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1 Introduction

(a) Example of planning.

(b) SBM denoising mockup.

Recent advances in new architectures and training meth-
ods of diffusion and score-based models (SBMs) have
shown impressive results in image and text-to-image
generation [50, 11, 46, 20, 42]. One area where these
models have not been fully explored is robotics [15, 55].
Since whole robot trajectories have high dimensionality
and their distribution is often multi-modal, it is worth
investigating whether or not SBMs can be used as part
of an intelligent robot system.

An important task is to plan collision-free movements
(paths) between two locations. With access to an en-
vironment map, sampling-based methods such as vari-
ants of Probabilistic Road Maps (PRM) [19] and Rapidly
exploring Random Trees (RRT) [26] or optimization-
based methods such as STOMP [18], are commonly used.
With repeated planning in the same or even different
environments, it is natural to somehow reuse previously
collected information. This hopefully speeds up future
planning in similar environments. Several works have
proposed neural motion planners that encode environ-
ment and motion information using neural networks,
which are subsequently used as priorities for the plan-
ners [38, 40].

In this work, I investigate whether SBMs can be lever-
aged to generate trajectories and whether they are useful
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improvements over previous methods. I conduct experiments to find out how they func-
tion as priors for StochGPMP [54], whether they improve performance over standalone
StochGPMP, and if so, how significant the improvement is.

Since SBMs have such potential in generating high-dimensional data, I will experiment
with higher-dimensional search spaces to see if SBMs can generate coherent trajectories
in them and if the sampling time is reasonable. Especially in real robot systems, which
often have seven or more degrees of freedom, many planning methods become very slow
or even infeasible, so time is a big factor.

As you will see, SBMs have a place in motion planning as priors to optimization-based
planners like StochGPMP. Their ability to model multi-modal, high-dimensional data
makes them a valuable tool for improving planning time in tricky, high-dimensional
environments. They can be conditioned on different features to generalize to many
different tasks in many different environments.
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2 Foundations

Since I am using SBMs for motion planning, I will first introduce some common motion
planning techniques that are currently in use. Then I talk a bit about what kind of priors
can be used by these motion planners. I will conclude this chapter with a little background
on point cloud encoders and signed distance fields (SDF), which are referenced in later
chapters.

2.1 Motion Planning

We consider two methods for motion planning [24, 25], sample-based and optimization-
based. Both can benefit from priors derived from previously generated data to increase
speed and/or quality, as we will see later.

2.1.1 Sampling-based motion planning

Sampling-based motion planning uses randomly sampled collision-free configurations
and connects them. The major advantage of these methods is that they always find a
path that connects the start and target positions. However, this tends to scale poorly for
higher dimensions and they tend to produce non-smooth trajectories. This would result in
jerky robot motion, so these approaches require post-processing. There are many ways to
perform sampling-based motion planning, here is an overview.
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Rapidly-Exploring Random Trees (RRT)

Rapidly-exploring random trees (RRT) [26] iteratively generates a tree-like structure that
explores the search space. The root of the tree is usually the starting node of the planning
problem. The basic version of RRT uses a uniform prior such that a uniformly random
point xrand in the search space is selected at each iteration. Then the closest node to
xrand, xclose, is selected and connected to it. Often a δ value is used, which describes the
maximum distance between two nodes. In this case, a point with a distance of δ xnear on
a straight line between xclose and xrand is inserted into the tree rather than the random
point itself. At some point, the target can be added to the tree. Then RRT is terminates.

A variant of RRT worth mentioning is RRT* [23]. In RRT* we have the ability to modify
existing connections within the tree. Specifically, after adding an xnext to the tree, we
check if nodes in a radius r around xnext would benefit from being connected to it instead.
In this case, the parent of the nearby node would be set to xnext. This algorithm has the
advantage of finding far better solutions than RRT. The solutions are usually smoother
and shorter. The disadvantage, however, is that it is unclear when this algorithm should
terminate. In RRT we are close enough to the goal at one point, but in RRT* we can
always add nodes that further improve the trajectory. This means that RRT* finds the
optimal trajectory at infinite time, but is much slower than RRT.

One method that attempts to improve RRT* is called Informed RRT* [9]. The idea
is to restrict the sample range to an ellipse after an initial solution is found. As the
solution improves, the ellipse is gradually reduced in size. This dramatically increases the
probability that a randomly selected point will improve the current best solution.

Probabilistic Roadmaps (PRM)

Probabilistic Roadmaps (PRM) [19] works by first selecting random nodes that cover
the entire search space. Then, a network is created between them by connecting each
point to the k nearest other nodes. The advantage is that this network can be reused
to query paths between any points in the network. In [19], the nodes are collision-free
configurations and the edges are feasible paths between nodes. These paths are generated
in the first phase by simple local planners.
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2.1.2 Optimization-based motion planning

In optimization-based motion planning, we optimize the entire trajectory as one rather
than many connected points, as in sampling-based approaches. Optimization-based
methods optimize a particular initial trajectory (-distribution) and can use either gradient
or stochastic optimization. They also have the advantage of being able to create smooth
trajectories that avoid collisions by including these features as costs to be optimized.
However, they can have a problem with high-dimensional data and converge to local
minima. The methods often use an uninformed initial distribution at the beginning of the
optimization, but as we will see later, there are ways to incorporate prior knowledge to
choose a better initial distribution.

Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) [44] uses covariant
gradient optimizations to transform a possible naive first guess into a feasible collision-free
trajectory. Here, a simple straight line is often used as the first guess. The cost of a
trajectory τ , which is needed for the optimization according to [44, 63] is given by

C(τ ) = C(τ )prior + C(τ )obs (2.1)

with

C(τ )prior =
1

2
∥Kτ + e∥2

whereK is a finite difference matrix and e is a vector that handles the boundary conditions.
C(τ )obs can be any differentiable value, while C(τ )prior enforces the smoothness of the
trajectory.

The update rule

τk+1 = τk −
1

λ
M−1∇C(τk)

can derived through a first order taylor expansion as described in [44, 63].
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CHOMP converges quickly to a locally optimal trajectory. Depending on the problem, this
may be good enough. However, in many cases, a little more exploration is needed that
could lead to a solution closer to the globally optimal trajectory. Since CHOMP works with
a single trajectory, we also get only a single solution.

Stochastic Trajectory Optimization for Motion Planning (STOMP)

Stochastic Trajectory Optimization for Motion Planning (STOMP) [17] considers motion
planning as a stochastic optimization problem to find a smooth trajectory that minimizes
cost. STOMP can be viewed as a stochastic version of CHOMP, but instead of updating
the trajectory using only the gradient of the cost, the update is computed using a softmax
distribution. It is also iterated to convergence, but at each iteration N noisy trajectories
τ̃ 1...τ̃N are generated with τ + ϵn, where ϵn ∼ N (0, (KTK)−1). The used noises ϵ are
then weighted by a softmax over their respective costs to obtain the gradient. So given a
softmax distribution

P (τ̃n, i) =
exp (−(1/λ)c(τ̃n,i))∑︁N
k=1 exp (−(1/λ)c(τ̃ k,i))

we get the gradient

∇τi = M

N∑︂
n=1

P (τ̃n, i)ϵn,i,

where M = (KTK)−1 with each column scaled such that the maximum element is 1/H,
and the update rule

τk+1 = τk +∇τk.
Then, the cost for the entire trajectory can be evaluated to see if convergence is achieved.
One advantage of STOMP is that the costs do not have to be differentiable.
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Gaussian Process Motion Planning (GPMP)

Gaussian Process Motion Planner (GPMP) [28, 29] uses a Gaussian Process Prior, and
likelihoods of the exponential family. It does a maximum-a-posteriori (MAP) trajectory
optimization to find a single trajectory, by doing gradient optimization with Gauss-Newton
or Levenberg-Marquardt. One disadvantage of CHOMP and STOMP that GPMP overcomes
is the need for a very large number of support states. Gaussian processes (GP) represent
trajectories as continuous-time functions, so they can be queried at any time while still
using viewer support states. Given a vector-valued mean function µ(t) and a matrix-valued
covariance function K(t, t′), we obtain the vector-valued GP

θ(t) ∼ GP
(︁
µ(t),K(t, t′)

)︁
.

Since this is a GP we can say that for any collection of times t = {t0, ..., tN}, θ has a joint
Gaussian distribution

θ ∼ N (µ,K) .

The vectors θ0, ...,θN are support states that parameterize the continuous-time trajectory
θ(t). Since this is a GP we automatically get a prior over the space of trajectories

p(θ) ∝ exp{−1

2
∥θ − µ∥2K} (2.2)

where ∥θ−µ∥2K = (θ−µ)TK−1(θ−µ) is the Mahalobis distance. This prior encourages
smoothness, so it achieves a similar function as the finite difference matrix K in CHOMP
and STOMP. The cost function looks very similar to the one in equation 2.1:

C(θ(t)) = C(θ(t))prior + C(θ(t))obs.

