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Abstract

Learning from videos is a novel issue in the field of human-machine interactions, of which

the robotic manipulators are expected to reproduce the movement of human demonstrators

in video clips. Learning primitive movements in this case leads to a mapping problem that

transforms the high-dimensional RGB-data sequences into low-dimensional information,

like the label of a particular task or the moving trajectories. We use the time series classifier

to dedicated solve the recognition problem, which is fast to build and the final accuracy is

up to 88% for our time series trajectories.

In assembly scenarios, tasks like pick-and-place, peg-in-hole, and screw are seen as themost

representative and frequently used operations. On one hand, it is challenging to use the

conventional controller to handle the task that frequently interacts with the environment,

because modeling of the environment is time-consuming and observations of states are

often noised, thus the systems often cannot be controlled efficiently. Reinforcement

learning provides a possibility that the manipulator can adapt to uncertain circumstances

through training. On the other hand, learning RL-based solutions is data inefficient and

cumbersome. Thus, we use the sub-optimal classical controller and the RL policy to

work on their best part in two sub-spaces, so that their advantages are taken and the

shortcomings can be minimized. The classical controller is used to bring the object close

enough to the target position and let the RL-based policy handle the rest part. To reproduce

these tasks on the robotic platform, we use the Cartesian impedance controller, which is

not only agile controlled in a position-loop, but also compliant so that the manipulator

keeps from the severe crash and jamming in the environment.
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� Introduction

Today’s robotics technology has gradually integrated into the field of industrial automation,

such as widely used in manufacturing, processing and assembly. Due to high reliability,

precision and efficiency, industrial robots are often used to precisely control repetitive

tasks, which rely on fine pre-programmed trajectories. However, when the robots work in a

dynamic environment, or the planted object is in an uncertain location, these sophisticated

properties may no longer exist, in other words, deterministic strategies might not suitable

to dynamic environments anymore. By contrast, humans can easily learn a specific

action by observing alone, instead of painstakingly planning a path for each action. The

motivation is just like human that let robots reproduce specific primitive tasks by just

watching videos of human demonstrators.

Thus, we divided the problem into two main subsections: perception and reproduction.

The target tasks we focus on here are among the most common assembly tasks: pick-and-

place, peg-in-hole, and screw. The problem can be reformulated as with a given video

clip, identifying the type of action contained in the video and sending it to the robot, the

robot recognizes the corresponding behavior to complete this action. In our work, the

collaborative robot Panda from Franka Emika is mainly used to achieve these tasks while

manipulating in the environment.

First of all, understanding primitive actions require the perception of the movements from

videos. The machine learning community has plenty of methods for recognizing actions

from videos or image sequences, some of them require encoding high-dimensional images

into low-dimensional space, like trajectories of the moving object, other methods build a

mapping direct from image to the categories of a certain movement. In our work, we adopt

the former means that encoding the vision information into the trajectory sets, because

we need for manipulation not only categorizing the type of task but also the position

information that is helpful for assembly tasks. We extracted the trajectories from the video

by using Mediapipe and consider these trajectory sets as our data set. The trajectories are

considered as time series data and we use various classification tools to classify the tasks
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and reproduce the peg-in-hole task in the simulation environment. We assume that the

robot can achieve the task by grasping the object and finding itself a way to insert the

peg into the hole. The classical controller in general is reliable because of its excellent

dynamical features and robustness, which relies on the fine-grained model of the controller

and the system. But the classical policy is insufficient to an unknown environment or a

dynamic environment, while reinforcement learning can solve the uncertainty by learning

a policy under different conditions. However, reinforcement learning from scratch usually

results in unexpected policy and is inefficient to converge. Our solution takes advantage of

both methods by combining the strength of both and disabling the weak parts as needed.

We use the conventional controller to roughly bring the object close to the target position,

then the robot should do a "blind search" by interacting with the environment and in the

end insert into the hole, this behavior is just similar to our human beings because humans

sometimes sensing the object without seeing with their eyes. The "blind search" part is

conducted by reinforcement learning(RL) that lets the robot obtain experience by learning

in the task. We call the strategy of the conventional controller in our work as nominal

policy. The RL policy will improve the nominal policy to do insertion tasks, both policies

work together so that the robot learns faster and more efficiently, which is well-known as

the residual policy. The robot during the entire task should be compliant hence it doesn’t

break the object or cause other damages, we address this requirement by using Cartesian

impedance control so that the robot tends to be compliant to the current accelerations

caused by total force while in contact.

The distribution of the remaining part of the content is mainly as follows, relevant work

done by other researchers in chapter 2, which compared the advantages and limitations

of the methods they used and whether these methods are suitable in our case. The

methodology and preliminaries in the chapter 3, the details in the task that we achieved

in chapter 4. As for the environment settings and the experiment details, like training

process, hyperparameters, and so on, are introduced in chapter 6. The rests are the

outcomings and our comprehension from this work.
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� Related Work

In this chapter, we present some prior work on task classification and robot manipulation,

followed by a brief background on residual policy. Task classification in our work is the

prerequisite of learning from the video. When the human action is recognized, the robot

can do manipulation to reproduce the action. Section 2.1 is about various ML-based

algorithms that classify human motions. Section 2.2 discusses the approaches that the

robot manipulates in low-level tasks like grasp, peg-in-hole, etc. The last section 2.3 related

to the up-to-date residual policy for agents adaptive to the various and indeterministic

environments.

�.� Task Classi�cation

Many ML algorithms are being used to solve classification problems. For example, that

support vector machine(SVM) is seen to be interpretable and had been mostly used for

classification in the learning community. However, the no free lunch theorem tells that no

universal algorithm outperforms every other classification algorithm in different domains.

Bagnall et al. [3] shown in their work the various categories that are dedicated for the

time series classification problem, like distance-based, interval-based, and shapelet-based

methods. Abanda et al. [1] partitioned these methods into two sorts that according

to the extracted features, one is a global method that takes the entire time series into

account, the other pay attention to local features of intervals, sliding windows, and so

on. Among the distance-based methods, k-nearest neighbors(kNN) is the most common

algorithm that measures the similarity from one data instance to another. The Euclidean

distance and dynamic time warping(DTW) are usually adopted as the metric for the

distance-based method, where the DTW(Berndt and Clifford [4]) was originally used for

pattern detection. More studies now use DTW for human movement recognition, like

Lee [20] simply use three-dimensional trajectories to measure the gait similarities among
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people with different gender, ages, height, etc. However, the global-based distance usually

underperforms when the noise in the series occurs and is brittle to subtle differences(Ding

et al. [13]). The interval-based algorithms otherwise, like the time series forest(TSF)

algorithm that is more robust to outliers, uses local features that transforms the time

series into primitive features, such as mean, standard deviation, slope, etc that represent

the local features( Deng et al. [11]), the extracted local features are then trained for

decision trees. The new instance to be classified will be voted on by all trees in the forest

to decide the class that instance belongs to. The shapelet-based method is also popular

for time series classification proposed by Ye and Keogh [38], which uses the shapelet

as the splitting criterion of the decision tree. The advanced variations of shapelet-based

method are compared by [2] that the rotation forest outperforms the other shapelet-based

methods for continuous features, but the drawback is the forest is slow to build if the

attributes for each tree are too many since it is a tricky job and not the main point to our

robot manipulation, we do not consider the shapelet transform method and its variations.

The neural-networks-based method has not been considered either for our work due to

the following limitations: hyperparameter tuning, limited data instances, and slow to

train.

�.� Robot Manipulation

The common challenge in intelligent robotics is to let robot achieve their goals by directly

interacting with the environment(Billard and Kragic [5]). Robots today are capable of

doing plenty of tasks like pick-and-place, stack, push, pour, and so on, but most robots

still use a parallel jaw gripper in many applications that lack dexterity and good sensing

like human hands. It is well known that robots can perceive environment information

without involving in it, like recognizing and localizing the object by receiving camera

images, like the works of Burchfiel and Konidaris [8], Song et al. [34], wherein the

manipulation tasks are mainly vision-based, which is known as the passive perception

method. Different from passive perception, the interactive perception (Bohg et al. [7]) lets

the robot physically interacts with the environment so that latent states can be acquired

while doing interactions with surroundings. The interactive perception-based assembly

problem: peg-in-hole, is widely investigated and researched under various conditions.

