
Statistical Model Based
Reinforcement Learning
Statistisches Modellbasiertes Reinforcement Learning
Master thesis by Fabio d’Aquino Hilt
Date of submission: July 13, 2023

1. Review: Joe Watson
2. Review: João Carvalho
3. Review: Jan Peters
Darmstadt

Abstract

Robotic control problems are particularly challenging to solve with reinforcement learning
(RL) because of the time-consuming and costly nature of sampling real-world environments.
Model-based reinforcement learning (MBRL) aims to tackle this problem by learning a
separate dynamics model. While Gaussian processes (GP) provide expressive models
with low model bias, they face scalability issues with large datasets. This thesis uses
spectral-normalized neural Gaussian processes (SNGP) to address this problem to obtain
scalable GP approximations and demonstrate its expressive capabilities in a MBRL setting.
Furthermore, we explore the integration of the SNGPmodel for policy and dynamics models
and input inference for control (I2C) for stochastic trajectory optimization. This thesis
contributes to the exploration of novel approaches in MBRL, highlighting the potential
of SNGP models and I2C optimizations for efficient and effective control in real-world
environments.1

1Code available at: https://github.com/neuralskeptic/smbrl

https://github.com/neuralskeptic/smbrl

Contents

1. Introduction 2

2. Foundations 4
2.1. Reinforcement Learning . 4

2.1.1. Model-free reinforcement learning 4
2.1.2. Model-based reinforcement learning 6

2.2. Dataset aggregation for imitation learning 8
2.3. Spectral-normalized neural Gaussian process 9

2.3.1. Distance preserving hidden layers 10
2.3.2. Distance aware output layers . 10

2.4. Input inference for control . 12
2.4.1. Cost function as likelihood . 13
2.4.2. Approximate inference . 13
2.4.3. Bayesian smoothing . 13
2.4.4. Temperature update . 14
2.4.5. Policy as conditional action . 14

3. Gaussian process model 15
3.1. Bayesian multivariate linear regression . 15
3.2. Variational posterior . 16
3.3. Posterior predictive and model evidence 17
3.4. Evidence lower bound loss: fitting to deterministic targets 18
3.5. Moment-matching loss: fitting to target distributions 18

4. Experiment: Gaussian process model de-risking 20
4.1. Setup . 20

4.1.1. Environment: Furuta pendulum swing-up with custom cost 20
4.1.2. Setup modified SNGP model . 21
4.1.3. SAC agent training . 21

4.1.4. SNGP dynamics model training: from expert policy rollouts 21
4.1.5. SNGP policy training: behaviour cloning from SAC with DAgger . . 22
4.1.6. Closed-loop evaluations . 23

4.2. Evaluation . 24
4.2.1. SNGP dynamics model training: from expert policy rollouts 24
4.2.2. SNGP policy: behaviour cloning from SAC (DAgger) 28
4.2.3. Closed-loop evaluations . 30

4.3. Summary . 33

5. Experiment: input inference for control in the model-based reinforcement
learning loop 34
5.1. Setup . 35

5.1.1. Environment: simple pendulum swing-up 35
5.1.2. Setup models and approximate inference 35
5.1.3. Setup I2C optimization . 36
5.1.4. SNGP dynamics model training: from policy rollouts with ELBO loss 38
5.1.5. I2C: find locally optimal controllers from dynamics 38
5.1.6. SNGP policy training: from optimal I2C trajectories 39

5.2. Evaluation . 41
5.2.1. SNGP dynamics model learning . 41
5.2.2. I2C: find locally optimal controllers 46
5.2.3. SNGP policy learning from local controllers 53

5.3. Summary . 60

6. Conclusion 62

A. Matrix normal distribution 66

B. Evidence lower bound loss derivation 68
B.1. KL of posterior from prior . 69
B.2. Log likelihood . 70
B.3. Expected log likelihood . 71
B.4. Evidence lower bound . 73

C. Code 74
C.1. Quanser Qube environment reward function modifications 74

List of Abbreviations

Notation Description

DAgger dataset aggregation

ELBO evidence lower bound

GP Gaussian process

GPS guided policy search

i.i.d. independently and identically distributed

I2C input inference for control

iLQR iterative linear quadratic regulator

KL Kullback-Leibler

MBRL model-based reinforcement learning

MDP Markov decision process

PILCO probabilistic inference for learning control

RBF radial basis functions

RFF random Fourier features

RL reinforcement learning

RMSE root mean squared error

SAC soft actor critic

SNGP spectral-normalized neural Gaussian process

TVLGC time-varying linear Gaussian controller

w.r.t. with respect to

1

1. Introduction

Reinforcement learning (RL) solves sequential control problems via trial and error through
interactions with the environment. This works very well for simulated environments
like video games, which permit a huge number of interactions. However, real world
environments such as robotic control problems are time-consuming and expensive to
sample and are vulnerable to control errors, which can lead to destruction of equipment
or bodily injury. Model-based reinforcement learning (MBRL) promises to facilitate RL
in such applications by learning a separate dynamics model and policy. This reduces the
required number of interactions and allows for testing of the policy before running it in
the real world.

There are many different approaches to MBRL, some of which build white or grey box
dynamics models. These kinds of dynamics model can be used in trajectory optimization
to get optimal action sequences to be distilled into more complex policy models. Guided
policy search (GPS) [1, 2, 3, 4, 5] for instance learns a linearized local dynamics model
and finds the approximately optimal action sequence using iterative linear quadratic
regulator (iLQR) [6, 7]. This also means GPS has to regularize the policy updates in order
to prevent excessive exploitation of the inaccuracies of the local linear dynamics model.
Probabilistic inference for learning control (PILCO) [8], on the other hand, trains a global
Gaussian process dynamics model where the local policy is trained with backpropagation
of gradients w.r.t. evaluations of the policy in the dynamics model using approximate
inference. This yields excellent global dynamics models, but Gaussian processes do not
scale to large datasets and backpropagation through time is brittle.

This work aims to combine the excellent properties of Gaussian processes (GP) with
trajectory optimization to learn both a global dynamics model and a global policy. To
obtain a scalable GP approximation we modify spectral-normalized neural Gaussian
processes (SNGP) [9], and for stochastic trajectory optimization we use input inference
for control (I2C) [10] with approximate non-linear inference, which improves on iLQR.

2

This thesis is structured as follows: Chapter 2 contains the core background concepts
which are used and extended in this thesis. In Chapter 3 we introduce the modified SNGP
model, which is then analyzed in Chapter 4. The analysis proceeds with Chapter 5, where
a MBRL loop is set up containing a SNGP dynamics model, a SNGP policy and the I2C
optimization algorithm, and the individual steps in the loop are scrutinized. The thesis
concludes with a summary and directions for future work in Chapter 6.

3

2. Foundations

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning approach to solve optimal control
problems with the assumption that the system dynamics are time-discrete. This time-
discretized dynamics is called Markov decision process (MDP) and is formalized by a set
of states S, actions A, a transition dynamics probability function f : S ×A× S → [0, 1],
and a reward (or cost) function R : S × A → R. However, the reward is not really a
part of the system dynamics, since it is usually chosen by the engineer to describe the
objective, and careful reward shaping helps the optimization to navigate the unknown
transition dynamics and find optimal controllers. Nevertheless, it is usually treated as
unknown to the optimization and part of the system dynamics. The goal is to find a policy
π : S → A that manages to control the system in a way that the trajectory s0, a0, s1, a1, . . .
resulting from the alternative evaluation of the policy at = π(st) and the transition
function st+1 = f(st, at) starting from an initial state s0 ∈ S has a maximal cumulative
reward. When the problem is stated for a fixed time frame it is called ”finite-horizon”,
and ”infinite-horizon” problems have an additional discount factor 0 < γ < 1 which is
multiplied to the future rewards to keep the cumulative reward finite.

2.1.1. Model-free reinforcement learning

Model-free RL tries to learn a (stochastic) policy from observations of rewards in the
environment, without any assumptions about the structure of the transition function.
Since the policy has to also learn the combined complexity of the transition dynamics
and the reward, model-free policies are usually more complex and thus more flexible
than their model-based counterparts, which in turn means that more observations are
needed to learn a good policy. The fact that it is not possible to execute the dynamics

4

model offline to generate new samples additionally increases the need for environment
interactions. Storing the sampled observations in a replay buffer to be used again for
training, and possibly heuristically generating new samples from the buffer, slightly
increases the sample-efficiency.

2.1.1.1. Soft actor critic

Soft actor critic (SAC) [11] is a model-free RL algorithm, which uses entropy regularization
to optimize a stochastic policy. Entropy regularization means that the reward function is
augmented with the entropy of the policy at the current state

R̂(s, a, s′) := R(s, a, s′) + αH[π(·|s)] (2.1)

To cope with complex state-dependent reward structures, it learns the reward function
with an ensemble of two Q-function networks, which are optimized by minimizing the
mean squared error from the current state observed reward and the next state entropy
augmented reward

L(φj ,D) = E
(s,a,s′,r)∼D

[︁
(Qφj

(s, a)− r̂)2
]︁

(2.2)

r̂ = r + E
a′π∼πϕ(·|s′)

[︁
Qφj

(s′, a′π)− αH[π(a|s′)
]︁

(2.3)

where r̂ is considered constant (the Q-function inside is not optimized). The policy is
built from a mean and a covariance neural network and is learned by minimizing the
expected backwards Kullback-Leibler (KL) divergence (information projection [12]) from
the policy to the exponential minimum of the two Q-functions

min
ϕ

DKL
(︁
απϕ(a|s) ∥ exp{min

j=1,2
Qφj

(s, a)}
)︁

(2.4)

which is equivalent to maximizing the entropy augmented Q-function reward over policy
predictions. The temperature parameter α scales the weight of the entropy and good
temperature values have to be experimentally determined for each problem individually.

5

2.1.2. Model-based reinforcement learning

Figure 2.1.: Alternating optimization of policy and dynamicsmodel typically used inmodel-
based reinforcement learning

In contrast to model-free RL, where there is no explicit assumption about the distribution
of the transitions observations, model-based RL (MBRL) explicitly models the transition
dynamics to be able to generate new dynamics predictions during the training of the
policy without needing new environment interactions. This naturally leads to a dual
optimization problem of both the policy and the dynamics model, where in turns the
one is held fixed while the other is optimized. Even though this dual optimization is
generally more complex than optimizing a single model, the models involved in MBRL
are usually simpler than the policy in model-free RL. Leveraging the dynamics model
for policy optimization reduces the number of samples required, which are usually only
needed to update the dynamics model.

