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Abstract
This paper presents a comparative study of dis-
tinct approaches for learning insertion policies
in robotics: the Manifold Stable Vector Field
(MSVF), Multi-Layer Perceptron (MLP), and
Residual Reinforcement Learning (Residual RL).
The MSVF approach, designed to ensure stability
by construction, is evaluated against a standard
MLP and a Residual RL method that combines
a learned policy with a linear attractor. The per-
formance of these approaches is assessed across
multiple simulated environments, including 2D
and 3D tasks of increasing complexity. Results in-
dicate that while the MSVF consistently achieves
stability and efficient learning in simpler environ-
ments, the Residual RL approach excels in more
complex scenarios, such as 3D L-shaped object
insertion. The study highlights the trade-offs be-
tween stability guarantees and learning efficiency,
offering insights into applying these methods in
real-world assembly tasks.

1. Introduction
Insertion tasks are a fundamental problem in robotics (Khan
et al., 2014; Suomalainen et al., 2022), often encountered in
assembly operations, where an object needs to be precisely
inserted into a designated location. Examples of tasks are
a peg into a hole or a key into a lock. Such tasks require
precise manipulation and accurate alignment. There are two
primary difficulties in insertion tasks. The first arises from
contact between the object to insert and the environment.
This can restrict the robot’s freedom of movement or block
its movement in the worst case. Additionally, there is often
a lack of detailed information about the environment. Prop-
erties like friction are hard to estimate. To achieve reliable
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performance, the insertion process is often manually de-
fined in a time-consuming process. Methods like imitation
learning (IL) and reinforcement learning (RL) try to remove
the need for this necessity. However, a very likable but
hardly achievable property with these methods is stability.
Stability during training can prevent the robot from adopt-
ing unsafe or sub-optimal policies, thereby improving the
overall learning efficiency and effectiveness. Furthermore,
in safety-critical environments, stability is mandatory.
A structure that provides stability is the so-called manifold
stable vector field (MSVF), which is already applied to
IL (Urain et al., 2022) and RL (Hellwig, 2023). RL poses a
higher difficulty regarding learning but poses the chance of
outperforming IL, especially regarding unseen states. The
results of (Hellwig, 2023) do not show the best performance,
thus we revisit his work once more.
In addition to the MSVF approach, we also investigate two
other policy structures: a Multi-Layer Perceptron (MLP)
network with no specific structural assumptions and the
widely adopted residual learning approach (Silver et al.,
2018). The MLP serves as a baseline to understand the
impact of incorporating minimal prior knowledge, while the
residual learning approach is explored for its potential to
refine and enhance basic policies by leveraging additional
information or corrections.
We conduct a comparative study of these three policy cate-
gories, focusing on their performance during the learning
phase, their final task performance, and their ability to gen-
eralize to new initial states. This evaluation is carried out
across multiple environments with varying levels of com-
plexity: starting with a simple 2D box insertion, more chal-
lenging scenarios such as tight stick insertion and L-shaped
object insertion using the Panda Franka Emika robot are
performed. By testing in different environments, we aim to
provide a comprehensive analysis of how different policy
structures impact performance. Executing this in simula-
tion allows for controlled experimentation and consistent
evaluation. This study shall provide insights for broader
applications in automated assembly and manufacturing.

2. Related Work
Over the years, considerable research has been conducted
on automating insertion tasks, leveraging both IL (Wan
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et al., 2017; Tang et al., 2015; 2016; Chang et al., 2022;
Beltran-Hernandez et al., 2020; Luo et al., 2018) and RL
techniques (Inoue et al., 2017; Lee et al., 2018; Thomas
et al., 2018; Fan et al., 2018). Imitation learning involves
teaching a robot to mimic demonstrations, while reinforce-
ment learning focuses on enabling the robot to learn optimal
policies through exploration and exploitation. Methods that
combine multiple policies (Lee et al., 2020; Silver et al.,
2018; Johannink et al., 2018; Davchev et al., 2020) try to
increase insertion performance even further.
A category that falls into the field of multi-policies is resid-
ual learning (Silver et al., 2018). In this case, a base policy
is combined with a learned one. The hope is that the learned
policy makes minor adjustments to the base policy. While
this often works, the stability of the base policy can be
eliminated, or the learned residual is restricted too much,
resulting in reduced performance.
Different studies (Urain et al., 2022; Khader et al., 2020;
2021) address the challenge of stability, but all have their
downside. For example, (Khader et al., 2020) only works
with Euler angles. Representative orientation representa-
tions and stability are jointly achieved by manifold stable
vector fields (Urain et al., 2022). We revisit the approach
introduced by J. Hellwig (2023) to learn a stable vector field
(SVF) using reinforcement learning. This method ensures
stability during the evaluation phase (Khader et al., 2021)
and throughout the training process.

