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Abstract

Although learning under contacts is crucial for real-world tasks in robotics, it is still very
challenging to solve contact-rich tasks because they are incredibly difficult to model.
Reinforcement learning (RL) is a promising approach for such tasks, as it allows learning
a behavior by receiving rewards through interactions with an environment. The need to
explicitly model contacts is eliminated, as the learned policy only needs to find a way to
deal with these contacts, which is still challenging. Many methods have been established
to learn contact-rich tasks, such as assembly or peg-in-hole tasks, but there is still much
research on how to improve the state of the art. Recent approaches use a combination of a
nominal and a residual policy, where the nominal policy guides the residual policy, and the
residual policy learns to perform minor corrections to the nominal policy. This idea is not
only efficient, but also provides much room for introducing advanced structures for either
the residual or the nominal policy to improve the performance on a given task. We believe
that appropriate priors for the nominal policy can drastically increase the performance of
such methods.

For this reason, this work proposes the use of manifold stable vector fields (MSVFs) as
learnable stable priors for residual reinforcement learning. Not only do MSVFs provide a
suitable method to deal with orientations by using Lie groups, but they are also stable
beyond the space in which they are trained in. This means that when used as a prior for
learning, they do provide a stable signal toward a specified goal pose, and furthermore,
this signal is robust to perturbations. As our experiments show, this prior not only speeds
up learning for insertion tasks, but the residual approach also allows us to efficiently extend
the method to perform variable impedance control as well. We evaluate its performance
in a variety of environments, including simulating a 7-DOF Franka robot arm inserting
either a box or a more complex Ubongo object.



Zusammenfassung

Wenn Roboter in einer realen Umgebung eingesetzt werden sollen, treten fast immer
Kontaktkräfte auf, die das Lernen erschweren. Diese Kräfte sind sehr schwer zu modellieren
und erschweren somit das Lösen verschiedenster Aufgaben. Ein vielversprechender Ansatz
zur Lösung solcher Aufgaben ist das Reinforcement Learning (RL), bei dem ein Verhalten
erlernt werden kann, indemBelohnungen bei der Interaktionmit einer Umgebung generiert
werden. Das erlernte Verhalten muss nur einen Weg finden, die erhaltenen Belohnungen
zu maximieren, wofür es aber nicht zwangsläufig lernen muss, Kontaktkräfte darzustellen.
Es gibt zwar bereits Ansätze, die Aufgaben mit Kontaktkräften erfolgreich erlenen, aber
es gibt weiterhin viel Forschung, die versucht den aktuellen Stand der Technik weiter zu
verbessern. Einige Ansätze verwenden eine Kombination aus einer Nominalen und einer
Residualen Policy. Die Idee dabei ist, dass die Nominale Policy die Residuale Policy leitet
und die Residuale Policy lernt, das Verhalten durch kleine Anpassungen zu optimieren.
Dieser Ansatz ist nicht nur besonders effizient, sondern bietet auch reichlich Spielraum, um
erweiterte Strukturen in die Nominale oder Residuale Policy zu integrieren, die die Leistung
noch weiter verbessern können. Wir glauben, dass geeignete Prior für die Nominale Policy
zu einer signifikanten Leistungssteigerung führen.

Aus diesem Grund stellen wir einen Ansatz vor, der Manifold Stable Vector Fields (MSVFs)
als stabile Prior für Residual Reinforcement Learning verwendet. Ein MSVF ermöglicht
nicht nur eine effiziente Handhabung von Rotationen durch die Verwendung von Lie
Gruppen, sondern ist auch über den Raum hinaus stabil, in dem es trainiert wurde.
Das bedeutet, wenn sie als Prior zum Lernen eingesetzt werden, liefern sie ein stabiles
Signal, das zu einer gewissen Zielposition führt. Außerdem sind MSVFs besonders robust
gegenüber externen Störungen. Wie unsere Experimente zeigen, beschleunigt dieser Prior
nicht nur das Lernen von Einfügeaufgaben, sondern der residuale Ansatz erlaubt es uns
auch, unsere Methode mit variabler Impedanzkontrolle zu ergänzen. Wir evaluieren unsere
Methode in einer Vielzahl von Umgebungen, einschließich in einer simulierten Umgebung,
in der ein Franka-Roboterarm einen Würfel oder ein komplexeres Ubongo-Objekt einfügen
muss.
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1. Introduction

Humans have long dreamed of robots with human-like intelligence and abilities. Science
fiction often features robots that cannot even be distinguished from a human being,
and modern research and technologies are achieving great success when it comes to
artificial intelligence. We are already able to perform speech recognition [1], autonomous
driving [2], and image classification [3] at a high level of performance, but we are still
far away from human-like intelligence and abilities, especially in robotics [4,5,6,7]. We
dream of robots autonomously producing goods, transporting them, or even providing
healthcare, but this is either not yet possible or can only be achieved in highly structured
and specialized environments, such as automotive assembly.

To deal with uncertain and unstructured environments, which applies to almost every
real-world scenario that humans can solve, we need not only robots with a high degree of
autonomy, but also robots that can learn how to interact safely with their environment
by perceiving the world using specialized sensors. While perception using sensors is
getting better, there are still things we will probably never be able to model perfectly, such
as contact forces, because they depend on too many parameters to estimate. Still, it is
inevitable that contact will occur when manipulating objects in the real world. While it
would be possible to handle contacts with an incredibly stiff and therefore high force robot,
this is not a desirable approach for several reasons. A high force robot could damage
objects or even humans in its environment or destroy itself if it applies too much force
during contacts. Therefore, we desire a robot that is compliant and robust to disturbances
from its environment to enable safe human-robot interaction.

A common task for evaluating robot performance with contacts are assembly or peg-in-hole
tasks, as they represent the core of the problem in a way that is easy to set up in simulations
or real-world experiments. Peg-in-hole tasks require the robot to learn how to insert a
peg into a hole with a specified clearance; the narrower the hole, the more difficult the
task. There are two common ways of learning a peg-in-hole task: either by learning from
demonstrations or by learning through interaction with an environment [8]. In learning
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from demonstrations, a robot attempts to imitate and perhaps even improve upon given
demonstrations. The demonstrations are often provided by a human performing the desired
behavior, and are given in the form of sensor data collected during the demonstration
process. A major problem with this approach is the general need for demonstrations, since
while it may be easy to provide them for a peg-in-hole task, it becomes more complicated
as the task becomes more specific. In addition, collecting data for such demonstrations
is very expensive, as they must be created by experts. On the other hand, simulations
of such complex environments are getting better as computational power increases. The
ability to describe tasks in simulation allows learning by interacting with a simulated
environment without taking a risk. Ultimately, there is still the challenge of transferring
behavior learned in simulation to the real world, but there is already much research aimed
at achieving this [9].

A typical approach to learning by interaction with an environment is reinforcement
learning (RL), in which the robot receives a reward for each action it performs in a given
state of an environment [10]. The idea is that the robot should learn to maximize the
expected reward for a given time horizon, leading it to perform actions with higher and
higher rewards as learning progresses. For a peg-in-hole or general insertion task, the
reward can be defined by the distance to the target pose that describes a correct insertion.
The closer the robot gets to successfully inserting the object, the higher the reward should
be. While there are several RL methods capable of inserting objects, and some of them are
very powerful [11,12], many of them use some kind of guidance for learning [13,14,15].
A special family of these methods that use guidance is called residual reinforcement
learning [16], which has been successfully applied to insertion tasks [17,18,19]. In these
methods, guidance is provided by a nominal policy, which can be represented, for example,
by a hand-crafted expert policy or a simple heuristic. In addition, there is another policy,
the residual policy, which learns to build on the behavior of the nominal policy and learns,
for example, to generate minor corrections to the output to increase performance. These
methods are not only very good in terms of performance, but also provide an elegant way
to partition a maybe highly biased tuned behavior and learning to improve that behavior.
The nominal policy establishes a baseline for performance, and when properly trained,
the residual learns to improve that performance by adjusting the output.

The residual learning approach allows it to give more structure to both policies to make
them better suited to their specific tasks of guiding and optimizing. For example, such a
structure can be an appropriate internal representation of orientations that allows better
guidance by the nominal policy when learning to rotate an object. Moreover, such a
structure can be biased to provide a stable signal to ensure that the system is driven
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toward a desired area. We believe that well-suited priors included in the nominal policy
are key to improving the performance of residual approaches.

For this reason, in this work we aim to evaluate whether we are able to improve the
performance of residual policies by providing a better structured nominal policy. We
address the problem of efficiently learning orientations due to ambiguities in common
representations [20], by applying manifold stable vector fields (MSVFs) [21], originally
used in behavioral cloning, to RL. An MSVF uses Lie groups to efficiently learn to output
velocities not only in terms of position, but also in terms of orientation. It is able to do so
by defining such velocities in terms of manifolds that are particularly well suited for this
task, i.e., SO(3), SE(3). Moreover, their learned policy is stable and therefore guaranteed
to lead to a given stable point, which makes them particularly advantageous for insertion
tasks. For this reason, we evaluate their performance when used independently of other
policies or when used as a learnable stable prior for residual learning by using them as
a nominal policy. We show that while a pure MSVF has problems with RL, the residual
MSVF approach not only provides an increase in performance compared to a non-learnable
hand-crafted nominal policy, but also performs incredibly well on various insertion tasks,
including a simulated 7-DOF Franka robot arm performing the insertion. Furthermore,
we propose several adaptations to our approach that can additionally perform variable
impedance control or incorporate force sensor observations into the policy.
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2. Background

In this section, we will provide an overview of the necessary foundations before explaining
the actual approach in Section 4. For this reason, we will first introduce the general concept
of reinforcement learning in Section 2.1, which will allow us to explain the methods we
use to train our models. Then, in Section 2.2, we will define the foundations of robotics
that are necessary to understand how we control and interact with the robotic system in
our experiments. Next, in Section 2.3, we need to introduce the basics of manifold theory
to introduce Lie groups such as SO(N) and understand the basics of diffeomorphisms.
Finally, we will explain the concepts of stable vector fields in Section 2.4 and neural
ordinary differential equations in Section 2.5, since both concepts will play a fundamental
role in our approach.