6

2.1.2.1. Probabilistic inference for learning control

Figure 2.2.: ”GP prediction at an uncertain input. The input distribution p(xt−1, ut−1) is
assumed Gaussian (lower right panel). When propagating it through the GP
model (upper right panel), we obtain the shaded distribution p(∆t), upper left
panel. We approximate p(∆t) by a Gaussian with the exact mean and variance
(upper left panel)” [8]

Probabilistic inference for learning control (PILCO) [8] is a MBRL algorithm which learns a
global dynamics model from samples collected in the environment and a local policy model
by optimizing the reward given the dynamics model. The global dynamics are modeled
by a non-parametric Gaussian Process (GP) [13], which is learned by maximizing the
marginal likelihood over all the collected transitions, which are sampled by executing the
policy in the environment. The local policy is a radial basis function (RBF) network and is
found by optimizing the reward received from rolling out the policy in the dynamics model
and using back-propagation through time to change the policy parameters. This means
that every policy is effectively a locally optimal controller given the current dynamics
model. The GP dynamics model captures its own epistemic uncertainty very well, but does
not scale to large amounts of transitions or more complex problems, because the marginal
likelihood has to be computed over the entire data set. The local RBF policy optimization
uses regularized model updates to constrain policy updates, but back-propagation through
time is brittle, since gradients can easily explode or disappear if the optimization has to
recurse through many time steps.

7

2.1.2.2. Guided policy search

Figure 2.3.: A schematic overview of Guided Policy Search [4]

Guided policy search (GPS) [1, 2, 3, 4, 5] is a MBRL method which learns a local dynamics
model and a global policy. The dynamics model is a Gaussian mixture model, i.e. time-
varying linear dynamics, and is learned around the latest trajectory (policy roll-out)
from the collected observations. Since only the dynamics close to the latest roll-out are
modeled, the dynamics model is only locally valid. The policy is modeled by a µ and a Σ
network and is found by minimizing the Kullback-Leibler (KL) divergence between the
policy prediction and local controllers, where the controllers come from finding an optimal
action trajectory for the linear dynamics model using (linearized) dynamic programming.
The linear dynamics model allows fast and easy optimization, but linearizing the true
non-linear dynamics makes an even locally quite crude model. The policy on the other
hand accumulates knowledge and the maximum entropy policy update creates good
regularization [14].

2.2. Dataset aggregation for imitation learning

Imitation learning is generally hard for most RL problems because of their sequential
structure. For instance, the samples observed at different time steps are not i.i.d. (temporal

8

causality) and small prediction errors can accumulate over time giving rise to unstable
or chaotic behaviour (no recovery from errors), all of which result in bad test-time
performance even when the training fit is good. Dataset aggregation (DAgger) [15]
uses ”no-regret online learning” to tackle this problem to make imitation learning useful
for RL. The idea is very simple and intuitive: instead of training on roll-outs of the expert
policy, which tends to do little exploration, use the (incompletely trained) imitating policy
for exploration. Then run the expert policy on the collected states to find out how to
recover from those states, and aggregate the explored states and expert actions to the
training data. Repeatedly training the imitating policy on the growing data set made up
of states resulting from its own action errors and the expert policy recovery actions works
very well and creates robust policies, since it trains the policy on expert actions over the
area of state-space it is likely to encounter at test-time.

2.3. Spectral-normalized neural Gaussian process

Figure 2.4.: Improvements of SNGP over the standard deep learning framework1

Spectral-normalized neural Gaussian processes (SNGP) [9] are Gaussian processes (GP)
created with the aim of being more scalable than GPs and with better input distance
awareness than neural networks. Input distance awareness means having bounds on the
distance of outputs ||h(x)− h(x′)|| given the input distances ||x− x′|| and is an important
guarantee for good epistemic uncertainty of GP models. As shown in Figure 2.4, SNGPs
can also be thought of as GPs with spectral-normalized neural network kernel functions.

1image source: https://www.tensorflow.org/tutorials/understanding/sngp

9

https://www.tensorflow.org/tutorials/understanding/sngp

2.3.1. Distance preserving hidden layers

To make the hidden layers of a neural network distance preserving, SNGPs bound the
Lipschitz constants of all nonlinear mappings (linear layers with activations) to be less
than 1 [16]. This means the hidden layer has to satisfy the bi-Lipschitz condition

L1 · ||x− x′|| ≤ ||h(x)− h(x′)|| ≤ L2 · ||x− x′|| (2.5)

for positive bounded 0 < L1 < 1 < L2, which encourages the hidden layers to be
an approximate isometric (distance preserving) mapping. This bound is enforced by
adding spectral normalization to the weight matrices W of each hidden layer: when
the largest singular value of W becomes too big λ > c, the weight matrix is normalized
W ← c ·W/λ, where the hyperparameter c can be tuned to limit the normalization to
increase the expressive power of the network. Obviously it would be very computationally
expensive to compute the singular value decomposition (SVD) for every weight matrix
after every weight update, therefore, in practice, SNGPs approximate SVD with power
iteration [17, 18]. Power iteration updates the left-approximated and right-approximated
singular vectors (of the largest singular value) in an alternating algorithm which requires
few iterations for a good approximation

v =
W⊤u

||W⊤u||2
(2.6)

u =
Wv

||Wv||2
(2.7)

where the resulting spectral norm is computed as u⊤Wv. Since the weight matrices
usually do not change quickly during mini-batch training, it is often sufficient to do only
one power iteration per mini-batch to keep the approximated spectral norm close to the
true value.

2.3.2. Distance aware output layers

Making the output layers distance aware is mainly a problem of choosing a scalable
approximation of the exact GP posterior and marginal likelihood. SNGPs first approximate
the infinite-dimensional GP with finite dimensional Bayesian linear model using random
Fourier features (RFF) [19] to create expressive and scalable feature functions while
keeping the neural network output layer size manageable. Secondly, SNGPs use Laplace
approximation to get tractable posteriors.

10

2.3.2.1. Random Fourier features

For exact GP inference, the marginal likelihood has to be computed, which requires the
entire dataset and scales cubically O(N3) in the number of data points N . If the infinite-
dimensional kernel function is approximated using a finite feature space of M dimensions,
this can be thought of as a ”reverse kernel trick”, which is advantageous when the the
feature space dimension is less than the number of data points M < N . Random Fourier
features hinge on Bochners theorem (see [19] or [20]), which states that every positive
definite shift-invariant (stationary) kernel is proportional to the Fourier transform of a
kernel-specific probability distribution

k(x− y) ∝ 1

2π

∫︂
p(ω)ejω

⊤(x−y)dω (2.8)

For instance, the Gaussian (radial basis function) kernel e−
∥x−y∥2

2σ2 is equal to the Fourier
transform of the standard normal distribution N (0, 1). Since both the kernel and the
probability distribution are real, we can further rewrite

k(x− y) ∝ Eω[cos(ω⊤(x− y))] = Eω[zω(x)
⊤zω(y)] (2.9)

using the Fourier feature functions

zω(x) :=
[︂
cos(ω⊤x), sin(ω⊤x)

]︂⊤
(2.10)

We can therefore get unbiased estimates of the kernel by using monte-carlo integration

k(x− z) ∝ Eω[zω(x)
⊤zω(y)] ≈

1

D

D∑︂
i=1

zωi(x)
⊤zωi(y) = z(x)⊤z(y) (2.11)

where ω1, . . . , ωD are i.i.d. samples drawn from p(ω) and the D-dimensional RFF function
z(x) becomes

z(x) :=

√︃
1

D

[︂
cos(ω⊤

1 x), sin(ω⊤
1 x), . . . , cos(ω⊤

Dx), sin(ω⊤
Dx)

]︂⊤
(2.12)

Conveniently, the estimation converges uniformly and exponentially fast in D. However,
RFFs can suffer from variance starvation [21], because with an increasing number of
data points, the finite degrees of freedom can get pinned more and more, resulting in
overconfident predictions. Variance starvation can be countered by increasing the number
of RFFs at the expense of higher computational cost.

11

2.3.2.2. Laplace approximation of the posterior

To approximate the generally non-Gaussian weight posterior with a Gaussian distribution,
SNGPs use Laplace’s approximation [22]. The approximated mean is the posterior mode,
which is the maximum a posteriori solution, and is updated together with the hidden
layer weights on every minibatch using stochastic gradient descent and squared loss. The
approximated precision is the observed Fischer information matrix, which is the Hessian of
the posterior log-likelihood at the posterior mode, and is only computed on the final epoch
using the learned mean. Since Bayesian linear regression with RFF is a finite-rank model,
the Bernstein von Mises theorem states that Laplace’s approximation is asymptotically
exact, i.e. it converges to the true posterior with many samples.

2.4. Input inference for control

Input inference for control (I2C) [23, 24, 10] is a stochastic optimal control (SOC) method
which can be used for trajectory optimization. For Gaussian uncertainties it formulates
optimal control as input inference using approximate Bayesian smoothing [25] where
the found trajectories are joint Gaussian distributions over the state and action for each
time step in a finite-horizon MDP (see Section 2.1). It requires a state-action cost function
C : S × A → R and a stochastic state transition dynamics f : S × A × S → [0, 1],
both of which can be arbitrarily complex (e.g. non-linear), but I2C has to be able to
randomly evaluate them. Since propagating Gaussian priors through non-linear dynamics
and cost generally results in non-Gaussian posteriors, I2C uses approximate inference
[26] to approximate the posteriors with Gaussians, such that they can be used as priors
for the next time step. I2C starts from an initial action sequence and first state and
recursively predicts the next state distribution with the dynamics function applied to the
current state and action from the sequence. To find optimal joint state-action trajectories
with minimal cumulative cost, I2C nudges the joint state-action distribution of each time
step towards lower cost. Smoothing this nudged state-action trajectory results in an
action sequence with lower cumulative cost. The strength of the nudge is controlled by a
temperature parameter α, which in turn is optimized after every smoothing pass similarly
to expectation maximization [27]. The alternating of smoothing and optimizing the
temperature parameter until convergence results in a locally optimal posterior state-action
trajectory which can be synthesized into a Gaussian feedback controller by computing the
Gaussian conditional action distribution (in closed form).

12

2.4.1. Cost function as likelihood

To use the cost function in an inference setting, I2C applies belief in optimality [28] to
create a likelihood of optimality

p(optimal|xt, ut) ∝ exp(−αC(xt, ut)) (2.13)

with an inverse temperature parameter α which controls the variance of the likelihood.
This likelihood has its peak at the minimal cost and for a quadratic cost function the
likelihood is Gaussian.