The difference is that

C(θ(t))prior = λC(θ(t))gp =
λ

2
∥θ − µ∥2K

which we get by taking the negative logarithm of equation 2.2. We get the update rule

θk+1 = θk −
1

η
K∇C(θk),∇C(θk) = λK−1(θk − µ) +∇C(θk)obs

again through Taylor expansion as described in [28]. They note that this can be interpreted
as a generalization of the update rule in CHOMP.
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GPMP achieves really good results, but similarly to CHOMP it can only be used if we have
access to the gradient of C(θ(t))obs, which may not be the case. We can condition the GP
on a fixed set of time-parameterized states, e.g. the first and last, to compute the posterior
mean at any time of interest.

Stochastic Gaussian Process Motion Planning (StochGPMP)

Stochastic GPMP (StochGPMP) [54] combines elements of STOMP and GPMP. StochGPMP
still uses the GP prior, but instead of updating a current trajectory with it, N trajectories
{τn}Nn=1 ∼ GP ((µ,K)) are sampled at each iteration. Just as in STOMP, the sampled
trajectories are then evaluated and the costs are combined into softmax weights:

wn =
exp (−(1/λ)C(τn))∑︁N
k=1 exp (−(1/λ)C(τk))

.

These weights are then used to update the mean of the proposal distribution (the GP)
with

µ← µ+ γ
N∑︂

n=0

wn(τn − µ).

The advantage is that costs do not have to be differentiable, while still making use of the
GP prior. This however takes longer to converge than GPMP, since it cannot simply follow
the gradient, but instead has to explore the space.

2.2 Priors for Motion Planning

The advantage of using prior knowledge in motion planning is obvious. If we have
already created many trajectories, why would we start from scratch when planning
another trajectory instead of using a more informed method to sample or initialize the
optimization. Below is a curated list of ways to incorporate better prior knowledge into
motion planning.
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2.2.1 Priors for Sampling-Based Motion Planning

Normally, sampling-based motion planners have to search the entire search space uniformly.
They always find a solution this way, but it can take a long time, especially if the dimensions
of the search space are very large. The hope is that we can use prior knowledge to reduce
the time it takes to find what we want to find.

Neural Motion Planning

The idea is not to sample a uniformly random point as in RRT, for example, but to learn a
conditioned one-step neural planner that outputs the next point. Previous work [38, 40,
39, 41, 57] uses dropout to ensure nondeterminism and generate more than one solution.

Bency et al. [2] trains an oracle network as a (multilayer) Long Short-Term Memory
(LSTM) [12] network for a given environment. At each planning step, the oracle network
takes the current state and the hidden state of the LSTM and generates the next point
to be queried. This idea is very close to [39], but without explicit use of an environment
encoder.

Strudel et al. [52] uses Reinforcement Lerning (RL) to learn a neural motion planning
policy based on environment observations in the form of point clouds, which are then
processed using a PointNet architecture [37] to create a feature vector of the end-effector’s
current local environment. However, since the planner is a policy that outputs the next
configuration, there may be failure cases where the agent gets stuck. They only show
experiments with a “robot” that is a free-floating object, leaving robot arms to do future
work.

Ichnowski et al. [14] uses Deep Learning to learn an initial trajectory to accelerate motion
planning when grasping an object. Their initial trajectory is used to initialize a sequential
quadratic programming (SQP) problem, as used in TrajOpt [48], and shows an order of
magnitude improvement.

Local Samplers

Chamzas et al. [3, 4] create local samplers for difficult regions of the configuration space,
such as narrow passages. Local primitives attempt to capture the features of the workspace
by decomposing the workspace into multiple regions (through an engineered solution).
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The local primitive associated with a local sampler in their work is a Gaussian mixture
model where each Gaussian has a fixed covariance and the categorical distribution is a
uniform distribution.

Optimal Sampling distribution

Cheng et al. [6] computes an optimal sampling distribution for use in a sampling-based
motion planner. The search space is a voxelized 3D grid where each voxel represents
the probability that this point belongs to a successful path, providing a basic heuristic
for adopting this point in a sampling-based planner such as RRT. They show results for a
robot with 31 degrees of freedom operating in a shelf environment. They learn a heuristic
basis function f : S → A, where S ⊆ R64642 is a 3D voxel map with 2 channels (state of
the robot, start and goal positions, and binary occupancy grid) and A ⊆ R10×10×10. f is a
ResNet-18 network. This gives only a rough representation of the environment.

Learned Rejection Sampling

Zhang et al. [62] learns rejection sampling distributions for sampling-based motion plan-
ning from experience by formulating the problem as a reinforcement learning problem.
The action space is 2-dimensional - accept or reject a point to add it to the tree.

Transformer Motion Planning

Johnson et al. [16] proposes Motion Planning Transformers. This is not a trajectory
generator, but rather a method for outputting a region in which to sample points for
RRT/IRRT. Problem with MPNET: “However, these approaches assume a fixed size of
the input environment map and often require redefinition of network architectures and
re-training for different map sizes.

2.2.2 Priors for Optimization-Based Motion Planning

There are many ways to use previous data to learn a prior distribution that supports
optimization-based motion planners. The question is which distribution we use to model
the prior and how useful it is as a prior for multi-modal high-dimensional data.
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Behavior Cloning (BC)

Several works use behavior cloning (BC), also known as learning from demonstration (LfD),
to encode trajectory priors [43, 22]. They fit a density model to a set of demonstrations
and then use them as priors for motion optimization, but they do not capture multiimodal
trajectories well in high-dimensional spaces.

Probabilistic Movement Primitives (ProMP)

Koert et al. [22] first learns a Probabilistic Movement Primitive (ProMP) [32] from human
demonstrations. In the presence of obstacles, it defines a cost for obstacle avoidance.
Then, the new parameters of the ProMP are computed (offline) such that the expected cost
under this distribution and the Kullback-Leibler divergence to the ProMP encoding the
demonstrations is minimized. This optimization is performed using Relative Entropy Policy
Search (REPS) [34]. Due to the ProMP, this method only encodes unimodal trajectory
distributions.

Energy Based Models (EBM)

Urain et al. [54] learned energy-based models (EBMs) that represent various costs. These
are easily combined and then used as costs for their Stochastic Gaussian Process Motion
Planning (StochGPMP) algorithm. They probably did not learn the trajectory as an EBM
because sampling from this EBM might be too difficult. Representing the entire trajectory
distribution with a single EBM could be difficult due to high dimensionality. [54].

In Implicit Behavioral Cloning [8] they use Autoregressive Derivative-Free Optimization,
where they have to construct one EBM per dimension and query one degree of freedom at
a time. From a philosophical point of view, this seems less coherent than simultaneously
sampling all degrees of freedom, although I have no data to confirm this. Their EBMs are
learned by (one-step) denoising, which is similar to score-based models. Also, their phase-
based EBMs do not encode temporal relationships between successive points, which can
lead to non-smooth trajectories. They counter this by using costs to smooth trajectories.
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Sampling on Constraint Manifolds

Ortiz-Haro et al. [31] learns to sample from a constraint manifold, by combining generative
models with local optimization to project to the constraint manifold. They use an image
representation to generalize to different numbers of objects (and obstacles) and shapes.
To scale to large problems, they explore factorization for sampling using a factor graph
formulation. Factorization helps to sample from a distribution with disconnected supports.
It is unclear if this problem only occurs for GANs, or it also occurs for SBMs.

2.3 Pointcloud Encoder

There are many ways to process 3D data. Voxelization or rendering is often used, but a
simpler representation is a point cloud. A point cloud is an unordered list of points that
can be returned from 3D sensors such as lidar. In the future work chapter 6 I will refer to
some of this.

2.3.1 PointNet

The motivation for PointNet [37] was to have a deep-net architecture that uses a raw
point cloud as input, rather than voxelization or rendering. The architecture aims to
process unordered points that can interact with each other while being invariant to certain
transformations such as rotations and translations. This is desirable because the point
cloud of a cup should still be classified as such even if it is lying on its side. PointNet
applies input and feature transformations, mixed with some Multi Layer Perceptron (MLP)
layers in between. The global features of the point cloud can be extracted after applying a
max-pool layer.

2.3.2 Dynamic Graph CNN (DGCNN)

Dynamic Graph CNN (DGCNN) [58] seeks to enrich pointcloud networks with insights
from CNNs for image analysis. To this end, Wang et al. [58] has introduced EdgeConv,
which uses a local neighborhood graph to apply localized convolution-like operations
similar to a neural graph network. This neighborhood changes after each layer of the
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network so that the proximity in the feature space is different from the proximity in the
input space, making this a non-local operation.

2.3.3 Vector Neural Networks (VNN)

Vector Neural Network (VNN) [7] aims to be a lightweight framework for building SO(3)
equivariant and invariant point cloud networks. The main change compared to PointNet
is the use of vector neurons (VN), replacing scalar neurons with 3-vector neurons. They
also introduce a learned generalization of ReLU that can handle 3D inputs. Instead of
activating over 0, as ReLU does, their nonlinearity learns a direction k that it can use to
check whether the input feature q is in the half-space defined by k. Since Vector Neurons
are a general framework, they can be used in any number of existing architectures.

Using the VN framework, Deng et al. [7] have shown that extending the architecture of
other pointcloud networks, such as Pointnet and DGCNN, with VNs makes them more
robust to rotations and permutations.

