP

representation.

Figure 2. Visualization of the transformation from hand joint es-

timations to a 6D pose. From four estimated hand joint and tip

positions (light blue circles) the end-effector coordinate system is

estimated whose x, y, and z-axis are depicted by the blue, green,

and red line, respectively.

3. Method

Figure 1 shows the five steps of our pipeline. In the first

step, a human performs a set of demonstrations of the de-

sired motion, which are recorded with an RGB-D camera.

Second, the hand trajectories are estimated using a hand

pose estimator and mapped to 6-DOF poses representing

the robot end-effector position and orientation in task space.

The trajectories are then transformed from the reference

frame of the camera to that of the robot and used to learn a

ProMP in task space. In the last step, the actual movement is

performed by sampling a single trajectory from the learned

ProMP and handing it over to the simulated robot arm via a

task space controller.

3.1. Hand Tracking

We build upon the FrankMocap system (Rong et al., 2020)

to capture the human hand trajectories. A bounding box

tracker (Bewley et al., 2016) is integrated to associate hand

bounding boxes between frames and to handle short occlu-

sions. In the next step, the estimated hand joint and finger

tip positions have to be mapped to a 6-DOF pose represent-

ing the robot end-effector position and orientation in task

space. Defining this mapping for every possible hand joint

configuration is very hard, since the human hand with its

16 joints provides a large flexibility in the possible hand

configurations compared to a two-finger robot gripper. We

use the following heuristic to approach the problem (Figure

2): We use only the second thumb joint, the thumb tip, the

first index finger joint and the index finger tip. Similar to

the work of (Kofman et al., 2007) we set the tool center

point to the midpoint between thumb and index finger tip.

The end-effector z-axis is defined as the vector from the
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midpoint between the second thumb joint and the first in-

dex finger joint to the tool center point. We did not choose

this midpoint instead of the wrist as proposed in (Kofman

et al., 2007) to prevent wrong orientations when the wrist

is angled. The end-effector x-axis is defined as the cross

product between the vector from the first index to the second

hand joint (rightmost gray line in Figure 2) and the z-axis,

in order to ensure orthogonality. Since FrankMocap only

estimates the hand joint positions in a normalized coordinate

system, we use the depth images provided by the RGB-D

camera to get an offset to the camera coordinate system.

3.2. Reference Frame Transformation and Scaling

The estimated hand pose trajectories are represented in the

reference frame {D} of the RGB-D camera which can po-

tentially have an arbitrary orientation and position relative

to the demonstrations. Therefore, we have to find a suit-

able transformation RTD relating the coordinates from {D}
to the reference frame {R} of the robot such that the tra-

jectories expressed w.r.t. {R} are reachable by the robot.

If our goal was only to find a transformation such that

the robot could reproduce the shape of the demonstrations

w.r.t. to its own reference frame as precisely as possible,

we could adapt an approach suggested by (Maeda et al.,

2016) by parameterizing the transformation as RTD(θ)
with θ = {α, β, γ, r1, r2, r3} where α, β, γ are the angles

of the applied rotation and r1, r2, r3 are the coordinates of

the applied translation. We could then define a reproduction

error which quantifies deviations of a transformed trajec-

tory from the closest kinematically feasible trajectory in

terms of position and orientation and set up an optimization

procedure returning those parameters θ that minimize the

reproduction error. However, this can result in the trans-

formed trajectories having a completely different position

and orientation w.r.t. objects in the scene than before. This

is problematic as we ideally want to learn interactions of the

robot with objects in the scene. To overcome this problem,

we would need to impose constraints on the transformation
RTD(θ) that take the relative position and orientation of

the trajectories w.r.t. the considered objects as well as the

position and orientation of the objects w.r.t. the robot into

account. This would require, on the one hand, to localize

the relevant objects in the given image sequence. Moreover,

we would need to estimate the position and orientation of

the robot w.r.t. the localized objects only based on the image

information, leading to poor estimates in cases where only

a small part of the human demonstrator is visible. As we

only capture the trajectories of the human hand and do not

take any further parts of the human skeleton into account,

the latter problem would be even harder to solve.

Therefore, we decided to manually define a transformation

from the reference frame of the camera to that of the robot.