2.4.2. Approximate inference

Since analytic posterior distributions are often non-Gaussian and the integrals of smoothing
are not tractable, posteriors are usually locally approximated by Gaussian distributions. In
I2C three approximation methods are presented: The first method, local linearization only
uses the posterior mean and its derivatives, which makes it brittle but easy to compute.
The second method is the spherical Gaussian (cubature) quadrature rule, which samples
the function at 2d+ 1 so called sigma points, spaced in each of the d dimensions along
the principal axes of the covariance matrix, and weighs each sample such that the sum
approximates the integral. This method is similar to the unscented transform popularized
by the unscented Kalman filter [29]. The third method is Gauss-Hermite quadrature
which builds a mesh of samples and hence does not scale well to large dimensions, but is
able to more accurately capture local non-linear behaviour.

2.4.3. Bayesian smoothing

The central I2C algorithm is based on the Rauch Trung Striebel (RTS) smoother [25, 30].
It has a filtering (forward) pass and a smoothing (backward) pass resulting in temporal
chains of probability distributions, which are created by recursively propagating the initial
state distribution through the action generating function (current optimal action sequence)
and the observation function (dynamics) for every time step. But differently from the
RTS smoother it also propagates the state-action distribution through the cost likelihood
function, which nudges the trajectory towards lower cost. This nudge is artificially added
by the optimizer and is not a part of the dynamics, and therefore warps the filtering and
smoothing trajectories, but allows the optimization to be framed as input estimation to

13

figure out the unknown actions in each time step. The goal of the optimization is to find a
trajectory where the nudge disappears, which means that it has reached minimal cost.

2.4.4. Temperature update

To achieve good and fast convergence, a good temperature update schedule has to be
chosen, but how to find an optimal schedule is still a matter of active research. Common
choices are a linear or a simulated annealing schedule, as well a Polyak step sizes, which
are exact for linear models.

2.4.5. Policy as conditional action

The optimization results in a cost-optimal joint state-action posterior distribution trajectory.
Conditioning the joint distribution of every time step on the state results in a conditional
action trajectory, which is a time-varying linear Gaussian controller (TVLGC), similarly to
the optimal linear quadratic Gaussian controller.

14

3. Gaussian process model

The Gaussian process (GP) model used in our experiments to learn a dynamics model
and a policy is coded from scratch based on the SNGP (see Section 2.3) but contains
some important modifications. Firstly, we are doing multiple regression without learning
separate models for each output dimension, which entails extending Bayesian linear
regression to the multivariate setting. Secondly, we use a variational posterior instead
of Laplace’s approximation to model the GP posterior, and we have different losses to
optimize the posterior and train the model for deterministic and stochastic training data.

3.1. Bayesian multivariate linear regression

Let a multivariate linear regression model [31, 32] be defined by the mapping from a
length (dx) input vector x to a length (dy) output vector y with a (dx × dy) weight matrix
W and zero-mean i.i.d. multivariate normal distributed length (dy) error vectors e

y⊤ = x⊤W+ e⊤ (3.1)

e ∼ N (0,Σϵ) . (3.2)

The likelihood of a set of input-output pairs is normally distributed

y⊤ ∼ p(y⊤|x⊤,W,Σϵ) = N (y⊤|x⊤W,Σϵ) (3.3)

and on a set of i.i.d. data points D = {(x0, y0), . . . , (xn, yn)} we can compute the joint
likelihood

p(Y|X,W,Σϵ) =

n∏︂
i

p(y⊤i |x⊤i ,W,Σϵ) =MN (Y|XW, In,Σϵ) (3.4)

15

where we used the (n× dx) matrix X of vertically stacked inputs, the (n× dy) matrix Y
of vertically stacked outputs, and the definition of the matrix normal distribution (see
Appendix A).

The conjugate weight prior

W0 ∼ p(W) =MN (W|M0,Σ0,in,Σ0,out) (3.5)

is a matrix normal distribution as well and has a (dx × dy) mean matrix M0, a positive
definite (dx×dx) input covariance Σ0,in and a positive definite (dy×dy) output covariance
Σ0,out. To keep the prior non-informative with minimal regularization we choose constant

M0 = 0 (3.6)
Σ0,in = σ2

0,in · Idx = (1 + 1× 10−3) · Idx (3.7)

and learnable
Σ0,out = Σq,out = Σϵ,out

init
= 1× 10−2 · Idy (3.8)

where the output covariance Σ0,out is diagonal and parametrized in square root form to
maintain non-negativity, and is shared1 with the variational posterior and the likelihood
(error).

3.2. Variational posterior

The variational weight posterior

Wq ∼ q(W) =MN (W|Mq,Σq,in,Σq,out) (3.9)

approximates the exact (analytical) posterior p(W|D). Its (dx × dy) mean matrix Mq,
positive definite (dx × dx) input covariance Σq,in, and positive definite (dy × dy) output
covariance Σq,out are learned from these initial values

Mq
init
= 0 (3.10)

Σq,in
init
= Idx (3.11)

Σq,out = Σϵ,out = Σ0,out
init
= 1× 10−2 · Idy (3.12)

1The reason for sharing the output covariance is explained in Section 3.3

16

where the output covariance Σq,out is diagonal and parametrized in square root form
to maintain non-negativity, and is shared2 with the prior and the likelihood (error). To
maintain positive definiteness the covariances are parametrized in Cholesky factorized
form with a softplus constraint on the diagonal.

Finding the optimal variational posterior is equivalent to finding the information projection
(I-projection) [12] of the true posterior onto the set of parametrized variational posteriors.
Since in our case both are Gaussians, the fit will be perfect.

3.3. Posterior predictive and model evidence

The posterior predictive results from the model likelihood given the variational posterior
on the m new data points Y∗,X∗

p(Y∗|X∗) =

∫︂
p(Y∗|X∗,W)q(W)dW (3.13)

=

∫︂
MN (Y∗|X∗W, In,Σϵ)MN (W|Mq,Σq,in,Σq,out)dW (3.14)

∝ exp
{︂
− 1

2
vec(Y∗ − X∗Mq⏞ ⏟⏟ ⏞

My∗

)⊤ (3.15)

·
[︂
(Σϵ ⊗ Im) + (Σq,out ⊗ X∗Σq,inX∗⊤)

]︂
⏞ ⏟⏟ ⏞

Σ−1
y∗,vec

(3.16)

· vec(Y∗ − X∗Mq⏞ ⏟⏟ ⏞
My∗

)
}︂

(3.17)

The resulting vectorized covariance Σ−1
y∗,vec is however irreducible for arbitrary covariances

Σϵ, Σq,in and Σq,out. In order to be a able to parametrize the posterior in terms of the
input and output covariances we have to constrain either Σq,out = Σϵ or Σq,in = Im. We
choose to set Σq,out = Σϵ and let Σq,in be free, which results in the posterior predictive

p(Y∗|X∗,D) =MN (Y∗|My,Σϵ,Σy) (3.18)

=MN (Y∗|X∗Mq,Σϵ, Im + X∗Σq,inX∗⊤) . (3.19)

2The reason for sharing the output covariance is explained in Section 3.3

17

The model evidence (also called marginal likelihood) is the posterior predictive evaluated
on the entire (training) dataset, i.e. the same equations but without the asterisks.

3.4. Evidence lower bound loss: fitting to deterministic targets

To optimize our model given a set of deterministic data points, we would like to maximize
the model evidence on the entire data set, preferably in closed form. Using a variational
posterior, the model evidence can be conveniently separated into the evidence lower
bound (ELBO) and backward Kullback-Leibler (KL) divergence.

log p(D) = LELBO(D) + DKL[q(W)||p(W|D)] (3.20)

showcasing the relation between the optimization of the feature neural network parameters
and the variational posterior parameters. The former increases the model evidence and
thus the ELBO and the posterior backward KL divergence. The latter does not change
the evidence, but by lowering the posterior backward KL divergence, increases the ELBO,
thus moving it closer to the evidence. In our experiments we have found the variational
posterior optimization (I-Projection) to converge so much faster than the feature network
optimization that we have decided to maximize the ELBO w.r.t. both sets of parameters
simultaneously on every minibatch.

Finding the true posterior and the model evidence is computationally expensive, but we
can easily compute the prior, likelihood and variational posterior. Therefore, we choose to
maximize the following form of the ELBO as our (negative) loss function

LELBO(X,Y) = EW∼q(W)[log p(Y|X,W)]− DKL[q(W)||p(W)] (3.21)

ℓossELBO := −LELBO(X,Y) (3.22)

which we can compute in closed form (see Appendix B and [33]). The loss can also
be computed in batches, since the log likelihood of the entire dataset is the sum of the
mini-batch log likelihoods.

3.5. Moment-matching loss: fitting to target distributions

To learn from stochastic targets we can do moment-matching of the stochastic model
predictions and stochastic targets. This is called themoment projection (M-projection) [12]

18

and means minimizing the (forward) KL divergence of the target distributions from the
posterior predictive distributions of the model on the training data. For multivariate
Gaussian targets (and Gaussian model predictions) only the first two moments need to be
matched and the forward KL divergence loss can be computed in closed form

ℓossmm := DKL[N (µY∗ ,ΣY∗)||pmodel(Y∗|X∗,D)] (3.23)

which can also be computed in batches. However, the M-Projection notoriously over-
estimates the support of the observations, which means that the model learned from
non-Gaussian observations (e.g. multi-modal) might be a bad approximation of the true
data distribution. How bad this approximation is in practice depends on the context and
use of the model.

19

4. Experiment: Gaussian process model
de-risking

In this chapter we describe the separate building and training of the modified SNGP (from
Section 3) as a policy and a dynamics model in a controlled context with arbitrary amounts
of data to verify that it is expressive enough to be used in model-based reinforcement
learning (MBRL).

4.1. Setup

In this experiment we first describe the environment and modified SNGP implementation.
After that, we acquire an expert policy, a SAC model trained on the environment. To train
the dynamics model, we run the SAC policy to collect environment transitions and train
the SNGP dynamics model to minimize the ELBO loss on the collected transitions. Finally,
we use DAgger to imitate the SAC policy with the modified SNGP policy using the ELBO
loss to fit to the collected data.

