
Building a Framework to Solve Insertion Tasks
with Residual Reinforcement Learning in the Real World

Adriaan Mulder 1 Nick Striebel 1

Abstract

Solving robot manipulation tasks requiring high
accuracy in contact rich environments grows grad-
ually complex with traditional control methods.
This is why today’s control increasingly relies
on machine learning methods. Basis for using
an machine learning approach in such an environ-
ment is a solid understanding of a robots workings
and intricacies due to safety reasons. Even then
implementing a learnable control policy is not a
trivial task. This is why we build a basis to imple-
ment reinforcement learning (RL) algorithms and
policies to control a robot, focusing on creating a
residual RL framework. We show the importance
of RL methods on the example of the insertion
task.

1. Introduction
Fine manipulation tasks require precise, closed-loop feed-
back and involve high degrees of coordination to be solved.
One example of such a fine task is the insertion of building
blocks into fitting slots. While this task is already challeng-
ing to solve in simulated environments, real-world settings
bear the additional challenge of unknown, unmodeled or
poorly modeled outer influences like friction or contact
forces. Conventional robots counter these problems with a
high control stiffness, which makes them more precise, but
also faster, stronger and generally more dangerous outside
controlled environments (Hyun et al., 2010).
In today’s world though, where robotic and human
workspace move closer together, robotic control is needed,
which delivers similarly good task accuracy while being con-
siderate for its immediate environment and thus minimizing
danger and damage to humans, tools and building parts.

*Equal contribution 1Department of Computer Science,
Technical University of Darmstadt, Darmstadt, Germany. Corre-
spondence to: Adriaan Mulder <adriaanmariojan.mulder@stud.tu-
darmstadt.de>, Nick Striebel <nick.striebel@stud.tu-
darmstadt.de>.

Proceedings of the IAS Conference on Robot Learning, TU Darm-
stadt, Germany. Winter term 23/24. Copyright 2024 by the authors.

While there are many approaches using machine learning,
especially imitation learning, to solve this challenge, our
task revolves around letting the robot find out for itself how
to act safely in high precision environments with the help
of reinforcement learning (RL). While we will not show the
actual process of RL with the insertion task, we will discuss
why RL strategies make sense in this context and how it can
be used to learn the task.
We will build an underlying framework that allows the ap-
plication of residual RL algorithms. The latter will be exam-
ined in the next semester, building on the work of J. Hellwig
(2023). For the implementation and testing of the frame-
work, we use a Franka Emika panda robot and implement
a custom low level impedance controller in ROS, which
gives the possibility to change controller parameters in high
level programming. We then use 3D-printed parts (a peg
and a base, see Figure 1) to evaluate the performance for the
insertion task.

2. Related Work
In recent years, many methods have emerged trying to in-
crease robotic safety and performance in contact rich envi-
ronments (Chen et al., 2023; Stepputtis et al., 2022). Some
imitation learning approaches based on dynamic movement
primitives (DMPs) use a mechanism to exert a force onto the
manipulator to lead it across a planned trajectory (Ijspeert
et al., 2013; Paraschos et al., 2018). While these methods
are very sample efficient, they do not generalize well in con-
tact rich environments and they bear the problem of constant
stiffness, which makes them unsuitable for human or object
interaction.
Other Methods based on behavioral cloning (Zhao et al.,
2023) perform outstandingly well in contact rich environ-
ments, even when using two manipulators working together,
but require visual feedback to perform a task. Our focus will
be on reinforcement learning (RL), as recent approaches
based on RL algorithms also succeeded in many tasks in-
volving robotic control (Ghadirzadeh et al., 2017; Shi et al.,
2017; Agrawal et al., 2017).
We build a basis for solving a high precision insertion task
with RL, that is based on ideas of Residual RL with Stable
Priors (Hellwig, 2023) which revolves around using a nomi-

1

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

nal policy to lead the manipulator to the goal location in a
stable manner and a residual policy to perform minor correc-
tions to the nominal policy. Our work delivers a framework
to parameterize the traditional dynamic PID controller and
an interface to learn and execute such a policy with mush-
roomRL using only the feedback of the internal sensors and
actuators of the robot.