2.1. Reinforcement Learning

Reinforcement learning (RL) is about learning a specific behavior through reinforcement.
In the context of Machine Learning (ML), we are typically concerned with solving decision
making problems in which we attempt to reinforce optimal decisions [22]. Typically, a
reinforcement learning task involves an agent that performs actions and an environment
that returns observations corresponding to the actions performed by the agent. This means
that an agent starts in a certain state, then performs an action and observes a new state
and a reward. Thus, through repeated interaction with the environment, the agent can
learn which action in which state leads to a positive reward. This learned decision making
function is called a policy. An RL algorithm can therefore be described as an algorithm
that aims to find a policy that, for any given state, provides an action that maximizes the
sum of future (discounted) rewards.
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2.1.1. Markov Decision Processes

A common method for mathematical modeling of decision making problems are Markov
Decision Processes (MDPs) [23]. An MDP can be defined as a tuple (S,A,R,P, µ0, γ).
This representation encodes what state ssst ∈ S the environment is in at a given time t,
and what actions aaat ∈ A the agent can perform. The reward function R : S × A → R
defines a reward rt that an agent receives when it performs an action aaat in a certain state
ssst. The state ssst+1 that follows the execution of an action aaat in a previous state ssst is defined
by the transition probability ssst+1 ∼ P(·|ssst, aaat). The initial state distribution µ0(sss) defines
the distribution over the initial states sss0 ∈ S0 in which the agent can start. Finally, the
discount factor γ ∈ [0, 1) is used to regularize (discount) the sum of future rewards.

In an MDP, the reward function describes the problem to be solved and hence the desired
solution. A common way to define a reward function is to bind it such that R : S ×A →
(−∞, 0] and so the maximum discounted reward is not∞ but 0. So if we want an agent to
find the exit of a maze as fast as possible, we can simply define R(sss,aaa) = −1. Each time,
the agent starts in an initial state sss0 and has a maximum number of time steps t ∈ 0, ..., N
to reach the terminal state sssT of the episode. Then, when the agent tries to maximize
the sum of discounted rewards r0 + γr1 + γ2r2 + ...+ γtrt, the learned policy π : S → A
minimizes the number of transitions required to reach the terminal state sssT and therefore
tries to find a faster and faster path through the maze. To compute a well-defined reward
using only the current action and state, MDPs are defined to satisfy the Markov property.
That is, the current action aaat and the current state ssst contain all the information needed
to determine the next state P(ssst+1|aaat, ssst) = P(ssst+1|aaat, ssst, aaat−1, ssst−1, ..., aaa0, sss0) [22].

In general, MDPs can be divided into several subcategories, e.g., the case we introduced
above including a finite horizon of 0 ≤ t < N are finite MDPs, but there are also cases
in which t → ∞. Also, action selection can be deterministic aaat = π(ssst) or stochastic
aaat ∼ π(aaa|ssst). Finally, the state and action spaces S,A can be either discrete or continuous.

In summary, an RL algorithm attempts to find an optimal solution to a decision making
problem described by an MDP by learning an optimal policy that maximizes the sum of
discounted rewards. To solve this problem, the policy seeks to maximize the expected
sum of discounted rewards, which is [22] defined as follows

Jπ = E

[︄
N∑︂
t=0

γtR(ssst, aaat)
⃓⃓⃓⃓
sss0 ∼ µ0(sss), aaat ∼ π(aaa|ssst), ssst+1 ∼ P(sss|ssst, aaat)

]︄
. (2.1)
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A fundamental approach to learning such a policy with respect to Equation 2.1 is to learn
a value for each state and then transition to the states with the highest value. These
approaches are called value function approaches and are presented in the next section.

2.1.2. Value Function

Value function methods reduce the problem of modeling the expected sum of rewards, as
described in Equation 2.1 to modeling the expected sum of rewards in a given state [22,24].
The value function describes the expected sum of discounted rewards of a state sss following
a given policy π from that state

Vπ(sss) = E

[︄
N∑︂
t=0

γtR(ssst, aaat)
⃓⃓⃓⃓
sss0 = sss,aaat ∼ π(aaa|ssst), ssst+1 ∼ P(sss′|ssst, aaat)

]︄
.

A common alternative formulation is the state-action value function (Q-Function), which
defines not only the value of a state, but also the value of performing a particular action aaa
in a state sss. This formulation allows to find an optimal policy by greedily selecting actions
for each state ∀sss ∈ S : π(sss) = arg maxaaaQπ(sss,aaa) [22].

In general, it has been shown that for discrete spaces and known transition probabilities,
value function methods can be solved by Dynamic Programming (DP) [25]. When the
transition dynamics are unknown, two other families of algorithms have been shown to
be successful: Monte Carlo [26] and Temporal Difference Methods [27]. For very large or
continuous state and action spaces, it is not possible to represent the value function for
each state and action, so function approximators are used to represent the value function.

However, there are also methods that attempt to avoid explicitly modeling a value function,
called Policy Search methods. These methods assume that the policy π is parameterized
by some parameters θ ∈ Θ and intend to find the optimal policy by directly searching in
the parameter space [28]. One way to perform such a search is to use gradient ascent,
which leads us to Policy Gradient (PG) methods [29] explained in the next section.

7



2.1.3. Policy Gradient Methods

In general, Policy Search (PS) methods do not explicitly model the value function, but
guide the policy search by defining an objective that is used to learn the parameters of
the policy. Typically, they attempt to model the expected reward for a given state sss and a
given action aaa through

Jπθ = Esss∼µ0,aaa∼πθ(·|sss)[R(sss,aaa)] (2.2)

which allows to select the states and actions with the highest expected reward.

To optimize the PS objective given in Equation 2.2, Policy Gradient (PG) methods have
been shown to not only perform well in high-dimensional state-action spaces, but also
enable appropriate learning of stochastic policies [22, 29, 30]. However, PG methods
assume that the policy is differentiable, since they use an estimate of the gradient of the
objective function to update the parameters of the policy using gradient ascent

θθθ ← θθθ + α∇θθθJπθ (2.3)

where α is a learning rate that defines the step size for updating the parameters. The use
of the gradient allows to define a policy update towards a local optimum of the target.
Therefore, a major drawback and an important optimization aspect is to direct the policy
not only towards a local optimum, but towards a global optimum.

Another problem is to estimate the value of ∇θθθJπθ for the update described in Equation
2.3. The Policy Gradient Theorem introduces an estimate of the policy gradient by

∇θθθJπθ ∝ Esss∼µ0,aaa∼πθ(·|sss)[R(sss,aaa)∇θ log πθ(aaa|sss)] (2.4)

where the log derivative trick is used to formulate the policy gradient in terms of the
reward and the log derivative of the policy [29]. In practice, the reward is often modeled by
the expected sum of discounted rewards and thus is often represented by the state-action
value function Qπθ .

Since both value methods and policy search methods, such as the policy gradient, have
their advantages and disadvantages, a joint approach called Actor-Critic algorithms has
been introduced [31]. These algorithms use a critic that estimates the value function and
an actor that updates the policy in the direction suggested by the critic, as explained in
the next section.

8



2.1.4. Actor Critic Approaches

The idea of Actor-Critic methods is to combine the advantages of value methods and
policy search methods in a single approach. The policy search methods represented by
the actor allow to compute actions in the continuous domain without relying on the direct
optimization of the value function. On the other hand, the value part represented by the
critic allows measuring the current performance of the actor with low variance. Since this
performance measure is initially quite biased due to inaccurate estimates of the critic at
the beginning of learning, actor-critic methods suffer from a larger bias at the beginning of
learning. However, these methods have generally been shown to have good convergence
properties [31,32].

Using the objective introduced in Equation 2.4 and employing the state-action value
function as an estimate, we obtain the objective and update for the actor πθ of the
Q-Actor-Critic approach as follows:

∇θθθJπθ ∝ Esss∼µ0,aaa∼πθ(·|sss)[Qω(sss,aaa)∇θ log πθ(aaa|sss)]
θθθ ← θθθ + αθ∇θθθJπθ

where θθθ are the actor’s parameters, ωωω are the critic’s parameters and αθ is the learning
rate of the actor. To update the critic’s parameters, we need to compute a correction of
the state-action value function. To compute this correction, after sampling and executing
an action aaat ∼ πθ(·|ssst), we receive a reward rt and a next state ssst+1 ∼ P(·|sss,aaa). Now
we again sample an action from the next state aaat+1 ∼ πθ(·|ssst+1). Therefore, the critic’s
objective and update for the Q-Actor-Critic can be computed as

δt = rt + γQω(ssst+1, aaat+1)−Qω(ssst, aaat)

ωωω ← ωωω + αωδt∇ωQω
(2.5)

where αω is the learning rate of the critic. In practice the so called advantage function
defined as

A(sss,aaa) = V (sss)−Q(sss,aaa),

and is used to replace the state-action value function. It models the benefit of choosing an
action aaa in a certain state sss and is known to reduce the variance of the estimate.

Moreover, the update of the critic can be either on-policy or off-policy [33]. The on-policy
case is the one we introduced in Equation 2.5. It is considered an on-policy method because
the update is performed according to the agent’s policy, since the next action is selected by
the policy aaat+1 ∼ πθ(·|ssst+1). On the other hand, if the update is off-policy, the next action
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used to update the critic is selected according to a different policy. The simplest case for
the off-policy setting is to use a greedy policy for the update aaat+1 = arg maxaaaQ(ssst+1, aaa).
In general, off-policy methods provide a better exploration because the exploration policy
can be chosen to be different from the target policy, in addition they have also been
shown to be used successfully with data from human demonstrations. Furthermore, they
can be considered more consistent, since in the on-policy case the initial policy can be
arbitrary bad, while in the off-policy case a reasonable exploration policy can be defined.
Nevertheless, on-policy methods are still widely used, since training off-policy methods is
known to be a very hard problem [22,33].