4.1.1. Environment: Furuta pendulum swing-up with custom cost

The task to be solved is encoded in a python gym environment1, which simulates the
Furuta pendulum used by Quanser Inc. in their Cube robot. The reward function is
modified for training purposes (see Appendix C.1). This robot has two rotary joints. The
first joint is actuated and allows rotation of a shaft about the vertical axis through the
center of the (fixed) base of the robot. The shaft is L-shaped with two parts at a right

1code at https://git.ias.informatik.tu-darmstadt.de/quanser/clients.git with parameters id=qube-500-v0,
gamma=0.99, horizon=3000

20

angle to each other, such that the first part stays in the rotation axis of the first joint and
the other moves in the horizontal plane above the robot base. The second joint sits at
the end of the second part of the shaft and allows rotation of the end-effector about the
axis through the second part of the shaft. In the Furuta pendulum configuration, the
end-effector is a shaft at right angle to the second joint axis.

4.1.2. Setup modified SNGP model

The modified SNGP model is specified as a linear Bayesian model with a custom feature
function, where the feature network architecture and the number of RFFs are configurable
from the main script or the command line. The model is set up to transparently apply
static whitening of inputs and outputs, which has to be initialized on a representative
(or the full) data set beforehand. For the spectral normalization we used the pytorch
spectral-norm module, which performs a power iteration step per call. This means, every
call returns a slightly different prediction, the sequence of which does converge. To stop
the power iteration and get deterministic predictions for evaluation, the module has to be
set to eval mode. The residual network is coded from scratch and skips activations, but
not the linear layers.

4.1.3. SAC agent training

For the expert SAC agent we used the implementation of SAC in mushroom-rl 2. The model
contains an actor network and two critic networks, which are both two-layer dense neural
networks with 64 hidden nodes and are both trained with a learning rate of lr = 3× 10−4.
We trained the model for 240 epochs of 2000 environment steps each, where both the
actor and the critics are fit after each step on one random batch from the replay buffer.
The maximal size of the replay buffer is 500 000 steps and it is pre-filled before training
with 3000 steps. The soft update coefficient is set to τ = 0.005 and the learning rate for
the entropy coefficient is set to lrα = 5× 10−5.

4.1.4. SNGP dynamics model training: from expert policy rollouts

The dynamics model learns the unknown state transition dynamics function, which maps
from a state and an action to the next state. We encode two sensible assumptions in the
2code at https://github.com/MushroomRL/mushroom-rl.git

21

model. The first assumption is that physical systems with masses can not instantaneously
change their state, which means the dynamics model can learn a mapping from states
and actions to state deltas, and the next state is the sum of the current state and the
predicted delta. This makes the mapping essentially a residual model, which makes rollout
trajectories less jerky and the training more stable. The second assumption is that the
degree or radiant scale is does not represent physical rotary joint positions naturally, which
instead are periodic, continuous, and move in a circle around the joint axis. Mapping
all the angles to a two-dimensional sin-cos-space α ↦→ [sin(α), cos(α)] encodes these
assumptions elegantly and provides a bijective mapping to the physical joint positions.
The joint velocities are not mapped to the sin-cos space, since these assumptions do not
match them. The delta predictions are also not mapped to the sin-cos space, because
small angle deltas correctly map to small physical joint position deltas.

The modified SNGP dynamics model is trained for 500 epochs on 100 roll-outs, where
each step is with a 50% probability either a stochastic prediction by the trained SAC agent
or white Gaussian noise. The differences between consecutive states are used to compute
the delta-state targets. The feature network of the SNGP dynamics is a two-layer network
with 128 hidden nodes and 256 RFFs. The ELBO loss with a learning rate of lr = 1× 10−3

is used for training.

4.1.5. SNGP policy training: behaviour cloning from SAC with DAgger

The policy learns a mapping from states to actions and is trained to be able to robustly im-
itate the behaviour of the expert SAC agent. Just like the dynamics model in Section 4.1.4,
the policy angular (not velocity) inputs are mapped to the sin-cos space to encode sensible
assumptions and provide a bijective mapping to physical joint positions. Since directly
fitting policy predictions does not result in robust controllers, the training procedure uses
DAgger (see Section 2.2) with a training buffer (replay buffer) with a maximum size of
10 000 steps. The modified SNGP policy is trained for 10 000 epochs on this replay buffer.
The buffer is initially filled with 10 roll-outs of deterministic predictions by the trained SAC
agent, and once every 10 epochs the SNGP policy is rolled out in the environment and the
deterministic SAC predictions for the observed states are aggregated to the buffer. The
feature network of the SNGP policy is a two-layer network with 128 hidden nodes and
256 RFFs. The ELBO loss with a learning rate of lr = 1× 10−4 is used for training.

22

4.1.6. Closed-loop evaluations

To validate the learned policy and dynamics models and compare them against the SAC
and true environment baselines, we have set up a separate script, which can load stored
models given its directory path. A policy type (SNGP or SAC) and a dynamics model type
(SNGP or gym environment) have to be selected, are used to run and plot 10 roll-outs. We
use this script to test the performance of the SNGP policy against the true environment,
the SAC policy against the SNGP dynamics and the SNGP policy and SNGP dynamics
jointly.

23

4.2. Evaluation

4.2.1. SNGP dynamics model training: from expert policy rollouts

Figure 4.1.: ELBO loss of training dynamics model. To properly visualize the log proba-
bilities moving in a very large range, the y-axis has a a symmetric logarithm
(symlog) scale, which maps values like this:

x ↦−→

⎧⎪⎨⎪⎩
− log(−x) if x < −1,
x if −1 < x < 1,
log(x) if x > 1.

The SNGP dynamics seems to learn quite well with the ELBO loss on the test data set
going down and staying low in Figure 4.1. It seems that most of the loss is minimized
after 300 epochs.

24

Figure 4.2.: Pointwise dynamics prediction fit: the left side shows the predicted deltas,
the right side integrates the deltas starting from the initial state

The point-wise fit on the training data in Figure 4.2 set is visually excellent, with the red
SNGP predictions completely covering the blue training data line, which matches the very
low loss seen in the loss plot.

25

Figure 4.3.: Dynamics roll-out using expert actions replay

The roll-outs of an expert (SAC) action trajectory in Figure 4.3 is less perfect and errors
seem to accumulate until the trajectory finally diverges. However, the trajectories are still
very similar until more than half-way through the episode, which seems sufficiently good,
given that the policy is static and a real policy would probably steer the system back to an
optimal trajectory.

26

27

4.2.2. SNGP policy: behaviour cloning from SAC (DAgger)

Figure 4.4.: Training statistics for SNGP policy imitating SAC agent (loss plot uses a
symlog scaled y-axis like in Figure 4.1)

28

In Figure 4.4 we can see that the SNGP policy seems to converge to a good policy with low
loss and root mean squared error (RMSE) and converged cumulative reward. However,
in contrast to the dynamics model training, we had to use many more epochs and a
much higher epoch number to get a good model. We assume this has to do with DAgger
continuously overwriting data in the size-limited buffer, thus requiring slower learning
and more epochs to stay stable throughout the training.

Figure 4.5.: Pointwise prediction fit of SNGP policy and SAC roll-out data

The point-wise fit on the training data in Figure 4.5 seems sufficiently good, though not
perfect, since the blue line of the training labels is often not exactly covered by the red
SNGP predictions.

29

4.2.3. Closed-loop evaluations

Figure 4.6.: 10 roll-outs of the SAC policy and the true (gym) dynamics

In Figure 4.6 we can see that the SAC policy manages to solve the environment consistently
over 10 different environment seeds. This serves as a baseline to the SNGP policy and
dynamics models.

30

Figure 4.7.: 10 roll-outs of the SAC policy and the trained SNGP dynamics

In Figure 4.7 the SNGP dynamics seems to capture the true dynamics around the SAC
optimal trajectories so well, that SAC manages to stabilize the system in a trajectory and
final state, which are very like the baseline of SAC with the true dynamics.

31

Figure 4.8.: 10 roll-outs of the trained SNGP policy and the true (gym) dynamics

In Figure 4.8 the SNNGP policy seems to fare very well against the true dynamics as well.
The SNNGP policy even seems to produce smoother action trajectories (see action, delta
ss[2], and delta ss[3] subplots).

32

Figure 4.9.: 10 roll-outs of the trained SNGP policy and the trained SNGP dynamics

Finally we can see in Figure 4.9 that the SNGP policy and the SNGP dynamics seem to
work together reasonably. The only noticeable difference from the optimal SAC trajectory
is the bumpier stabilization between time steps 100 and 150 and the final part of the
roll-out, where the trajectories of different seeds diverge slightly.

4.3. Summary

From these experiments we see that the modified SNGP is expressive enough to learn
the true environment dynamics or imitate an expert policy. Training an SNGP dynamics
model with the ELBO loss on expert policy roll-outs yields such an accurate representation
of the true dynamics, that the closed-loop roll-outs match the nominal trajectory perfectly
and the open-loop roll-outs are almost perfect for over 100 time steps. The SNGP policy
trained using DAgger and the ELBO loss manages to imitate a SAC expert policy perfectly
and even produces smoother action trajectories than SAC.

33

5. Experiment: input inference for control in
the model-based reinforcement learning
loop

Figure 5.1.: Model-based reinforcement learning loop with global dynamics model, global
policy and optimization to get local optimal controllers

In Chapter 4 we have confirmed the expressiveness of the modified SNGP model for our
purposes. Now, we connect them with the I2C optimization and create the model-based
RL (MBRL) loop seen in Figure 5.1. The loop starts off with an untrained exploration
policy to collect samples. The collected transitions are stored in a buffer and are used to
train the dynamics model. Using this dynamics model, I2C is tasked with finding cost-
optimal state-action trajectories, which can be encoded into time-varying linear Gaussian
controllers (TVLGC). Finally, the policy is trained to imitate the locally optimal state-action
trajectories or the equivalent controllers. Rolling out the updated policy in the real system
to collect new samples closes the loop. The backwards arrow from the policy to the I2C
optimization indicates that the currently learned policy can be used to warm-start the
optimization with the latest policy instead of starting from random actions. Note that

34

the only true environment interactions are from the rollouts used to train the dynamics
model, as indicated by the green outline in Figure 5.1. The optimization of I2C and the
policy are only based on the learned dynamics model entirely in simulation.

5.1. Setup

In this experiment we will first define the environment and describe the models, approxi-
mate inference, and I2C optimization, then set up experiments to cover the individual steps
of dynamics training, I2C optimization, and policy training. We are not evaluating the full
closed loop yet because there are still issues with exploration to learn a representative
dynamics model and the I2C optimization when using said dynamics model, which lead
to a cascading divergence of the close loop optimization.