2.4 Deep Signed Distance Functions (SDF)

Signed Distance Functions (SDF)1 are commonly used in motion planning, e.g. CHOMP,
GPMP. SDFs are functions that map a coordinate in a given environment to the shortest
distance to the object for which the SDF applies. The distance can be, for example, to
obstacles in an environment or to a single object that we want to represent by a continuous
function. Values inside obstacles/objects are negative and represent the shortest distance
to a boundary, hence the "Signed" in Signed Distance Function.

In Power and Berenson [36], a Signed distance field is used as input to a variational
encoder. The generated latent vector is then used to condition a normalization flow to
produce a control sequence. Like many other approaches, this approach assumes that the
SDF is accessible to the environment it represents. There are approaches to generating
an SDF from another environment representation such as a point cloud. Deep SDF [33]
models an SDF as an implicit continuous function represented by a learned deep network.
This network is learned based on probabilistic autodecoders. They focus on creating the
highest quality SDF possible for individual objects rather than environments.

1SDF often refers to Signed Distance Fields, which are the output of the Signed Distance Function
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Ortiz et al. [30] focuses on creating full SDFs of large scenes in real time. Their system,
iSDF, uses a stream of posed depth images captured by a moving camera. The SDF itself
is modeled by a multilayer perceptron (MLP) that maps a 3D coordinate to the signed
distance value at that point. This approach is useful for an agent that is dropped into a
new environment and needs to explore it.

Neural descriptor fields [49] are an approach to encode both points and relative poses
between an object and a target. They use an occupancy network that takes both an object
point cloud and a query point as input. The features after each layer are linked together to
produce a combined feature vector. To construct the full neural pose descriptor field, many
points from a query point cloud are passed as query points, and the resulting features are
concatenated again.

SDFs can be used in many ways. One of the main uses is to apply their gradient during
planning or fine tuning to push trajectories away from obstacles.

In chapter 6, you will also see a way to use the SDF loss function to generate features that
encode the environment for use in other methods.
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3 Score-Based Models as Trajectory
Generative Models

Several generativemodeling techniques such as Generative Adversarial Networks (GAN) [10],
Variational Auto Encoders (VAE) [21], and Normalizing Flows (NFs) [45] are trained to
maximize the log-likelihood of the data, and sampling is performed by applying deter-
ministic transformations to a random variant of a simple distribution. Instead, SBMs are
implicit models [13, 56, 50] that perturb the data with diffusion and learn to reconstruct
it by denoising using the score function-the gradient of the log-likelihood w.r.t. of the
input. The sampling is done by iteratively transforming a sample from a simple distri-
bution according to the (parameterized) score function sθ(τt, t) ≈ ∇τt log p(τt, t), where
t ∈ [0, 1] is the time of the denoising step.

The goal is to move an initial noisy sample τ1 to a sample from the data distribution τ0.
SBMs can be trained with Denoising Score Matching (DSM) by minimizing

Lscore(θ) = Eτ∼p(τ ),t∼U(0,T )

[︁
λ(t)Eτt∼p(τt|τ ,t)

[︁
∥sθ(τt, t)−∇τt log p(τt|τ , t)∥2

]︁]︁
, (3.1)

where p(τt|τ , t) = N
(︁
τt; τ , σ

2(t)I
)︁
is the density of the perturbed trajectory at time t,

λ(t) = (a2t − 1)/(2 log a) and σ(t) =
√︁

λ(t). This loss is an adapted form of the one in
Song et al. [51] to fit trajectories. In [15] a discrete-time denoising diffusion probabilistic
model is used instead [11], but from now on I will refer only to the former setup.

3.1 Motion Planning as Inference

Let s ∈ S ⊆ Rd encode the state of a robot (agent) and its environment. In motion plan-
ning, a trajectory is represented in discrete-time with horizon H as a sequence of states
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Figure 3.1: Architecture of the basic SBM setup. The task embeddings are used to con-
dition the SBM and are usually the start and goal positions of the trajectory,
but can also be e.g. text or images. The score model is implemented as a
temporal U-net conditioned on context encodings.

τ ≜ (s1, . . . , sH) ∈ RH×d. It is common to optimize τ given a context C, which can include
an occupancymap, obstacle locations, start and final positions, etc. Optimization-basedmo-
tion planning formulates the problem as trajectory optimization τ ∗ = argminτ

∑︁
i ci(τ , C),

where ci are different costs related to trajectory smoothness, obstacle avoidance or goal
reaching [54]. The connection between trajectory optimization and probabilistic inference
is well established [1, 53, 27, 35, 60, 59]. Following the notation in [15], the proba-
bility of a trajectory (a random variable) factorizes (up to a normalizing constant) as
p̃(τ |C) ∝ p(τ |C)h(τ |C), where p(τ |C) is a prior distribution (that will be will be learned
from data) and h(τ |C) is a task-specific distribution, e.g. a delta distribution for the start-
ing state of the trajectory. Trajectory optimization computes the maximum-a-posteriori
solution τ ∗ = argmaxτ log p̃(τ |C).
On the other hand, in inference we sample from p̃(τ |C), which allows us to get multiple
solutions. Langevin dynamics [61] is a common approach to sample from p̃, for which we
need ∇τ log p̃(τ |C) = ∇τ log p(τ |C) +∇τh(τ |C). I will approximate the gradient of the
log-prior distribution of trajectories with a conditioned SBM sθ(τ , c) ≈ ∇τ log p(τ |C).
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3.2 Conditioned Score-Based Generator for Collision-Free
Trajectories

Given a dataset of task features g (e.g. initial and final positions) and collision free
trajectories D = {(τ i, gi)}Ni=1, I model a conditional distribution p(τ |c).
A context embedding c = cθ(g), is used as a conditioning variable for the SBM. For the
experiments I learn an implicit representation of p(τ |c) by modelling a conditioned score
function sθ(τt, t, c) ≈ ∇τt log p(τt, t|c), implemented as a conditional temporal U-Net.
The network architecture uses the Diffuser from [15] as an unconditional model, with the
addition of conditioning at the end of each temporal residual block of the U-Net, similar
to [46]. Here the conditioning can be done through a cross-attention mechanism. This
increased performance a lot dependent on the setting.

3.2.1 Learning Score Model

The Score model can be learned using collision free-trajectories and the corresponding
context. For this we have to optimize the score loss

Lscore(θ) = Eτ ,g∼DEt

[︁
λ(t)Eτt

[︁
∥sθ(τt, t, cθ(g))−∇τt log p(τt|τ , t)∥2

]︁]︁
. (3.2)

Following [51, 46], the context encoder cθ and the conditioned SBM sθ are jointly trained.
As you will see in chapter 6 I did experiment with including environment features to
generalise to different environments. Any time you see something like that, the feature
encoders have been trained separately, which simplifies training and also just worked
better. Also, this solution is modular, allowing the use of other types of pre-trained modules
needed for robotics without retraining everything, e.g. one could use dense object features
to create movements conditioned on a particular object. The context encoder cθ is still
trained jointly with the SBM every time.

3.2.2 Trajectory Generation

Once we have the SBM, we now have to use it to sample trajectories with it. Given a new
task we compute the context vector c. To generate trajectories we solve a reverse-time
Stochastic Differential Equation (SDE) as described in [51]. What I use for all experiments
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Figure 3.2: A visualisation of how denoising works with an SBM. The left image is ran-
dom Gaussian noise. The noisy samples are increasingly denoised by many
incremental steps until we get to the desired distribution.

however is an Ordinary Differential Equation (ODE) solver that is very similar but omits
adding noise. According to Chen et al. [5] since the score is calculated by a Neural
Network, this makes this a neural ODE. Using this neural ODE setup the sampling is faster
than using something like Langevian dynamics where noise is added at every step. From
my experience it also seemed like the ODE produces smoother trajectories than the SDE.

τt−∆t = τt + a2tsθ(τt, t, c)∆t

In practice, I sample a noisy trajectory τ1 ∼ N
(︁
0, 0.5(a2 − 1)I

)︁
and iteratively run τt−∆t =

τta
2tsθ(τt, t, c)∆t, where ∆t is a time discretization (in our case often ∆t = 1/25) and

a = 2. As a side-note if we wanted to change this to an SDE formulation, we would have
to add the noise factor at

√
∆tz with z ∼ N (0, I) as well.

You can see a visualisation of what trajectories at different steps in the denoising process
look like in figure 3.2.

There are two engineered improvements I made to the sampling. The first is to not use
a linear time scale, but an exponential one. the second is to add a couple deterministic
steps at the end with t = 0, which really seems to make a huge difference. Both aim to do
more iterations where the noise scale is low in order to have very smooth trajectories.
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3.2.3 Integrating Environment Contexts

In order for a SBM to generalise to different environments we can add different features
contexts as well. We can for example encode environment point clouds using Vector
Neuron Networks (VNN) [7] to gain contexts. This is very simple to integrate since it
is simply another input into the context encoder. I do not investigate this further in the
experiments, but there is a section in chapter 6 where I talk a bit more about my experience
with this.