3. Theoretical Background
In this section the theoretical basics needed in this work
are presented. Furthermore, the selection of the methods is
motivated.

3.1. Kinematics

The forward kinematics of a robot

x = f(q)

maps the joint configuration q to the operational space coor-
dinate vector x (position and orientation). With the inverse
kinematics

q = f−1(x)

One can derive the needed joint vector qdes to reach a desired
target position xdes. The robot can then be controlled by
using a controller in joint space which compares q and qdes.
Regarding the insertion task this has multiple downsides.
For instance, when linearly interpolating the joint variables
between q and qdes without via-points, the path in the op-
erational space is unclear. Inserting something into a hole
can fail because the end-effector might not hit the hole from
above. Planning the joint trajectory accordingly is complex.
In addition, the control using the inverse kinematics only
works for open kinematic chains (von Stryk, 2022). During
the insertion the peg can get in contact with the base plate
resulting in a closed chain.

3.2. Jacobian of a Robot

The Jacobian J(q) connects the joint velocities and acceler-
ations with the corresponding components in the operational
space (Peters & Schaal, 2006):

ẋ =
∂f(q)

∂q
J(q)q̇ , ẍ = J(q)q̈ + J̇(q)q̇ . (1)

3.3. Operational Space Control

The Jacobian J can be used to connect the joint torques τ
with the forces and torques in the operational space F at the
end-effector (Peters & Schaal, 2006):

τ = J(q)TF . (2)

Specifying the forces and torques in the operational space
is intuitive and easy to implement and has the advantage

that the path of the end-effector is directly present, as it
follows the force field. Controlling the robot is done by
specifying a control signal u = F . Using equation (2), u
can be converted to the corresponding joint torques. How u
is derived is explained in the sections 3.4 and 3.5.
Only applying this would not lead to the desired behavior:
Gravitational and coriolis forces must be compensated (τg
and τc) and it is usual to use a so-called null space control
(τnull). This is done to guide the robot around problematic
singularities and to keep him in a configuration of high
manipulability (Karnam et al., 2020).
Another element that is needed for high accuracy is the
compensation of friction. As in our case no friction model
is available, this component is not taken into account and
the total joint forces can be computed via

τ = J(q)Tu︸ ︷︷ ︸
τtask

+τnull + τc + τg .

3.4. Impedance Control

The advantage of a PD controller is that it implements a
compliant behavior if moderate gains are used (Dong et al.,
2020). This is particularly desirable in dynamic and con-
tact rich environments. For targeting a static goal position
(ẋdes = 0) the PD control law is the following:

u = KP(x− xdes)−KDẋ . (3)

The damping KD is needed to prevent the end-effector
from overshooting. Critical damping is achieved for KD =
2
√
MKP (von Stryk, 2022) and incorporates the mass ma-

trix M .
Using this control in the operational space has the advantage
that the trajectory is known: If no cross-correlation is used,
the PD controller (in combination with the operational space
control of equation (1)) leads to a movement on a straight
lines per axis.
The computation of the error (x− xdes) in equation (3) is
straight forward for the translational components and can be
done element wise. For the rotational error, the axis angle
error is chosen as the measure.
As no friction model for compensation is given, high accu-
racy can be achieved with high gains only. Increasing the
gains reduces the compliance and might cause fatal dam-
age in some situations. Another option is the use of a PID
controller.