The peg-in-hole assembly task according to Xu et al. [37] can be divided into contact

model-based and contact model-free strategies. The former strategy relies on the accurate

modeling of the contact point where both mating objects contact. Kim et al. [18] proposed
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precision hole detection algorithm that only using position control and F/T sensor. In

their work, the vision system with 4 to 5mm estimation error helps to roughly determine

the distance between the peg and the hole. They adopted admittance control that the

force is controlled in the outsider control-loop so that stable contact is ensured. However,

the detection of contact edge is intricate and hard to disambiguate to other shapes and

dimensions. Park et al. [26] proposed a compliance-based peg-in-hole method without

force feedback. They did not control the force in the feedback loop but applied scaled force

under three different conditions: pushing when no contact detected, rubbing when contact

established, wiggling when hole detected and the same time screwing, this approach is

quite similar to human beings but difficult to sense and recognize the state. At present,

robots are more expected to recognize the environment interactively, similar to humans.

For this reason, reinforcement learning(RL) based methods emerging rapidly and are

looking forward to generalizing to unseen environments. Oikawa et al. [24] solved the

contact-rich insertion task, as well as a gear-insertion task by using RL algorithm to online,

generate stiffness matrices to improve the trajectory tracking ability. The RL-based stiffness

matrices output can be seen as another kind of force shaping that has limited perception of

the environment because the robotic manipulation is still done by a given trajectory. Inoue

et al. [16] provided a promising RL-based method that without having a predetermined

local trajectory, they trained a recurrent neural network by using reinforcement learning

to achieve high precision assembly tasks. RL with LSTM is an intelligent substitute to

the contact model-based approaches that use short-term memory layers to approximate

the Q-function. They observed the states that are composed of forces and torques as well

as relative joint angles by the robot encoders, which is much more generalized than the

trajectory-generation methods. In the fine-tuning phase, only selected force and torques

are measured. Compare to their work, Kulkarni et al. [19] used the relative distance in

the Cartesian space to replace the angle distance, i.e. from the grasped object to the

goal position in the goal frame The forces that act on the robot end-effector are also

measured as the states for RL policy. The differently applied residual policy that they

combined position-based controller and the LSTM-based RL policy. A decay factor is used

to temporally scale the importance that position-based controllers and RL controllers have.

They obtained the results surprisingly fast on the real robot without implementing in

simulation. However, the force sensor is expensive and not available for every robot. The

decay factor is still a hyperparameter that needs to be considered empirically.

In our work, we proposed a more generalized method only by perception of the position via

interaction with the environment but based on the relative distance, which is investigated

in the chapter 4.
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�.� Residual Polciy Learning

Initially, the residual policy was proposed to solve the data-inefficient problem in the

reinforcement learning approach. Saveriano et al. [31] investigated this issue and applied

it in the dynamic system, they learned residual difference via the Gaussian process and

combined it with the simplified, parameterized dynamic model. The differences between

the real system and the simplified system are assumed to be the Gaussian distribution,

which is less strict than assuming the entire real system is Gaussian distributed. The

PI-REM algorithm they put forward reduces the iterations and execution time in the

Cart-pole experiment, which greatly outperforms the PILCO algorithm. Johannink et al.

[17] used residual RL policy for robot control in the real world with noisy oriented blocks,

which is difficult for conventional feedback control to address. The residual part was

not explicitly defined but needs to contribute to the maximization of the reward that

the surrounding blocks keep stable and not fall. Many other attempts tried to improve

the low-level control performance are discussed by Hynes et al. [15], Staessens et al.

[35], which are proven to be more efficient than the fine-grained original control scheme

and significantly improved the performance on slider-crank and quarter-car suspension

control. Silver et al. [33] elaborated the shortcomings of Rl from scratch, wherein the

nondifferentiable circumstances are difficult for conventional approaches to deal with.

They study residual policy learning in six challenging MuJoCo tasks involving partially

observable, sensor noise and control miscalibration, and so on. The learned policy exhibits

interesting behavior that is not expected but qualitatively complete the assignment, which

proved the residual policy is well suited for complex manipulation tasks that improve a

good but imperfect initial policy.
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� Foundations

�.� Task Classi�cation

A common task for motion recognition is a classification problem, which assigns data to

some specific classification model to get relevant type labels. Since motion and action

have some temporal correlation, the algorithms of our interest require the data to be

time-series samples with features, such as image sequences or trajectory coordinates.

Differing from tabular classifiers that treat each time point as a separate feature and learn

a model via common ML algorithms, time series classifiers also use the information that

correlates data in order of time. Since the results obtained by time series classification

algorithms already meet the demand of our usage, methods like CNNs and LSTMs are

deliberately avoided due to the carefully selected architecture, limited data samples,

massive computation, and hyper-parameter tuning. To compare different algorithms, we

introduce the following methods that we applied.

�.�.� Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm that was

originally designed for binary classification but can be extended to both regression and

classification(Murphy [23]). In the SVM algorithm, each data point is defined in an

N-dimensional space, where N is the number of features. The goal of SVM is to separate

points into binary point sets by an optimal N-dimensional hyperplane. This hyperplane

is selected by finding the maximum margin among the infinite hyperplanes that pass

through data points. The best hyperplane locates where the distance to the two classes

is maximum. Support vectors are the points closest to the hyperplane, and the distance

between the closest points and the hyperplane is called margin.
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Figure �.�: The geometry of decision surface in �D case, based on Figure �.� of [6]

The 2D data is linearly separable by using a single straight line, the SVM in this case called

linear SVM. The N-dimensional data is not linearly separable when N > 2, then we can

use Non-Linear SVM, which is the most common case in the real world. The data points

can be projected to higher dimensions utilizing kernel function. The discriminant function

is defined as: f(x) =
Pd

j=1wjxj = wTx+ w0. For x on the hyperplane holds f(x) = 0,
where w is a vector that is perpendicular to the decision boundary and w0 defines the bias

parameter that controls the distance of the decision boundary from the origin.

The negative label y = -1 stands for points x at the left area of the hyperplane and y = 1

for right cases, i.e. y = sign(f(x)).

�.�.� Dynamic Time Warping

Most time-series research in the field of data mining has focused on distance metrics

that can be used for clustering, query, and classification. Euclidean distance(ED) and

dynamic time warping(DTW) is often considered as the standard benchmark for distance

measures(Bagnall et al. [3]).

The vector in our case is denoted in bold, and matrix is denoted in capital bold, so that

a time sequence can be denoted as X = [x1,x2, ...,xl]T 2 Rl⇥d, where xi 2 Rd⇥1 for ith
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time point of d-dimensional time series in total length l. A label y is always associated

with every time sequence. The classification problem is now formulated as a mapping

from the space of inputs into the probability distribution over the class categories.

The Euclidean distance between two equal-length time series X1,X2 can be easily com-

puted as

ED(X1,X2) =

v

u

u

t

l
X

i=1

d
X

j=1

(xi,j1 � xi,j2 )2,

where the distances are derived from the same time points of two sequences. The limitation

of ED is obvious that the signals with different rates or scaled differently can not be directly

aligned. DTW is different from ED in that the optimal alignment of two sequences is

found to compute the minimum distance(Tan et al. [36]). To align two sequences, the

DTW algorithm builds an l1 ⇥ l2 matrix, where the (i, j)th element of the matrix is the

associated squared distance d(xi1, x
j
2) = (xi1 � xj2)

2 that denote how good the alignment

between ith time point of sequence X1 and jth time point of sequence X2. The optimal

warping path is the path walking through the matrix that has the minimum accumulated

sum of all distances along the path. The summation of distances of the path in length K

DTW(X1,X2) = min

8

<

:

v

u

u

t

K
X

k=1

wk

9

=

;

,

is the warping cost of DTW algorithm, where the wk is the kth element on path that also

denotes (i, j)th element of the distance matrix, thereforewk = d(xi1, x
j
2). The warping path

W always starts from the first time point and ends with the last time point of interesting

sequences. The element of warping path wk(for k = 1, ...K) is selected by dynamic

programming

DTW(X1
1:i,X2

1:j) = d(xi1, x
j
2) +min

8

>

>

>

<

>

>

>

:

DTW(X1
1:i�1,X2

1:j�1)

DTW(X1
1:i�1,X2

1:j)

DTW(X1
1:i,X2

1:j�1)

9

>

>

>

=

>

>

>

;

,

where d(xi1, x
j
2) indicates the distance between ith element of X1 and jth element of

X2, and notation 1 : i and 1 : j describes the time series from the beginning 1 till the

time position i or j, because the cumulative distance metrics here is considered. The

algorithm kNN is originally using euclidean distance, can be now rewritten by replacing
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(a) Euclidean Distance (b) Dynamic Time Warping

Figure �.�: The example of two time series aligned by ED in �.�a and DTW distance in
�.�b of [�6]

the ED metric with DTW metric. kNN with DTW is commonly applied for time series

classification due to its simple and robust and highly interpretable, however kNN-DTW

needs to calculate each sample to all the other samples which lead to a plenty of space

and time to compute.