3.3 Integrating Score-Based Models Into GPMP

GPMP and StochGPMP have been used in [54] where something similar to an SBM has
been used as a cost factor in addition to other costs like obstacle avoidance. These costs
are then used to modify an initial trajectory distribution of GPMP, in a MPPI like manner.
Since I also approximate a score function I could have combined an SBM with GPMP in a
very similar way as well. I decided to research another direction though. I use an SBM to
generate a better initial trajectory distribution that can then be used to initialize the GP
distribution of StochGPMP. In practice this is done by sampling K trajectories from an
SBM an using those as initial means for StochGPMP.

20



4 Experiments

For all of the following experiments, I use variations of the architecture shown in Figure
3.1. The only differences may be in the network size or the number of sampling steps, but
these are consistent in each experiment.

SBMs are expected to model high-dimensional data very well. For this reason, we model
entire trajectories and not just individual steps. Theoretically, this means that the sampling
time is constant, regardless of the dimension of the environment.

Environments In this chapter we will use environments with two different numbers of
dimensions. The first one is 2D. These environments are very easy to visualize, so we can
explain many relevant concepts using these environments. The second is 3D, which is
the same environment as 2D but extended in the z direction. Most motion planners take
longer in higher dimensions, and we hope that SBM scales well and does not have this
drawback.

See the Future Work chapter 6 for some preliminary results for a 7D Franka-Panda
simulation.

Data Acquisition The data used in the following experiments comes from one of two
sources. Either from RRT* or from GPMP. I will note which source was used in each
experiment. There are a number of reasons to prefer one source over the other in a given
situation. The main advantage of RRT* in off-line data generation for training an SBM is
that although RRT* approaches the optimal solution given enough time, it can easily be
stopped early to obtain less optimal but multimodal data. I tried to use RRT connect to
generate training data, but it turned out that the quality of the data was not high enough
to properly train the score model. That is, the data was not nearly smooth enough.
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The other main method used is GPMP. This method was necessary because RRT* becomes
simply unacceptably slow for 7D data. However, an experiment in 2D illustrates a disad-
vantage of using GPMP. GPMP tends to collapse to a single mean value. This is not a bad
thing in itself, but a major advantage of SBMs is their ability to model multi-modal data,
so to show this we would really like multi-modal data to model. As you will see, there are
still multiple modes in this data, but not as many as if it had been generated with RRT*.

In summary, RRT* is preferable to GPMP for data generation, but it cannot be applied
everywhere.

Data Preprocessing In 2D and 3D, the data are generated already normalized between
-1 and 1. In the case of the Panda environment, the trajectories are generated in joint
space, within the radius limits of the robot’s joints. Again, normalizing the data to -1 and
1 seems to be very helpful for training, so I did that for training as well. Since I wanted
to train the SBM with different trajectory lengths, I also apply a B-spline when loading
the data. This also increases smoothness and fixes the distance between all points in the
trajectory.

Baselines The baselines I look at are RRT connect, RRT* [23] and StochGPMP. All
have different strengths, but also some weaknesses. RRT connect is very fast in low
dimensional settings, but slows down as the dimension increases. It also produces very
choppy trajectories that are often not very close to the optimal solution. RRT* is notoriously
slow, but as the number of iterations approaches infinity, RRT* approaches the optimal
solution. Both RRT variants are designed so that no generated trajectories collide, and
both are difficult to scale due to their sequential nature. StochGPMP is the final basic
variant that I will try to outperform and improve upon. It has the advantage of enforcing
smoothness and simultaneously computing multiple solutions in parallel on the GPU. It
does not have access to the gradient of the environment and therefore must explore the
space randomly. This can work quite well if the environment is simple enough, but as we
will see later, it becomes really unreliable and slow in more difficult environments.

Standalone SBMs Since I want to study SBMs in different environments, you will always
find statistics on the performance of a stand-alone SBM for each of the experiments. I
also explore how to incorporate the gradient of the SDF into the sampling process, as
described in Chapter 3. As you will see, the SBM is able to enforce smoothness quite well,
which may be due to the splines used in the data preprocessing.
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(a) 2D grid environment. The SBM for this environ-
ment has been trained on GPMP generated data
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(b) 2D narrow passage environment. The SBM for this
environment has been trained on RRT* generated
data.

Figure 4.1: Two 2D motion-planning environments. The grey areas are obstacles to be
avoided.

StochGPMP Priors There are two priors that I consider and compare in the experiments.
Both have the goal of improving the trajectories in some way while reducing the sampling
time through better initialization. The first idea is to use RRT connect to generate an
initial collision-free trajectory, which is then smoothed by StochGPMP. The second idea,
of course, is to use an SBM as a prior. However, the motivation is different. I expect an
SBM to already generate a smooth trajectory since it is trained on smooth data, but it
does not check for collisions at all. So the task of StochGPMP is essentially to take a good
trajectory and slightly perturb it so that it is also collision free.

Metrics There are five metrics that I analyze for each of the methods. The first is the
sampling time in seconds. Since some of these methods can run well in parallel and
others like RRT cannot, the times describe the time it takes to obtain a sample or batch of
samples depending on the method. This may seem like an unfair advantage for RRT, but
this is a limitation of the hardware, and there could easily be a system running 100 RRT
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algorithms simultaneously, which would have the same time result. StochGPMP is a bit of
a special case here. It uses 100 particles at once, resulting in 100 samples. This algorithm
doesn’t make much sense when running with just a single particle, but StochGPMP slows
down when more particles are involved. The time of SBM is completely independent of
the number of samples, since the inference is performed in parallel on the GPU.

The second and third metrics used are percentage of collision-free samples and collision
intensity, which is the average percentage of steps in collision. The former tells how many
out of 100 trajectories are expected to be collision-free, while the latter tells how severe
the collisions are on average. If the collision intensity is very low, many of the collided
trajectories can be saved by changing a few points.

The fourth metric is the distance along the trajectory. The shorter the better in general,
but if there are many collisions, this metric loses its value. We can easily imagine a
degenerate case where the start and finish are connected by a straight line. This would
give the smallest possible distance, but the solution would be essentially useless if there
are obstacles in the way.

The last metric is the inverse cosine similarity. It is calculated pairwise between consec-
utive points. This metric tells us if there are many drastic changes in the direction of the
velocity. In many of the following tables, you will see a red entry in this column for the
RRT prior StochGPMP case. The reason this value is red is because it is misleading and
does not measure what we want. When we use an RRT trajectory as a prior, we need to
interpolate it to increase or decrease the number of points describing the entire trajectory.
This is simply a requirement of StochGPMP that all trajectories have the same length H.

Since RRT generates connect long straight lines, the pairwise cosine similarity metric for
most points in the interpolated trajectory will be 0.

4.1 2D Grid Environment

This environment, as shown in Figure 4.1a, is quite simple in terms of planning difficulty.
There are many straight and wide corridors, which is very beneficial for any RRT algorithm
since it is very likely to find a point that can be connected to the tree.

Both the RRT baselines and the StochGPMP baseline are shown in figures 4.2a and 4.2b,
respectively. In terms of quality, this is an environment where the baselines can really
shine.
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(a) RRT connect (blue) and RRT* (orange). Notice
how RRT* finds way more optimal and smooother
paths that RRT connect.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) StochGPMP run without a specific prior with (red)
and without collision (green).

Figure 4.2: Baselines in 2D grid environment. Both sampling based baselines in 4.2a do
not generate samples in collision. The optimization based baseline in 4.2b
can create trajectories in collision.

For better or worse, RRT connect shows the ability to find many different paths. In this
particular example, many samples take a very direct path that leads all the way to the
right and then all the way up to the destination. This behavior is to be expected from
RRT connect. Another behavior we expect from RRT connect is that it simply finds any
connection between two points. This leads, as can be clearly seen in Figure 4.2a, to many
sharp turns, often followed by very long straight lines. For a robot agent, a gradual change
in velocity would be much better.

RRT*, like RRT connect, is capable of finding multiple paths to the goal. However, the
modes found are arguably more useful for planning, since all modes seem to be reasonable
paths to the destination. This behavior is also to be expected as RRT* converges to the
optimal solution, meaning that given enough time, all modes will converge to a single
optimal trajectory. In any case, these trajectories are much more practical for use with a
robot. The trajectories exhibit far less extreme velocity changes.
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StochGPMP also copes quite well with this environment. This baseline, unlike the two
RRT baselines, can generate trajectories that are in collision. As can be seen in the Figure
4.2b, many of the trajectories are collision-free, but many are also in collision. The modes
discovered by StochGPMP look similar to those found by RRT*. Since StochGPMP enforces
smoothness, the trajectories are also fairly smooth. There are some outliers, but most
have no jumps in velocity.
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(a) SBM sampled trajectories with (red) and without
collision (green).
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(b) SBM+SDF sampled trajectories with (red) and
without collision (green).

Figure 4.3: Here you see the effects of including the SDF into the sampling process of an
SBM. Since SBMs do not enforce reduction of collisions at at, simply adding
that as a separate gradient drastically decreases collision.