3.5. PID Control

A PID controller expands the control law by a integral term:

u = KP(x− xdes)−KDẋ+KI

∫
x− xdes dt︸ ︷︷ ︸

eI

. (4)

2

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

By integrating the error over time the friction error can be
eliminated, but an increasing integral term (e.g. if the robot
gets stuck during insertion) can lead to force buildup that
can be fatal again. Furthermore, guaranteeing stability is a
lot more complex.
Despite these downsides and inspired by the results of Luo
et al., 2024 the PID controller is tested as well. In the
implementation of Luo et al., the problem of a rising integral
value is avoided by clipping the value at every time step:

eI ← clip
(
eI, e

min
I , emax

I

)
. (5)

Even though it can become unstable. the integral term can
be set to zero every time there is a new xdes.

4. Implementation
4.1. Controller

The controllers from the equations (3, 4) are set to run at a
frequency of 1 kHz.
During the experiments the orientation is not varying a lot,
but larger gaps between target position and actual position
can occur. Because of that, the maximum translational dif-
ference between desired and current position is clipped to
5cm along every axis. This prevents too high torques which
would result in very high end-effector speeds. While the
robot could handle this, the 3D printed parts could experi-
ence damage.
The gains KP,KD and KI are implemented as diagonal ma-
trices. If this later fails to provide sufficient performance,
cross-correlation between the single error components can
be added.
Another measure to prevent too high control signals is to
restrict the single gain values. The translational and rota-
tional stiffness values of the P component have an upper
limit of 1000 N

m and 50 Nm
rad . The damping gains are chosen

to implement critical damping and the integral gain is lim-
ited by a value of 10 N·s

m and 5 Nm·s
rad . The integral part is

restricted even more by clipping the integral value eI, see
equations (4, 5).

4.2. Interface

The interface for communication between the low level
controller and the high level RL framework allows the
access to the manipulator’s sensor outputs and the PID
controller’s coefficients. In this way, we can update the
robots translational and rotational stiffness KP dynamically
and enable learning by observing sensorical values in ac-
cordance to chosen actions. This is achieved by using a
dynamic reconfigure::server from ROS.

Figure 1. Environment for the insertion task. Left: Visualization in
rviz. Right: Photo from the lab.

4.3. Environment

The environment is chosen to be simple on the hardware
side. The peg is a simple cuboid stretched in z-direction.
Accordingly, the base provides a square hole. The single
elements can be seen in Figure 1.
For testing two configurations of peg and hole are chosen:
Both use a squared hole size of dh = 30mm, but different
peg dimensions of d(1)p = 25mm and d

(2)
p = 29mm, result-

ing in a larger toleranze ∆d(1) = 5mm and ∆d(2) = 1mm.

4.3.1. REWARD FUNCTION

The reward function is the same as the reward that is used
by Hellwig, 2023:

r(s,a) = − ||e||
||e0||

,

and takes the norm of error vector e consisting of the
translational error in the first three components and the axis
angle error in the last three components. Additionally, this
norm is normalized by the initial error at the start of an
episode.

4.3.2. EXPERIMENT PROCEDURE

The procedure of the experiment is displayed in Algorithm 1.
During the insertion the policy runs with 10Hz.

The state s is not limited to capture any information. In
this case it contains the current configuration x, the goal
position xg, the measured forces at the end-effector f
and the currently used stiffnesses. Depending on future
performances the state definition can be adjusted, foe
example by using an external signal such as the RGBD
image of the scene.
The policy π returns an intermediate target position x̃g and
adapted stiffnesses as the action a.
Sending the selected action to the robot takes (5.7±0.8) ms.
This takes roughly 5% of the 10Hz interval. This has to be
considered later if the RL algorithm and the complexity of

3

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

Algorithm 1 Insertion Experiment
1: Input: home xh, goal xg, goal radius emax
2: for n = 1, . . . , N do
3: Reset(xh, xg)
4: Randomly shift start position
5: s← current state
6: for t = 1, . . . , T do
7: a = π(s)
8: Execute action a and observe s′ and r
9: [Potential RL step using s, a, r]

10: if e < emax then
11: break
12: end if
13: s← s′

14: end for
15: end for

Algorithm 2 Reset Function
1: Input: home pos. xh
2: x← current end-effector configuration
3: if xz < zmin then
4: xz ← zmin
5: Move upwards to x
6: end if
7: Move to xh in a straight line

the agent gets specified - although the time delay caused by
executing the command is small.
The reset function implements a save way to go to the
home position and is illustrated in Algorithm 2. Before
moving straight to the home position it makes sure that
a minimum z-height is reached. This prevents the robot
from getting stuck inside the bases hole or at an edge of the
basis. Having a good running rollout function with a save
reset function is important to later run longer RL trainings
without having to restart the experiment by hand every time
something went wrong.