For this purpose, we assume the position and orientation of

the human demonstrator to be known and the robot to have

the same position and orientation as the human. We exploit

that all our demonstrations are executed on a table and the

recorded videos thus always contain major parts of the table

plate. To define the common reference frame {R} of human

and robot, we first extract three points Do, Dc and Dp on

the table plate from the RGB-D images which are expressed

w.r.t. to the reference frame {D} of the RGB-D camera.

The point Do represents the origin of {R} and is located

near the human demonstrator, while Dc represents the center

of the table plate. The point Dp has an arbitrary location on

the table plate. We then define the x-axis as the vector Dc

- Do pointing from the origin to the table plate center and

the z-axis as the table plate normal vector corresponding

to the cross product between Dc - Do and Dp - Do. Taking

the cross product between the z- and x-axis yields the y-

axis. Using the unit vectors DexR
, DeyR

and DezR of these

three axes, we can build the matrix DRR that describes the

rotation from {D} to {R}:

DRR =
[

DexR

DeyR

DezR
]

(1)

The homogeneous transformation RTD can now be com-

puted via

RTD =

[

RRD −RRD
Do

0T 1

]

(2)

where RRD is the transposed rotation matrix DRR.

After the transformation, we verify whether the trajectories

fit entirely inside the robot workspace and apply a down-

scaling if necessary. For this purpose, we compute the ratio

between the workspace range ∆rWS = rWS
max − rWS

min and the

trajectory range ∆rT = rT
max − rT

min for each dimension

r ∈ {x, y, z} and define the scaling factor s as the smallest

among the three computed ratios

s := min

{

∆xWS

∆xT
,
∆yWS

∆yT
,
∆zWS

∆zT

}

(3)

If s < 1, each trajectory is downscaled by first subtracting

the initial trajectory position x0 from all positions xi=0...T,

then multiplying the resulting positions xi − x0 with s and

finally adding the initial position again:

xscaled
i = s(xi − x0) + x0 (4)

Subtracting and then adding x0 again ensures that the initial

position of every trajectory remains the same as before the

scaling. The resulting trajectories are then translated such

that they lie entirely within the robot workspace while being

centered in x-y direction and lying slightly above the lower

workspace boundary in z direction.

3.3. Learning ProMPs

We use ProMPs to learn parameterized distributions over

the transformed task space trajectories. Learning a ProMP
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Figure 3. (a) Example of a demonstrated motion. (b) Robot following the mean of the learned ProMP in simulation.

requires at least two demonstrations of the same type of

movement (Paraschos et al., 2013). A single demonstration

thereby corresponds to a trajectory τ = [y1...yT], where yt

is the vector of all joint positions and velocities at time t.
The probability of observing yt is given as a linear basis

function model

p(yt|ω) = N
(

yt|Ψ
T
t ω,Σy

)

(5)

with

Ψt =







Φt · · · 0
...

. . .
...

0 · · · Φt






(6)

where Φt = [φt, φ̇t] is the n×2 dimensional time-dependant

basis matrix for the joint positions and velocities, the vector

ω contains the weights of the n basis functions for each

joint and Σy is Gaussian noise.

Variations in the trajectories as well as the covariance be-

tween joints are captured by introducing a Gaussian distri-

bution p(ω;θω) = N (ω|µ
ω
,Σω) over the weight vector

ω with mean µω and covariance Σω . The distribution of

yt can now be expressed in terms of these parameters by

marginalizing out ω

p(yt;θω) = N
(

yt|Ψ
T
t µω

,ΨT
t ΣωΨt +Σy

)

(7)

The ProMP parameters µω and Σω can be learned by deter-

mining an optimal weight vector ωi for every trajectory τ i

using ridge regression,

ωi = (ΨTΨ+ λI)−1ΨT τ i (8)

where Ψ = [Ψ1...ΨT ], and then computing µω and Σω as

the mean and covariance of the estimated weight vectors

(Prasad et al., 2021).