In Figure 4.3a you can see trajectories sampled with a standalone SBM. One thing that is
really obvious is that the trajectories appear to have few modes. This is most likely due
to the source of the training data in this environment. The training data here is from a
GPMP. GPMPs tend to collapse to a few modes, so an SBM trained on GPMP data will
learn the presented distribution of trajectories. As we will see in the next section, for data
with more modes, the SBM is able to produce multi-model data just as well.

Since the training data were splines, the trajectories are very smooth and have virtually
no jumps in velocity. However, there are many samples that collide, since there is nothing
to force obstacle avoidance.
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Figure 4.4: StochGPMP with two different priors. SBM prior in (orange) and RRT connect
prior (blue). RRT connect already produces collisoin free trajectories, so there
are few collision signals for StochGPMP to work with. With the SBM prior
we gain the advantages of the smooth prior and the collision checking of
StochGPMP

One way to combat these collisions is to include other gradients in the sampling process,
as described in 3.1. The effects of applying the SDF gradient during sampling can be seen
in Figure 4.3b. Far fewer samples collide, while the smoothness looks very similar.

Of course, this only works if we have access to the gradient of the SDF, which is not always
the case. The last point to explore is the use of SBM samples as priors for StochGPMP.

In Figure 4.4 you can see the comparison of the execution of StochGPMP with two different
priors. RRT connect and the SBM prior. The reason why RRT connect might conceptually
be an interesting alternative prior is that it is fast and produces collision-free trajectories.
However, just by visual inspection we can see that this is not true. Since RRT connect does
not generate any collision-ridden trajectories, there is simply not enough cost signals for
StochGPMP to improve upon. However, the trajectories sampled with the SBM prior show
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very good results. In this example, there are no colliding trajectories, but this method can
still produce colliding trajectories. The trajectories are also very smooth.

4.1.1 Statistical Data

In this section I will continuously refer to table 4.1 in which you can find the results for all
the metrics in this environment.

Sampling Time

In this environment, the RRT Connect baseline is basically unbeatable. In reality, of
course, it’s a little over 0.00, but not by much. The other two baselines are quite slow in
comparison. Both take several seconds to complete. However, for reasons explained in
the next sections, these two are the main competitors for the SBM. The sampling time of
the SBM and the SBM combined with the SDF gradient is basically identical. The only
difference is due to variations in hardware performance. Other than that, both are the
next fastest options in this comparison after RRT connect. This is followed by both versions
of StochGPMP using a prior. The sampling time for the StochGPMP portion is the same for
both the SBM and RRT priors, but since RRT is faster than SBM, so is StochGPMP when
RRT is used as a prior. Both prior versions are significantly faster than the standalone
StochGPMP, as they both require much fewer iterations to produce good samples.

Collisions

Both RRT baselines achieve perfect results in this regard, since they cannot create colliding
trajectories. StochGPMP is a far more interesting baseline to compare to. Since it is an
optimization-based motion planner, it is expected that many of the trajectories will collide
in non-trivial environments. In this environment, StochGPMP performs quite well in terms
of the number of collision-free trajectories. However, there is a large variance here, as the
difficulty of the contexts tested varies widely. However, a look at the collision intensity
shows that larger parts of the trajectories are in collision for StochGPMP than for all other
methods.

Using SBM alone results in trajectories that are collision free more often. But when they
collide, the collision intensity is a lot lower than StochGPMP. This can be drastically im-
proved by adding the gradient of the SDF during sampling or some StochGPMP steps after
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Sampling
Time (s)

Collision
Free (%)

↑

Collision
Intensity

(%)
Distance Cosine

Sim

RRT connect 0.00
±0.00

100.00
±0.00

0.00
±0.00

1.71
±0.60

0.76
±0.42

RRT* 11.34
±0.58

100.00
±0.00

0.00
±0.00

1.48
±0.18

0.06
±0.02

StochGPMP 7.10
±0.10

72.46
±22.6

1.78
±1.57

1.56
±0.37

0.09
±0.03

SBM 0.28
±0.02

79.97
±27.97

0.81
±1.71

1.47
±0.40

0.07
±0.04

SBM+SDF 0.26
±0.00

94.5
±14.79

0.22
±0.76

1.50
±0.43

0.07
±0.04

SBM Prior +
StochGPMP

1.00
±0.23

93.43
±17.07

0.23
±0.75

1.47
±0.40

0.07
±0.05

RRT Prior +
StochGPMP

0.72
±0.02

93.99
±6.55

0.11
±0.12

1.70
±0.60

0.03
±0.01

Table 4.1: Different metrics and methods in the 2D grid environment. All derived from
100 different contexts (start and goal positions) with 100 sampled trajectories
each. This environment has lots of straight lines, which is quite advantageous
for all variants of RRT.
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sampling. Both lead to similarly good results with about 94% collision-free trajectories.
The collision intensity is also very low for both. The RRT prior we tested achieves similarly
good results in these metrics, but is worse than the standalone prior in both cases.

Distance

Distance is a metric with no big surprises. The best in the baselines is RRT*, followed by
StochGPMP. RRT connect generates the longest paths on average of all methods tested.

SBM produces very similar results to RRT* in this metric on average, but the standard
deviation is higher, meaning that some trajectories are quite a bit longer. Adding the
gradient of the SDF during sampling increases the average distance a bit, which can be
explained by the gradients pushing the trajectory further away from the obstacles.

Running StochGPMP steps with the SBM prior gives the same length as sampling the SBM
alone. This means that using the SBM prior reduces the distance for StochGPMP in this
environment.

The RRT prior is basically the same as using RRT connect, which is not very good.

Smoothness

The cosine similarity I use here is 0 when there is no change in direction between two
successive accelerations. This means that lower values are desirable because the signals to
a robot controller would be more stable.

RRT* is the best baseline for this metric, followed by StochGPMP. RRT connect is by far
the worst, so it is not suitable for real robot systems.

As mentioned earlier, this metric is unreliable for the RRT priority case. All SBM methods
basically achieve exactly the same results and are only slightly behind RRT*.
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Conclusion

All baselines have their weaknesses and advantages. RRT connect is fast, but very choppy
and produces long trajectories. RRT* fixes both flaws of RRT connect, but takes a lot of
time, especially in higher dimensions. StochGPMP is slightly faster than RRT*, but it is not
guaranteed to generate trajectories without collisions. Using RRT connect as a prior for
StochGPMP seems rather pointless in this environment, since StochGPMP only degrades
the prior trajectories by perturbing them in positions that are now in collision.

The standalone SBM already outperforms StochGPMP in every single metric. Some are
only minor improvements, but a really big jump occurs in sampling time. The real value of
the SBM comes when it is used either in conjunction with additional gradients or as a prior
to StochGPMP. Both perform better than all baselines when all metrics are considered.
The generated trajectories are smooth, short, and have few and short collisions, while the
sampling times are low. These results suggest that it is best to use the gradient of the SDF
when it is available. When it is not, using the SBM as a prior for StochGPMP produces
similar results with only slightly higher computation time.

4.2 2D Narrow Passages Environment

In the previous section we looked at an example where planners like RRT and StochGPMP
perform really well. Although using an SBM in this environment is already very useful,
there are also environments where traditional planners struggle, while an SBM is able to
generate trajectories in these environments just as well.

An example where this is the case can be seen in Figure 4.1b. Instead of a grid, this
environment has very narrow passages that are not horizontally aligned. In order for RRT
to find a path from left to right, very specific points must be randomly sampled, while
StochGPMP basically fails because the collision cost is not very helpful in this environment.

As in the previous section, you can see some baseline trajectories in Figure 4.5. Both RRT
variants work exactly as expected. RRT* generates multi-modal trajectories, but many
more samples are generated in the shortest possible path region. Long sections of the
trajectories generated by RRT connect are very close to the wall. This is expected behavior,
but not good when generating a path for a robot to follow, as we prefer to keep distance
from obstacles for safety reasons.

31



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) RRT connect (blue) and RRT* (orange). Notice
how RRT* finds way more optimal and smooother
paths that RRT connect.
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(b) StochGPMP run without a specific prior with (red)
and without collision (green).

Figure 4.5: Baselines in the 2D narrow passages environment. Both sampling based
baselines in 4.5a do not generate samples in collision. StochGPMP in 4.5b
finds barely any solutions.

As can be seen in Figure 4.5b, StochGPMP is barely able to generate collision-free tra-
jectories in this environment. With enough time and care in fine-tuning the parameters,
StochGPMP should perform better, but using the same setup as before with a more difficult
environment leads to very undesirable behavior.

In Figure 4.6a you can see how the trajectories sampled by a SBM look like in this
environment. This time, the SBM was trained with data generated by RRT*, which was
terminated a little earlier to generate multi-modal data. This enables the SBM to find
many solutions with different modes.

By adding the gradient of the SDF during sampling, the number of collision-free trajectories
can be increased again, as can be seen in Figure 4.6b. It should be noted that the
indiscriminate addition of the gradient of the SDF results in the start and goal points not
being reached. However, this is merely a matter of removing or fine-tuning the influence
of the gradient at these points.
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(a) SBM sampled trajectories with (red) and without
collision (green).
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(b) SBM+SDF sampled trajectories with (red) and
without collision (green).