5.1.1. Environment: simple pendulum swing-up

Instead of the Furuta pendulum used in Chapter 4, here we learn a simpler, single-joint
pendulum swing-up task. The pendulum has one under-actuated joint and a point mass
at the end of the mass-less pendulum rod. The pendulum dynamics are integrated with
the forward Euler method, which contain damping, which is proportional to the angular
velocity, and the control signal, which acts on the angular acceleration. The cost contains
the squared angular velocity, the squared control signal and the squared distance of one
minus the cosine of the joint angle, which encodes the task of swinging up from the bottom
to the top and stabilizing the pendulum.

5.1.2. Setup models and approximate inference

For the MBRL experiments, all models are specified using a modular model wrapper
which facilitates experiments and ablation studies. In order to be wrapped, models can
be the modified SNGP, a simple neural network or even a constant cost function, as
long as they are callable functions. The model wrapper encapsulates the callable model
and an approximate inference method to provide a unified interface for stochastic and
deterministic predictions as well as propagating input distributions through the model
using approximate inference to get output distributions. Furthermore, the model wrapper
allows transparent use of torch evaluation or training mode as well as moving the model

35

between torch devices. Model wrappers are used to encapsulate the dynamics and policy
models, but also the cost function and environment. Additionally, the model decorator can
be used to easily create and apply input and output transformations to model wrappers,
making the model specification in the main script more versatile and verbose. Predefined
wrappers include input transformers (clamping or angle to sin-cos mapping), output
transformers (predicting delta targets or adding dithering) or transformers for both input
and output (moving the inputs to the cpu, calling the model, and moving the outputs back
to the torch device).

The type of model to use for the dynamics model and the policy, including the feature
network architecture and the number of RFFs for GPs, are individually configurable from
the main script or the command line.

Every callable model is assigned an appropriate approximate inference method to propa-
gate Gaussian inputs through the model. The dynamics and policy callables use spherical
Gaussian quadrature (α = 1, β = 0, κ = 0), which also incorporate the predicted un-
certainty of stochastic models. The approximate inference for the cost callable uses
importance sampling, to move the state-action distribution towards lower cost by using
the cost likelihood from Section 2.4.1. Since we have found the cost approximation to
have a greater impact on the optimization, we are using the more precise Gauss-hermite
quadrature to get a more accurate local cost approximation.

5.1.3. Setup I2C optimization

Our implementation of I2C iterates forwards and backwards over sequences of consecutive
state and state-action distributions, which matches the filtering and smoothing perspective
[25] and not the equivalent forward and backward messages framework often used for
probabilistic Gaussian models or hidden Markov models [30].

The initial policy can either be Gaussian noise or a prior policy to warm-start the opti-
mization. From the second iteration on, the policy is the optimal TVLGC of the previous
iteration. Every optimization iteration starts with a forward filtering pass, where the initial
state distribution is rolled out through the policy, cost likelihood and dynamics model
using approximate inference, leading to a joint state-action trajectory, which is slightly
warped towards lower cost according to the temperature parameter. The smoothing pass
then iterates backwards starting from the final state of the filtering pass, and adjusts the
trajectory from the filtering pass. After every forward and backward pass, the TVLGC

36

gains are computed from the joint posterior trajectory, and the temperature is updated for
the next iteration.

5.1.3.1. Open-loop and closed-loop controller

The TVLGC introduced in Section 2.4.5 is a closed loop controller

a ∼ πt(s) = N (k +Ks,Σaat) (5.1)

but in the implementation the controller can also be switched to open loop mode which
internally uses a zero feedback gain K = 0. This is important for optimization, because
excessive exploitation of the feedback gain notoriously gives rise to numerical instabilities,
making it hard to optimize closed loop controllers without regularization. Both the open
loop and closed loop controllers are learned from a Gaussian time-varying joint posterior
distribution:

p(s, a; t) = N

⎛⎝⎛⎝µst

µat

⎞⎠ ,

⎛⎝Σsst Σsat

Σast Σaat

⎞⎠⎞⎠ (5.2)

The closed loop controller is essentially the conditional distribution of the posterior action,
as a function of the state

p(a|s; t) = N
(︁
µat +ΣsatΣ

−1
sst(s− µst),Σaat − ΣastΣ

−1
sstΣsat

)︁
(5.3)

but the conditional variance is simplified to prevent numerical instabilities due to the
involved covariance matrix inversion resulting in the following closed loop gains

Kcl = ΣsatΣ
−1
sst (5.4)

kcl = µat −Kclµst (5.5)

For the open loop controller the feedback gain is zero, which means the open loop
controller is the marginal action posterior, where the variance is now exact:

Kol = 0 (5.6)
kol = µat (5.7)

For every joint time-varying posterior distribution that is supplied, both open- and closed-
loop controllers are created and the appropriate controller can be chosen at inference time
via a boolean parameter. Both the posteriors used to create the controllers and the states
for which the controllers predict actions take an arbitrary number of batch dimensions
and scale the controller gains and predictions accordingly.

37

5.1.4. SNGP dynamics model training: from policy rollouts with ELBO loss

Just like in Section 4.1.4 we learn the global unknown state transition dynamics function,
and just like before we use two sensible assumptions: the former is that physical systems
with masses can not instantaneously change their state, thus we learn a mapping from
states and actions to state deltas in the model; the latter is that rotatory joint positions
(but not velocities) are better represented by mapping the angles to a two-dimensional
orthogonal space α ↦→ [sin(α), cos(α)]. Both of these assumptions are implemented by
decorators to the model wrapper.

For the dynamics model we run two different experiments, since it sits at the start of the
MBRL loop: first, we train it on environment rollouts of an untrained exploratory policy,
and then we train it on environment rollouts of a trained policy1, since these different
policies produce very different trajectories. To increase exploration we add dithering
σ = 5× 10−2 to both policies during the roll-out. Both dynamics models are trained on
50 roll-outs, with 12 additional roll-outs used for evaluation. The differences between
consecutive states are used to compute the delta-state targets. The feature network of the
SNGP dynamics is a five-layer network with 128 hidden nodes and 256 RFFs. The ELBO
loss with a learning rate of lr = 5 × 10−4 is used for training. Instead of training for a
fixed number of epochs, we are using a threshold, such that the training is halted when
both the training and evaluation loss are below ℓth = 1× 10−3.

5.1.5. I2C: find locally optimal controllers from dynamics

To distill a good global policy we need to find multiple local optimal controllers, because
each local controller is optimal only for a specific trajectory starting from a specific initial
state. Therefore, we run the I2C optimization for several different initial states before
every policy distillation. Unfortunately, I2C can not be directly parallelized, due to the
chained recursions of the forward and backward passes of filtering and smoothing, where
each computation depends on previous states. Hence we vectorize the computation of I2C
with pytorch, such that the optimization can run on the CPU in parallel, starting from a
vector of initial states, which results in a significant speed-up to almost constant run-time
w.r.t. the number of initial states.

1we use the policy trained with DAgger and the ELBO loss (description in Section 5.1.6.2, evaluation in
Section 5.2.3.2)

38

To find cost-optimal action trajectories, we execute I2C starting from a set of 10 initial
states randomly sampled from the environment2. These initial states are assigned a low
variance of σ0 = 1× 10−6, which tells the optimization to trust these initial states and be
bold in the optimization. The step-size is computed using the Polyak temperature strategy.
To make sure all the individual optimizations from all initial states have converged, we do
not optimize for a fixed number of iterations. Instead, we use a convergence criterion, such
that the optimization is halted when the cumulative cost of all optimizations stabilizes.
Specifically, the change of the cost over the last 5 iterations has to be lower than the
threshold3 ∆cth = 1. We evaluate the effect of a learned SNGP dynamics model on the
optimal trajectories by running the optimization first using the true dynamics, then using
the SNGP dynamics model learned from roll-outs of an untrained SNGP policy, and finally
using the SNGP dynamics model learned from roll-outs of a (DAgger) trained SNGP policy.

5.1.6. SNGP policy training: from optimal I2C trajectories

The goal for policy training is to distill the knowledge of several optimal I2C trajectories
into one global policy. Due to the Markovian structure of most RL problems, policies are
usually harder to train directly with supervised learning than dynamics models. Therefore,
we have designed two different approaches for policy distillation: the first approach
uses the moment matching loss to directly fit the optimal trajectories, the second uses
DAgger and the ELBO loss to match the policy to an importance weighed mixture of the
trajectories.

5.1.6.1. Moment matching loss

We could directly fit the optimal conditional action distributions found by I2C, but since
every optimization yields only one action for each time-step, we decided to augment our
dataset by adding the sigma points of the Gaussian action distributions to the dataset
as well, effectively quintupling our samples. The feature network of the SNGP policy is
a two-layer network with 128 hidden nodes and 256 RFFs. The moment matching loss
with a learning rate of lr = 1× 10−4 is used for training. Instead of training for a fixed

2The currently used environment allows direct access to the initial state distribution, but the system can be
easily extended to sample from an empirical distribution of collected initial states, when the initial state
distribution is unknown

3This value was found to be reasonable for the used environment given the typical cumulative costs of 150
to 800.

39

number of epochs, we are using a threshold, such that the training is halted when both
the training and evaluation loss are below ℓth = 1× 10−3.

5.1.6.2. DAgger using importance weighed mixture controller and ELBO loss

Alternatively to an M-Projection we can also use DAgger to distill a policy from a set of
locally optimal controllers. This should provide a higher robustness and allow the model
to learn to recover better from a disturbance. To combine the information contained in
the conditional action distributions

ait,expert(s) ∼N (µi
t,a|s,Σ

i
t,a|s) = pit(a|s) =

pit(a, s)

pit(s)
(5.8)

pit(s) =

∫︂
pit(a, s)da (5.9)

where pit(s, a) is the i-th joint state-action posterior distribution for the t-th timestep
returned by I2C. We compute the weighed sum of their moments for each time step

µt,a|s =

∑︁
i µ

i
t,a|sp

i
t(s)∑︁

i p
i
t(s)

(5.10)

Σt,a|s =

∑︁
iΣ

i
t,a|sp

i
t(s)∑︁

i p
i
t(s)

(5.11)

at,expert ∼N (µt,a|s,Σt,a|s) (5.12)

where each weight is the likelihood of seeing the current state s assuming that the states
are distributed according to the controller state distribution pit(s). The weighing procedure
is similar to a kernel density estimation [34, 35] with Gaussian (radial basis function)
kernels. This results in a mixture policy which pools the local policies’ information and is
therefore locally good in the union of the sections of state-space where the single policies
are good. However, this weighing does not qualitatively distinguish between the different
local policies and might thus follow the trajectory of a worse local policy if it is closer to
the current state than a better one.