4.4. Policy

Before a manual policy is designed, it makes sense to con-
sider the possible scenarios. Figure 2 displays the three
possibilities. In the first, the robot can move the peg on a
straight line into the hole. This case might be the rarest.
In the second scenario the robots end-effector starts high
enough above the base surface that he can reach the hole
without having to move upwards. In the last case, the robot
has to move upwards on its way to the hole, otherwise the
peg will get stuck at a wall of the base.

Figure 2. Possible scenarios for the insertion task. Blue: The peg
can be inserted directly. Green: The peg starts above the base
surface but cannot reach the target in a straight line. Red: The peg
starts below to top surface of the base.

4.4.1. PLAIN PD/PID CONTROLLER

Using a simple controller with fixed gains is only capable
of inserting the peg if the hole can be reached in a straight
line - blue scenario in Figure 2. As soon as the peg gets
in contact with the surface of the base, the friction gets too
high for the manipulator to move further. This also fails in
the PID case, as only a small integrational gain can be used
due to higher gains leading to oscillating behavior.

4.4.2. PD/PID CONTROLLER WITH VARIABLE GAINS

Extensive testing in the environment with important com-
ponents like the reset function is only possible if a policy
is used that has the chance to solve the task. Therefore, a
simple hand-made policy π̃ is constructed which adjusts
the gains of the controller in a simple way. At this point, it
should be mentioned, that a policy should be developed that
can solve the insertion task without requiring major engi-
neering effort, as further improvements are to be achieved
later with RL.
As a first consequence the designed policy does not have
any via-points and directly uses the final position as the
goal position for the controller. π̃ adjusts the translational
stiffness, the damping gain is chosen accordingly for critical
damping and if the integral term is used the integral gain is
kept constant.
The basic adjustment for the translational stiffness is based
on the distance to the target position. Far away from the
goal position, the controller gains are kept low, as the vari-
ance in the movement is high. Getting closer to the goal,
the gain is increased linearly up to a maximum value, see
Algorithm 3, line 4. With this behavior the robot gets stiff
only in situations where it matters: Close to the hole.
On top of this behavior, the translational gains are adjusted
referring to the force measurement: If the force in one di-
mension i surpasses a threshold f lim

i this is classified as
contact and the dimensional gains KP,i and KD,i are set to
zero. This drastic reduction of gains reduces the force in
the affected dimension. The affected gains will slowly be
increased over time again as the directional movement in
the other dimensions will close the gap to the goal position

4

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

Algorithm 3 Hand-Coded Policy π̃

1: Input: x, xg, kold, ∆k, f lim

2: for i ∈ {x, y, z} do
3: ∆xi ← |xi − xg,i|
4: Select ki based on distance:

ki [N/m]

∆xi [cm]
2 5

200

1000

5: if |fi| > f lim
i then

6: ki ← 0
7: end if
8: ki ← clip(ki, 0, kold

i +∆ki)
9: end for

10: K ← diag(kx, ky, kz)

and we need the gain in the last dimension to complete the
insertion. In this case the change of the stiffness is limited
by ∆k (per axis) compared to the previous time step. Algo-
rithm 3 illustrates the total behavior. Figure 5 highlights the
gain selection with respect to the force measurement.
With more engineering effort designing a superior policy
would be possible. Yet, the goal of this work is to derive a
framework, that enables successful insertion tasks without
this additional effort. In saying that, RL is justified if a
rather simple policy is not capable of solving the task.