Figure 4.6: Just as in the previous environment, applying the gradient of the SDF de-
creases the number of trajectories in collision.

In Figure 4.7 you can see a comparison between the use of an RRT connect and an SBM
prior for StochGPMP. Again, the RRT prior results in very choppy trajectories. However, it
restores more modes. The SBM prior leads to very smooth trajectories. There are very few
collisions in either set of trajectories.

4.2.1 Statistical Data

The data for this subsection can be seen in Table 4.2. We consider the same metrics as
before, but keep in mind that the models and parameters used here may vary between
environments.

Sampling Time

RRT connect still takes hardly any time. RRT* still takes about the same amount of
time, since it terminates after a fixed number of nodes have been added to its tree. But
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Sampling
Time (s)

Collision
Free (%)

↑

Collision
Intensity

(%)
Distance Cosine

Sim

RRT connect 0.02
±0.03

100.00
±0.00

0.00
±0.00

2.01
±0.97

0.88
±0.48

RRT* 11.8
±1.20

100.00
±0.00

0.00
±0.00

1.70
±0.32

0.19
±0.21

StochGPMP 23.89
±0.06

22.81
±17.26

3.49
±0.75

4.02
±0.25

0.25
±0.32

SBM 0.37
±0.03

73.86
±32.69

1.37
±2.97

1.66
±0.89

0.17
±0.33

SBM+SDF 0.35
±0.01

93.80
±16.05

0.27
±0.93

1.79
±0.96

0.22
±0.43

SBM Prior +
StochGPMP

2.79
±0.23

97.36
±8.89

0.15
±0.69

1.71
±0.89

0.14
±0.24

RRT Prior +
StochGPMP

2.44
±0.04

95.15
±9.30

0.07
±0.15

2.00
±0.98

0.02
±0.01

Table 4.2: Statistics for the second 2D environment. Since the passages are so narrow,
times for all methods increase. Most notable for StochGPMP, which is where
we really see the speed advantage of using a better prior.
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Figure 4.7: StochGPMP with two different priors. SBM prior in (orange) and RRT connect
prior (blue). Like in the previous environment, using RRT connect as a prior
results in jittery trajectories, while using SBM as a prior results in very smooth
trajectories with few collisions.

StochGPMP takes much longer to generate trajectories than in the previous experiment.
This shows that StochGPMP must be used judiciously. The parameters and the number of
iterations have to be evaluated manually and changed according to the circumstances.

Apart from RRT connect, by far the fastest methods are pure SBM and SBM combined
with the SDF gradient. They require essentially the same time because they are sampled
with the same number of diffusion steps. The small differences in time must be due to
computational variance.

Both StochGPMP versions with priors take slightly more time than in the previous envi-
ronment, but they are much faster than running StochGPMP alone.
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Collisions

Again, RRT does not produce collision-free trajectories, but StochGPMP does, and quite
a lot at that. In this environment, StochGPMP produces less than 23% collision-free
trajectories on average. The collision intensity is also very high, meaning that the collisions
are probably not just due to too-tight turns, but really bad trajectories are being generated.

Looking at the SBM models, we see that even the stand-alone SBM significantly outper-
forms StochGPMP in terms of collision-free trajectories and collision intensity. However,
when combined with the gradient of the SDF, the performance increases dramatically
again. Over 93% of the trajectories are collision free and the collision intensity is tiny.
Even better results are obtained with the StochGPMPs with priors. The StochGPMP using
the SBM prior achieves over 97% collision-free trajectories with an even lower collision
intensity. The StochGPMP using the RRT prior also performs very well in terms of collision-
free trajectories, but worse than pure RRT connect, so there seems to be no reason to use
RRT as a prior here.

Distance

The distance of RRT* is the shortest among the baselines, followed by RRT connect. It is
possible that RRT* would have needed a bit more time to achieve even shorter distances.
By far the worst with a distance twice as long as RRT connect is StochGPMP. The reason
for this is the uninformed random nature of the exploration in StochGPMP, which results
in long paths that are in collision most of the time.

The method that produces the shortest distances on average is standalone SBM, which
outperforms even RRT*. This is closely followed by the SDF gradient version and the
StochGPMP with the SBM prior. It is to be expected that the SDF version results in
trajectories that are slightly longer than pure SBM trajectories, since they are pushed away
from obstacles. Nevertheless, all SBM versions are at least very close to or exceed RRT*.

Of course, the StochGPMP with RRT prior offers only a slight improvement over the
standalone RRT connect again.
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Smoothness

So, there is much more variance in the cosine similarity than in the other environment.
The reason for this is quite simple. When the start and finish positions are in the same
section between the columns, the line is fairly straight and the cosine similarity is low,
while it is higher when the planner has to navigate through one or more narrow passages.
The cosine similarity is also generally higher, which is to be expected since more directional
changes are required to navigate in such a difficult environment.

Apart from the fact that RRT connect performs poorly and that the RRT prior StochGPMP
value cannot be trusted, there is not much more to say on this topic. All results are similarly
good.

Conclusion

In a tricky environment like this one the value of reusing previously generated trajectories
becomes apparent. If it is really easy to plan a path then why even bother with SBMs?
Well here it takes considerable effort and time to plan a path between two positions. The
statistics show were created by randomly sampling start and goal positions randomly and
they capture the average between those. If we consider the visual results in figures 4.5b,
4.6a, and 4.7 it is easy to see that especially for long tricky paths, a good initialisation can
have huge impact on the quality of the samples.

Besides sample quality the time it takes to sample in the environment is probably the
biggest motivation to use SBMs as a prior or in conjunction with other gradients.

In a tricky environment like this one, the value of reusing previously generated trajectories
becomes apparent. If it’s really easy to plan a path, why bother with SBMs at all? Well,
in this environment, planning a path between two positions is very tedious and time
consuming. The statistics shown were created by randomly selecting start and finish
positions and show the average between those positions. Looking at the visual results in
Figures 4.5b, 4.6a, and 4.7, it is easy to see that especially for long, tricky paths, good
initialization can have a huge impact on sample quality.

In addition to sample quality, the time required to sample the environment is probably
the biggest motivation for using SBMs as a prior or in conjunction with other gradients.
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4.3 3D Narrow Passages Environment

In this section we will look at the ability of SBMs to scale to higher dimensions. The
environment we are considering is a 3D environment that mimics the 2D environment in
Figure 4.1b. The difference, of course, is that there is a third dimension. This is visualized
in Figure 4.8.

Many motion planners have difficulty with higher dimensions, so it is worth investigating
how SBMs respond to higher degrees of freedom. We consider a drone that can fly freely
in a 3D space.

Figure 4.8: 3D version of the 2D environment in Figure 4.1b. The walls stretch from side
to side, so to go from left to right, a trajectory must be planned to go through
the narrow passages again.

Looking at the baselines in Figure 4.9, we can see that RRT baselines perform just as
well as before in 2D. StochGPMP struggles even more and cannot find a single collision-
free trajectory for the given start and target positions. This context is among the most
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(a) RRT connect (blue) and RRT* (orange).
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(b) StochGPMP run without a specific prior. All tra-
jectories are in collision in this context.

Figure 4.9: Baselines in the 3D narrow passages environment. The x axis describes
the horizon H . The x and y positions are the same as in the second 2D
environment experiment.

difficult possible, and with enough steps and more fine-tuning, it would eventually find a
collision-free path.

In Figure 4.9a, we can see that there is some multi-modality in the second dof. This is
what we expect because the context is the same as in the 2D case, with the addition of a
third dimension as the start and finish. Again, RRT* produces rather smooth trajectories
compared to RRT connect.

In Figure 4.10a you can see some samples generated with a SBM. Just like in the previous
experiment, the trajectories look smooth and show that the model is able to learn multi-
modal trajectory distributions. There are also quite a few trajectories that are in collision.
A look at Figure 4.10b shows once again that the inclusion of the gradient of the SDF
during sampling reduces the number of collisions while maintaining smoothness. The
StochGPMP versions with a prior, shown in Figure 4.11, show a similar picture to the
2D experiments. The RRT connect prior appears to be rather useless, while the SBM prior
reduces the number of collisions just like the inclusion of the SDF gradient does.
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(a) SBM sampled trajectories with (red) and without
collision (green).
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(b) SBM+SDF sampled trajectories with (red) and
without collision (green).

Figure 4.10: As expected, including the gradient of the SDF in sampling decreases the
number of trajectories in collision.
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Figure 4.11: StochGPMPwith two different priors. SBM prior in (orange) and RRT connect
prior (blue). The SBM prior improves the performance of StochGPMP a lot,
especially compared to using RRT connect as a prior.
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4.3.1 Statistical Data

Increasing the number of dimensions significantly increases the search space for RRT
motion planners as well as for StochGPMP. This is also the case for most other planners.
This is reflected in the data. RRT connect and RRT* become very slow, especially RRT*
though. RRT connect still takes the least time, but much longer than in 2D. StochGPMP
is executed with a fixed number of steps. In this environment it might have made more
sense to use more steps, but then of course the time increases.