In a naive implementation, the time complexity of the Euclidean distance algorithm is

O(N), while DTW during the dynamic programming has a quadratic time complexity

O(NM). The space consumption according to Manacher and Hirschberg [22] can be

reduced to O(min(N,M)). Although the DTW algorithm consumes much more time than

ED, it still acquires more reliable results and is not restricted to having the same length of

time sequences. To speed up the computation of ED and/or DTW, the algorithms can be

optimized by using the squared distance, lower bounding, early abandoning, etc. More

details to optimization can be found by Rakthanmanon et al. [28].

�.�.� Time Series Forest

Although the kNN-DTW is robust to distortion of the time and has quite satisfactory results,

it involves limited views of the temporal features that are beneficial for distinguishing

one-time series from the other classes(Deng et al. [11]). Temporal features also referred

to as interval features, as an interval-based tree-ensemble classifier, time series forest(TSF)

adopts the entrance gain to evaluate splits, where the entrance means the combination of

distance measure and entropy gain.

Interval features are some particularly selected features from a time series interval. The
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simple and representative features are considered, such as mean and standard deviation.

Given K feature types and fk(·)(k = 1, 2, ...K) is the operation to have kth type of feature.

In time interval [t1, t], the k
th type of feature fk(t1, t2) for the typical three features are com-

puted as f1(t1, t2) = Mean(Xt1:t2), f2(t1, t2) = Standard Variation(Xt1:t2), f3(t1, t2) =
Slope(Xt1:t2) where Xt1:t2 denotes the series interval of total time series X between time

t1 and t2, we use the same symbol as in 3.1.2 to keep the notation consistent. The feature

space of naive implementation of TSF is O(N2), and can be reduced to O(N) per tree
node by using random sampling strategy(Deng et al. [11]).

The best way to split a node in a tree is to consider a splitting criterion in a time se-

ries tree of a time series forest, this criterion lets the original series split into random

intervals with random start locations and random length. The interval instances are

satisfied and split to the left child node if the condition fk((t1, t2)  τ holds to the right

child node if the condition is not satisfied, where τ denotes the threshold. The thresh-

old τ for specific feature fk is selected by equally dividing κ times from the interval

[minfn
k (t1, t2),maxfn

k (t1, t2)], n 2 1, 2, ...N , where N is the number of samples in the data

set. Since the entropy gain is considered in the splitting, let E = �

C
X

c=1

pclogpc defines

the entropy at the node, where pc is the proportion of the particular class c out of this

node. The entropy gain ∆E then defined as the entropy deviation from the child node

to the parent node. For the case that the multiple splits have the same ∆E, the extra

metrics called margin is imported to build the entire criterion of splitting, the margin for

n 2 1, 2, ...N : M = min|fn
k (t1, t2)� τ |. The combination of entropy gain and margin is

referred to as Entrance Entrance = ∆E + α ·M . Figure 3.3 shows the way that entrance

split six instances in one dimension, where the instances are represented as three class in

colors of blue, red and green. Due to the same distribution of each class, ∆E of each case

are all the same so that the selected splits for entropy gain are shown as S1, S2 and S3,

and S3 is the best candidate for taking margin into account.

Figure �.�: The illustration of six samples that are associated with three splits S1, S2, S3

that represents the same ∆E, the entrance, however, splits the green in-
stances best.
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�.� Cartesian Impedance Control

Due to enhanced sensory capabilities, the research on robot force control has thrived over

the past few years. In practice, the contact force and moment are rapidly grown if the

deviation between the reference trajectory and the end-effector can not be ignored. The

control system will also enhance the output to reduce this deviation, one possible result is

that the environment or object components are eventually damaged. This downside can

be overcome if the manipulator can behave compliant movement. The compliant behavior

in contact tasks can be implemented by passive and active interaction control(Siciliano

and Khatib [32]). Unlike the passive interaction control, the active interaction control

considers the interaction forces as well as exchanged mechanical work(Peters [27]).

There are many perspectives to classify the control type. We adopt the classification

of Calanca et al. [9], which can be found in figure 3.4. As we can see there that the

impedance control belongs to the type indirect control of active interaction control, which

execute force control via motion control without explicit closure loop of force feedback,

while the direct control requires a feedback loop so that the output force to stay in a set

value or trajectory(Siciliano and Khatib [32]).

Our objective here is to use the compliant control without any measure of the force,

according to the discussion above we select here impedance control in the Cartesian space.

The impedance control is usually considered as a virtual equilibrium problem if a set point

is taken into account. Just like a spring-damper system, the end-effector of the robot only

reaches the set-point if there is no external forces acting on the robot. A general dynamic

model of the robot can be considered as:

M(q)q̈+C(q, q̇)q̇+ g(q) = τ + τ ext, (3.1)

where M(q) is the inertia matrix, C(q, q̇) is the Coriolis and centrifugal matrix, g(q)
is the gravity torques vector, and τ ext is the external torques. It is essential that the

transformation between configuration space and the task space because we care about

the performance in Cartesian space, this transformation is described as f : Qn ! Rm,

i.e. x = f(q) for m = 6 for Cartesian space and n is the degrees of freedom of the robot.

By Jacobian matrix J(q) 2 Rm⇥n for end-effector, we know the relationship between the

configuration and Cartesian space ẋ = J(q)q̇, correspondingly we have:

ẍ = J̇(q)q̇+ J(q)q̈ (3.2)

u = JT(q)Fx, (3.3)
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Figure �.�: The overview of interaction control of [�]

which is also applies to the relationship of the forces in the two spaces, where Fx denotes

the total forces applied on the end-effector, i.e. in Cartesian space u = τ + τ ext. The force

of equation 3.3 can also represented with inertia matrix in operational space Mx as:

Fx = Mx(q)ẍdes. (3.4)

The compliant behaviour can directly revealed by equation 3.4 that the ẍdes describes

the desired acceleration under the influence of the force Fx. We substitute equation

3.4 into equation 3.3 and yield: u = JT(q)Mx(q)ẍdes. From equation 3.1 we have the

acceleration in configuration space q̈ = M�1(q)[u�C(q, q̇)q̇� g(q)].
After substituting and rearranging it into equation 3.2, correspondingly we get the accel-

eration in task space

ẍ = J̇(q)q̇+ J(q)M�1(q)[JT(q)Mx(q)ẍdes �C(q, q̇)q̇� g(q)].

The nonlinear term J̇(q)q̇� J(q)M�1(q)C(q, q̇)� g(q) is ignored and eventually we

have:

ẍ = J(q)M�1(q)[JT(q)Mx(q)ẍdes.

Our objective is to let the end-effector in the end behave the same as the outer force tends

to, so let ẍ = ẍdes to achieve compliant behavior, we have the inertia matrix in Cartesian

space:

Mx(q) = [J(q)M�1(q)JT(q)]�1.
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Now we consider the output torque with gravity compensation:

ũ = JT(q)Mx(q)ẍdes + g(q).