4.4.3. STARTING BELOW THE BASE SURFACE

If the end-effector has to move up before targeting the entry
of the hole, the hand-coded policy fails as well, see Fig-
ure 6. It would be possible to implement a more complex
behavior to achieve a successful insertion by adapting the
gains and/or the intermediate target position. Also using
Dynamic Movement Primitives or other hand-coded policies
with intermediate target positions would be an option for
this insertion. Both options again include engineering effort.
Achieving a well performing policy is left for next semester.
It will then be the goal to use a residual policy that learns to
adapt a simple policy (e.g. a PD controller).

5. Experimental Results
Some general experiments with the real Franka robot are
presented before the actual insertion task is evaluated.

5.1. General Accuracy

Before performing an actual insertion the general accuracy
of the robot is evaluated. Therefore, the robot is controlled
to target 100 random positions in box of size 10×10×10 cm,

Table 1. Accuracy of different controllers depending on the trans-
lational gains. The translational error ex displays the euclidean
error. The orientation error eα is measured by using the axis angle
error. The stiffness’s refer to the translational ones, the rotational
ones are kept constant with 10 N

m , 6 N·s
m and 5 N

m·s .

KP
[N

M

]
KD

[N·S
M

]
KI

[N
M·S

]
ex [MM] eα [◦]

200 28 - 22± 9 2.7± 1.1
1000 63 - 4.9± 2.0 2.4± 1.1
200 28 10 20± 8 1.1± 0.9

1000 63 10 3.9± 1.9 1.2± 1.0

0 10 20 30 40 50 60
2

0

2

E
st

im
at

ed
Fo

rc
e

[N
]

time [s]

fx fy fz

Figure 3. Internal force estimation of Franka. The robot is ran-
domly moved in a 10×10×10 cm large box. The force estimation
is usable, as it stays in a range of approx. ±2N for external forces
Fext = 0.

starting in the center of the virtual box.
The accuracy is evaluated for controllers of the cross-
combinations of {PD,PID}×{low gains, high gains}. The
damping is always chosen to be KD = 2

√
MKP, imple-

menting a critical damped controller in the PD case. The
integral gain is chosen to be constant - but small - to avoid
the problem of too strong error accumulation. To further
reduce the risk of a rising integral value, we use the tech-
nique of Luo et al. to clip the value as well as resetting the
integral term to zero every time we set a new xdes which
happens at a frequency of 10Hz. The translational accuracy
is measured by the euclidean norm, while the orientation
error is evaluated using the axis angle error. The results can
be seen in Table 1.
It can be seen, that the integrational term is important for
scenarios requiring a high accuracy. Using high gains in a
PD controller might show good results too, but as already
explained the missing compliance of the robot is a factor,
that weakens the results of this option.

5.2. Force Measurement

An important component to perceive contact during the
insertion is the internal force measurement provided by

5

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

1 2 3 4

Figure 4. Successful insertion with the PID-policy and the small tolerance of 1 mm. The frames correspond to the markers in Figure 5.
Between frame 2 and 3 the peg stays in contact with the surface all the time.

Table 2. Evaluation of the hand-coded policy for 100 episodes each.
Each episode has a random start position above the surface of the
base. Scenarios like in Figure 6 are not included.

∆d[MM] π̃ SUCCESS RATE COMPLETION TIME [S]

5
PD 100% 1.76± 0.31
PID 100% 1.64± 0.07

1
PD FAILS FAILS
PID 100% 3.72± 2.60

Franka. To analyze the quality of these values a force mea-
surement is carried out. During this measurement the robots
end-effector moves randomly in a 10×10×10 cm box. The
results are displayed in Figure 3.
If the force estimation would be ideal, constant forces of 0
would be measured during the movement. This is clearly
not the case. However, the force values stay in a limited
area. This allows to identify the force limits of Algorithm 3
to f lim

x,y,z = 5N. This value is chosen to be close to the max-
imum observed forces while leaving some room for small
outliers.