3. Background
This section provides an overview of the applied robot con-
trol principles, policy architectures, and learning algorithms.
It uses notations corresponding to the insertion task for a bet-
ter understanding. The position vector is called p, and the
rotation can be represented in different ways. For instance,
using a rotation matrix R ∈ SO(3) (’Special Orthogonal
group’) or a rotation vector r ∈ so(3) in corresponding Lie
algebra. In combination, these two variables can describe
the state of the end effector x, e.g., x = (p,R). The output
of our policies is the desired change in the state ∆x or the
desired velocity ẋ.

3.1. Control

3.1.1. OPERATIONAL SPACE CONTROL

Operational Space Control (OSC) computes the desired joint
torques τ using the Jacobian J and the control signal in the
operational space u (Peters & Schaal, 2006b):

τ = JTu . (1)

Specifying the forces and torques in the operational space
is intuitive and has the advantage of defining the path of the
end effector. Disabling gravity in the simulation and only
operating the robot far away from singularities removes the

need for further correction terms.

3.1.2. IMPEDANCE CONTROL

Using a compliant PD-controller is a widely spread ap-
proach in insertion tasks as this reduces the risk of dam-
ages if the controller gains K are chosen accordingly (Dong
et al., 2020). The controller computes a desired end effector
acceleration

ẍ = KP (x− xDES)−KDẋ (2)

driving the end effector towards the desired state xDES,
which is static in insertion tasks. Using the robot mass
matrix in end-effector space M , the control signal for Equa-
tion 1 is

u = Mẍ .

Please consult (Khatib, 1987) for a background on comput-
ing M .

3.2. Residual Learning

Residual policy learning (Silver et al., 2018) is summarized
by

π(x) = πBASE(x) + λπθ(x) .

The base policy πBASE can be any arbitrary policy. Weighted
with a scaling factor λ, the learned policy πθ can correct the
base policy. This paper implements πθ as an MLP. Learning
π resorts to learning πθ, since ∇θπ = ∇θπθ. This shows
that the base policy can be a non-differentiable function and
arbitrarily complex.

Yet, the goal is to find policy structures that do not need a
lot of manual work. This is why it is favorable to choose a
simple base policy that helps the residual policy πθ to learn
faster by using πBASE as guidance. Ideally πBASE is shared
across tasks and πθ provides task-specific adjustments.
Moreover, πBASE allows the use of prior knowledge on solv-
ing the task, e.g., it can be learned from demonstrations.

3.3. Manifold Stable Vector Fields

A stable policy by construction is desirable since it provides
explainability and safety. This is easy to achieve in the
space of positions, R3. However, this is not the case for the
rotations space SO(3). The representation of rotations is
ambiguous, and so is it with computing distances between
rotations. Here, the Lie Groups come to a rescue. Unless
noted otherwise, this section is based on (Hall, 2013).

3.3.1. MANIFOLDS AND THE LIE GROUPS

A n-manifold M is a topological space that, around any
given point, resembles the Euclidean space Rn, which al-
lows vector calculus. For instance, a sphere, though a 3-
dimensional object, locally resembles a 2-dimensional Eu-
clidean space. This local resemblance is established through
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so-called charts, which map neighborhoods of the manifold
to Rn. An atlas forms a collection of these charts that cover
the manifold. If the transition maps between overlapping
charts are differentiable, M is called a differentiable man-
ifold. Each point x ∈ M has an associated tangent space,
TxM, which is a vector space Rn containing all tangential
directions at point x. This tangent space can be represented
by using an Euclidean coordinate system Rn.
Between two smooth manifolds M and N , it is possible to
define a diffeomorphism φ : M → N , which is not only a
bijection, but also its inverse is differentiable (Lang, 2001a).
A Lie group is a group G that also possesses the structure
of a differentiable manifold. This means that the group op-
erations are smooth functions. Associated with each Lie
group is a Lie algebra g, which is the tangent space of the
group at the identity element. The connection between a Lie
group and its Lie algebra is made through the exponential
EXPMAP and logarithmic map LOGMAP which link ele-
ments of the Lie algebra to elements of the Lie group and
vice versa:

EXPMAP : g → G , LOGMAP : G → g .