We use PD controller to track the desired behaviour ẍdes = S(xdes � x) +D(ẋdes � ẋ)),
where S 2 Rm⇥m is the desired stiffness matrix and D 2 Rm⇥m stands for damping

matrix, in Cartesian space holds m=6. In the end, the total torque applied on joint space

for robot control is:

ũ = JT(q)Mx(q)[S(xdes � x) +D(ẋdes � ẋ)] + g(q). (3.5)

So far we have introduced how to derive the output torque of impedance control in the

Cartesian coordinate system, this result can be used in the simulation environment and

real robot. According to proposition 3.4 of [25] that the globally asymptotical stability

is ensured when the Fext = 0 and the stiffness matrix S and damping matrix D are

symmetric and positive definite matrices. We have not discussed yet how to design

meaningful stiffness matrix S and damping matrix D, this does not mean that we will

neglect to consider the content of this part the selection of them both is even tricky, but due

to space constraints of this thesis, we will not expand too much here and only introduce

the relevant part to this application. The stiffness matrix is usually constant and defined

depending on the application. Since the inertia matrix is non-diagonal and time-varying,

it is better to use a positive definite position-dependent damping matrix instead of the

constant damping matrix D, although the stability of the system still holds[25]. Very

extensive literature like [25][29][30] can be referenced to confirm this damping matrix,

and it is normally formulated as:

Di = 2ξiλS,i (3.6)

where λS,i is the ith eigenvalue of the stiffness matrix S and ξ is a damping factor that to

be chosen in the range of 0 and 1.

�.� Residual Policy Learning

�.�.� Reinforcement Learning

In RL algorithms, an agent observes state st 2 Rm at a discrete-time t, and takes an

action at 2 Rn that generated according to a policy µ which maps at from a state st.
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For each action is taken, the agent then observes a immediate reward rt(st, at) and the

corresponding state st+1 of the next discrete time. The cumulative future reward from

the particular state st with the discount factor γ 2 [0, 1] is given as Rt =
P

1

t=0 γ
tr(st, at),

the discount factor defines how much we value rewards over the time, i.e. a smaller

γ gives the short-term more attention and the larger γ tend to wait longer for larger

amounts of rewards in the future. The agent during this time aims to learn a policy

that maximizes the expected future reward if the start distribution is given. An episode

defines the process that the task starts and terminates after a certain time length T or the

termination condition fulfills. The agent learns the policy after each episode terminates

by evaluating the total reward of the entire episode. The main challenge for the agent to

learn is to set up an appropriate reward function that motivates the agent to learn correctly.

The total RL process described above is assumed as a Markov decision process(MDP) that

is fully observable for each state.

In MDP, the value function is applied to evaluate how good or bad a given state could

be, and the action-value function can indicate an anticipated future reward if an action is

being performed. In discrete MDPs, the value function can be represented by a lookup

table, however, for the case that the states and actions are in continuous space, it is

impossible to store every individual case in the table. The common method to solve this

problem in continuous MDP is using function approximation for generalization of the state

features to indicate value function as well as policy function.

�.�.� Deep Reinforcement Learning

As mentioned in 3.3.1, it is possible to represent value functions with tabular method.

And it is more convenient for the neural network to deal with the approximation of value

functions in continuous space without caring about the feature expression. With the help of

the neural network, the value functions can be optimized in a larger space with only small

storage compare to tabular methods. Although the RL algorithm has the overestimation

problem due to the radical learning process, there are algorithms that prevent this from

happening, like double DQN, actor-critic based methods like DDPG, TD3, etc. We are not

going into detail about the RL algorithm we applied, but only discuss how the RL can be

combined with nominal policy in chapter 4 section 4.1.3.
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�.�.� Residual Policy

The residual policy is a method that heightens the initial policy with the model-free deep

RL algorithms. The different roles of the RL term in residual policy are discussed by Silver

et al. [33] that depends on whether the initial policy is ideal or not. If the initial policy

is nearly perfect, the additional part to the initial policy is exclusively considered as a

slight correction. But when the initial policy is near to ideal, the additional term is then

dominant and the initial part gives small hints to the RL for exploration, thus the learned

policy part here plays a more significant role than the former case. These two expressions

represent both ends of the residual algorithm spectrum. We prefer the first case that take

the initial policy in a leading place so that the learning turns to more data-efficient than

learning from scratch.

We define an initial policy µ that µ: S ! A with states s 2 S and actions a 2 A, and the

residual function to be learned is denoted as: πθ(s) : S ! A, the entire residual policy

thus denoted as:

µθ(s) = µ(s) + πθ(s). (3.7)

Since that the parameters θ only decide the residual function πθ in the entire policy, we

have

rθµθ(s) = rθπθ(s), (3.8)

which means that the gradient of the residual policy is only dependent on the residual

function πθ(s) but not affected by the initial policy µ(s). Hence, the residual policy can

be learned by gradient-based methods regardless of the nondifferentiable property of the

initial term µ(s). The initial term is also called nominal policy in this work, the nominal

policy we applied in our experiments is position-based control which will be fully discussed

in chapter 4.

It is worth mentioning that the residual part should not have output initially since we

assume the µ(s) works perfectly at the very beginning. We then initialize the residual part

πθ(s) = 0 accordingly by setting the weights of the last layer to zero(Silver et al. [33]).

The reason for only setting the last layer is to let the neurons hold the different weights

so that the weights are still changeable, because the changes of weights will be absorbed

by the next hidden layer if there are more than one hidden layers.

��



� Methodology

�.� System Overview

In this work, we intend to present the solution to assembly task problem in the Cartesian

space by employing the robotic manipulator Franka-Emika panda with a redundant 7-

DOF robotic arm and its 2-finger robotic gripper. The primary features of our system

are the ability to distinguish the primitive tasks pick-and-place, peg-in-hole, and screw,

then achieve the peg-in-hole task with low-level control using residual policy learning,

the structure of the system is shown in figure 4.1, which simply describes the system

pipeline that starts from the left block, that shows an input video that filmed by Azure

Kinect camera as well as by Opti-Track that recorded the trajectories of the object. The

video is encoded from raw image sequences into the 3D trajectories of the human hands

by using Mediapipe(Lugaresi et al. [21]), and the object trajectories are obtained by

Opti-Track system. These trajectories are fed into classifier to output the task category,

and the category label is sent to the right block so that the manipulation task can work

correspondingly. The approach we adopt is present in this chapter, section 4.1.2 introduces

themain components of the environment and the way they interact with each other. Section

4.1.3 presents the nominal method that the control without any uncertainty involving,

section 4.1.4 describes the combination of the nominal controller and the learned RL

controller.

�.�.� Feature Selection for Classi�cation

The purpose of feature selection is to reduce the dimension of input variables for a

predictive model. The feature we used here is the trajectories of hand landmarks defined

in Mediapipe(Lugaresi et al. [21]), plus the trajectories captured from the Opti-Track

in our lab. The brief illustration of the landmarks is demonstrated in figure 4.2. To
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Figure �.�: The framework of the manipulation system. The left block shows the time
series classi�cation, the right block shows the control structure in simulation.

remain less but enough features we only adopt nine landmarks from index 0 to index 8.

Empirically, using all these nine landmarks has a higher accuracy rate than only using some

landmarks within 0~8 landmarks. In time length T, the position of all nine landmarks in

three-dimension x, y, z of the hand is HT
p 2 R27, the position of the object are OT

p 2 R3

and OT
o is the set of quaternions that made a 4-dimensional vector space. Thus, the

states of the trajectories can be denoted as (HT
p ,O

T
p ,O

T
o ) 2 R34. The bold character here

exactly implies that the state is not an individual time stamp, but a time series formulated

trajectory. Since the data dimension is too large, we also used less feature to train by

three algorithms,in which the DTW-kNN was coded by ourselves, SVM and TSF use the

packages sklearn and sktime respectively.
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Figure �.�: Illustration of landmarks representation. Each red dot stands for a key point
of the human hand that can be recognized by Mediapipe algorithms. The
indices on the landmarks are associated with the joint name of the human
hand.