Adaptation of a learned ProMP to new target positions, ve-

locities or via points can be achieved by means of condi-

tioning. For this purpose, we apply Bayes theorem with

a desired observation {y∗

t , Σ∗

y}, where y∗

t is the desired

position and velocity vector at time t and Σ∗

y describes the

accuracy of the desired observation:

p(ω|y∗

t ,Σ
∗

y) ∝ N
(

y∗

t |Ψ
T
t ω,Σ∗

y

)

p(ω) (9)

Maximizing this expression yields again a Gaussian distri-

bution for ω with updated mean and covariance

µ∗

ω
= µ

ω
+K(y∗

t −ΨT
t µω

) (10)

Σ∗

ω
= Σω −KΨT

t Σω (11)

where

K = ΣωΨt(Σ
∗

y +ΨT
t ΣωΨt)

−1 (12)

To be able to modulate the execution speed of a movement,

the actual trajectory time T is normalized by introducing

a phase variable zt = (t− t0)/T ∈ [0, 1] which decouples

the movement from the time signal, such that φt = φ(zt).

4. Experiments

We evaluate our approach on two example tasks. The first is

to learn how to reproduce handwritten digits and the second

one a common pick-and-place application. The experiments

are conducted in simulation with CoppeliaSim (Rohmer

et al., 2013) and PyRep (James et al., 2019).

4.1. Learning to Draw Digits

The goal of the first experiment is to reproduce handwritten

digits, which is a toy task to show that complex, non-linear

trajectories can be reproduced. For each of the ten digits, ten

demonstrations are recorded using an Azure Kinect RGB-D

camera. In each demonstration video, one digit is drawn

on an A4 sheet. An example demonstration can be seen in

Figure 3(a).
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Figure 4. 2D components of the estimated trajectories (red), visualized over the scanned sheets of the drawn numbers (blue). The trajectory

components have been transformed to the sheet’s position in the world frame. The black lines indicate the mean of the learned ProMPs.
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Figure 5. Mean reproduction error and log-likelihood of the demon-

strations given the learned ProMPs depending on the number of

basis functions.

We estimate a task space trajectory of the human hand from

each video using the FrankMocap system and the integrated

bounding box tracker. Figure 4 shows the distribution of the

estimated trajectories in the table plane. The shape of the

demonstrations is well captured by the estimates. However,

there is also a shift between the handwritten digits and the

task space trajectories. One part of this difference is natural

because the finger tips are not exactly located at the tip of

the pen. However, there are also two sources of error leading

to the shift. Firstly FrankMocap can mislocate the finger

tip at a position closer to the palm, especially when being

in contact with an object and/or under partial occlusion.

Secondly, the shift may also be caused by the normalized

image coordinate system. We estimate only one offset from

the camera system to the hand coordinate system using the

depth data and add this offset to all joint positions, but do

not rescale the hand coordinate system. Since the hand pose

estimation using only RGB images is not able to reproduce

world coordinates, the hand coordinate system is simply

normalized to an average hand size. This causes the differ-

ences between the joints which are used to calculate the tool

center point to be under- or overestimated, depending on

the person’s hands, which leads to a system error depending

on the demonstrator. Simply using the depth data to get

real world coordinates for each joint position in the image

would, however, also be difficult since a small displacement

of the estimated position from a finger joint to a background

pixel would cause big errors. The usage of a depth based

hand pose estimator would overcome this problem, but the

existing open source systems tend to be harder to use and

adapt.

In the next step, we evaluate the learned ProMPs. The es-

timated task space trajectories are temporally aligned to

account for different movement speeds. Afterwards, the

coordinate system transformation is performed as described

in section 3.2. Given the centered trajectories, the ProMPs

are learned using radial basis functions with a basis width

of 0.01, as proposed by (Prasad et al., 2021). Based on an

analysis of the mean reproduction error depending on the

number of basis functions (Figure 5), we choose 18 basis



Learning Robot Skills From Video Data

Figure 6. Example demonstration of the placing (a) and execution of the conditioned ProMP to two different target positions (b-c)
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Figure 7. Mean trajectory of the learned ProMP. The red and green

arrows represent the z- and y-axis of the end-effector, respectively.

functions. As Figure 4 shows, the ProMPs can capture the

shape of the demonstrations. This holds also for the 3D

position and orientation. Figure 7 shows the mean of the

ProMP learned from the demonstrations of the number 2

including the end-effector orientation. The trajectory has

only a small variation along the z-axis, showing the good

replication of the demonstrations which are also performed

in the plane. The smooth end-effector orientation is also

in good correspondence with the demonstrated movements,

where the hand orientation was also slanted and almost con-

stant in time.