The orthogonal groups SO(N) are the Lie groups of or-
thogonal matrices with a determinant of 1. Regarding the
insertion task, the groups SO(N) with O ∈ 2, 3 are rele-
vant, as they represent the rotations in 2D and 3D. These
rotations can be transformed into the tangent space so(N) -
the Lie algebra. The Lie groups SE(N) (’special Euclidean
group’) can be used to include the position information by
representing the group of the homogeneous transformation
matrix. Here, the rotation matrix and the position vector
are combined in the homogeneous transformation matrices.
The corresponding Lie algebras/tangent vector spaces are
described as se(N).

3.3.2. THE STABLE VECTOR FIELD

In the MSVF policy, the stability will be implemented in
a latent Lie algebra. The simplest form of an ordinary
differential equation (ODE) (Lang, 2001b)

ż = −z

will be used. The equilibrium point of this system is eas-
ily identified with z̄ = 0. This ODE can be written as
ż = V (z) by defining the vector field V (z) = −z.

3.3.3. THE MSVF-POLICY

To form the MSVF policy the concepts of the previous sub-
sections are combined, following the work of Hellwig and
Urain et al.. Figure 1 visualizes the structure, described in
the following.
For simplification purposes, we assume that the target po-
sition and orientation of the insertion are centered in the

(
R3, SO(3)

)
∼ SE(3)

se(3) se(3)

x LOGMAP x̂ Fθ z

ẋ JFθ
(x̂) ż

−Sψ(z) · z
||z||

Figure 1. The structure of the MSVF policy. For simplification
purposes xGOAL = 0 is assumed.

reference frame of the robot base. By applying transfor-
mations to other frames, this assumption can be surpassed.
Furthermore, only the 3D case is considered, which can be
simplified easily to 2D.
The input for the policy is the robot’s end effector state x ∈
X =

(
R3, SO(3)

)
or SE(3). This observation gets mapped

into the Lie algebra x̂ = LOGMAP(x) ∈ X̂ = se(3) - the
tangent space of the observation space around its origin.
In the next step, the diffeomorphism φ is applied to reach
the latent lie algebra Z = se(3). It is implemented as the
solution φ = F of a neural ODE (NODE) (Chen et al.,
2018). The NODE is defined as a neural network Hθ that
maps a state s, to its time derivative: Hθ(s, t) = ṡ. This is
applied to the MSVF’s structure in the following way. The
element x̂ ∈ X̂ is defined as the start state s(0) = s(t = 0)
and the latent space representation z is defined to be the
state s1 at t = 1. Integrating out the NODE results in the
mapping

z = Fθ(x̂) = x̂+

∫ 1

0

Hθ

(
s(t), t

)
dt . (3)

Due to the structure of the NODE, the inverse mapping can
be found by integrating backward in time

x̂ = F−1
θ (z) = z +

∫ 0

1

Hθ

(
s(t), t

)
dt ,

keeping in mind that s(1) = z. Solving the ODE can be
done, e.g., with the Euler method (Euler, 1792). This shows
the bijectivity of Fθ, even though the inverse mapping is
not needed, as it will be seen shortly. The mapping requires
some further handling of edge cases. For details, the reader
is referred to (Hellwig, 2023).
An important property is not considered at this point. The
target point in X̂ is its origin x̂H = 0. To keep track of
this and not shift the stable point, the origin of X̂ must get
mapped to the origin of Z: 0 = zH

!
= Fθ(x̂H). This will

later be achieved by adding a fix-center-loss LFCL while
learning.
In the latent Lie-algebra, the stable vector field ż =
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Box2D

1mm

LShape2D

1mm

Box3D

1mm

PandaStick

1mm

PandaLShape

5mm

Figure 2. The different environments for the insertion task - starting with minimal complexity on the left towards higher complexities on
the right. The green bounding boxes represent the area for possible initial states. In the 3D environments, we sample from the boxes’
surfaces uniformly. The rotation is sampled from uniform[−20◦, 20◦] per axis.