�.�.� Environment Settings

To demonstrate the effectiveness of our robot manipulation system, we build an envi-

ronment that specific for the peg-in-hole task which consists of the robotic manipulator

Franka-Emika Panda and the objective workpieces including a cylindrical peg, and a

hollow cuboid with a cylinder cut out in it, the models of these objects are present in

Figure 4.3. To design these workpieces we use Blender 2.80(Community [10]), a free and

open-source 3D modeling and rendering package.

To ensure the modules can correctly interact with each other, the geometry of both objects

should be made carefully. We did subdivision to the model, and loop the edge of the hole

so that the surface curved with clean wireframes. The insertion allowance between to

objects is 1cm, which can be also inferred refer to figure 4.3.

In this work, the objects to be assembled are set to peg and hole, where the hole is cut

out from the cuboid and cuboid is fixed on the table. The peg is assumed firmly grasped

by the robotic gripper at the end-effector, we assume that the interaction force during

contact does not let the grasped object move relatively from the gripper, which is exactly

the meaning of "firmly grasped". Due to this feature, the external reaction force applied

to the peg will cause similar effects to the end-effector. Therefore, the transformation

between the end-effector and the peg is assumed to be not time-varying but keeps the

constant relative transformation, so we say there is a rigid coupling between the peg and

the robotic gripper(Kulkarni et al. [19]).

This assembly task can be reformulated as the representations of the frames. We define
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(a)
(b)

Figure �.�: Designed �D models speci�c for this work. Left �gure �.�a: the cuboid with
dimension �6 ⇥ �6 ⇥ �� mm; the hole inside the cuboid has radius ��mm,
right �gure �.�b shows the model of peg with radius ��mm and height �6mm.

the frames of the components in the environment as {B}, {EE}, {P}, {H} that represent

the frames of robot base, end-effector, peg, and hole respectively. Figure 4.4a shows the

settings of the environment and the relations between the frames. The assembly task

is being done by driving the frame {P} closer to the frame {H}, note that the {H} is

the frame that attaches to the bottom of the cuboid and {P} attaches the bottom of

the peg as well. Since the position of the peg can not be directly measured but must be

calculated concerning the position of the end-effector. The transformation matrix from the

end-effector frame to the peg frame is denoted as P
EE T . Then, the transformation matrix

to the peg frame with respect to robot base frame can be described as P
B T = P

EET
EE
B T ,

which in detail is:

P
EET =

2

6

6

6

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 ∆d

0 0 0 1

3

7

7

7

7

7

7

5

(4.1)

where the ∆d is explicitly depicted in figure 4.5. The problem then becomes that through

driving the end-effector and the peg correspondingly, the frame of the peg has to eventually

coincide with the frame of the goal.

In our work, the goal frame is designed as the same as the {H}, peg in this case, can reach
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Figure �.�: The representation of frames and transformationmatrices in the environment.
The objective of this work is to move the {P} so that the {P} is close to {H}
as much as possible. We simplify the task by introducing a nominal controller
that is capable of bring the end-effector near to the above opening of the hole.

the very bottom of the cuboid, because of figure 4.3 we know the peg length is a bit longer

than the hole height, such that a complete insertion is guaranteed. The most difficult part

for the insertion task always happens at the beginning that two objects start matching to

each other using the orientation adjustment. We do not let the gripper actively release peg

over running the simulation, because our focus is on the insertion and regardless of the

high-level policy, like releasing peg halfway to let it fall freely. By doing this, the experiment

and calculation can remain straightforward. The transformation that represent the peg

position in the goal frame is P
HT = B

HT EE
B T P

EET , which is found that related to figure 4.4b.

It must be clear that to keep the generality we express the peg position as p = (xp, yp, zp)
in the frame {H}, the (xp, yp, zp) can then be calculated in the base(world) frame and

subsequently transformed in {H}, i.e. as in figure 4.5 illustrates, the representation
Hp = H

BTBp is the the position of the peg in the hole frame.

�.�.� Nominal Control Scheme

As we mentioned before, in the peg-in-hole part, we aim to solve the assembly task with a

low-level control policy. We assume that the experiment starts from the gripper already

grasped the peg. To keep it general, the peg is randomly placed on the table where near to

the cuboid. The nominal control is the policy to move the peg from the table to the place

close to the hole opening so that the insertion adjustment is mainly executed by the RL
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Δ d

{H}

{P} (x p , y p , z p)

(xg , y g , z g)

Figure �.�: The indication of the process that the frame {P} getting closer to {H}, where
the red dot denotes the frame {P} and the orange dot denotes the frame
{H} as well as the goal position (xg, yg, zg) in the world frame. In the actual
calculation, we use the (xp, yp, zp) that is depicted in the frame {H}.

policy. The nominal control policy is applied under three conditions, which corresponds

to three regions where the peg currently locates, the three relevant regions are denoted

as I, II, III that divided into three parts by two infinite plane Π1 and Π2:

• I: move the peg above the plane that is a bit higher than the height of the hole

opening.

• II: move the peg in horizontal direction so that the peg appears around above the

hole opening.

• III: move downwards continually with a constant slight displacement.

To have perspective of the nominal policy, we have the simple schematic diagram that

makes this policy clearer in figure 4.6. The process that brings peg from the initial position

into the region III is mainly achieved by the nominal controller, as the distance between

the {P} and {H} getting closer, the weights of the nominal control decay correspondingly,

in our current work, this decay factor λ is not linearly changing, but as constant value

with the amount depending on the region, we can see clearly in figure 4.7. When the

frame {P} falls into region III, the nominal controller keeps moving the peg down to

encourage more contacts. As the peg starts inserting, the decay factor is equal to the

distance between frames {P} and {H}, which means the closer from {P} to {H}, the
more that RL-term dominant in the residual policy. Further explanation that combining
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Figure �.6: A brief diagram of the nominal control scheme, the �gure �.6a indicates the
environment with a cross-section of the front view, while the �gure �.6b is
the environment view from above. The orange dot denotes the {H} frame
that attaches to the bottom of the cuboid and the red dot simply denotes {P}
frame. The blue dotted line denotes the border plane Π1 between region I
and II, the red dotted line denotes the sum of four sub-planes that above the
cuboid and extend to the in�nite point.

nominal controller and RL controller as well as the residual policy and impedance control

law is illustrated in the 4.1.4 section.

�.�.� Combination of Impedance Control and Residual Policy Learning

Nowadays there is a growing number of literature Johannink et al. [17], Kulkarni et al.

[19], Silver et al. [33], Staessens et al. [35] that refer to residual policy, which provides

a wide range of ideas and design details. As mentioned in section 3.3.3, the residual

policy(RP) can be trained using the gradient-based method, even the initial policy is non-

differentiable. The purpose of applying residual policy is to enhance the data-efficiency

of learning and take advantages of both policies. To maintain flexibility as well as the

robustness of insertion task, we assume that there are no accurate sensors but only the

noised and biased input information, like some set points with rough location, the nominal

controller is required to accomplish the most of the displacements. The rest part that

result from system uncertainties is expected to be solved by RL-policy. In addition, to

better decouple the roles of the two policies in RP, we use a decay constant that scale
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the policy output that depends on the distance between the current position and the

goal position, overall, as the peg gets closer to the target, RL will play a bigger role, and

vice versa. The output of both policies and their combined part is expressed in action

space, which is the displacement formulated in the Cartesian coordinates of translation

and rotation. Due to the previously mentioned compliance characteristics that needed for

interactive task, the combination of two policies, i.e. the total actions, are fed into the

impedance controller for the sake of compliant manipulation.