The feature network of the SNGP policy is a two-layer network with 128 hidden nodes and
256 RFFs. To implement DAgger we collect and aggregate a new roll-out every 10 epochs
where the weighed mixture policy is used as the expert policy. The collected aggregated
data-set is fit using the ELBO loss with a learning rate of lr = 1× 10−4. Instead of training
for a fixed number of epochs we are using a threshold, such that the training is halted
when both the training and evaluation loss are below ℓth = 1× 10−3.

40

5.2. Evaluation

5.2.1. SNGP dynamics model learning

5.2.1.1. From untrained SNGP policy roll-outs with dithering

Figure 5.2.: ELBO loss on training and evaluation roll-outs. The training stopped after
about 21 epochs because both the test and evaluation loss were below the
threshold ℓth = 1× 10−3 (loss plot uses a symlog scaled y-axis explained in
Figure 4.1).

41

Figure 5.3.: Dynamics prediction fit on one evaluation episode: the left side shows the
point-wise prediction fit, the right side shows a roll-out of the dynamicsmodel
from the starting state and the (fixed) action sequence from the point-wise
data

In Figure 5.2 we can see the SNGP dynamics training and evaluation loss curves. The
training of the model converges much faster than during the de-risking experiments in
Chapter 4 even though the learning rate is lower. This might be because the training data
used in Chapter 4 come from expert policy roll-outs which entails more exploration than
a random noise policy, and the dynamics model therefore has to learn the dynamics of a
larger area of the phase space. In Figure 5.3 we can see the point-wise and roll-out fit of
the dynamics model. The point-wise fit is not perfect, but it seems reasonable, whereas
the roll-out fit has the wrong frequency and seems to gain energy. We assume that this is

42

due to the high noise in the actions, which probably forces the model to learn an averaged
mapping (since the model is not trained to over-fit) and the errors accumulate when the
model is applied recursively.

5.2.1.2. From trained SNGP policy roll-outs with dithering

Figure 5.4.: ELBO loss on training and evaluation roll-outs. The training stopped after 51
epochs because both the test and evaluation loss were below the threshold
ℓth = 1× 10−3 (loss plot uses a symlog scaled y-axis explained in Figure 4.1).

43

Figure 5.5.: Dynamics prediction fit on one evaluation episode: the left side shows the
point-wise prediction fit, the right side shows a roll-out of the dynamicsmodel
from the starting state and the (fixed) action sequence from the point-wise
data

44

Figure 5.6.: Roll-out of the trained policy in the true environment (left) and the learned
SNGP dynamics model (right) from the same initial state.

In Figure 5.4 we can see the SNGP dynamics training and evaluation loss curves. The
training of the model still converges faster than during the de-risking experiments in
Chapter 4, which we assume partly comes from the greater number of policy roll-outs
used for this experiment and from using a deeper feature network, but slower than when
training from untrained policy roll-outs (as in Section 5.2.1.1) because the roll-outs cover
a wider area of the state-space. In Figure 5.5 we can see the point-wise and roll-out fit
of the dynamics model. The point-wise fit looks perfect, whereas the roll-out is good
for the first 60 time steps and then diverges rapidly. However, the divergence happens
at an unstable equilibrium point where the pendulum is upright, the cost is zero, the
state roughly 6 ≈ 2π (lower right center plot), and the angular velocity zero (bottom
right plot). Unstable equilibrium points of nonlinear systems are very sensitive, which in
our case means that a slightly wrong action applied to the upright pendulum can decide
whether the pendulum stays upright, swings right or left. In Figure 5.6 we can see that
these accumulated errors are not critical in practice, because a good policy (as opposed to
a static action replay) can compensate slight deviations and still manage to swing up the
pendulum.

45

5.2.2. I2C: find locally optimal controllers

5.2.2.1. Using true dynamics

Figure 5.7.: Roll-outs of all 10 local optimal controllers in the environment (true dynamics).

46

Figure 5.8.: Metrics of the I2C optimization over optimization iterations: the posterior cost
is the cumulative cost of the smoothed trajectory including the temperature-
controlled nudge towards lower cost, the policy cost is like the posterior
cost, but without the nudge towards lower cost and alpha is the temperature.
The optimization stopped after 15 steps because both the posterior and the
policy costs were below the threshold ∆cth = 1 for 5 iterations.

In Figure 5.7 we can see the performance of the 10 different local controllers in the
environment (true dynamics). Considering that the initial states are randomly sampled
from the environment and are not identical to the initial states chosen for the optimization,
the controllers seem reasonably good and robust. From the optimization metrics in
Figure 5.8 we can deduce that the optimization has converged properly, since the posterior
and the policy costs are similar, which means that every controller takes (locally) cost-

47

optimal actions in every time step4.

5.2.2.2. Using SNGP dynamics from untrained SNGP policy roll-outs

Figure 5.9.: Roll-outs of all 10 local optimal controllers in the learned SNGP dynamics
(left) and in the environment (right).

In Figure 5.9 we can see the performance of the 10 different local controllers in the SNGP
dynamics and the environment (true dynamics). Both sets of roll-outs are obviously non-
optimal, which means that the optimization has not converged to any optimal controllers.
This is also apparent in the action sequences in the bottom of the plots, which, except
for the first two dozen steps, are mostly zero. The differences between the roll-outs
in the SNGP dynamics and the environment seem to indicate that the SNGP dynamics
model might not model the environment adequately enough in the area of the state-space
encountered in the optimization. This mirrors our observations about the training of this
dynamics model in Section 5.2.1.1 and can be seen particularly in the apparent gain of
kinetic energy in the SNGP dynamics (the amplitudes of the oscillations increase), while
the controller actions are almost zero and should not add energy to the system.

4Strictly speaking, the locally optimal nature of the solutions means that the controllers take optimal actions
not for the true cost but for the local quadrature approximated cost. Therefore, the optimization might not
actually have converged to a local cost-optimal trajectory yet, but the minimum of the approximated cost
would be close to the current trajectory. This would result in weak nudging and small trajectory updates,
slowing the optimization until it would appear to converge.

48

Figure 5.10.: Metrics5of the I2C optimization over optimization iterations. The optimiza-
tion stopped after 100 steps, which is the iteration limit of the optimization,
because the convergence threshold is not reached.

The optimization metrics in Figure 5.10 prove that the controllers have not converged and
document an erratic optimization. The posterior cost often comes close to its minimum
but keeps jumping up and down. Most policy costs seem to converge to a sub-optimal
policy with very high cost, but some controllers have jagged and some even rising costs.
Our hypothesis to explain this behaviour is that the learned SNGP dynamics are so variable
locally that the quadrature approximation becomes an oversimplification which misleads
the optimization. All in all, the resulting controllers do not seem good enough to warrant
trying to distill them into a global policy.
5see Figure 5.8 for explanation

49

5.2.2.3. Using SNGP dynamics from trained SNGP policy roll-outs

Figure 5.11.: Roll-outs of all 10 local optimal controllers in the learned SNGP dynamics
(left) and in the environment (right).

50

Figure 5.12.: Metrics6of the I2C optimization over iterations. The optimization stopped
after roughly 50 steps because both the posterior and the policy costs were
below the threshold ∆cth = 1 for 5 iterations.

In Figure 5.11 we can see the performance of the 10 different local controllers in the
SNGP dynamics and the environment (true dynamics). Both sets of roll-outs are obviously
non-optimal, which means that the optimization has not found any optimal controllers.
The action sequences are mostly outside of the allowed action interval, which means
they are almost always unable to apply effective control to the system. Together with the
optimization metrics in Figure 5.12 it becomes apparent that the optimization plateaus
without reaching a minimum: once the optimization pushes the action sequences outside
the valid action interval, the effect of a change in an action vanishes because their effect
6see Figure 5.8 for explanation

51

is clipped by the action limiter. Therefore, the cost stagnates and the optimization starves.
However, it is still unclear to us why the action trajectories were pushed outside of their
limits in the first place. Just like the controllers in Section 5.2.2.2, these controllers do
not seem good enough to warrant trying to distill them into a global policy.

On a different note, the roll-outs in this SNGP dynamics (learned from a trained SNGP
policy) are much more similar to the environment roll-outs than in Section 5.2.2.2, where
the SNGP dynamics is learned from an untrained policy. Together with the much less
jagged posterior and policy costs,this seems to show that the SNGP dynamics used here is
a more accurate model of the environment than the one in Section 5.2.2.2.

52

5.2.3. SNGP policy learning from local controllers

5.2.3.1. Using moment matching loss

Figure 5.13.: Momentmatching loss on training and evaluation data. The training stopped
after 240 epochs because both the test and evaluation loss were below the
threshold ℓth = 1× 10−3 (loss plot uses a symlog scaled y-axis explained in
Figure 4.1).

53

Figure 5.14.: Policy prediction fit on one evaluation episode: the left side shows the
point-wise prediction fit, the right side shows a roll-out of the policy from
the starting state from the point-wise data

In Figure 5.13 we can see the SNGP policy training and evaluation loss curves. The training
of the model converges much faster than the policy during the de-risking experiments
in Chapter 4, which matches our expectation that DAgger training takes longer than
supervised learning. In Figure 5.14 we can see the point-wise and roll-out fit of the policy.
Generally, the fit seems quite good, but the roll-outs diverge after reaching the target state
and the pendulum starts looping without managing to stop. This could indicate a bad
robustness of the controller.

54

Figure 5.15.: Learned policy (M-projection) roll-out starting from 2 modified initial states
far from the initial states used in the I2C optimization to find the controllers
distilled into the policy

55

Figure 5.16.: Local controller roll-out starting from 2 modified initial states far from the
starting states used to find them: the left side show roll-outs from the first
modified initial state, the right side from the second.

In figures 5.15 and 5.16 we can see the performance of the learned SNGP policy and
the local controllers. The SNGP policy does not manage to swing the pendulum up from
this state, whereas some (but not all) controllers succeed at stabilizing the system. This
supports our hypothesis that the M-projection SNGP policy is not more robust than the
controllers and does not generalize well to outside of its training data.