−V (z) = −z is defined. Using this structure would im-
pose very small control signals close to the target position
as ż → 0 for z → 0. To counteract this, a scaling network
s = Sψ(z) > 0 is learned, which scales the normalized
vector field (Hellwig, 2023):

ż = −s
z

||z||
. (4)

ż needs to be mapped back to the observation space. In
the first step, the mapping into Z is done. Revisiting the
mapping from X̂ to Z shows that z = Fθ(x̂) and hence
ż = d

dtFθ(x̂). Evaluating this derivative results in

ż =
∂

∂x̂
Fθ(x̂) ·

d

dt
x̂ = JFθ

(x̂)ẋ ,

ẋ = JFθ
(x̂)−1ż .

This mapping out of the latent space can be seen as a con-
trolled deformation process of the vector field V (z), which
warps the simple structure into an arbitrary complex vector
field with the same equilibrium point.
The derived ẋ is a velocity, but can also be interpreted
as the desired change in position by integrating it for one
time step to get ∆x = ẋ∆t, where ∆t can be the policy
frequency. The EXPMAP is later applied internally in the
operational space controller where the axis–angle represen-
tation (Caccavale et al., 1998) is used in combination with
the Rodrigues’ rotation formula (Mebius, 2007). This im-
plicitly includes a map from the Lie algebra se(3) to its Lie
group SE(3).

3.4. Reinforcement Learning Algorithms

The goal of a reinforcement learning agent is to solve a
Markov Decision Process (MDP). This translates into com-
puting an optimal policy that maximizes the expected sum
of discounted rewards. In this work, two deep actor-critic
methods are used to obtain an optimal policy.
The first is Proximal Policy Optimization (PPO) (Schulman
et al., 2017), which is an on-policy algorithm that combines
Policy Gradient methods (Peters & Schaal, 2006a) with

Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015). Although the PPO approach is relatively simple, it
performs quite well in most scenarios.
The second option chosen for this work is the Soft Actor-
Critic algorithm (SAC) (Haarnoja et al., 2018). In contrast
to PPO, it is an off-policy algorithm. SAC optimizes not
only the expected discounted return but also an entropy-
regularized objective that encourages the agent to keep ex-
ploring.

4. Implementation
The following section outlines the implementation of the
environments with varying levels of complexity, along with
the policies applied to perform the insertion.

4.1. Environments and Tasks Descriptions

The different learning approaches are compared in 5
simulated insertion tasks with increasing structural com-
plexity, see Figure 2. These are implemented using
the PYBULLET (Coumans & Bai, 2016–2021) simulator,
while the RL algorithms are implemented using MUSH-
ROOMRL (D’Eramo et al., 2021).

In Box2D and LShape2D environments, movement along
the x and y-axes and rotation around the z-axis is possible.
The Box2D environment is straightforward. The actor only
has to learn to move a square box into a hole with a 1mm
tolerance. In the LShape2D environment, the hole and the
peg are no longer square but L-shaped, and with identical (1
mm) wiggle-room, the peg has to be moved inside the hole
and then to the side.
In 3D space, the Box3D environment is a generalization of
the Box2D, where one more dimension is used for trans-
lation and two new dimensions are used for rotation. Two
simulated environments feature the Franka Panda robot,
which additionally constrains the movement of the peg. In
the PandaStick task, the robot has to insert a stick, which
here is implemented as an attached peg, into a hole, giving
1mm of wiggle room in each dimension. The PandaLShape
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task increases the complexity by presenting a 3D version of
the L-shaped insertion task with a 5mm tolerance.
In all environments, including the Franka Panda robot, the
peg’s movement is defined and learned in task space, and
the necessary motor commands are calculated through the
OSC. Thereby, the robot’s size and its joint limits present
natural boundaries of the peg’s movement.
(The long-term goal is to perform experiments on the real
robot. The insertion-specific parts (peg and hole) will be
printed in 3D. With this in sight, the parts are modeled as
stiff and with a friction coefficient of µ = 0.4 (Perepelkina
et al., 2017; Pawlak, 2018).)