5.3. Solving the Insertion Task

In this section, the performance of the hand-coded policy π̃
is evaluated. Therefore the two standard measures success
rate and completion time are evaluated. Please note that
testing was done with start positions above the base surface
only.
Testing with small (∆d = 1mm) and large (∆d = 5mm)
insertion tolerance the two policies π̃PD and π̃PID are ana-
lyzed. The two policies only differ in the use of an integral
term KI = 0 and KI ̸= 0.
An example for an successful insertion can be seen in Fig-
ure 4. The corresponding forces and gains are plotted in
Figure 5. The quantities for evaluation can be found in
Table 2.

In the first phase, the manipulator moves towards the goal

0 1 2 3
20

10

0

0

200

400

E
st

im
at

ed
Fo

rc
e
f z

[N
]

G
ai

n
K

P,
z

[N m

]

time [s]

1 2 3 4

Figure 5. Internal force estimation of Franka during insertion in
z-direction. Additionally, the stiffness in z-direction, derived by
the hand-coded policy is shown. Please refer to Figure 4 for the
marked positions.

position in a linear fashion until it comes in contact with
the base. In the second phase, the manipulator still tries
to move towards the goal position linearly, which leads to
a measured positional error and thus a force buildup, as
it cannot continue along the worlds z-axis. Breaching the
force threshold will reset the z-dimensional gains as men-
tioned in the policy. This reduces friction and gives the
manipulator time to move further towards the hole while
the z-dimensional gains increase again. This process is re-
peated several times as seen in Figure 5 between markers
2 and 3, which results in a sawtooth wave for the gain in z
direction. These jumps are ultimately an undesired behavior
and should be eliminated through a learned policy. After
reaching the hole, the peg will slide into it with increasing
z-dimensional gains.
An entire episode’s success and duration depends on the
choices of controller and required accuracy. When starting
the episode over the base block and with a desired accuracy
of 5 mm, the peg is inserted successfully and far enough
into the hole every time. With an desired accuracy of 1 mm
the PD controller is unable to complete the task, what is
expected, regarding the accuracy in Table 1 and the fact,
that no compensation for friction is implemented. For the

6

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

Figure 6. Failure case. Starting below the surface of the base, the
peg gets stuck at the wall of the base.

1 mm tolerance the PID controller takes up to four times as
long but still manages to complete the insertion. This high
accuracy seems surprising in comparison to the results of
Table 1. This is because of the choice of the robots null
space task. It is a relevant factor to reach precise results, as
the success rate also falls drastically when choosing a null
space configuration that is not directly above the hole. A
possible explanation can be given by considering numeri-
cal errors and estimation errors that occur calculating τnull.
With these errors the calculated torque also has a small in-
fluence outside of the null space task. Cases in which the
randomized starting position is below the bases surface are
not taken into the statistic, as the hard coded policy is not
suitable for those cases, as shown in Figure 6.

6. Conclusion & Outlook
Crafting a real-world framework to implement residual RL
algorithms for a robot manipulator proves to be quite chal-
lenging. This is why a deep understanding of the intricacies
of the robot, its control and its environmental influences is
necessary to build a basis which provides safety to its users
and environment. Using the gained knowledge about the
working of the system allowed for building a mechanism
that enables learning and executing control policies. In this
case this was used to program a policy executing a relatively
simple insertion task. Even though this hand-crafted policy
works in a small spacial range, it does not provide a smooth
behavior and thus a learned policy is needed to substitute
or improve the simple policy used in this project. In fu-
ture, more complex insertion tasks could considered. Due
to more complex arrangements or tasks that require a high
level of sensitivity, policies with a very high level of engi-
neering effort would be needed. The goal is to create and
test an residual RL framework that enables the learning of
efficient policies without much prior knowledge or domain
knowledge. It should be mentioned that developed frame-
work is specifically suited for residual learning. General RL
would require more safety measures.
Using this work as basis, the learning and implementation of

a residual policy using stable priors as defined by (Hellwig,
2023) is possible - in the real world. This should result in
smoother movement with higher accuracy and fewer unde-
sired contacts between the manipulator and its environment
as well as the elimination of the integrational controller
component. The latter is generally not desired in trajectorial
control due to its error buildup.