2.1.5. Model-free and Model-based Reinforcement Learning

So far, we have always assumed that the state transition probabilities P are known.
However, this is often not the case, especially for environments in the context of robotics.
In practice, the agent learns not by assuming a known state transition probability, but by
gaining experience through interaction with the environment. This means that an agent
collects information in the form of tuples (ssst, aaat, rt, ssst+1).

To learn a policy based on the collected experience, one can either attempt to learn a
model of the state transition probabilities (model-based RL) or not model them at all
(model-free RL) [34]. An important motivation for model-based methods is that sampling
data from a real environment is very expensive. Collecting data is very time consuming,
and if a model can be learned, the data can be sampled efficiently using the model rather
than the real system. However, learning a model is quite difficult, and even the smallest
error in the model can lead to a large error in the estimates. Model-free methods, while
quite sample inefficient, are generally easier to learn and do not suffer from the biases
introduced by collecting samples from an error-prone model [34,35].

2.1.6. Proximal Policy Optimization

After discussing different RL methods such as actor-critic approaches as well as on-policy
and off-policy methods or model-based and model-free approaches, we will now to
introduce Proximal Policy Optimization (PPO) [36], which we will use as an optimization
method throughout this thesis. PPO can be defined as an on-policy and model-free
method that combines Policy Gradient methods [30] with Trust Region Policy Optimization
(TRPO) [37] into a joint actor-critic approach.
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In TRPO, a so-called surrogate objective is maximized in order to learn the parameters of
the policy. This surrogate objective is formulated as a constrained optimization problem
that considers the probability ratio of the policy before and after an update, constrained
by its Kullback-Leibler (KL) divergence. TRPO formulates this problem as follows

arg maxθ Et
[︃

πθ(aaat|ssst)
πθold(aaat|ssst)

A(ssst, aaat)

]︃
subject to Et

[︁
KL[πθold(·|ssst), πθ(·|ssst)]

]︁
≤ δ

(2.6)

where θθθold are the policy parameters before the update. By using the conjugate gradient
algorithm, this problem can be efficiently approximated [37]. Instead of solving the
constrained optimization problem given in Equation 2.6, it is also possible to formulate
the object in terms of an unconstrained optimization problem

arg maxθ Et
[︃

πθ(aaat|ssst)
πθold(aaat|ssst)

A(ssst, aaat)− βKL[πθold(·|ssst), πθ(·|ssst)]
]︃

(2.7)

where β is a penalty coefficient. However, there are additional modifications needed to
solve this unconstrained optimization problem, since simply choosing a fixed value for β
does neither perform well across different problems, nor within a single one.

Proximal Policy Optimization (PPO) combines the idea of the unconstrained optimization
problem following TRPO (Equation 2.7) with policy gradient methods. For each training
iteration, the policy πθold is run for t = 0, 1, ..., N time steps and for each state-action
pair (ssst, aaat) the advantage function Ât = A(ssst, aaat) is computed. The collected data can
then be used to perform Stochastic Gradient Descent (SGD) for the optimization problem
formulated in Equation 2.7. Interestingly, the authors found that using a different objective
that does not use the KL divergence is superior. The new objective is given by

arg maxθ Et
[︃
min

(︃
πθ(aaat|ssst)
πθold(aaat|ssst)

Ât, clip
(︃

πθ(aaat|ssst)
πθold(aaat|ssst)

, 1− ϵ, 1 + ϵ

)︃
Ât

)︃]︃
(2.8)

where ϵ is a hyper-parameter. This objective formulates a lower bound on the unclipped
objective and can be extended by adding an entropy term to ensure sufficient exploration
[36]. In the actor-critic style, PPO updates the critic and the actor independently. The
critic represents the advantage function and can be updated as previously described, and
the actor is updated by using SGD to optimize the objective in Equation 2.8. This method
has proven to be simple yet powerful in most scenarios.

11



How exactly the critic or actor is represented is a particularly important design choice.
With the rise of neural networks (NN) in ML, they have been shown to be incredibly well
suited to representing such parameterized policies and training them via SGD [38]. Also,
in the case of RL, there are many state-of-the-art approaches that use NNs to represent
their policies [39]. This is also the reason why in this work we focus on using NNs to
represent the actor and the critic and train them using PPO.

2.2. Robotics

Robotics deals with robots of all kinds, which usually consist of rigid bodies connected by
joints. While it is not necessary for the links between joints to be rigid, and in practice
the joints themselves may not even be completely rigid, we will ignore those effects in
the remainder of this work, as they are particularly difficult to model whilst having only
minor influences [40].

2.2.1. Representation of a Robot

We can describe the configuration of a robot by the state of its joints. This means that if
we know the dimensions of the links and joints, the type of joints (revolute or prismatic)
and the way they are connected, we can describe the complete configuration of each point
of the robot in terms of the configuration space. Thus, if our robot has NDOF joints, the
configuration space has NDOF dimensions and each dimension represents the state of the
corresponding joint. Usually, the joint configuration of a robot is denoted as qqq, the joint
velocity as q̇q̇q̇ and the joint acceleration as q̈q̈q̈.

Even if the configuration space is able to describe the robot configuration, we often use
robots that are equipped with some kind of gripper, hand or similar. In these cases, we
are often more interested in the position of the robot’s end-effector, rather than in all of
its joints. We therefore call the space of positions and orientations of the end-effector
the task space. Here the current position ppp and rotation qqq can be represented by an
n-dimensional vector xxx and again the velocities as ẋẋẋ and the accelerations as ẍẍẍ. The
number of dimensions of xxx depends on how the orientation is represented. Positions
are usually represented in Euclidean space and are therefore 3-dimensional. However,
there are various representations for rotations such as quaternions, rotation matrices or
Euler angles, all of which have their advantages and disadvantages, which we will further
elaborate throughout this thesis.
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2.2.2. Kinematics and Dynamics

In robotics, we often need to describe the kinematics and dynamics of a robot [40].
The kinematics describe the relationship between the position and orientation of the
end-effector and the joint positions. The forward kinematics

f(qqq) = xxx (2.9)

describes a mapping from the configuration space to the task space. In this context, the
Jacobian JJJ is particularly interesting, since it allows to formulate the differential forward
kinematics as

ẋẋẋ =
∂f(qqq)

∂qqq
= JJJ(qqq)q̇q̇q̇,

which describes a mapping to the velocities ẋẋẋ in the task space. It is important to notice
that the Jacobian JJJ(qqq) is therefore a mapping from configuration space velocities to task
space velocities.

On the other hand, the dynamics describes the relationship between the configuration
space and the resulting torques. This is, the dynamics takes into account the current joint
configuration (qqq, q̇q̇q̇, q̈q̈q̈) and maps it to the joint torques τττ . In general, the dynamics of a
robot can be formulated as

τττ =MMM(qqq)q̈q̈q̈ +CCC(qqq, q̇q̇q̇) + ggg(qqq) (2.10)

whereMMM represents the mass of the robot,CCC represents the Coriolis and centripetal forces,
and ggg is the gravitational force. Theoretically, there would also be a term modeling joint
friction and other factors. This additional term is often not considered in practice due to
its complexity and negligible influence, also the term CCC is often not explicitly modeled.
By rewriting Equation 2.10, we can formulate the forward dynamics as follows

q̈q̈q̈ = f(qqq, q̇q̇q̇,uuu)

=MMM−1(qqq)
(︁
uuu−CCC(qqq, q̇q̇q̇)− ggg(qqq)

)︁
which maps a given control signal uuu in torques and robot configuration to the resulting
joint acceleration.
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2.2.3. Robot Control

In order to use control signals to control a robot, a controller is used to compute these
signals. One of the simplest forms of such a controller is a P-controller [40] which is based
on the position error in the joints

uuu =KKKP (qqqdes − qqq)

where qqqdes are the desired joint values and the matrixKKKP is a gain matrix indicating the
influence of the position error on the control signals.

The P-controller often suffers from overshoot and oscillation because it only considers
the current position and not the current velocity in the joints. To dampen the robot
and counteract the overshoot, PD-controllers have proven to be very useful and can be
formulated as

uuu =KKKP (qqqdes − qqq) +KKKD(q̇q̇q̇des − q̇q̇q̇) (2.11)

where q̇q̇q̇des are the desired joint velocities and the matrixKKKD now defines the influence of
the velocity error on the control signals. Often a desired velocity of q̇q̇q̇des = 0 is chosen to
guide the system to a stable point with zero velocity. Also, KKKD,KKKP must be a positive
definite matrix to ensure a stable system [40].

2.2.4. Jacobian Transpose Method

A fundamental problem in robot control is that there are multiple configurations in the
configuration space that lead to a single configuration in the task space [40,41]. Thus, if
we want to drive our robot end-effector to a specific pose xxxdes, there are multiple solutions
f−1(xxxdes) = qqqdes for the inverse of the forward kinematics introduced in Equation 2.9.

The Jacobian Transpose method [41] approaches the problem by minimizing the squared
task space error

E =
1

2
(xxxdes − f(qqq))T (xxxdes − f(qqq))
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and uses its gradient to formulate a gradient descent update for the desired joint velocity

∇qqqE = (xxxdes − f(qqq))T
∂f(qqq)

∂qqq
= (xxxdes − f(qqq))TJJJ(qqq)

qqqdes = qqq − α(∇qqqE)T

= qqq − α
(︁
(xxxdes − f(qqq))TJJJ(qqq)

)︁T
= qqq − αJJJT (qqq)(xxxdes − f(qqq)),

where α controls the step size for updating the desired joint configuration. Using this
method, a desired joint configuration qqqdes can be computed for a desired pose xxxdes in the
task space. This desired joint configuration can be passed to a PD-controller as introduced
in Equation 2.11 and results in minimizing the error in the task space.