Sampling Time

Using the SBM now takes only twice as long as RRT connect. And that is crucial. The time
required to sample an SBM scales very slowly with the dof, and only when the number
of sampling steps or the network size changes. In this case, since we were able to use
the same network and the same number of sampling steps, the time remains constant.
Adding the gradient of the SDF takes much longer, but this should be neglected as it is
due to a weak implementation of the SDF calculation. The time difference between using
RRT as a prior and using the SBM as a prior for StochGPMP is now rather negligible, and
both massively reduce the sampling time for StochGPMP.

Collisions

Collision free trajectories are of course always generated with RRT. StochGPMP has a really
hard time and only about 30% of the trajectories of the sample are collision free. However,
there is a lot of variance here. Simple contexts are handled with ease and difficult contexts
like in Figure 4.9b are almost impossible for StochGPMP to solve. The number of iterations
is set quite low, so there is plenty of room for improvement through fine-tuning, but the
really difficult contexts remain really difficult.

The standalone SBM produces on average twice as many collision-free trajectories as
StochGPMP. However, when you add the gradient of the SDF, this value is very close to
100% with an insanely low collision intensity. So if you have access to the SDF, this is
certainly the way to go in this environment. Using SBM as a prior for StochGPMP increases
the number of collision-free trajectories by over 12% over just SBM, but is not nearly
as good as the SDF. This can be explained by the fact that StochGPMP is not perfectly
fine-runed. However, when comparing StochGPMP to the SBM prior StochGPMP, the
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Sampling
Time (s)

Collision
Free (%)

↑

Collision
Intensity

(%)
Distance Cosine

Sim

RRT connect 0.14
±0.06

100.0
±0.00

0.00
±0.00

3.21
±1.48

0.82
±0.33

RRT* 38.67
±0.36

100.0
±0.00

0.00
±0.00

2.10
±0.41

0.47
±0.06

StochGPMP 7.83
±0.12

33.76
±30.37

6.39
±4.24

2.14
±0.28

0.08
±0.02

SBM 0.27
±0.14

67.88
±26.43

3.28
±5.38

2.18
±0.88

0.03
±0.03

SBM+SDF 1.06
±0.02

98.76
±3.47

0.03
±0.10

2.37
±0.98

0.03
±0.03

SBM Prior +
StochGPMP

1.38
±0.16

79.89
±22.6

1.67
±3.42

2.18
±0.89

0.03
±0.03

RRT Prior +
StochGPMP

1.25
±0.08

98.74
±1.96

0.02
±0.03

3.18
±1.45

0.07
±0.04

Table 4.3: Statistics for the 3D environment. Since there is a third dimension, this in-
creases the number of trivial trajectories for contexts that can be connected
through a straight line, while also increasing the search space a lot for RRT.
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difference in performance is still significant. Using the prior more than doubles the number
of collision-free trajectories.

Finally, the RRT prior StochGPMP achieves good performance in these metrics, but is
again worse than RRT connect.

Distance

As in all previous experiments, RRT* achieves the best average distance. It is closely
followed by StochGPMP, but since so many of the StochGPMP collide, the distance of
the non-colliding samples would be much higher. RRT connect produces the longest
trajectories on average.

The SBM and the StochGPMP with SBM prior samples achieve the lowest distance after
RRT*. The SDF gradient version performs somewhat worse. This is again because the SDF
gradient pushes the trajectories away from the obstacles, making the path less direct.

Finally, the RRT prior StochGPMP is a tiny bit better than standalone RRT connect, though
not significantly so.

Smoothness

StochGPMP generates the smoothest trajectories of all baselines. RRT* and RRT connect
both do not generate very smooth trajectories. RRT* could produce smoother trajectories
if more time were available, but it already takes so much more time than all the other
methods that this does not seem reasonable to me.

All of the SBM methods outperform the baselines by quite a bit and produce similarly
good results. Again, this is likely due to splining of the training data, but it is still good to
see that SBMs can produce smooth samples even in higher dimensions.

The metric for StochGPMP with the RRT prior of course cannot be trusted as mentioned
previously.

43



Conclusion

There are a couple of interesting takeaways from this experiment. The most crucial one
is that the time it takes to sample trajectories with an SBM is independent of the state
space. There can be some fluctuation in sampling time if the model size increases or the
sampling steps are changes, but for the experiments I ran this was not necessary. This is a
real advantage of SBMs especially when moving to systems that have even larger dofs. A
Franka Panda robot usually as 7 dof and as we will briefly see later on the time does not
increase even for that.

Another insight is that especially for hard environment the gains of using a SBM as a prior
for StochGPMP are immense when compared to not using a prior. This enables us to even
use a very badly tuned StochGPMP to get decent results. Even better than using an SBM
as a prior is of course using the gradient of the SDF but since we do not always have access
to that its not always an option.

Several interesting findings can be drawn from this experiment. The most important is
that the time required to sample trajectories with an SBM is independent of the state
space. There may be some fluctuation in the sampling time as the model size increases
or the sampling steps are changed, but for the experiments I performed, this was not
necessary. This is a real advantage of SBMs, especially when moving to systems with even
larger dofs. A Franka Panda robot typically has a dof of 7, and as we will see later, the
time itself does not increase for sampling with an SBM.

Another finding is that, especially in difficult environments, the benefits of using an SBM
as a prior for StochGPMP are immense compared to not using a prior. This allows us to
achieve acceptable results even with a very poorly tuned StochGPMP. Even better than
using an SBM as a prior is of course using the gradient of the SDF, but since we do not
always have access to it, this is not always an option.
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5 Discussion

In this chapter, I discuss the results of the experiments and compare a bit how the different
methods perform in different environments.

First, the two 2D environments. Although both are 2D, they serve a very different func-
tion in demonstrating the capabilities of SBMs in trajectory generation. The first grid
environment is very easy for most motion planners to solve, and the SBM is trained with
GPMP-generated trajectories. Even in this very favorable environment, the SBM methods
perform better than the baselines when all metrics are considered. One could argue that
RRT* is still better, but it takes so much longer than even the slowest SBM method that it
is probably worth considering the trade-off between the metrics at this point. Even if an
SBM method generates more trajectories in collision, this is only the case if you look at the
absolute numbers. Looking at collision-free trajectories generated per second, standalone
SBM is indeed the best option by quite a lot. Very roughly rounded, RRT* generates
only 100 collision-free trajectories every 10 seconds, while the SBM can generate about
3000 trajectories in the same time. Assuming that 80% are collision-free, that’s 2400
collision-free trajectories in the same time that RRT* can generate 100.

The second environment with the narrow passages, on the other hand, is very difficult to
solve using conventional means. You will notice that all the sampling times of the methods
running on the GPU are slower than the previous environment, which is likely due to
the fact that they were running on a slower cluster node, but for this experiment they
were all running on the same node. The data for the SBM was generated using RRT*,
which made the distribution of the training data multi-modal. Here, of course, the effects
observed in the first environment are amplified, as some of the baselines really struggle in
this difficult environment. StochGPMP becomes very slow and generates less than 25%
collision-free trajectories. RRT* is basically the same as in the first environment. The
standalone SBM also produces very similar results to the first environment with the added
benefit of producing multi-modal trajectories due to the RRT* training data.
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The last environment is the 3D environment with the narrow passages. If we consider
what affects the sampling times of all methods, we can make some predictions about
what we would expect to see. RRT* and StochGPMP should become very slow and/or do
not find many collision-free solutions. Since the SBM sampling time is independent of
the search space and depends only on the number of sampling steps in the ODE solver,
we would expect the sampling times to be fairly constant if the network size does not
change. And this is exactly what we see in the statistical results. RRT* becomes terribly
slow, StochGPMP becomes very unreliable, and the SBM methods perform very similarly
to the 2D environments, with minor degradations in collision intensity and collision-free
trajectories for some of them.

SBM + SDF Gradient Including the gradient of the SDF in the sampling for the SBM
improves all metrics except distance for all environments I tested. Perhaps the extra
distance is actually a good thing because it means that a robot maintains its distance
from obstacles in the environment, which is important for safety. However, one thing that
should be changed about the way I used it in the experiments is that some parts of the
trajectories should not be affected by the gradient of the SDF. These are the start and goal
positions or any other position the SBM was conditioned on. As for the time required, the
sampling time increases compared to the stand-alone SBM only if the SDF calculation
is poorly implemented, as was the case in the 3D environment. Of course, we may not
always have access to the SDF. In this case, either the standalone SBM or the StochGPMP
with the SBM prior are good options.

5.1 StochGPMP With And Without SBM Prior

This is what I was most interested in and where I saw the greatest likelihood for a useful
application of SBMs in motion planning. Since SBMs do not use collision checking, this
task must be done by something else if we are to run SBM trajectories on a real system.
So what does the data show? Can SBMs be used to generate useful initial trajectories for
optimization-based motion planners like StochGPMP? If so, does the performance gain
justify the extra effort to train the SBM?