Figure 4.7 shows the combination of RP controller and impedance controller, the RP

Nominal Controller
   

RL Policy

Distance Measurement
Impedance Controller

with Trajectory Generator

X

X

λ

1−λ

μ (s )

πθ(s)

a t τ

q , q̇

λ an

(1−λ)a l

S t

S t , Sd

an

a l

Figure �.�: Overall control scheme that combined residual policy with the Cartesian
impedance control.

controller composed of nominal policy and RL policy that both parts scaled by the distance

factor λ that depend on the distance between peg position to the target position. The

impedance controller receives the total desired displacement at and outputs the corre-

sponding torque τ in joint space, same as in section 3.2 introduced. At the same time, the

impedance controller receives the joint information from the robot, such as q and dq. The
nominal controller uses the current states of peg St that are transferred from the robot to

compute the difference between the peg to the goal. The RL controller receives not only
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the current states of the peg but also the desired position Sd, which denotes the position

that the peg is expected to reach. For the output from learned policy al and output from

nominal controller an, consider the notation in section 4.1.3, the combination out of both

policy is shown as:

at = λan + (1� λ)al, λ 2 (0, 1). (4.2)

Since the at is the Cartesian displacement from the current states to the desired states, the

part of angle difference of at is firstly calculated in quaternion space, the minimum angle

distance is transformed through rotation matrix into axis error, in the end, impedance

controller is using this angle error as well as the translation error for controlling in "mass-

spring-damper" wise. Since the mass-spring-damper system can be regarded as controlled

by a PD-controller, although the robot is compliant to the external force, a large distance

deviation still causes sudden and instantaneous movements and potential destruction.

To keep the movement of the end-effector stable and converge into a reasonable static

error, the Stiffness matrix described in equation 3.5 is tuned and a trajectory generator is

employed to generate a trajectory that composed of multiple sequential sub-displacement,

the start point and the endpoint of the trajectory are exactly the current position and the

desired final position of the trajectory. For each sub-displacement, the control sub-step

must be considered and must be limited to a value that is small enough to ensure the static

error. The minimal executing time for each control step is also considered and tested. In

the simulation of the experiment, the control frequency is set up to 1kHz, the setting time

of each sub-displacement is tested and shown in chapter 5.

�.� Learning the Residual Policy with TD�

In this section, we discuss the implementation of TD3(Twin Delayed Deep Deterministic

Policy Gradient) in our experiment. TD3 is an off-policy algorithm based on the actor-

critic method and derived from DDPG, where DDPG use actor and critic network to avoid

overestimating. TD3 algorithm extends DDPG that uses double critic network to evaluate

action value at the same time, and update the network with the smaller action value,

in this way, the overestimation of the action value can be alleviated. In addition, the

target network in TD3 does not update immediately but delayed updates after a few steps.

As a result of this temporal difference update, the value function is built according to

an estimation of a subsequent state (Fujimoto et al. [14]), so that the accumulating es-

timation error can be reduced. The elements of RL in our experiment are defined as follows:

�6



• States. We assume that the robot does not have any force sensors to maintain a force

control loop. To perceive the information from the environment that reveals where

the obstacles are and where is free to pass, we use deviation between the desired

posture of the peg and the actual posture of the peg after executing a specific action,

that is position error at time t: Pt = (∆xt,∆yt,∆zt) and quaternion error Qt =
(∆wt,∆xt,∆yt,∆zt). In this case, each learning step is not equal to the simulation

step, but a sub displacement that made of multiple control steps. Moreover, the

states contains the position of peg in the goal frame {H}: Pg = (xp, yp, zp). In total,

we have the states as (Pt, Qt, Pg).

• Rewards. Since the learning step is composed of a great number of simulation steps,

let the negative position distance as the reward after each learning step: rt = �||Pg||,
if the peg is slipped away from the gripper, the episode not terminates and get a

reward -2. If early terminate the episode when peg slips way, the agent may keep

do weird movements to shorten the executing steps.

• Actions. The actions are defined as a short displacement in 6-DOF Cartesian space:

at = (∆x,∆y,∆z,∆ϕ,∆θ,∆ψ), the last three elements are the rotation displace-

ment of roll, pitch, and yaw, we also clip these angle error into values with a small

amount(⌧ 20�).

We believe that both RL policy and impedance control have a necessary role for the mating

of peg and hole. The whole RL only output a clipped displacement, because the allowance

of the hole opening size and peg diameter should < 1cm), hence, it is helpful for robot to

do local adjustment(only the surroundings of the hole opening), and impedance control is

necessary in the other side that provides robot compliant behavior that also contribute to

the jamming problem while experimenting.
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� Experiments

�.� Data Collection and Preprocessing

The data is collected by the Azure Kinect camera and the Opti-Track system. The camera is

set up around 40cm above the table where experiments are made. There are four markers

attached to the top of each object so that the position and orientation can be captured.

When detecting the hand landmarks by using Mediapipe framework, it is a certain prob-

ability that the landmarks are misidentified or overlapped to each other while running,

the misidentified landmarks lead to faulty data set and wrong classification results. To

improve the quality of the data set, human movements in the video should not move too

fast and all fingers need to stretch and be exposed to the camera so that the algorithm

built in the Mediapipe can distinct each finger and the landmarks correctly, although only

a few fingers are used(In our experiment, the landmarks 0~8 means only the thumb

and index finger are detected to grasp objects, refer to figure 4.2). The figure 5.1 shows

the comparison between the originally captured image and the image overlapped with

landmarks.

There are in total 93 trajectories recorded for three primitive movements, pick-and-place,

peg-in-hole, and screw, thus there are for each movement 31 samples respectively. The

process starts with the hand moving towards the object, grasping it, moving to the target,

and doing whether insertion or screwing. The pick-and-place task is terminated when

the object is stably placed at the table. To not lose generality, the trajectory starts from

the random place and random height(stack on another irrelevant object) with random

direction on the table, the same case to where the object ends up with.

As mentioned in section 4.1 the data to be classified is presented as the trajectories of the

human hands and the grasped object. First of all, the videos and trajectories are recorded
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Figure �.�: Example of the insertion task. Figure �.�a is the original picture and the �gure
and �.�b is the recognition of the hand by adding landmarks on the �gure �.�a.

at the same time. However, the trajectories have more dense data in the entire process than

the image sequences because they are not recorded with the same frequency. To align the

data from them both, the transformation message of the object is only sampled when the

image message in the time stamp also exists. As in section 4.1.1 formulated that each state

is a trajectory that represents in time series, therefore, the time length of all trajectories

can not be automatically the same. As for classification with DTW, the algorithm doesn’t

restrict to having the same length of data, while the SVM and TSF algorithms need each

data sample to keep the same size. We have in that way two sets of data prepared for

different classification algorithms. That is, for DTW we keep the trajectories as what it is

and for the SVM and TSF algorithm, the trajectories are clipped to be the same length

as 40 timestamps from the end time point backward to the beginning. Then the data is

processed by standard scaling which performs better than the minimax scaling because

the standardization centered the value around the mean so it is less affected by outliers.

�.� Dynamic Settings for Robot System

While doing manipulation tasks, it is usually important for the robot to have good dynamic

characteristics, such as small overshooting, fast response speed, few steady-state errors,

etc. However, there is another property we need from the robot manipulator in this

work, which is compliant behavior. The compliant behavior requires the robot to act as

the external force tends to, so the compliance is kind opposite to the requirements of
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high dynamic(fast response) that demands huge gain and eliminate error or external

interference as soon as possible. In addition, our set-point based impedance control is

behaving like a mass-spring-damper system that does not converge immediately if external

force suddenly withdraws. These trade-offs motivate us to do experiments to tune the

parameter that makes control more stable and efficient.

In the experiment, the dynamic characteristics of the Panda robot have been finely tuned

in the simulation. We set up the parameters and limits in simulation so that the output

torques of the robot are clipped in a reasonable range, which is also beneficial to sim2real

in the future. In the simulation environment, the dynamics of objects are adjusted in

the first place. Since the work is about the insertion task with a 1cm tolerance, we set

the peg and hole both have high friction coefficients to prevent peg from sliding into the

hole but encourage RL policy to explore actions that adjust the insertion orientations and

translations.

Since the impedance control we used is the same as controlling at a virtual equilibrium

point, large displacement causes for sure huge torque output that we do not anticipate.

Hence, we set a maximum sub-displacement that is not allowed to be violated in the

specific setting time of control. Although the robot does the manipulation task in a contact-

rich scenario, we need to define the appropriate sub-displacement and corresponding

setting time first in the case without any contact happens. Refer to Proposition 3.4 of [25]

that for the twice differentiable desired trajectory xd(t), the well-known closed-loop PD

controller in configuration space is uniformly globally asymptotically stable can be ensured,

if the cartesian coordinates are valid globally and their stiffness, damping matrices are

symmetric positive definite, and there are no external forces applied. When the contact

exists, the stability can be ensured but not asymptotic stability.