2.2.5. Operational Space Control

In classical robotics, stiff high-gain control has often been used to maximize the accuracy
when following given trajectories. While this type of control can be used in mostly static
environments without interference from humans, it is very dangerous to use such stiff
high-gain robots in dynamic environments. For this reason, modern research focuses on
compliant, redundant robots that do not require such high gains, but are controlled with a
reasonable amount of force. This is also the motivation behind Operational Space Control
(OSC), which attempts to achieve compliant behavior while defining a desired trajectory
in task space [42,43,44].

Although OSC defines the desired pose in the task space, just like the the Jacobian
Transpose does, OSC models this problem in a different way. It attempts to define a
mapping from end-effector forces to the corresponding control signal. For this reason, we
can use the Jacobian transpose with respect to the end-effector JJJT (qqq) to formulate this
mapping, which leads to

uuu = JJJT (qqq)FFF ee,

where FFF ee is the end-effector force. To model the forces at the end-effector, OSC rewrites
the force in terms of an OSC-specific mass matrix MMMosc and the desired end-effector
acceleration ẍẍẍdes, which results in

uuu = JJJT (qqq)MMMosc(qqq)ẍẍẍdes

15



bringing us to the problem of modelingMMMosc. It has been shown that this mass matrix
can be modeled as follows

MMMosc(qqq) = [JJJT (qqq)MMM−1(qqq)JJJT (qqq)]−1 (2.12)

whereMMM is the mass matrix of the robot [43]. In order to define the desired acceleration,
a typical PD-controller can be used

ẍẍẍdes =KKKP (xxxdes − xxx) +KKKD(ẋẋẋdes − ẋẋẋ)

and if we then add also gravity compensation, we can formulate the full OSC control by

uuu = JJJT (qqq)MMMosc(qqq)[KKKP (xxxdes − xxx) +KKKD(ẋẋẋdes − ẋẋẋ)] + ggg(qqq) (2.13)

where the desired velocity is often set to zero ẋẋẋdes = 0 to end up with a stable pose.

2.2.6. Null Space Control

Complex robots usually have more degrees of freedom than the dimensions of their task
space. This means that the desired pose in the task space does not completely constrain
the pose of the robot and therefore there are multiple joint configurations for the same
pose in the task space. This characteristic makes it possible to define a secondary task that
drives the robot to a specific rest position. In order not to interfere the primary objective
of the controller, the secondary controller operates in the null space of the first controller,
which is known as Null Space Control [40].

If we want to adjust OSC to combine the control signal uuu defined in Equation 2.13 and
the control signal uuunull from the secondary controller, we can define

uuutotal = uuu+ (III − JJJT (qqq)JJJT †(qqq))uuunull

where JT †(qqq) is the pseudo-inverse of JJJT (qqq). It is important to choose this pseudo-inverse
such that it cancels the signal uuunull everywhere except in the null space. This behavior
has been shown to be achieved by setting

JJJT †(qqq) =MMMosc(qqq)JJJ(qqq)MMM
−1(qqq)

whereMMMosc(qqq) is given by Equation 2.12 [42]. To allow for stabilized null-space move-
ments, the control signal of the secondary controller can be defined as

uuunull =MMM(qqq)[KKKPnull
(qqqnull − qqq)−KKKDnull

(q̇q̇q̇)]

where qqqnull is the desired rest position andKKKPnull
,KKKDnull

are specific gains for the sec-
ondary controller [45].
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2.3. Manifold Theory

In general, Euclidean space and its geometry are well known. It is easy to define distances
or to draw triangles in R2 because we know that the angles in a triangle in Euclidean
space must sum up to 180◦. Although we consider the Euclidean space R3 as the space
we live in, for certain tasks it is fundamental to consider other spaces as well. Suppose
one has the task of drawing a triangle on the surface of a sphere. Do the general rules we
know from the Euclidean space then also apply to the space defined by the surface of the
sphere? No, because the angles of a triangle on the surface of a sphere do not add up to
180◦, and we cannot use the Euclidean distance metric to measure the distance between
two points on that surface. For this reason, manifolds are incredibly important, especially
for describing rotations in robotics, as they give us exactly the tools we need to deal with,
for example, the space described by the surface of a sphere.

2.3.1. Manifolds

An n-manifoldM (more precisely: topological manifold) is a topological space that is
locally homeomorphic to a Euclidean space, e.g. a sphere is a 3-dimensional manifold
that locally looks like the 2-dimensional Euclidean space. Specifically, this means that
every point must have a neighborhood and for that neighborhood there must exist a
homeomorphism that maps the neighborhood to a Euclidean space Rn, called a chart
of the manifold. In this case, an atlas defines a particular collection of charts covering
the manifold, and a transition map is a function that allows transition between charts in
overlapping parts of the atlas’s charts [46].

Such a manifold is called differentiable if it has a globally defined differential structure [47],
which means that the transition maps are differentiable functions on the corresponding
vector space. For such differentiable manifoldsM, one can attach to each point xxx ∈M
a tangent space TxxxM. This tangent space is a real vector space in Rn containing all
possible vectors that are tangential at xxx [48]. Moreover, a smooth manifold describes a
differentiable manifold with infinitely differentiable transition maps [48].

It is also possible to define a diffeomorphism [47] between two smooth manifoldsM,N .
This diffeomorphism is a differentiable map ϕ :M→ N , which is not only a bijection
(each element inM maps to exactly one element in N ), but also its inverse ϕ−1 : N →M
is differentiable.
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2.3.2. Lie Groups

We call a mathematical group G a Lie group [49] if it is also a differentiable manifold.
Associated with each Lie group there is a Lie algebra g, which is a vector space that is the
tangent space of the Lie group at its identity element.

To connect a Lie group and its Lie algebra, two important concepts can be defined: the
exponential map and its inverse, the logarithmic map. In a Lie group G, the exponential
map is a function ExpMap : g→ G that maps an element in the Lie algebra back to the
Lie group. Its inverse, the logarithmic map, is a function LogMap : G → g, which maps an
element in the Lie group to an element in its Lie algebra [49].

An important class of Lie groups is the special orthogonal group [49] denoted as SO(N)
whose Lie algebra is called so(N). This group consists of all orthogonal matrices that have
a determinant of 1. This class is so important because, for example, SO(2) represents
rotation around a point in 2 dimensions and SO(3) represents rotation around a line in 3
dimensions. So with the Lie groups SO(2), SO(3) we can not only represent rotations,
but also transform rotations into the tangent space and thus define a metric that moves
smoothly in the direction of a given rotation. This is also the reason why we want to use
the structure of the special orthogonal groups to reason about rotations in our approach.

2.4. Stable Vector Fields

In order to introduce stable vector fields (SVF), we will first give an introduction to ordinary
differential equations to also define the meaning of stability. This will then allow us to
apply these ideas to the concept of vector fields.

2.4.1. Differential Equations

Systems of ordinary differential equations (ODEs) [50] are widely used in mathematics and
physics. More precisely, since the laws of physics hold at all time, so-called autonomous
differential equations of the form

d

dt
xxx(t) = f(xxx(t))
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are very common in physics and robotics because they depend only on the current state
of the system xxx. In this work, we will focus on autonomous differential equations and
therefore simplify the notation by using xxx(t) = xxx and similarly ẋẋẋ represents the first
derivative of xxx with respect to time t.

This allows us to write an example of an autonomous differential equation as

ẋẋẋ = −xxx (2.14)

which states that the velocity of the system ẋẋẋ is equal to its negative position xxx. This
equation has an equilibrium point xxx̄ = 0 because once xxx = 0, it follows that ẋẋẋ = 0 and
the system will never leave the state of xxx = ẋẋẋ = 0 by itself. Moreover, this is also a stable
equilibrium because even if there are external influences that cause the system to leave
the equilibrium point, its formulation will always drive it back to that point.

This stable behavior to an equilibrium point is highly desirable in many robot tasks.
Imagine a robot is asked to push a button. Would it not be beneficial to be able to
guarantee that the robot will end up pushing the button regardless of small disturbances?
The Equation 2.14 is not only a stable autonomous differential equation, but also defines
a so-called stable vector field, as will be explained in the next section.

2.4.2. Stable Vector Fields

A vector field [51] is a function V : S → RN that assigns a vector to each point in a given
space S. For example, a vector field can describe the relationship between position and
velocity of an object. Suppose we have an object position xxx ∈ R3 and define its behavior
by Equation 2.14. Then we define a vector field V : R3 → R3, which maps each position
of the object to its velocity by

ẋẋẋ = V (xxx) = −xxx

and not only follows the same properties as Equation 2.14, but is exactly the same. This
means that the given autonomous differential equation is the vector field itself. This also
means that the defined vector field is again stable to the equilibrium point xxx̄ = 0.

Vector fields cannot be defined only for mappings from one Euclidean space to another
Euclidean space. Considering a differentiable manifoldM, then a vector field onM
associates a tangent vector for each point inM [52]. This is particularly important since
it allows us to define stable vector fields on, for example, the Lie groups SO(2) and SO(3).
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2.5. Neural Ordinary Differential Equations

The concept of neural ordinary differential equations (NODEs) [53] is relatively new, but
already has attracted considerable interest. A NODE is in some ways similar to a residual
neural network (ResNet), a classical ResNet composes a sequence of hidden states as

xxxt+1 = xxxt +HHHθθθ(xxxt),

where HHHθθθ is the ResNet and xxxt is the hidden state at a given time t. While NODEs
follow the same concept, their intent is to approach this problem similarly to an ordinary
differential equation. Therefore, they define a NN that learns to map a state to its derivative
HHHθθθ(xxxt, t) = ẋẋẋt. This means that we can then use an ODE solver to find the next state xxxt+1,
for example we can define

xxxt1 = xxxt0 +

∫︂ t1

t0

HHHθθθ(xxxt, t)dt

and approximate the integral using, for example, the forward Euler method. This may be
a simple modification, but it provides a powerful method allowing for variable depths. In
addition, NODEs can be run backwards to easily invert the mapping using

xxxt0 = xxxt1 −
∫︂ t1

t0

HHHθθθ(xxxt, t)dt,

which is often a desirable but difficult to achieve property of a neural network. Furthermore,
it has been shown how to perform efficient backpropagation by avoiding backpropagation
through the ODE solver and instead using the adjoint sensitivities method [53].
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3. Related Work

Since the goal of this work is to provide a learnable stable prior for residual reinforcement
learning in insertion tasks, we will summarize related approaches below. First, in Section
3.1, we will introduce not only alternative residual approaches, but learning-based ap-
proaches for insertion or assembly tasks in general. Then, we will discuss some methods
that provide stable policies for robot tasks in Section 3.2.