References
Agrawal, P., Nair, A., Abbeel, P., Malik, J., and Levine,

S. Learning to poke by poking: Experiential learning of
intuitive physics. 2017.

Chen, Y., Geng, Y., Zhong, F., Ji, J., Jiang, J., Lu, Z., Dong,
H., and Yang, Y. Bi-dexhands: Towards human-level
bimanual dexterous manipulation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–15,
2023. doi:10.1109/TPAMI.2023.3339515.

Dong, Y., Ren, T., Wu, D., and Chen, K. Compliance control
for robot manipulation in contact with a varied environ-
ment based on a new joint torque controller. Journal
of Intelligent & Robotic Systems, 99(1):79–90, Jul 2020.
ISSN 1573-0409. doi:10.1007/s10846-019-01109-8.

Ghadirzadeh, A., Maki, A., Kragic, D., and Björkman, M.
Deep predictive policy training using reinforcement learn-
ing. In 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 2351–2358, 2017.
doi:10.1109/IROS.2017.8206046.

Hellwig. Residual reinforcement learning with stable priors,
2023.

Hyun, D., Yang, H. S., Park, J., and Shim, Y. Variable stiff-
ness mechanism for human-friendly robots. Mechanism
and Machine Theory, 45(6):880–897, 2010. ISSN 0094-
114X. doi:10.1016/j.mechmachtheory.2010.01.001.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and
Schaal, S. Dynamical movement primitives: Learning at-
tractor models for motor behaviors. Neural Computation,
25(2):328–373, 2013. doi:10.1162/NECO a 00393.

Karnam, Parini, Eugster, Cattin, Rauter, and Gerig. An
intuitive interface for null space visualization and control
of redundant surgical robots. Proceedings on Automation
in Medical Engineering, 2020.

Luo, J., Hu, Z., Xu, C., Tan, Y. L., Berg, J., Sharma, A.,
Schaal, S., Finn, C., Gupta, A., and Levine, S. Serl: A
software suite for sample-efficient robotic reinforcement
learning, 2024.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. Us-
ing probabilistic movement primitives in robotics. Au-

7

https://doi.org/10.1109/TPAMI.2023.3339515
https://doi.org/10.1007/s10846-019-01109-8
https://doi.org/10.1109/IROS.2017.8206046
https://doi.org/10.1016/j.mechmachtheory.2010.01.001
https://doi.org/10.1162/NECO_a_00393

Building a Framework to Solve Insertion Tasks with Reinforcement Learning in the Real World

tonomous Robots, 42, 03 2018. doi:10.1007/s10514-017-
9648-7.

Peters, J. and Schaal, S. Learning operational space control.
Proceedings of Robotics: Science and Systems (RSS),
Philadelphia, PA, 01 2006.

Shi, J., Woodruff, J. Z., Umbanhowar, P. B., and
Lynch, K. M. Dynamic in-hand sliding manipulation.
IEEE Transactions on Robotics, 33(4):778–795, 2017.
doi:10.1109/TRO.2017.2693391.

Stepputtis, S., Bandari, M., Schaal, S., and Ben Amor,
H. A system for imitation learning of contact-
rich bimanual manipulation policies. 07 2022.
doi:10.48550/arXiv.2208.00596.

von Stryk, O. Grundlagen der Robotik. 2022.

Zhao, T., Kumar, V., Levine, S., and Finn, C. Learning fine-
grained bimanual manipulation with low-cost hardware.
04 2023.

8

https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.1109/TRO.2017.2693391
https://doi.org/10.48550/arXiv.2208.00596