As defined before, the tolerance between peg and hole is 1cm, so the translational sub-

displacements should require |∆d| ⌧ 1cm. The length of the generated translational

displacement for each learning step is an integer multiple of the length of 1mm. Let

the sub displacement be 1mm, different gain and sub-steps are tested for sub displace-

ment, and the results shown in figure 5.2, show the control for a 1mm displacement

with multiple segments and execute each segment sequentially. It is quite clear from

figure 5.2 that the output property is closely dependent on the gain Kp and the number

of steps. Figure 5.2a, 5.2c, 5.2e represent the set-point control with various gains and

a fixed sub-step. It is easy to determine that lower gain has less oscillation frequency
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(a) Kp = 1000, step = 10 (b) Kp = 3900, step = 1

(c) Kp = 2000, step = 10 (d) Kp = 3900, step = 5

(e) Kp = 3900, step = 10 (f) Kp = 3900, step = 50

Figure �.�: Output features of maximum displacements in a toy experiment for trajectory
generation. Although the stability of IC control is ensured, less oscillation and
faster response is still the important element. Figure �.�a, �.�c,�.�e shows
�� sub control steps by applying different gain within �mm, while �gure �.�b,
�.�d,�.�f shows the case with same gain but different sub step within �mm.
Although the case �.�f performs best of all, we select �.�e as the optimal
candidate by considering the physical limitation of Panda robot.
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but takes longer to converge. Figure 5.2b, 5.2d, 5.2f illustrate the different outputs that

sub-steps bring. A smaller sub-step distance reduces the overshoot of the output posi-

tion. We finally adopted the case with Kp = 3900 and step = 10 because the case with

the same gain but step = 50 has too small a sub-step that even breaks the real robot’s

repeatability, so we discard this option that is not appropriate for further sim2real problem.

There are two trade-offs here that have a direct impact on the results. One is the compliant

behavior and the precision of the control, which are already discussed as three cases on

the left of figure 5.2. The other is the number of sub-steps and the time required for

control, which should be considered if the running time is required to be short. To make

the previous conclusions more intuitive, another toy experiment is conducted by using the

off-the-shelf trajectory from our data set.

(a) Kp = 3900, step = 1 (b) Kp = 3900, step = 10

Figure �.�: The comparison of trajectories by using different sub-steps. The slight dif-
ference in the �gure between �.�a and �.�b shows the tracking ability of the
trajectory when using different sub-steps. In the case of �.�a, robot needs
complete �mm with only � control steps, while �.�b do �mm within �� steps.

We process the trajectory derived from the real world by scaling the dimension into the

simulation environments. Then the robot manipulates and traces the trajectory. The

results shown in the figure 5.3 illustrate that applying dense sub displacements indeed

precisely tracks the trajectory. If there is no strict requirement for running time, the

tracking requirement is fulfilled by using 1mm displacement more than 5 control steps.

In our case, we adopt Kp = 3900 and step = 10.
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�.� Policy Learned by RL algorithm

The environment is established by ourselves in Pybullet and the policy is learned by using

Mushroom (D’Eramo et al. [12]). The experiments we conducted of the residual policy

learning that has a robust and stable impedance controller with trajectory generation in

the Cartesian space. The policy is given by the combination of the nominal controller

and the learned RL policy, like in section 4.1.3, chapter 4 illustrated. Both policies are

weighted by a factor that is dependent on the location of the grasped object. This factor

λ is set to 0.99 for grasped object in the region I and II. The region III is broad so that

the peg is not directly fallen into the hole but interacts with the surface of the cuboid by

means of contact. The states in RL reveal the current situation of the end-effector whether

it gets stopped by the obstacles or stopped in which specific direction. In the region III, we

set the λ depending on the distance from the frame {P} to {H}, so that the RL weights

more as the peg closer to the target.

The actor-critic based RL algorithms are implemented to not only avoid overestimating but

also to have good converging properties. To let the nominal policy work at the beginning

without having the RL policy get involved, we initialize the weights of the last layer in the

actor-network to zero without gradient tracing.

The best hyperparameters are selected from the results obtained from the multiple learning

trials. We initially selected 180 features for the hidden layer, the output layer is to scale

the values into -1 to 1 by using the tanh function, the output from RL policy al is scaled
the again into our requirements of the dynamic. In each learning step, the output al is
scaled for translational displacement  0.01m and for rotational displacement  π/50
rad, since the rotational error while controlling is quite small, we didn’t explicit illustrated

in the part of trajectory generation. After several attempts, we set the features to be 40

because of the overfitting problem. Since the immediate reward is the negative distance

from the frame {P} to {H}, the agent tends to make the way with minimum steps to

have a higher total reward. Originally, the episode is terminated if insertion is complete

or the grasped object is slipped away from the robot gripper. But we found that the agent

keeps behaving weirdly so that the peg frequently slipped away and get a higher total

reward. Thus, the experiment terminates only when the goal is reached, and a very low

reward is used when the peg is out of the gripper. The hyperparameter like the horizon is

set to around 60 that slightly more than the steps of a perfect insertion, the batch size is

originally set to 128.
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6 Results

6.� Classi�cation

As mentioned in the last chapter that multiple algorithms are been employed to distinct

primitive movements. The algorithm SVM is due to its poor results that already mentioned

in chapter 3, so there are no further extensions here, instead, we only discuss the results

that DTW+kNN and TSF outcome. There are balanced data sets been used for each

primitive movement, that is 31 samples for each movement thus in total 93 samples.

Therein are two kinds of post-processed data sets for DTW applied and compared, which

is about whether the data is cropped into the same size or not, because the DTW-based

method is not very dependent on the same data size. Since k is the value of the nearest

neighbor that can be considered as a hyperparameter. We use hold-out cross-validation

for all samples and get the best results for each k, the results are shown in figure 6.1.

The test set is made of 24 samples out of all 93 samples, in that way 8 samples for each

movement. As for the DTW+kNN algorithm, since k-NN is a well known lazy learner

because it doesn’t learn a discriminative function from the training data, i.e. a model with

weights parameters, it calculates the distance from the training data directly.From the

results, we can see that the best attempt occurs with k = 5, which is typical for kNN based

method. In general, too small k leads to a large estimation error and the prediction result

is sensitive to the nearby points. A larger k can reduce the estimation error, but the training

instances far from the test instance will also play a role in the prediction. That is the reason

we take a relatively small k and the cross-validationmethod helps select the optimal k value.

From the best results of all algorithms, we have the confusion matrix that presents in

figure 6.2. It is quite obvious that the TSF has the highest accuracy rate and best positive

prediction performance among all methods. The prediction performance is various by the

type of class, and TSF outperforms in this field in all classes. Although DTW also has a

considerable accurate rate, the results are highly dependent on the way that the training
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Figure 6.�: The best success rate from all test samples with different k values. Figure
6.�a uses the data set that trajectories have different time lengths and the
�gure 6.�b is the same data set as TSF, where all the time series are cropped
into the same length.

set is selected and on the appropriate hyperparameter. The trade-off about selecting

k is also tricky, larger k can improve the robustness of the algorithm, but the method

itself is really time and compute costing compared to the decision-tree based method.