3.1. Robot Learning for Insertion Tasks

Assembly or insertion tasks are the focus of a wide range of research [8,54]. In general,
these tasks require the control of a robot in a contact-rich environment in order to assemble
or insert an object. This task is special because it combines several challenges that must
be overcome. First, the control must be very accurate not only for the position, but also
for the orientation. Second, the approach must also be able to be robust against contact
forces that occur when the object is inserted. Finally, it is highly desirable to achieve a
compliant behavior so as not to generate excessive forces that could harm objects or even
humans in the vicinity of the robot.

One group of work focuses on learning such tasks using demonstrations, often provided
by human experts [55,56,57]. A general framework for teaching robot peg-in-hole tasks
using human demonstrations was presented in [56]. They propose to mimic the human
behavior by using GaussianMixture Regression in combination with a Dimension Reduction
and Recovery method. In another work that also uses Gaussian Mixture Regression
[57], admittance gains are learned that define how large a corrective velocity should be
according to a measured contact wrench. In [55], a Gaussian process regression is used to
assemble large, heavy components. The proposed method predicts and compensates for
object deformation in order to perform assembly on hard-to-measure, easy-deformation
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tasks. While learning from demonstrations is a powerful way to imitate a behavior, it
requires demonstrations which are particular expensive when created by human experts.

For this reason, there are many works that do not learn from demonstrations but use RL
methods [11,12,13,14]. In [11], a high precision peg-in-hole task is solved by training a
recurrent neural network with RL using force and position sensors that provide observa-
tions for learning. The method proposed in [14] combines an actor-critic RL approach
with supervised learning and initially guides the policy using trajectory optimization
methods. In [12], self-supervision is used to learn a compact representation of the sensory
inputs, which improves the sample efficiency. They do not only use force information, but
combine it with additional visual observations. To increase the learning performance for
the insertion task, [13] uses CAD data to create a geometric motion plan that serves as a
prior to guide the policy while learning.

Other methods also use RL, but focus on compliant behavior [58,59,60]. In [58], a dynamic
movement primitive is trained using position and force trajectories from a demonstration of
a peg-in-hole task. This is then combined with a control policy that adjusts the impedance
parameters in an online fashion, resulting in higher robustness and performance. The
uncertainty of hole’s position is tackled in [59] and the approach is successfully transferred
to a real robot system by using sim2real and domain randomization techniques. Deep
RL approaches are also able to handle a mixture of deformable and rigid objects, as [60]
shows, again by using force-torque information from force sensors.

Finally, there are also methods that combine multiple policies to increase insertion perfor-
mance [15,16,17,18]. GUAPO [15] combines a model-based method to drive the system
to an uncertainty area, and when this is reached, a reinforcement learning policy, learned
through image and velocity information, takes over. In residual policy learning [16] a
nominal non-differentiable policy is combined with a model-free deep RL policy. The sec-
ond policy learns a residual on the first policy and therefore has the purpose of improving
the performance of the nominal policy or being guided by the nominal policy to learn
more efficiently. In [17], this strategy is used to control a real-world robot performing
an assembly task. The approach proposed in [18] also uses a residual policy but uses a
dynamic movement primitive learned through demonstrations as its nominal policy.

We believe that these multiple policy approaches, where each policy attempts to solve a
particular part of the task, are a very promising approach for modeling insertion tasks.
Not only have they already proven to be very successful, but they also allow the task to be
clearly partitioned and provide specialized structures for each policy, which could be key
to further improving performance.
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3.2. Learnable Stable Policies for Robotics

As we have presented many approaches that solve various robot tasks, none of them
guarantees stability. This is not because stability is not a desirable property, but because it
is very difficult to achieve. However, stability is important if we want to transfer robot
learning to real-world scenarios. In real-world tasks, stability allows us to guarantee that
a robotic system behaves as we expect it to, which is especially important when we need
to consider safety.

Recent work also attempt to learn robot tasks while guaranteeing stability [21,61,62].
In [61], variable impedance control is combined with a novel Evolution Strategy policy
inspired by the Cross-Entropy Method. It guarantees stability by ensuring that the sample
distribution can only generate stable parameter samples. The approach is evaluated on
several RL insertion tasks in simulation and also in the real world. A major drawback
of this approach is that it is only capable of using Euler angles. Another approach to
guarantee stability is proposed in [62], where stable normalizing-flows are learned using
RL to control a robot. Here, stability is not guaranteed during exploration, but the
learning process produces a deterministic controller with provable stability in the end.
Again, there is to mention a drawback in terms of handling orientations, as these are not
learned at all, but the authors claim that it is possible to extend their approach to also
include orientations. An approach that is capable of providing stability and using efficient
representations for orientations are manifold stable vector fields (MSVFs) [21]. In this
approach, a latent stable vector field is learned on Lie groups to efficiently learn a stable
policy that can handle orientations. Moreover, this approach shows that it is very robust to
perturbations, but it has not yet been applied to RL since it was proposed using learning
from demonstrations. Still we believe that it is possible to apply MSVFs to RL and use
them efficiently as a learnable stable prior for residual reinforcement learning, which we
will show throughout the next chapters.

23



4. Learnable Stable Priors for Residual
Reinforcement Learning

For the application of robotics to real-world tasks, it is very important to learn to control
under contact, which is why contact-rich tasks are becoming increasingly important in
current research [6,7,8,54]. The challenge in these tasks is that contact is very hard to
model and new strategies need to be developed to overcome this issue. One group of
tasks that are easy to construct, but still difficult to solve, are peg-in-hole tasks or, more
general, insertion tasks [8]. To solve such tasks, several strategies have proven to be
successful. Some of them achieved very high precision [11], others used a guidance to
improve the learning process [15, 63]. There is also a group of tasks that use residual
policy learning [16] in order to train a residual policy that is combined with a nominal
policy [17,18,64].

Since these residual methods are already very effective and achieve decent performance, we
believe that a particularly important choice for increasing performance is the nominal policy.
Typically, the residual policy is a type of NN that learns to provide minor corrections to the
nominal policy. The nominal policy usually guides the learning and is often handcrafted
or learned a priori, but is still a crucial optimization component. We aim to focus on the
nominal policy and evaluate which representations for the nominal policy provide an
appropriate prior for insertion tasks. In order to do so, we will propose a novel method
that applies manifold stable vector fields (MSVFs) [21] to reinforcement learning and
combines them with a residual policy to achieve an even better performance than classical
residual learning with a fixed nominal policy. We choose MSVFs as they are not only
a learnable stable policy, but also use Lie groups to efficiently represent rotations [21],
resulting in an overall compliant and globally stable policy.

We will define our residual MSVF approach by learning the mean of a Gaussian distribution
aaa ∼ N (µµµ,σσσ) where the σσσ is the learned variance and µµµ is the mean given by the residual
approach µµµ = π(xxx) = πnominal(xxx) + πres(xxx) and aaa is the sampled action to be performed.
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Figure 4.1.: General control scheme - This figure illustrates the control loop for generating a
control signal uuu from the observation xxxfull. First, the observation from the environ-
ment is split into xxx, which is passed to the nominal policy, and xxxres, which is passed
to the residual policy. Both policies then provide an output with respect to their
input, which is combined into an action aaat that is passed to the environment. The
operational space controller takes this action, and in combination with the current
joint states qqq, q̇q̇q̇, generates a control signal uuu, which is then used to control the robot’s
joints and a new observation is generated.

We will evaluate our approach in multiple environments representing different insertion
tasks and use operational space control to control a robot performing the insertion. The
general control scheme is described in Figure 4.1 and we will present residual learning in
Section 4.1, MSVFs in Section 4.2 and other considered adaptations to the approach in
Sections 4.3 and 4.4.

4.1. Residual Learning with a Nominal Policy

The idea of residual policy learning [16] is to improve policies with model-free reinforce-
ment learning. This not only allows for improvement over using one or the other, but
also for learning tasks with long time horizons and sparse rewards that are particularly
difficult to solve with pure reinforcement learning [16].
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Figure 4.2.: Problems of a naive nominal policy - This figure illustrates the problem of a naive
PD controller used as a nominal policy. While on the left side this nominal policy
provides reasonable behavior, on the right side we can see that it causes the agent
to get stuck.

The concept of residual policy learning is quite simple, the output of the policy for a given
state xxx is defined by

π(xxx) = πnominal(xxx) + πres(xxx)

where πnominal is a non-differentiable policy (called nominal policy in the latter) and πres
is the residual policy. The important difference between the nominal and residual policy
is that the residual policy is parameterized by some parameters θθθ. We can train these
parameters by using gradient-based methods because the gradient with respect to the
parameters is not affected by the nominal policy ∇θπ(xxx) = ∇θπres(xxx).

The purpose of using a nominal policy in addition to the initial random residual policy
can be divided into two extremes

1. The nominal policy delivers acceptable performance on its own, and the residual
policy learns to make slight corrections to optimize the performance.

2. The nominal policy is far from solving the task by itself, but provides reasonable
exploration behavior so that the residual policy can learn the task.

Regardless of which side of the extreme the problem description is on, it is often beneficial
to leverage the influences of the two policies. This can be done by using a term λ that
either reduces or increases the influence of the residual policy

π(xxx, λ) = πnominal(xxx) + λπres(xxx)

where the leverage term can be, for example, a constant λ = 1.5, or a function with
respect to time λ(t) = (1− 0.95t) or even with respect to the state, to formulate all kinds
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of relations. For the course of this work we will assume λ = 1 and therefore use equal
influence for both policies. Adapting this leverage term in order to even further improve
the performance of the proposed approach is left for future work.