4.1.1. THE OBSERVATION SPACE

The observation space x ∈ S is the same for all tasks. It
contains the current peg position p ∈ R3 and orientation
R ∈ SO(3) provided as a flattened rotation matrix R̃ ∈ R9.
Given the structure of our environments and that all matrix
entries in R are in the range of [−1, 1], no further scaling
of the observations is needed. It also should be mentioned
that x = (p, R̃) ∈ R12 for all environments, independently
of representing a 2D or 3D task.

4.1.2. THE ACTION SPACE

The action space A is split into two parts. It comprises the
proposed change in position ∆p and the desired change in
orientation ∆r, as ∆x = (∆p,∆r). ∆p lives in R2 or R3

depending on the dimension of the environment. For 2D
environments, ∆r is a scalar value describing the proposed
angle change in orientation around the z-axis. In 3D ∆r
is a rotation vector in so(3) that describes the rotation as a
rotation vector (the axis-angle representation). Its direction
represents the axis of rotation, and its magnitude is the rota-
tion angle in radians.
The actions are clipped so that the change in position is
limited to ±0.1m and the rotation to ±45◦. Using this ac-
tion output, the desired location for the operational space
controller is updated to xDES = x+∆x. The controller tries
to reach xDES following the Equations of the Section 3.1.
The policy updates xDES at 20 Hz, while the low-level con-
troller runs at 240 Hz, giving the OSC twelve time steps to
reach the desired state before it is updated.

4.1.3. THE REWARD FUNCTION

The reward function penalizes any distance
between the goal state and the current state
δx = (δp, δr) = xGOAL ⊖ xCURRENT and is identical
for each environment. Calculating δp for the translation
component is done by subtracting vectors. The rotational
difference δr is computed using the axis-angle-feedback
(Caccavale et al., 1998) in combination with Rodrigues’
rotation formula.

A typical reward is the negative L2-norm ||δx||22. However,
as shown by (Levine et al., 2015), using a funnel-like
shaped penalty term is better, which penalizes small errors
in position more. This enforces a policy of higher accuracy
by defining the positional cost via

cPOS(p) = w · ||δp||22 + v · log
(
||δp||22 + α

)
.

w, v are hyper-parameters to weight the two terms (L2, and
Lorentzian ρ) against each other. α defines the funnel-width
(Levine et al., 2015).
The total reward function is composed by summing up the
adapted positional cost and an L2-penalty for rotational
distance as well as an L2-loss for the joint velocities to
strive for smoother movements:

r(x) = −ωp · cPOS(x)− ωr · ||δr||22 − ωq̇ · ||q̇||22 . (5)

The positive weights ω balance the effect of the individual
terms. Settings with ωr > ωq̇ ≥ ωp are found to work
best for the insertion tasks, but depending on the number of
degrees-of-freedom and number of robot joints, individual
adaptions are needed.
Furthermore, two additional terms are added to the reward.
r = 1 for reaching the goal and r = −100 for going out of
bounds.

4.1.4. THE INITIAL STATE DISTRIBUTION

The initial state distribution is similar for the 2D and 3D
environments. We draw a box above the holes as shown in
Figure 2 and sample the initial state based on these boxes.
For the 2D environments, we decided to sample the initial
coordinates inside the boundaries of these boxes and rotate
the peg by a value between −20◦ and +20◦. In 3D the
initial states are sampled uniformly from the box’s surfaces
and a rotation of ±20◦ is added for each axis. This approach
works towards the following control strategy after training:
Using a simple control signal to guide the end effector to-
wards the region of insertion before the learned policy takes
control.

4.2. The Base Policy πBASE

Residual learning, as introduced in Section 3.2, is based on
a policy πBASE that encodes some prior knowledge about the
task and should provide an initial guidance for the agent.

In the setup for the insertion task, such a simple policy is
used as the linear attractor. It computes the action ∆xBASE =
πBASE(x) in such a way that x+∆xBASE = xGOAL and is then
clipped in the same manner as described in Section 4.1.2.

4.3. The Policy Components

PPO and SAC are both Deep Actor-Critic approaches. The
actor and the critic functions are modeled using fully con-
nected neural networks (FCNNs) with two hidden layers
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with 256 features each. The inner nodes apply a RELU
activation (Agarap, 2018). In SAC, the policy is modeled
as a Gaussian distribution, with the mean and variance com-
ponents, each generated by separate FCNNs of identical
structure.