The detailed evaluation can be found in the chart 6.1, which includes results that use
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Figure 6.�: Confusion matrix of best results from three algorithms. The abbreviation "PP",
"PH" and "SCW" represent the primitive movement pick-and-place, peg-in-hole
and screw respectively. The algorithms here are displayed from left to right:
SVM, DTW+kNN, and TSF respectively.

fewer hand features and also the results without information of the grasped object. This

chart records the performance of all used methods and all applied training features. The

accuracy row illustrates directly that the TSF with the entire features that include not
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Evaluation

TSF TSF Less Features TSF Without Object Info DTW+kNN SVM

Accuracy 0.88 0.83 0.75 0.79 0.38

Precision(0) 0.78 0.75 0.67 0.70 1.00

Precision(1) 0.86 0.75 0.75 0.75 0.35

Precision(2) 1.00 1.00 0.88 1.00 0.00

Recall(0) 0.88 0.75 1.00 0.88 0.12

Recall(1) 0.75 0.75 0.38 0.75 1.00

Recall(2) 1.00 1.00 0.88 0.75 0.00

f1-score(0) 0.82 0.75 0.80 0.78 0.22

f1-score(1) 0.80 0.75 0.50 0.75 0.52

f1-score(2) 1.00 1.00 0.88 0.86 0.00

Table 6.�: The evaluation of all use cases. The number behind precision, recall, and
f�-score is the rate that gives to the ability to classify individual tasks, i.e. "�"
for "pick-and-place" task, "�" for "peg-in-hole" task, and "�" for "screw" task.

only 9 landmarks of hands but also the grasped object outperform other counterparts.

The precision rows show that TSF most correctly predicted the positive observations of all

positive observations. Similarly, it can be seen from the recall columns and the f1-score

columns that TSF with complete features has the highest classification discrimination

ability. Compare to the second column under "TSF Less Features", it is interpretable

that this case contains the most complete information that necessary for classification,

the missing information from fewer features is the object traced by the Opti-Track that

contains the orientation information in the quaternion space. The landmarks data from

Mediapipe can not supply orientation information, and Opti-Track for now is a significant

supplement. To some extent, the results that only come from an object are even more

important than the hand landmarks since the second column has a higher accuracy rate

than the third column. As discussed before, regardless of the running consumption, the

DTW-based method still has a not bad performance, which can be considered as a baseline

classifier for future work, and SVM should by no means be used to tackle time series

classification problems.
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6.� Learning

In the residual policy learning, we would like to verify the plausibility and feasibility of

this new environment, thus we tended to use the off-the-shelf RL algorithm to learn a

residual policy. We opted TD3 as our RL algorithm, and initialized the experiments with

different hyperparameters, and adopt the values that refer to best trials to train the model,

wherein the batch size is 128, the horizon is 60 steps(nominal policy takes around 37

steps), the feature size is 40.

Figure 6.�: The comparison of success rate among three cases for each over �� seeds:
big friction coef�cient with constant λ, big friction coef�cient with decayed λ

and small friction coef�cient with decayed λ .

During the experiment we found that the success insertion highly depends on the re-

lations between nominal policy and RL policy, in other words, for total policy output

at = λan + (1 � λ)al, the selection of λ is essential to the results, where an, al stands
for nominal and learned policy respectively. We also set the high friction coefficient to

encourage the policy to do more local manipulation, but high friction also leads to the

jamming problem. Thus, we verify our assumptions by comparing the performances under
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these three scenarios, the results can be found in figure 6.3.

It is easy to draw from the figure that the learning with the decayed λ has the worst

outcoming, in this case, we have λ = ||Pg||  0.13, where ||Pg|| is the goal distance in

the hole frame, and 0.13cm is exactly the height of the hole opening. Since the nominal

policy is less weighted, the total policy is then dominated by the RL policy. When the peg

goes deeper and closer to the bottom, the RL policy gradually loses the guidance from the

nominal policy. The most fatal factor is, in this low allowance contact-rich scenario, the

decayed λ starts drastically varying and hardly converge to a value, the same case happens

at the output of the (1� λ)al, this is data-inefficient and there is no big difference with

pure RL.

The case of the small friction applied is also explainable, the interaction between the peg

and the hole can be uncertainly affected by the relative sliding of the hole, on one hand,

the peg is compliant to slide away instead of jamming somewhere, on the other hand,

this uncertainty also causes the huge standard variation of the reward. But in total, we

still prefer the constant λ with small friction as our optimal policy, because this option has

the most success rate and leads to more possibilities to explore. In our final test, the best

agents trained by constant λ with small friction are conducted in 20 insertion trials, and

there were 6 successful insertions. Normally, it took 5 minutes to finish one episode, thus,

due to the time limits, we didn’t adopt more epochs for training, but more epochs bring

different results because the nominal policy takes too many steps!

To illustrate the non-clipped output of both policies in the residual policy, we have an

example of a success insertion shown in figure 6.4, wherein two subfigures shown the same

process of insertion that in one episode, both figures are differently scaled because an and

al work in different dimensions. Figure 6.4a is the output of the nominal policy, we can

see that the policy worked at the beginning till step 15 to move the peg from region I into

II(refer to system overview in chapter 4), so only movement in the vertical direction anz
worked. Then the peg moved horizontally to the surrounding of the hole opening. From

step 39 the an output downwards displacement to force the peg contact with the surface

of the cuboid, and then the influence is decayed when peg get closer to the goal, the sign

of II! III means the time that the λ switches and RL policy is in dominant. The case of

6.4b shows the RL policy is more weighted when the peg gets closer to the goal. Actually,

this example is a very rare success of all trails, because as mentioned, when the factor λ

decayed, the output of al is hardly to converge. Note that, the actual total output fed to
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impedance controller is not equal to at = λan + (1� λ)al, but the clipped action of this at,
because we must ensure the output values are valid and reality-based. The example of the

success episode and the example of the failure episode are shown in figure 6.5, wherein

the figure 6.5a shows an often encountered case that the peg slipped away from the gripper.

At the very end of this work, we realized that the methods we used still has a lot to

improve, and the RL policy was not well learned, because the nominal policy took too

many steps in the total episode, although the equation 3.8 holds for residual policy, it still

needs a lot of computation and training to converge. One possible optimization for the

future is to reduce the steps done by the nominal policy.
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(a)

(b)

Figure 6.�: Example of the residual policy by using decayed factor λ that equal to the
goal distance. The dotted shaded line means the step that the peg goes from
region II into III refer to chapter �. Note that the values only represent the
original output of nominal and RL policy that not be clipped.
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(a) (b)

Figure 6.�: Comparison of a failure and a successful example from the best-trained
agents. Both cases are sampled at the same step. The left �gures 6.�a show
the case that the peg slipped away from the gripper.
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� Conclusion

Our first contribution in this work is, we built up a pipeline that automatically maps from

a video to the robot manipulation task, and we can accomplish the primitive task if the

category is peg-in-hole. The classification results meet our requirement, it is fast to have

the outcomes and the accuracy rate is quite satisfied.

Our second contribution is the development of a stable and robust simulation environment

for robot manipulation, where the robot contains position-based compliant behavior with-

out any force sensing. Our work is reality-oriented so it aimed very closely at dynamic

tuning, so that is more likely to transplant the policy on the real robot in the future. But

there are more difficulties than expected when tuning parameters for impedance control

of the system because there are several trade-offs in the field of Cartesian space impedance

control. For example, the trade-off between stability(convergence) and steady manipula-

tion(no crash). The trajectory generation solves the problem by steadily control in sub

displacement, which in addition needs fine-tuning of the stiffness matrix and damping

matrix for our specific task. The other trade-off is the steady, compliant movement with

the huge running time. The long-term running limited our attempts for more algorithms

and hyperparameter tuning.

As you can see, the peg accidentally released from the gripper often happens. A possible

solution in the future is to fix the peg as the last link of the robot, which is easier to train

and avoid releasing as well. Due to the software limits, it is currently difficult to simulate

the bolt-nut pairs for the screw task in the simulation, which is a small regret of our work.

And the screw task needs a more complicated nominal policy for the robot because the

end-effector can not continually rotate due to joint limitations. Instead, in the future, we

can expand the object from cylinder to polygons and other shapes. And the task becomes

to do a generalized insertion task without considering the shape of the hole.
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In fact, from chapter 6 we know that when a peg is partially inserted into the hole, it is

better to use a fixed weight factor as a dynamic one, the combination of both policies is

always worth exploring and investigating. One another worthy discussing topic is, to better

generalize the insertion problem, insert not only the polygon shape peg as mentioned but

also with a random insertion angle and let the RL policy adjust the insertion posture.

Using memory-based approaches to learn past observations is seen to be promising in

some similar works. For example, the recurrent TD3 has now been used and has significant

improvement over approaches without RNN.
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