All the experiments I have conducted show the same results for SBMs. SBMs are a powerful
tool to generate whole trajectories. To know how an SBM prior affects StochGPMP, we
first need to know how StochGPMP performes on its own. The results here are a bit mixed.
In the first simple environment, StochGPMP’s performance was admirable, albeit slow. In
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more complicated tasks, the sampling time and/or failure rate increases sharply. Of course,
these results should be viewed with some caution. StochGPMP is a method that benefits
from a lot of fine-tuning, so it could have performed better in some of the environments if
given enough time and care in fine-tuning.

This is one of the main reasons why a strong prior is so useful for StochGPMP. With
a strong prior, there is much less need to fine tune StochGPMP. The reason is that the
exploration part of StochGPMP has already been done by the prior.

Apart from the fact that StochGPMP is robust to the choice of hyperparameters, the
statistical results of the StochGPMP with the SBM prior are very promising compared to
pure StochGPMP.

In both 2D environments, StochGPMP shows significantly more collision-free trajectories
with the SBM prior version, taking only a fraction of the time. This effect becomes more
pronounced as the planning task becomes more difficult. While in the simple 2D grid
environment the performance increase is relatively small, in the second narrow passages
2D environment the number of collision-free trajectories increases by more than 70%
when using the SBM prior, while at the same time taking 1/10 of the time to sample the
trajectories. In 3D, the number of collision-free trajectories increases by almost 50% with
1/5 of time required.

So, in summary, SBMs are very promising in increasing the sampling speed and quality of
optimization-based motion planners by using them to generate better initial trajectories.

As a very useful side effect the SBM prior mitigates the need to fine tune StochGPMP.
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6 Future Work

Here I will present some unfinished or unpolished work. I think they still have some value
since they show promise. Afterwards I will present a couple of general improvements and
extensions.

6.1 Franka Panda Proof Of Concept

In this section we will look at what SBMs potentially could do in higher dof settings. The
reason this is not in the experiments section is because there were some issues with the
choice of environment and the time it takes to generate enough data that simply did not
permit me to research this to the point of a full meaningful experiment.

What I was able to do, is to run some of the methods used in the experiments section with
the problematic data I had. RRT* at this point was not feasible to run, I am not sure how
long it takes to run RRT* in this environment, but after running it for three times as long
as in 3D, it still didn’t even find an initial solution. The SBM that uses the gradient of the
SDF could not be tested since the gradient of the SDF is in taskspace while the SBM is in
jointspace. Here we let the SBM generate trajectories in a 7 dof joint space, normalized to
(−1, 1). You can see the statistical results in Table 6.1.

Lets talk first about what looks promising and then I’ll speculate on what went wrong.
The first very promising thing is that the SBM is now faster than RRT connect, which was
previously unbeatable in terms of sample time. This also makes it of course a lot faster
than StochGPMP (and RRT* since RRT connect is a lower bound for it). Using it as a prior
for StochGPMP also is a lot faster than pure StochGPMP. Both SBM methods also produce
shorter and smoother trajectories.

Now the problem is the ability to produce collision free trajectories. On paper it looks like
the SBM methods outperfor StochGPMP, but in reality either all trajectories by the SBM
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were collision free or none of them for a given context. There are a couple of reasons I
can think of why this might happen.

The first one is the choice of environment and the second one is the means of generating
the data. You can see an example context in the environment in figure 6.1. What I
speculate is wrong here is that most examples presented during training are rather trivial
contexts without a chance of collision. This means that during most training steps the
model is trained to simply interpolate linearly, or close to linearly. This effect is is strongly
reinforced through the use of GPMP to generate data, which results in trajectories that
are very close to the obstacles without a lot of variance.

Figure 6.1: An example context of the Franka Panda environment. Green is the start and
red is the goal.

It is my opinion that this can work really well if the training data is generated with RRT*
in an environment that has way more samples that do not connect the start and goal
linearly. I also think that because of the very high potential for large speedups in sampling
time this is worth pursuing further, but since RRT* takes so long to generate samples in
this environment it is not feasible for me to include this in my thesis.
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(a) Example of language conditioned SBM samples.
The language specifies the task, the positions of
the points are provided as context.

(b) Example of image and context conditioned SBM
samples. The image provides the positions of the
colored points which are encoded through a CNN.

Figure 6.2: Two examples of other types of conditionings. During training the positions
of the points were randomized for both of them.

6.2 Different Context Features

6.2.1 Target And Language Encoding

During the early exploration phases of this thesis I first looked into contexts to condition
an SBM on. These were discontinued as I moved on to higher dimensional data. Two that
worked rather well are visualised in figure 6.2. In figure 6.2a you can see some samples
generated with a SBM conditioned on BERT language features. This allows generalising
to similar sentences with the same meaning. The second one in figure 6.2b uses a CNN to
encode the positions of the colored point, which are only provided through the image.
The positions of the colored points and the start state were randomized during training
for both of them.

These are of course not fully explored experiments yet, but both have their merit for future
work. Language is a natural way for humans to give instructions to a robot and if a robot
can identify possible targets by itself this can be a big help too.
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6.2.2 Obstacle Encoding

Context
Encoder Vision 

Encoder

  
SDF Network

Task g

SDF

Attention

Temporal U-Net

Conditional Score ModelVision Model

Inference

Pretrain
and freezeEnv. E

Figure 6.3: A vision encoder is learned using an SDF loss. The task and vision embeddings
are concatenated as inputs to a context encoder and used to condition the
SBM. The attention layer is optional. The architecture of the SBM is the same
as before.

In subsection 6.2.1 we already saw that other encodings can be passed as a conditioning.
Here the point is to encode the whole environment. Specifically the obstacles of the
environment so the SBM can generalise to different settings.

Learning The Vision Encoder The overall architecture is depicted in figure 6.3. The
vision model takes as input an image E (black-and-white occupancy map), and produces
latent features fϕ(E). With access to the distribution of environments and ground-truth
signed distance values sdfgt(E,x) for a point x ∈ R2, we pretrain the vision encoder with
parameters ϕ, by minimizing an SDF L1-loss

Lvision + sdf(ϕ, ξ) = EE∼p(E),x∼p(x|E)

[︁⃓⃓
sdfgt(E,x)− sdfˆ ξ(fϕ(E),x)

⃓⃓]︁
, (6.1)

where sdfˆ ξ is the learned sdf. The latent representation f could also be learned with a
VAE, but this model would be larger (due to the decoder) and would need more care in
designing it. Also it would not give access to the SDF, which could then be used to pre-rank
the trajectories without explicit collision checking. In a real world scenario we are able
to execute only one trajectory. A simple heuristic metric to select and rank trajectories –
discard the ones where any point along them has a negative SDF value according to our
model, which means collision with an obstacle. Afterwards, we select the trajectory that
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Figure 6.4: This figure shows a sample from the validation set of the RECTANGLES AND
CIRCLES environments. The environment is 64 × 64 image, where white is
where an obstacle is present. The left figure shows trajectories generated
with RRT* for different goal positions (top right area). Thinner trajectories in
the center are sampled with the conditioned SBM. Thicker trajectories are the
ones considered after ranking. The right plot shows the learned SDF and the
selected trajectories.

has the shortest path. Even though this does not guarantee the optimal trajectory is found,
it can be a good first heuristic prior for motion optimization methods. You can see some
preliminary results of the generated SDF and trajectories sampled with the conditional
SBM with a never seen environment in Figure 6.4.

6.3 Progressive Distillation

Salimans and Ho [47] proposes a method to distill two steps of a SBM into just one in a
process called Progressive Distillation. After an initial SBM is trained normally, they use
this model as a teacher for further student models to be trained. Here the student model,
initialised with the parameters of the teacher model is trained on the integrated output
of the teacher model after N time-steps. This student model then learns to do the same
thing the teacher does, just with fewer steps.

This can be repeated in multiple distillation steps with the student becoming the teacher
and so forth.

The promise of using this technique is of course faster sampling times, which is especially
useful in realtime applications.
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6.4 Minor Improvements And Extensions

Collision Check After Splining As mentioned earlier, the trajectories are splined before
they are used in training. This is necessary and even useful since RRT generated trajectories
do not have a uniform horizon, and using a B-spline makes the training data smoother.
The training data would be cleaner and should result in better samples if this splining
would be done before the collision checking. This way the trajectories would be truly
collision free, instead of getting artifacts like corner cutting of obstacles.

Extension To SE-03 This one is self explanatory. Including rotation in the data makes
generation more tricky, since it increases dimensions. Since SBM can handle high dimen-
sions this could be worth investigating.
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Sampling
Time (s)

Collision
Free (%)

↑

Collision
Intensity

(%)
Distance Cosine

Sim

RRT connect 1.07
±0.91

100.00
±0.00

0.00
±0.00

10.87
±3.29

0.89
±0.11

StochGPMP 39.35
±0.04

24.46
±23.37

19.44
±9.42

7.19
±1.07

0.04
±0.01

SBM 0.32
±0.12

36.56
±47.90

18.99
±17.96

2.14
±0.53

0.01
±0.00

SBM Prior +
StochGPMP

3.28
±0.01

36.16
±42.64

18.82
±16.24

5.38
±1.42

0.01
±0.00

Table 6.1: Preliminary statistics for the 7 dof Franka Panda Environment.
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