Although, classical residual policy learning can be very effective, it has one major issue:
it needs a handcrafted nominal policy. In many cases, it is very difficult to create a
near-optimal handcrafted policy to use the residual policy only for minor corrections and
optimization. On the other hand, a very easy to create nominal policy can actually hinder
learning. Imagine we want to solve an insertion task and we define a nominal policy as
a simple PD-controller that generates movements towards the insertion position. While
this nominal policy provides great behavior when it starts above the insertion position,
it could get stuck after starting in some difficult initial configurations, as can be seen in
Figure 4.2. To avoid these issues, we want to provide an approach that does not have
the need for hand-crafted nominal policies and instead uses a learned stable policy as a
nominal policy, which is explained in the next section.

4.2. Learnable Stable Vector Fields in Latent Manifolds - An Ex-
pressive Prior for Residual Reinforcement Learning

As we have already presented the drawbacks of a non-learnable, hand-crafted nominal
policy, we will now introduce manifold stable vector fields (MSVFs) [21] and explain why
we believe that they are an expressive prior for residual reinforcement learning.

First of all, MSVFs are learnable and therefore, when used as nominal policy, allow for
learning and adapting depending on the seen data. Nevertheless, so far they have only
been used for behavioral cloning [21], and we want to provide an approach to use them for
RL and in this context also as nominal policy. One could argue that also other approaches
that have already been applied to RL could also be used, but there are several properties
of MSVFs that we believe make them the optimal candidate.

Although dynamic movement primitives (DMPs) [65] have been successfully used for
residual learning in insertion tasks [18], they are phase dependent. MSVFs do not have a
phase dependency like DMPs, they only depend on the current state of the system. This
property makes them inherently reactive to disturbances, and they have been shown to
provide a very compliant and also robust policy [21].
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Figure 4.3.: Comparison of vector fields - This figure shows the difference between a hand-
crafted stable vector field ẋẋẋ = −xxx (left) and a stable vector field that can be learned
with an MSVF (right).

Moreover, MSVFs are stable beyond the space in which they are trained, since they provide
a diffeomorphism between manifolds in which the observation manifold is mapped to
a latent stable vector field [21]. We assume that this stability is crucial to provide a
reasonable signal for the residual network to learn. If the nominal policy is learned but not
stable, its motion could also be random and when combined with the residual network,
the motions could be even worse than when training only a single network. However, if
the nominal policy is stable, it will always lead to a particular goal pose. Thus, the motions
are very likely to lead to that goal pose despite the interference from the other learned
policy, especially when trained with a dense reward. We consider the stability towards a
goal pose as a prior for the learning process that accelerates learning with two policies.

Furthermore, MSVFs are defined using manifolds, which can be successfully used to learn
orientations [66]. The necessity of manifolds in representing orientations is that while
it is easy to define a distance metric in Euclidean space, this is not true for orientations.
In addition, many orientation representations such as Euler angles or quaternions suffer
from ambiguities [20]. Rotation matrices do not suffer from such ambiguities, but are
difficult to learn due to their dimensionality. Manifolds and, in particular, Lie groups allow
to use rotation matrices in an elegant way and define velocities in the tangent space [21].

Finally, MSVFs allow the definition of almost arbitrary stable vector fields. For example, if
one learns only the impedance gains and controls a system by a non learned stable vector
field, it is not possible to change the direction of the vectors more than 90◦, since the
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impedance gains have to be strictly positive. This means that the solution space is much
more constrained, but an MSVF can learn to deform the space in many ways and produce
a variety of different motions, as can be seen in Figure 4.3. For this reason, in this thesis
we will propose a residual MSVF approach and evaluate its benefits and costs for RL in
insertion tasks, but first we will explain how MSVFs achieve these properties and how we
use them in our work.

4.2.1. Stable Vector Fields in Latent Manifolds

An MSVF can be modeled by a pipeline of three main constructs: a parameterized diffeo-
morphism Φ, the latent dynamics g, and the pullback operator dΦ∗ [21]. Although we
will explain each construct in greater detail, we will first give a brief description of each
component in the following

1. The parameterized diffeomorphism learns a diffeomorphic mapping Φ :M→ N
from a manifoldM to a latent manifoldN by using a NODE to describe the mapping
between the two manifolds.

2. The latent dynamics g defines a stable vector field in the latent manifold N to
produce a stable latent velocity signal. In practice, an additional NN is used to
first normalize the latent velocities and then rescale them according to its learned
parameters.

3. The pullback operator reverses the mapping to the latent manifold and therefore
describes a mapping dΦ∗ : N →M. This velocity signal is a deformed version of
our stable velocity signal, where the deformation is related to the applied diffeomor-
phism.

Thus, if we receive an observation xxx and want to process it into a velocity signal according
to the MSVF policy, we use

ẋẋẋ = dΦ∗ ◦ g ◦ Φ(xxx)

which describes the full dynamics of the MSVF policy as depicted in Figure 4.4.
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Pullback Operator Latent Dynamics
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Figure 4.4.: MSVF pipeline - First, the LOGMAP transforms a given state (position and/or ro-
tation) xxx and a target state xxxH to a state xxx̂ ∈ TxH

M. Then a NODE representing
a diffeomorphism between the observation manifoldM and the latent manifold
N , is used to transform the given state in the observation tangent space to the
latent tangent space yyŷ = FFFθθθ(xxx̂). In practice, we can consider a shortcut to avoid
computing the EXPMAP and LOGMAP, since both are computed in the same origin
frame. The state in the latent tangent space yyŷ is passed to the scaling network to
generate a scaling term s, which is then used in the dynamics to generate a latent
velocity ẏẏẏ = −yyŷs. Now, to represent this latent velocity in the observation manifold,
two additional operations are required. Therefore, the pullback operator is defined
as dΦ∗ = AAA ◦ JJJ−1

FFFθθθ
, where the Jacobian JJJ−1

FFFθθθ
: TyH

N → TxH
M reverses the mapping

of the NODE and the adjointAAA : TxH
M→ TxM transforms the signal to the tangent

centered in xxx.

LogMap & Expmap

In order to transform observations into velocities, we can interpret our observation space
as a manifoldM and the velocities as its tangent space T . Then we can use the LogMap
to transform a given observation xxx ∈M into an observation in the tangent space xxx̂ ∈ T .
The relation of xxx,xxx̂ is that if we integrate xxx̂ for one second, we reach the position xxx. To
use this formulation for our purpose, we perform two steps:

1. Since we want to move toward a desired goal xxxH , we first change the reference
frame from the given observation xxx to xxxH .

2. We apply the LogMap in the reference frame of xxxH to obtain an observation xxx̂ in
the tangent space TMxH centered in xxxH which, when integrated for one second
starting in xxxH yields the given observation xxx.
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For our purpose, we consider 4 cases for the observation manifold M ∈ {R2,R2 +
SO(2),R3,R3 + SO(3)}. Since some of these cases need to be treated differently, we will
explain the different methods we used in the following.

In the case of xxx ∈ R2,R3 we have no orientation but only translation. In order to transform
the given observation in the world frame xxx to the observation with respect to the goal
xxxgoal we can simply subtract the observation in the world frame from the goal position
in the world frame xxxH , which gives us xxxgoal = xxxH − xxx. Since the LogMap in Euclidean
space is the identity, we can set xxx̂ = LogMap(xxxgoal) = xxxgoal as the observation in tangent
space with respect to the goal.

Now, if we use rotations and have the two-dimensional case xxx ∈ R2 + SO(2), we can
treat the translation and orientation parts separately. We therefore split the observation
xxx = (x, y, θ)T into its translation part ppp = (x, y)T and its orientation part θ given in
radians. We process the position as described previously to obtain the position in the
tangent space ppp̂. To transform the orientation into the tangent space, we can again use the
same procedure, since we are only dealing with single angle. We transform the orientation
from the world frame to the goal frame with θgoal = θH − θ and then apply the identity
as LogMap which gives us θ̂ = LogMap(θgoal) = θgoal. The observation in the tangent
space is then given as xxx̂ = (ppp̂, θ̂)T .

If we now want to perform the LogMap for the three-dimensional case xxx ∈ R3+SO(3), we
can again treat the translation part separately from the orientation. We obtain xxx = (ppp,qqq)T ,
where ppp = (x, y, z)T is the translation and qqq is the rotation given as a quaternion. The
process for the translation part is again the same and yields the translation in the tangent
space ppp̂. However, the LogMap for the orientation part is now different than for two
dimensions. First we transform the given quaternion qqq to a rotation matrix RRR. Then we
have to transform the rotation matrix into the goal frame, by settingRRRgoal = RRR−1

H RRR where
RRRH is the goal orientation. Then, we can set the rotation in tangent space rrr̂ ∈ so(3) using
rrr̂ = LogMap(RRRgoal). Therefore, the observation in the tangent space with respect to the
goal is given as xxx̂ = (ppp̂, rrr̂)T

Diffeomorphism Network

The diffeomorphism network FFFθθθ as introduced in [21], models a diffeomorphism between
two differential manifolds. The motivation for this network is the idea of mapping the
observation in the tangent space to a latent tangent space in which a stable vector field is
defined. This stable vector field can then be used to generate motions towards a specific
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stable point yyyH in the latent manifold, and through the characteristics of a diffeomorphism
we can then map these vectors back to the observation tangent space. This inverse mapping
leads to motions toward the point xxxH in the observation manifold, which is the stable
point in the latent manifold [21].

In order to model such a diffeomorphism, a neural ODE is particularly well suited due to
its invertibility [21]. We can interpret the represented ODE as a system that takes a point
xxx̂ in the tangent space of the observation manifold TM at time t = 0 and transforms it
to a point yyy in the tangent space of the latent manifold T N at time t = 1. In detail, the
neural ODE representing the diffeomorphism network FFFθθθ can be modeled as

yyy = FFFθθθ(xxx̂) = xxx̂+

∫︂ 1

0
HHHθθθ(xxx̂, t)dt (4.1)

whereHHHθθθ is a neural network and xxx̂ is the observation in the tangent space. It is important
to understand that this neural ODE does not represent the dynamics of the policy, but just
the mapping from the observation manifold to the latent manifold. The reason for using
a dynamical system represented by a NODE is that it allows us to formulate the desired
diffeomorphism.