4.4. The Manifold Stable Vector Field

As outlined in Section 3.3.3, the MSVF consists of several
components, and their implementation is described below.

4.4.1. THE DIFFEOMORPHISM Fθ

The diffeomorphism is implemented as the solution of an
NODE (Equation 3). The network Hθ that models the
NODE is implemented as FCNN as well. Again, the struc-
ture shows two hidden layers with 256 features each in
combination with the LEAKYRELU-activation after the first
two. The integration from Equation 3 - that performs the
mapping to the latent Lie-algebra - is approximated using
Euler integration (Euler, 1792).
As described in Section 3.3.3 it is important that the ori-
gin x̂H is mapped to zH . To achieve this, the fix-center-loss
LFCL

(
Fθ(x̂H)

)
= w · ||Fθ(x̂H)||22 + v · log

(
||Fθ(x̂H)||22 + α

)
is added to the objectives of SAC and PPO during training.
Additionally, this loss is used to pre-train the diffeomor-
phism before starting to learn in the environment. This is
done to guarantee a stable policy from the start.

4.4.2. THE SCALING NETWORK Sψ

The scaling network is important to prevent vanishing con-
trol signals for states close to the goal state. It is again
implemented as an FCNN of the already mentioned struc-
tures, with the only difference being the activation of the
final output: applying the SOFTPLUS guarantees positive
scaling values (s > 0).

5. Experimental Results
The three different policy approaches - namely (i) multi-
layer perceptron (MLP)/unstructured , (ii) residual with
linear attractor and (iii) MSVF - are evaluated against
each other. While running the training with both learning ap-
proaches - PPO and SAC - the following evaluation is based
solely on the results with PPO, as SAC showed stability
problems, especially in environments of higher complexity.
As an example of a successfully learned behavior, Figure 4
shows the path of insertion in the Panda-LShape environ-
ment.

5.1. General Observations

Each combination of policy and environment is trained
across five different seeds. The success rate and the number

Figure 4. Insertion trajectory of the MSVF policy after training
with PPO. The policy moves the peg over the opening first. Once
at the bottom, the LShape is pushed forward.

of steps required to reach the goal are measured by evaluat-
ing the performance across ten different starting states for
each scenario. The results of these evaluations are presented
in Figure 3.
For the simple two-dimensional environments, we can ob-
serve a clear order of policies in terms of convergence ef-
ficiency. The MSVF converges to a success rate of 100%
after 50k steps or less, followed by the residual policy and
then the unstructured policy. Due to the pre-training of the
MSVF with LFCL, the origins of the two Lie algebras align
from the very first training iteration, enabling successful
insertions from the outset. The residual policy provides
some beneficial information for the agent compared to the
unstructured policy.
In the case of the Box3D environment, too, the MSVF
converges early. However, this time, the residual policy out-
performs the two other approaches. The latent stable vector
field of the MSVF is now defined in six dimensions (instead
of three for the 2D case), which makes it more difficult for
the diffeomorphism to warp the space.
When analyzing the measured number of steps to termi-
nate, we can see that — after some time - all three policies
perform equally, with the residual policy having a slight
advantage in all cases.

5.2. Performance in the Panda Environments

For the simple PandaStick environment, the performance
ranking is the same as the one for the Box3D insertion. This
is expected as the two tasks pose the same structure from the
policy’s viewpoint. The underlying OSC control handles the
computation of the fitting torque signals. Again the MSVF
performs slightly slower regarding the two metrics at hand,
compared to the residual policy. However, the difference be-
tween the two is not significant. Accepting a slightly longer
training time in exchange for a guarantee of stability can be
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Figure 3. Success rate and steps-to-goal for training the different policies in all 5 environments. To indicate the difficulty of the task,
the performance of the linear attractor πBASE is displayed as well. Please notice that the success rate of πBASE is zero for the LShape2D
environment and therefor is not visible in the plot.

very useful, depending on the task and application domain.
The PandaLShape exposes some difficulties for the MSVF.
The distortion of the vector field must be much greater to
achieve a successful insertion. In combination with the
higher dimension of the latent space, this requires longer
training. On top of that, learning is less stable - but this
might be resolved with further hyperparameter search. Nev-
ertheless, the guaranteed stability of the MSVF should also
be kept in mind here.