56

5.2.3.2. Using DAgger with importance weighed mixture policy and ELBO loss

Figure 5.17.: ELBO loss on aggregating (DAgger) training and evaluation data. The training
stopped after about 4500 epochs because both the test and evaluation loss
were below the threshold ℓth = 1 × 10−3 (loss plot uses a symlog scaled
y-axis explained in Figure 4.1).

57

Figure 5.18.: Policy prediction fit on one evaluation episode: the left side shows the
point-wise prediction fit, the right side shows a roll-out of the policy from
the starting state from the point-wise data

In Figure 5.17 we can see the SNGP policy training and evaluation loss curves. The
training of the model seems to converge roughly at the same speed as the policy during
the de-risking experiments in Chapter 4 for the same model size and learning rate. In
Figure 5.18 we can see the point-wise and roll-out fit of the policy. Generally, the fit seems
very good. Especially the deviation of the roll-out predictions on the right from the blue
nominal trajectory leading to an even smoother equilibrium without destabilizing the
pendulum, seem to indicate a good robustness.

58

Figure 5.19.: Learned policy (DAgger) roll-out starting from 2 modified initial states far
from the initial states used in the I2C optimization to find the controllers
distilled into the policy

59

Figure 5.20.: Local controller roll-out starting from 2 modified initial states far from the
starting states used to find them: the left side show roll-outs from the first
modified initial state, the right side from the second.

In figures 5.19 and 5.20 we can see the performance of the learned SNGP policy and the
local controllers for modified initial states. This confirms our observation that the SNGP
policy is not only robust, but even more robust than the optimal controllers.

5.3. Summary

In these experiments we have seen that the SNGP dynamics model improves with the
state-space coverage of its data. The initial SNGP dynamics trained on random action roll-
outs learns a good pointwise fit, but the open-loop trajectory diverges quickly, because of
the low exploration and high frequency noise of the random actions. The SNGP dynamics
trained on good trajectories has a much better open-loop fit, and results in a more plausible
dynamics model. From the experiments with the I2C optimization we have learned that
the convergence criterion works as intended, but the optimization using a learned SNGP
dynamics model requires further tuning to converge. The first SNGP dynamics model,
which was trained from random actions, is too noisy to be optimized, and the optimization
of the second SNGP dynamics model, which was trained on good trajectories, pushes
the action sequences outside the action constraint, which clips the actions and stalls the
optimization. Furthermore, the policy learning experiments have shown that using DAgger
and the ELBO loss is a promising approach to distill the local optimal controllers found by

60

I2C into a SNGP policy, and results in a smoother and more robust policy, which sensibly
combines the knowledge of the different optimal controllers. On the other hand, training
the SNGP policy with the moment matching loss converged to a sub-optimal and brittle
policy, with bad pointwise fit and even worse open-loop fit.

61

6. Conclusion

The intention of this thesis was to set up a model-based reinforcement learning (MBRL)
loop with a global SNGP dynamics model and a global SNGP policy connected by I2C
optimizations to find cost-optimal action trajectories. In Chapter 4 have seen that the
modified SNGP model is expressive enough to imitate expert policies and the true en-
vironment dynamics well enough to be used in a MBRL setting. In Chapter 5 we have
set up and analyzed the individual transitions in the MBRL loop. We have seen that the
SNGP dynamics model improves with the state-space coverage of its data, which is why a
SNGP dynamics trained on random action roll-outs does not learn a good representation
of the true dynamics, whereas a SNGP dynamics trained on good trajectories seems to
learn a good model. The I2C optimization has been shown to work when using the
true dynamics, but when using any learned SNGP dynamics model the training does
not converge to promising, let alone optimal trajectories. To train the SNGP policy, we
have found the DAgger approach to result in smoother and more robust policies than the
moment matching loss, albeit for a significantly longer training time.

In future, to allow closing the MBRL loop and analyzing it, it is probably necessary to
improve the exploration when collecting roll-outs to train the SNGP dynamics, especially in
the initial iteration when there is no good policy to guide the environment into interesting
areas of the state-space. Furthermore, the I2C optimization has to be tuned or regularized
in a way to allow finding optimal trajectories from an SNGP dynamics model. This could
include trying different temperature strategies or convergence criteria. To successfully
distill the optimized controllers into the SNGP policy we propose using the DAgger
approach. It might be necessary to filter or weigh the controllers based on their policy
cost to prevent the distillation of sub-optimal controllers into the policy, while considering
that sub-optimal behaviour might also improve exploration.

62

Bibliography

[1] S. Levine and V. Koltun, “Variational policy search via trajectory optimization,” in
Advances in Neural Information Processing Systems (C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, eds.), vol. 26, Curran Associates, Inc., 2013.

[2] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the 30th Interna-
tional Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.), vol. 28
of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA), pp. 1–9, PMLR,
17–19 Jun 2013.

[3] S. Levine and P. Abbeel, “Learning neural network policies with guided policy search
under unknown dynamics,” in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.),
vol. 27, Curran Associates, Inc., 2014.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Apr. 2015.

[5] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial
and review,” May 2018.

[6] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear
biological movement systems,” in International Conference on Informatics in Control,
Automation and Robotics, SciTePress - Science and and Technology Publications,
2004.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors
through online trajectory optimization,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, oct 2012.

63

[8] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, ICML’11, (Madison, WI, USA), p. 465–472,
Omnipress, 2011.

[9] J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B. Lakshminarayanan,
“Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness,” June 2020.

[10] J. Watson and J. Peters, “Advancing trajectory optimization with approximate infer-
ence: Exploration, covariance control and adaptive risk,” Mar. 2021.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” Jan. 2018.

[12] F. Nielsen, “WHAT IS...an information projection?,” Notices of the American Mathe-
matical Society, vol. 65, p. 1, mar 2018.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. The
MIT Press, 2005.

[14] B. Eysenbach and S. Levine, “Maximum entropy rl (provably) solves some robust rl
problems,” Mar. 2021.

[15] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” Nov. 2010.

[16] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks,” Feb. 2018.

[17] R. V. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gleichungsauflö-
sung .,” ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9, no. 2,
pp. 152–164, 1929.

[18] G. H. Golub and H. A. van der Vorst, “Eigenvalue computation in the 20th century,”
Journal of Computational and Applied Mathematics, vol. 123, pp. 35–65, nov 2000.

[19] S. Markou, “Random fourier features.” website.

[20] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,”
p. 1177–1184, 2007.

64

[21] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth, “Effi-
ciently sampling functions from gaussian process posteriors,” International Conference
on Machine Learning, 2020, Feb. 2020.

[22] R. Kass, L. Tierney, and J. Kadane, “Laplace’s method in bayesian analysis,” 1991.

[23] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control as approximate
input inference,” Oct. 2019.

[24] J. Watson, H. Abdulsamad, R. Findeisen, and J. Peters, “Efficient stochastic optimal
control through approximate bayesian input inference,” May 2021.

[25] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press, sep 2013.

[26] S. Särkkä, J. Hartikainen, L. Svensson, and F. Sandblom, “On the relation between
gaussian process quadratures and sigma-point methods,” Apr. 2015.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[28] P. Dayan and G. E. Hinton, “Using expectation-maximization for reinforcement
learning,” Neural Computation, vol. 9, pp. 271–278, feb 1997.

[29] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings
of the IEEE, vol. 92, pp. 401–422, mar 2004.

[30] T. P. Minka, “From hidden markov models to linear dynamical systems,” tech. rep.,
1999.

[31] T. P. Minka, “Bayesian linear regression,” techreport, 1998 (revised 2010).

[32] J. Soch, T. B. O. S. Proofs, T. J. Faulkenberry, K. Petrykowski, and C. Allefeld, “Stat-
proofbook/statproofbook.github.io: Statproofbook 2020,” 2020.

[33] J. Watson, “Bayesian linear regression technical note,” tech. rep., 2022.

[34] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”
The Annals of Mathematical Statistics, vol. 27, pp. 832–837, sep 1956.

[35] E. Parzen, “On estimation of a probability density function and mode,” The Annals
of Mathematical Statistics, vol. 33, pp. 1065–1076, sep 1962.

65

A. Matrix normal distribution

A random (din × dout) matrix X is matrix-normally distributed

X ∼MN (·|M,Σin,Σout) (A.1)

with real (din × dout) matrix M , positive definite (din × din) input (or row) covariance
Σin and positive definite (dout × dout) output (or column) covariance Σout if and only if its
density is1

MN din,dout =
exp

[︁
−1

2 tr
{︁
Σ−1
out(X −M)⊤Σ−1

in (X −M)
}︁]︁

(2π)
dindout

2 |Σout|
din
2 |Σin|

dout
2

. (A.2)

The matrix normal distribution is equivalent to the vectorized normal distribution such
that if X is matrix normally distributed as in (A.1), then vec(X) is multivariate normally
distributed2:

vec(X) ∼ N (vec(M),Σout ⊗ Σin) (A.3)

Note that there is a scale ambiguity between the two covariances3, such that for any real
scalar t > 0:

MN (·|M,Σin,Σout) =MN (·|M, tΣin,
1
tΣout) . (A.4)

The first and second order moments are4

E[X] = M (A.5)

E[(X −M)⊤(X −M)] = Σin tr{Σout} (A.6)

E[(X −M)(X −M)⊤] = Σout tr{Σin} . (A.7)
1https://statproofbook.github.io/D/matn
2https://statproofbook.github.io/P/matn-mvn
3https://en.wikipedia.org/wiki/Matrix_normal_distribution
4https://en.wikipedia.org/wiki/Matrix_normal_distribution#Expected_values

66

https://statproofbook.github.io/D/matn
https://statproofbook.github.io/P/matn-mvn
https://en.wikipedia.org/wiki/Matrix_normal_distribution
https://en.wikipedia.org/wiki/Matrix_normal_distribution#Expected_values

The Kullback-Leibler divergence between two matrix normal distributions (same dimen-
sions)

X ∼MN 0(·|M0,Σ0,in,Σ0,out) (A.8)

X ∼MN 1(·|M1,Σ1,in,Σ1,out) (A.9)

is given by5

DDKL [MN 0 ∥ MN 1] =
1

2

[︂
vec(M1 −M0)

⊤ vec(Σ−1
1,in(M1 −M0)Σ

−1
1,out)

+ tr
{︂
(Σ−1

1,outΣ0,out)⊗ (Σ−1
1,inΣ0,in)

}︂
− din log

|Σ0,out|
|Σ1,out|

− dout log
|Σ0,in|
|Σ1,in|

− dindout

]︂
(A.10)

=
1

2
tr{Σ−1

1,inΣ0,in} tr{Σ−1
1,outΣ0,out}

+
1

2
tr
{︂
(M1 −M0)

⊤Σ−1
1,in(M1 −M0)Σ

−1
1,out

}︂
− 1

2

(︃
dindout + dout log

|Σ0,in|
|Σ1,in|

+ din log
|Σ0,out|
|Σ1,out|

)︃
. (A.11)

which is rearranged by using the following properties:

tr(A⊤B) = vec(A)⊤ vec(B) 6 (A.12)

tr{A⊗B} = tr{A} · tr{B} 7 (A.13)

|A−1| = |A|−1 . 8 (A.14)

5https://statproofbook.github.io/P/matn-kl.html
6https://en.wikipedia.org/wiki/Vectorization_(mathematics)
7https://en.wikipedia.org/wiki/Trace_(linear_algebra)
8https://en.wikipedia.org/wiki/Determinant

67

https://statproofbook.github.io/P/matn-kl.html
https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Determinant

B. Evidence lower bound loss derivation

The loss function used to learn the variational posterior hyper-parameters is the evidence
lower bound (ELBO) [33]

LELBO(D) = EW∼q(W |D)[log p(D|W,Σϵ,out)]−DDKL [Wq ∥W0] (B.1)

where the first term is the expected log likelihood for weights distributed according to the
variational weight posterior, and the second term is the Kullback-Leibler divergence of the
variational posterior from the prior.