One problem we have not yet considered, is that the topology of the Lie groups and their
Lie algebra is not the same. Therefore, formulating a single diffeomorphic function for all
points in the Lie algebra is not possible [21]. Imagine a 1-sphere like shown in Figure
4.5, here it is easy to define motions to a given point xxx, in general the shortest path would
be rotating either in π or −π direction. However, for the antipodal point xxxantipode, there
is no unique shortest path, and here lies the problem of defining a single diffeomorphic
mapping. A solution to this problem is to define a second diffeomorphism which is simply
the identity, resulting in

yyy =

{︄
FFFθθθ(LogMap(xxx)) if xxx ∈ UM
xxx if xxx ∈M \ UM

,

where UM is the manifold without the antipodal point andM is the complete manifold,
and respectivelyM\ UM is the antipodal point.

Even though both cases are diffeomorphic, this does not mean that their composition is also
a diffeomorphism. To guarantee this, one must show that the composition is continuous
and differentiable in the boundaries between UM andM\UM. In order to do so, we can
define a distance term d(xxx) that defines the distance to the boundaries of a point xxx ∈ UM.
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Figure 4.5.: 1-Sphere tangent space - This figure illustrates why boundaries are important to
consider for the diffeomorphic mapping. There is no clear shortest path from the
antipodal point xxxANTIPODE to the center xxxH . Therefore the tangent space TxH

UM is
defined only for the manifold UM and the antipodal point is in the manifoldM\UM,
which is handled separately.

Then we can change Equation 4.1 to

FFFθθθ(xxx̂) = xxx̂+

∫︂ 1

0
d(xxx)HHHθθθ(xxx̂, t)dt

where multiplying d(xxx) leads the output velocity of the NODEHHHθθθ to converge smoothly
to 0 as the boundaries are approached, because d(xxx) converges to 0. This means that the
mapping represented by FFFθθθ converges to the identity at the boundaries.

Latent Dynamics

A fundamental characteristic of this approach is to define a latent stable vector field that is
stable to a given point yyyH in the latent manifoldN . This means that we create a dynamical
system that maps every point in the latent manifold yyy ∈ N to a velocity ẏẏẏ defined in the
tangent space TyHN . For this reason we can define

ẏẏẏ = −yyy, (4.2)

which induces a stable dynamical system in the latent manifold generating linear trajecto-
ries to the equilibrium point yyyH = 0.
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However, since we have defined the diffeomorphism for two separate cases, we must do
the same for the dynamics. For this reason, we need to separate how we process points
yyy ∈ UN and points yyy ∈ N \ UN and define

ẏẏẏ =

{︄
−yyy if yyy ∈ UN
0 if yyy ∈ N \ UN

which generates a stable point yyyH = 0 for all points yyy ∈ UN [21].

Scaling Network

Because of the definition of the latent stable vector field introduced in Equation 4.2, the
velocities are directly related to the distance from yyy to the equilibrium point yyyH . This
means that if we want our policy to drive our agent to yyyH , this will lead to smaller and
smaller vectors in the latent stable vector field, which could be limiting. To avoid this
behavior, we normalize all velocities in the latent stable vector field so that ∥−yyy∥ = 1 and
learn a scaling term s to allow for variations in latent velocities [21]. The scaling term is
learned by a neural network SSSψψψ(yyy) = s and forced to a positive value using the softplus
function

Softplus(s) = log(1 + exp(s))

to avoid affecting the stability of the vector field by changing direction of vectors.

Pullback Operator

All of the previously explained parts of the latent stable vector field, had the purpose of
transforming a pose xxx represented in an observation manifoldM into a latent velocity
signal ẏẏẏ given by a stable vector field defined in a latent manifold N . However, this
latent velocity ẏẏẏ has no meaning for our agent since it is defined in a different manifold.
Even if the manifolds are the same, this does not mean that our diffeomorphism is the
identity, so in any case it is necessary to pull back the velocity in the latent manifold
to a representation in our observation manifold, which is the purpose of the pullback
operator [21]. The pullback operator unrolls all the steps taken to transform the state
in our observation manifold to the latent manifold. It does this using two fundamental
components, the Jacobian JJJFFFθθθ

of the diffeomorphism network FFFθθθ and the adjoint AAA.
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The Jacobian JJJFFFθθθ
tracks the change in coordinates as we transform from the tangent

space of the observation manifold TxxxHM to the tangent space of the latent manifold T N
by using our diffeomorphism FFFθθθ. This means that the inverse of the Jacobian reverses this
mapping and therefore we can use it to map from the latent manifold to our observation
manifold

żżż = JJJ−1
FFFθθθ

ẏẏẏ

where żżż ∈ TxxxHM. It is important to notice that we have not yet completely reversed
the mapping. We still need to reverse the change of reference frame, our current żżż is
represented with respect to the tangent space centered in xxxH which is also the stable
point of the latent stable vector field if yyyH = FFFθθθ(xxxH). In order to reverse this mapping to
define ẋẋẋ in the tangent space in the current pose TxxxM we need to use the adjoint.

The adjoint is a linear mapping AAA : TxxxHM→ TxxxM and therefore allows to change the
reference frame of the velocity vector by

ẋẋẋ = AAAżżż

resulting in our final velocity signal ẋẋẋ ∈ TxxxM. Therefore, the full pullback operator is
given by dΦ∗ = AAA ◦ JJJ−1

FFFθθθ
.

4.2.2. Fix-Center-Loss

Even though we know that our latent stable vector field is stable towards the defined
equilibrium yyyH = 0, we need to make sure that we can define a desired stable point xxxH
in our observation manifold such that yyyH = FFFθθθ(xxxH). Otherwise, we would have a stable
vector field in a latent manifold, but we would have no way to infer the stable point in the
observation manifold. For this reason, a loss function is added to produce a signal that
fixes the mapping from FFFθθθ(xxxH) to the desired yyyH = 0. This can be interpreted as applying
a penalty when the diffeomorphism does not map the center of the tangent space of the
observation manifold TxxxHM to the center of the stable point of the latent stable vector
field yyyH = 0.

Such a loss function can be created by applying a distance loss defined as

Loss = ∥FFFθθθ(xxxH)∥1

which uses a smooth L1 norm to define the distance from the center in the latent tangent
space [21]. However, we found that when optimizing for multiple loss functions in RL,
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Figure 4.6.: Fix-Center-Loss - The figure on the left shows a loss function defined by using
the distance to the target. The right figure depicts the fix-center-loss function along
with two parameter variations. For the standard version (blue) the parameters were
set to α = 1e− 5, w = 1.5, v = 0.1, the first variation (orange) uses the parameters
α = 2e− 3, w = 2.5, v = 0.15 and the second variation (green) shows the fix-center-
loss with the parameters α = 1e− 6, w = 0.5, v = 0.05.

this loss function is not sufficient to ensure that the center remains fixed while other losses
are also affecting the learning. Therefore, we have adapted the fix-center-loss function to
make it more expressive by using an alternative formulation

Fix-Center-Loss = w∥FFFθθθ(xxxH)∥22 + v log(∥FFFθθθ(xxxH)∥22 + α),

where w, v, α are hyper-parameters [67]. Unlike the distance-based loss, this formulation
yields high gradients near the center, as can be seen in Figure 4.6. In practice, this loss
function is able to fix the center very close to FFFθθθ(xxxH) = yyyH = 0, which is very important
if we want to ensure stable behavior with respect a specific point.
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4.3. Variable Impedance Control

Most of the time, research attempts to achieve better performance by changing the
structure of a policy or by adjusting the observation space to provide more expressive
information to the agent. However, fewer works focus on adapting the action space instead.
A recent work called VICES [68] evaluated just such action space adjustments and found
that variable impedance control in end-effector space is a highly beneficial action space
for constrained, high-contact tasks. In VICES, they propose not only learning the desired
end-effector pose, but also dynamically adjusting the impedance gains for each dimension.
In general, there is much research that has shown that variable impedance adjustments
can be successfully integrated into learning [69,70,71]. Additionally, some of these ideas
have already been applied to insertion tasks [58,59].

In this work, we stick to the idea of VICES and combine it with the proposed method
of [58] to model the learning of the gains. Therefore, we let the residual part of the policy
not only output the velocities in terms of position and orientation, but extend its output
by the diagonal elements of the stiffness matrixKKKP . This means that for each joint the
controlled robot has, a gain has to be estimated by the residual policy. To facilitate learning
this mapping, we do not directly output the diagonal elements, but instead output values
vi in a range of [−1, 1], where i is the number of joints. We do so by applying the hyperbolic
tangent (Tanh) on the output of the residual network that defines to the diagonal elements
ofKKKP . Therefore, the output of the residual network can be described as (aaapose, aaagains),
where aaapose is the action describing the desired velocities and is processed as explained
in previous sections, and aaagains is the Tanh of the output of the residual network with
respect to the gains. Since aaagains is in [−1, 1], we need to define a mapping to suitable
impedance gains. To do this, we set a minimum and maximum gain Kmin

i ,Kmax
i for each

dimension of the gain matrixKKKP . Then we apply a function g to aaagains that maps −1 to
Kmin
i and 1 to Kmax

i , and all intermediate values are mapped linearly to a corresponding
intermediate value. Now we can setKKKP = diag(g(aaagains)) to define the gain matrix for
the impedance. Finally, we set the damping gains KKKD with respect to KKKP in order to
define a critically damped system, by using

KKKD = 2
√︁
MMMKKKP ,

where MMM is mass matrix of the robot [58]. Therefore, the gain matrices used for the
operational space controller are now learned by the residual network and can be adjusted
for each state.