5.3. Analyzing the Induced Vector Field

The induced vector fields are analyzed exemplary in the
LShape2D environment, see Figure 5.
The MSVF points towards the goal position before the first
training step because of the pre-training with the fix-center-
loss LFCL. The residual policy is randomly initialized, but
the influence of πBASE is visible: it drives the peg towards
the goal. Initially, the unstructured policy vector field even
points further away from the goal.
After training, it can be seen that all policies learned a
vector field that solves the task. Notice that all policies do
not prevent contact with the environment.

If desired, increasing friction or applying a contact penalty
in the reward function could prevent this. The unstructured
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s

Figure 5. Translational Vector Fields induced by the policies in the
LShape2D environment. The line thickness is proportional to the
strength of the field. Top row: Before training. Bottom row: After
training.

MLP policy and the residual policy are very identical for the
LShape. Both learned to lead the peg correctly into the hole
and then push it downwards onto the hole’s ground. The
MSVF’s policy also leads the peg to the hole, but instead
of just pushing the peg downwards, the policy learns to
converge to the target point inside the hole.

5.4. Generalization

To test generalization, the initial state’s region is shifted
above the region used during training (T ). The orientations
for the initial states are sampled - per axis - from the ranges

7
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Figure 6. Exemplary visualization of the generalization test. In-
stead of the green starting ranges T of the training, the policies
are tested starting in regions G which are placed above T and are
rotated more.

Table 1. Results (success rate) of the generalization experiments.
Each setup ran for 100 epochs. The success rate is evaluated for
the initial state ranges T and G .
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T G T G T G T G T G

MLP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.97
residual 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.98
MSVF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97 1.0 0.94

±[30◦, 110◦]. Figure 6 visualizes the difference between
the training T and testing region G. Table 1 presents the
results.
In the Box2D, LShape2D, and Box3D environments, all
policy classes show a very good generalization: they achieve
a success rate of 1.0 for both regions T and G. This could
be expected, as the policies are continuous mappings and
show the good generalization properties of neural networks.
In the Panda environments the success rate drops for all
policies, but only by a few percentage points. Analyzing the
failure cases in detail showed that these cases got all stuck in
the joint limits of the robot. This happens because the OSC
was kept as simple as possible without any null space task.
Overall these runs also manifest the good generalization
properties of neural networks in general.

6. Conclusion & Outlook
The paper compares three different policy classes to solve
insertion tasks. The residual policy and the MSVF both
include prior knowledge about this task and outperform the
MLP-policy in all low-complexity environments. In the en-
vironment with the highest complexity - the PandaLShape -
the residual policy still performs the best. Here, the MSVF
policy performance shows problems. The dimension of the
latent vector field is large, and the diffeomorphism has to
apply a strong distortion to the vector field, but with longer
training, it still solves the task.

In contrast to (Hellwig, 2023) it was able to show that the
MSVF alone can solve non-linear insertion tasks - whiteout
the need for a further residual policy part. This emphasizes
the potential of this policy structure further.
In tasks like the insertion of PCB components (Luo et al.,
2024), such a strong warping is not needed, and the stabil-
ity guarantees of the MSVF can be the decisive factor in
deciding on it. In these cases, the training time increases
minimally compared to the residual policy, and the price
paid for stability guarantees is more than acceptable. We
believe the MSVF is always worth a try. Only if the inser-
tion task is found to be too complex, other options like the
residual policy, should be considered.

Enhancing the adaptability of the impedance controller by
integrating force observations and learning its gain param-
eters (Luo et al., 2024) are exciting research opportunities.
This approach may enable the controller to encode richer
structural information about the environment, potentially
leading to a more nuanced understanding and interaction.
Additionally, allowing greater degrees of freedom for the
policy could improve its ability to handle complex environ-
ments.
Given the substantial amount of contact between peg and
base observed (see Figure 5), managing these interactions
effectively is crucial. One potential avenue for further re-
finement involves incorporating a penalty for large forces
into the reward function. Especially in scenarios where min-
imizing force is essential or where excessive force might be
undesirable.
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