All learned ProMPs could be executed by the robot in simu-

lation without any further adaptation. Figure 3(b) shows the

robot following the mean of the trajectory distribution next

to one of the corresponding demonstrations.

4.2. Pick and Place

In the second experiment we evaluate our approach on the

common pick-and-place scenario. We gather ten demonstra-

tions in which small objects are picked from the table center

and placed on the right table side onto a target area. We

manually segment the placing motion from the demonstra-

tion video. The hand detector’s ability (Shan et al., 2020) to

detect the contact state and contact object bounding boxes

could also be used for segmenting the placing motion. How-

ever, prior experiments showed that the hand detector often

had false positives, e.g. it often predicts the table as the

object in contact. Since this task consists of an object inter-

action which is done at different table positions, we subtract

the starting point from each demonstration. We assume

that the object position is known when applying the ProMP

and shift the ProMP in space according to it. The grasping

problem is not considered part of the method, and thus we

assume it to be given. The robot is brought to the placing

ProMP’s initial pose with a simple linear trajectory. We

select 12 radial basis functions with a basis width of 0.01.

Figure 6(a) shows an example of a demonstration. The robot

has successfully learned the grasping pose from the human

and also follows the demonstrated trajectories (Figure 6(b-

c)). Using the conditioning property of the ProMPs, the

robot is able to place the objects at different target locations.

While the robot could follow the trajectory when starting

in the center, we noticed that it can fail to execute the tra-

jectory when shifting the starting point out of the center.

The problem is that the human grasped the objects from a

relatively low angle, while it would be more natural for the

robot to grasp them more from above. In future work, these

feasibility problems could be treated by integrating a better

motion planner or task space controller, which tries to stay



Learning Robot Skills From Video Data

as close as possible to the demonstration while taking the

kinematic constraints into account (Kang et al., 2020).

5. Conclusion and Future Work

In this work, we present a system that is capable of learn-

ing robot skills only based on RGB-D videos of human

demonstrations. We use the FrankMocap system (Rong

et al., 2020) to estimate only the hand poses of the demon-

strator instead of its entire arm or body poses. In this way,

we avoid the problem of relating the joint positions of the

human skeleton to the kinematic structure of the robot and

can also use videos where a large part of the human body is

not visible. We define a simple mapping from the estimated

hand joint and finger tip positions to 6-DOF task space poses

of the two-finger robot gripper used in our work. Applying

a manual transformation of the resulting end-effector tra-

jectories from the reference frame of the camera to that of

the robot allows us to preserve the original orientation of

the trajectories w.r.t. relevant objects in the scene. We use

the transformed trajectories to learn ProMPs in task space

which are applied to a Franka Emika Panda robot arm in

simulation. Our experiments show that, using the imple-

mented system, the robot is able to accurately reproduce the

drawing of digits and the placing of objects on a table plate

only from observations. Due to the ProMP representation

of the demonstrated trajectories, the robot can also adapt

the placing movement to new target positions while staying

close to the learned trajectory distribution.

While, in our experiments, the estimated hand trajecto-

ries were feasible for the robot when centered in the robot

workspace, they could often not be executed by the robot

when being shifted outside of the workspace center. The

feasibility of the desired trajectories could be guaranteed

by integrating an optimization procedure that generates a

feasible joint trajectory for a given task space trajectory

(Kang et al., 2020). This could be expanded by directly

incorporating a loss for the likelihood of the optimized tra-

jectory under the ProMP. Moreover, our system is currently

based on RGB-D videos of which only small quantities are

publicly available. Using an RGB-only hand pose estima-

tor which can also predict world coordinates would allow

to learn robot skills from any RGB video and therefore to

leverage huge public data sets. This could be achieved by

augmenting the FrankMocap system with an optimization

procedure to ensure temporal consistency (Mueller et al.,

2018).
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