68

B.1. KL of posterior from prior

Using (A.10) the Kullback-Leibler divergence of the variational posterior Wq from the
prior W0 is

DDKL [Wq ∥W0] =
1

2
tr{Σ−1

0,inΣq,in} tr{Σ−1
0,outΣq,out}

+
1

2
tr
{︂
(M0 −Mq)

⊤Σ−1
0,in(M0 −Mq)Σ

−1
0,out

}︂
− 1

2

(︃
dxdy + dy log

|Σq,in|
|Σ0,in|

+ dx log
|Σq,out|
|Σ0,out|

)︃
(B.2)

=
1

2
dy tr{Σ−1

0,inΣq,in}

+
1

2
tr
{︂
M⊤

q Σ−1
0,inMqΣ

−1
ϵ,out

}︂
− 1

2

(︃
dxdy + dy log

|Σq,in|
|Σ0,in|

)︃
(B.3)

=
1

2
dyσ

−2
0,in tr{Σq,in}

+
1

2
σ−2
0,in tr

{︂
M⊤

q MqΣ
−1
ϵ,out

}︂
− 1

2

(︂
dxdy + dxdy logσ−2

0,in + dy log |Σq,in|
)︂

(B.4)

where the trace and log terms of the output covariances Σ0,out cancel. The prior hyperpa-
rameters were also inserted and we used that

|A⊗B| = |A|m · |B|n, where A ∈ Rn×n, B ∈ Rm×m . (B.5)

69

B.2. Log likelihood

To find the expected log likelihood we first derive the log likelihood

log p(D|W,Σϵ,out) =−
ndy
2

log 2π − n

2
log |Σϵ,out| −

�
���

��dy
2

log |In|

− 1

2
tr{Σ−1

ϵ,out(Y −XW)⊤In(Y −XW)} (B.6)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr{Σ−1

ϵ,out(Y −XW)⊤(Y −XW)} (B.7)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr{Σ−1

ϵ,out(Y
⊤Y − Y ⊤XW −W⊤X⊤Y +W⊤X⊤XW)} (B.8)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr{Σ−1

ϵ,out(Y
⊤Y − 2Y ⊤XW +W⊤X⊤XW)} (B.9)

where we used that
tr{A⊤} = tr{A} (B.10)

together with the symmetry of the covariance matrix Σϵ,out to collect the mixed terms.

70

B.3. Expected log likelihood

Now the expected log likelihood using weights from the variational posterior follows

EW∼q(W |D)[log p(D|W,Σϵ,out)]

=EW∼q

[︃
−ndy

2
log 2π − n

2
log |Σϵ,out|

−1

2
tr{Σ−1

ϵ,out(Y
⊤Y − 2Y ⊤XW +W⊤X⊤XW)}

]︃
(B.11)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out · EW∼q

[︂
Y ⊤Y − 2Y ⊤XW +W⊤X⊤XW

]︂}︂
(B.12)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2 · EW∼q

[︂
Y ⊤XW

]︂}︂)︂
− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
EW∼q

[︂
W⊤X⊤XW

]︂)︂}︂
(B.13)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2Y ⊤XMq

}︂)︂
− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Σq,out tr{Σq,inX

⊤X}+M⊤
q X⊤XMq

)︂}︂
(B.14)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2Y ⊤XMq +M⊤

q X⊤XMq

}︂)︂
− 1

2
tr
{︁
Σ−1
ϵ,outΣq,out

}︁
tr
{︂
Σq,inX

⊤X
}︂

(B.15)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2Y ⊤XMq +M⊤

q X⊤XMq

}︂)︂
− 1

2
dy tr

{︂
Σq,inX

⊤X
}︂

(B.16)

71

where we used the following properties with X ∼MN (M,Σin,Σout):

tr{A tr{B}} = tr{A} tr{B} 1 (B.17)

E[tr{X}] = tr{E[X]} (B.18)

EX [CX] = CM (B.19)

EX [X⊤] = M⊤ (B.20)

EX [X⊤BX] = Σout tr{ΣinB
⊤}+M⊤BM 2 (B.21)

1since tr{B} is a constant, we can pull it out of the outer trace
2https://en.wikipedia.org/wiki/Matrix_normal_distribution

72

https://en.wikipedia.org/wiki/Matrix_normal_distribution

B.4. Evidence lower bound

Finally the ELBO is:

LELBO(D) =−
ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2Y ⊤XMq +M⊤

q X⊤XMq

}︂)︂
− 1

2
tr
{︁
Σ−1
ϵ,outΣq,out

}︁
tr
{︂
Σq,inX

⊤X
}︂

− 1

2
tr{Σ−1

0,inΣq,in} tr{Σ−1
0,outΣq,out}

− 1

2
tr
{︂
(M0 −Mq)

⊤Σ−1
0,in(M0 −Mq)Σ

−1
0,out

}︂
+

1

2

(︃
dxdy + dy log

|Σq,in|
|Σ0,in|

+ dx log
|Σq,out|
|Σ0,out|

)︃
(B.22)

=− ndy
2

log 2π − n

2
log |Σϵ,out|

− 1

2
tr
{︂
Σ−1
ϵ,out

(︂
Y ⊤Y − 2Y ⊤XMq +M⊤

q X⊤XMq

}︂)︂
− 1

2
dy tr

{︂
Σq,inX

⊤X
}︂

− 1

2
dyσ

−2
0,in tr{Σq,in}

− 1

2
σ−2
0,in tr

{︂
M⊤

q MqΣ
−1
ϵ,out

}︂
+

1

2

(︂
dxdy + dy log |Σq,in|+ dy logσ−2

0,in

)︂
(B.23)

73

C. Code

C.1. Quanser Qube environment reward function modifications

Listing C.1: original reward function
def _rwd(s e l f , x , a) :

th , al , thd , a ld = x
al_mod = a l % (2 * np . p i) − np . p i
co s t = (

al_mod**2
+ 5e−3 * ald**2
+ 1e−1 * th**2
+ 2e−2 * thd**2
+ 3e−3 * a [0] ** 2

)
done = not s e l f . s t a t e_ space . con ta ins (x)
rwd = np . exp(−cos t) * s e l f . t iming . d t _ c t r l
return np . f l oa t32 (rwd) , done

Listing C.2: modified reward function
def _tweaked_rwd (s e l f , x , a) :

th , al , thd , a ld = x
al_mod = a l % (2 * np . p i) − np . p i
done = not s e l f . s t a t e_ space . con ta ins (x)

f a c t o r = [0.96 , 0.039 , 0.001] # [0 .9 , 0.05 , 0.05]
s c a l e s = [np . pi , 2 .0 , 5 .0]

e r r _ d i s t = th

74

e r r _ r o t = al_mod
e r r _a c t = a[0]

rota t ion_rew = (1 − np . abs (e r r _ r o t / s c a l e s [0])) ** 2
dis tance_rew = (1 − np . abs (e r r _ d i s t / s c a l e s [1])) ** 2
act ion_rew = (1 − np . abs (e r r _ a c t / s c a l e s [2])) ** 2

Reward should be rough ly between [0 , 1]
rew = (

f a c t o r [0] * ro ta t ion_rew
+ fa c t o r [1] * dis tance_rew
+ fa c t o r [2] * act ion_rew

)
return np . f l oa t32 (np . c l i p (rew , 0 , 1)) , done

75

	Introduction
	Foundations
	Reinforcement Learning
	Model-free reinforcement learning
	Model-based reinforcement learning

	Dataset aggregation for imitation learning
	Spectral-normalized neural Gaussian process
	Distance preserving hidden layers
	Distance aware output layers

	Input inference for control
	Cost function as likelihood
	Approximate inference
	Bayesian smoothing
	Temperature update
	Policy as conditional action

	Gaussian process model
	Bayesian multivariate linear regression
	Variational posterior
	Posterior predictive and model evidence
	Evidence lower bound loss: fitting to deterministic targets
	Moment-matching loss: fitting to target distributions

	Experiment: Gaussian process model de-risking
	Setup
	Environment: Furuta pendulum swing-up with custom cost
	Setup modified SNGP model
	SAC agent training
	SNGP dynamics model training: from expert policy rollouts
	SNGP policy training: behaviour cloning from SAC with DAgger
	Closed-loop evaluations

	Evaluation
	SNGP dynamics model training: from expert policy rollouts
	SNGP policy: behaviour cloning from SAC (DAgger)
	Closed-loop evaluations

	Summary

	Experiment: input inference for control in the model-based reinforcement learning loop
	Setup
	Environment: simple pendulum swing-up
	Setup models and approximate inference
	Setup I2C optimization
	SNGP dynamics model training: from policy rollouts with ELBO loss
	I2C: find locally optimal controllers from dynamics
	SNGP policy training: from optimal I2C trajectories

	Evaluation
	SNGP dynamics model learning
	I2C: find locally optimal controllers
	SNGP policy learning from local controllers

	Summary

	Conclusion
	Matrix normal distribution
	Evidence lower bound loss derivation
	KL of posterior from prior
	Log likelihood
	Expected log likelihood
	Evidence lower bound

	Code
	Quanser Qube environment reward function modifications