37



4.4. Observing Forces and Torques

In addition to adjusting the action space, as is done with variable impedance control, it is
also possible to adjust the observation space to provide more information to the agent. It
has been shown that information from force sensors is quite useful for a wide range of
tasks. In [72], the authors use force information from demonstrations to learn a residual
policy for insertion tasks. Another approach does not only use a force trajectory, but also
performs variable impedance control [58]. The desired insertion force for a peg-in-hole
task can also be modeled and used to achieve compliant behavior [59]. Finally, the use of
force sensor information allows to achieve incredible precision when combined with Deep
RL [11].

Since in all this work the force sensor information provided great benefits, we would like
to propose an adaptation of our approach to include force information as well. We suggest
that, again, it is most reasonable to not change the nominal policy, but to pass the additional
force observation to the residual network. We therefore provide two observations xxx,xxxres,
where xxx is the observation with respect to the pose as previously introduced, and xxxres is xxx
extended by the force vectors at the end-effector normalized to [0, 1]. This formulation
allows us to smoothly adjust the observation space and evaluate the influence of the force
information for specific tasks.
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5. Experiments

Throughout this section, we will not only present our experiments, but also make clear
how we set up the environments and RL algorithms to generate our results. For this
reason, we will first explain the experimental setup in Section 5.1. After that, we will list
and discuss all of our experiments in Section 5.2 and draw a conclusion in Section 5.3.

5.1. Experimental Setup

In order to explain how we generated our results, we will first explain in Section 5.1.1 how
we defined the environments in which we tested our approach. To also provide insight
into how we set up the reinforcement learning methods we used, we will explain in more
detail how we configured the reinforcement learning of our approach in Section 5.1.2.
Finally, we explain how we evaluated the learning process of the compared approaches in
Section 5.1.3, before presenting the actual results of our work in Section 5.2.

5.1.1. Environments

To evaluate our approach, we have created three environments that simulate an insertion
task. We chose to model the insertion of a box rather than a peg because this makes
learning the correct rotation even more difficult, since all three axes must to be rotated
correctly to insert the object. To reduce the complexity at first, we tested our approach in
a two-dimensional insertion task, called Box2D. After observing good performance, we
started to increase the complexity by moving to a three-dimensional environment, the
Box3D environment. To show that our approach works for more than just toy examples,
we modified the Box3D environment to also include a simulated robot arm performing the
insertion, called Box3D-Franka environment. All of these environments will be discussed
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Figure 5.1.: Box2D & Box3D environments - This figure shows the Box2D-Environment on the
left and the Box3D-Environment is shown on the right. The agent is visualized by the
red box and its position and rotation can be controlled directly with respect to the
world frame, where the x-axis is shown in red, the y-axis in green and the z-axis is
blue. The point defining a fully inserted box is the center of the environment.

in more detail throughout the next sections, but first we will mention some common
characteristics of the environments.

In general, the units are inmeters and kilograms, and for simplicity, gravity compensation is
provided by eliminating all gravitational forces acting on the robot. The friction coefficient
of the insertion object and the table as well as the insertion box, is set to 0.4, which is a
reasonable value for 3D printed materials [73]. The actions given to the environment are
always specified in the world coordinate frame, and after the action aaa is processed, an
observation xxx is returned to the agent. By default, the observation is the complete pose of
the agent with respect to the number of dimensions. For each task, there is a maximum
number of allowed steps, when reached, the episode must be terminated and the agent
reset. The episode will end early if the object is inserted correctly.

Box2D Environment

The Box2D environment can be seen in Figure 5.1. It represents a two-dimensional
insertion task where the agent is a rigid body of dimension 0.25× 0.25. It is controlled by
two prismatic joints defining its positions px, py in the two dimensions, and one revolute
joint for its orientation θ, so qqq = (q1, q2, q3)

T = (px, py, θ)
T . The mass of the rigid body is 1

kilogram and the inertia is set according to its mass and dimensions. The environment is
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Figure 5.2.: Setup of environments - This figure illustrates the configuration of the environ-
ments. On the left, one can see the spacing of the insertion with respect to the
insertion object. We use wINSERTION = wOJB + 0.005 and the reward is defined by the
difference of the object pose xxxOBJ to the goal pose xxxGOAL. The right figure shows
the different reference frames for the task with the Franka-Robot, where WORLDTTT EE

describes the transformation of the world coordinates into the reference frame of
the end-effector.

bounded in [−1, 1] for the x, y dimensions and the initial state for the pose qqq0 of the agent
is uniformly sampled so that px0 ∈ [0.8, 0.99], py0 ∈ [−0.99, 0.99], θ0 ∈ [−π/2, π/2]. The
insertion can be considered complete if the agent’s position is qqq = (0, 0, 0)T . However, we
let the episode terminate within some tolerance, if the norm of the position ∥(px, py)T ∥ is
less than 0.025, and a tolerance of 5◦ for the rotation error. This means that the episode
will not termiante if the box has been inserted but does not have the desired rotation. The
width of the insertion is equal to the width of the agent added with 0.005, as shown in
Figure 5.2. An OSC controller is used to control the joints of the robot, and to limit the
velocities that can be set by the policies, the actions are clipped before being passed to the
controller.

Box3D Environment

The Box3D environment is the three-dimensional version of the Box2D environment
and can also be seen in Figure 5.1. It follows exactly the same structure as the Box2D
environment, but in three dimensions. Therefore, there is an additional prismatic joint
to model the translation in the z-axis, and two additional revolute joints to model the
rotations around the x- and y-axes. The dimensions of the box are 0.25×0.25×0.25 and the
full pose of the agent is described by qqq = (q1, q2, q3, q4, q5, q6)

T = (px, py, pz, θx, θy, θz)
T .

Again, the mass of the robot is 1 kilogram and the inertia is updated with respect to
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the new dimensions. The boundaries of the environment are correspondingly extended
to three dimensions and the initial pose of the agent is uniformly sampled so that now
px0 , py0 ∈ [−0.99, 0.99], pz0 ∈ [0.8, 0.99], θx0 , θy0 , θz0 ∈ [−π/2, π/2]. The termination rule
remains the same, but now in three dimensions, allowing a maximum rotation error of 5◦
per axis. The precision required for insertion also remains the same but now in terms of
the width and length of the insertion object. The used controller is again an OSC controller,
where the actions are clipped in the norm to a suitable range before being given to the
controller.

Box3D-Franka Environment

The Box3D-Franka environment is a more realistic version of the previously described
Box3D environment. The general setup is actually identical, with a single but important
difference: the agent is now not the insertion object itself, but the Franka Emika Panda
robot arm [74]. We do not use the grippers of the Franka robot because we fixate the
insertion object at a fixed distance from the end-effector. This is a reasonable simplification
since it represents fixing an object on the Franka robot in the real world, and allows to not
have the need to also learn to grasp the object. The controller is again an OSC controller,
but now with an additional null space controller. The Franka robot itself is placed at
(−0.65, 0, 0)T and all the joints are initialized in the rest position with a noise of 0.05
per joint. The rest position is chosen so that the end-effector of the Franka robot is
approximately at (0, 0, 0.4)T with an orientation that aligns the insertion object with the
negative z-axis of the world frame. For termination, the desired rotation is now changed
as it is now with respect to the rotation of the end-effector in the world frame, as shown
in Figure 5.2.

5.1.2. Reinforcement Learning Setup

For all experiments in the simulation, we use PPO in the actor critic setting to train
all evaluated approaches. We chose PPO because it provides a solid baseline without
requiring much approach-specific fine-tuning. In addition, we use IsaacGym [75] to speed
up the learning by parallelizing the simulation on the GPU, as shown in Figure 5.3. This
allows more data to be generated in less time, making the sampling of data from the
environment even more efficient. We stop training a model after a certain number of data
points have been used for training; this number is the same for all approaches we use
in an specific experiment. Since PPO does not need so much fine-tuning, it allows us to
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Figure 5.3.: Simulation with IsaacGym - This figure shows the parallel data generation using
the GPU with IsaacGym. On the left, one can see the Box2D-Environment and on the
right the Box3D-Environment where the box is manipulated by the Franka-Robot.

compare the different approaches with fairly similar hyper-parameters, allowing for a
fair comparison in a similar setting. We fit the models every epoch, and a single epoch
contains the information of 100 environments performing each 100 steps, therefore we
perform each fit with 10000 data points from the simulation.

In general, we define a dense reward where the reward for each action is the distance
to the goal pose in terms of position and orientation. In addition, the dense reward is
normalized to a maximum of −1. In the case of orientations, our policy has a built-in
advantage in that it is able to transform a quaternion suffering from the ambiguity qqq = −qqq
into a rotation matrix. For this reason, we decided to duplicate the batches so that for each
observation xxx = (ppp,qqq)T there is a duplicated version xxx = (ppp,−qqq)T that allows a standard
NN to more easily learn the relationship of −qqq and qqq.

5.1.3. Evaluation Procedure

To empirically evaluate our experiments, we train each approach for a total of 15 random
seeds. During training, we save a current representation of the model and its parameters
every n epochs for later loading and evaluation of the model. After training all approaches
in the given experiment for all seeds, we start the empirical evaluation, which is the same
for each approach and experiment.

We load the specific configuration of the experiment and the model at a specific epoch.
Then we run the policy 1000 times until it either terminates by inserting correctly or it
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reaches the maximum number of steps for that experiment. During these runs, we record
the number of steps required to insert the object and whether the insertion was successful
or not. We do this for all seeds of the evaluated approach at that specific epoch. Then we
can use the results across all seeds to calculate the mean and confidence interval for the
total number of steps taken and the success rate.

5.2. Experimental Evaluation

In our experiments we will compare four approaches:

1. MLP: The policy is represented by a fully connected neural network π(xxx) = Fψ(xxx).

2. MSVF: The policy is represented by a manifold stable vector field π(xxx) = Φθ(xxx).

3. Nominal (linear) + Residual: The policy is represented by a combination of a
non-learnable linear nominal policy and a residual policy represented by a fully
connected neural network π(xxx,xxxres) = πnominal(xxx) + Fψ(xxxres), where the inputs
xxx,xxxres can be different for the two policies.

4. Nominal (MSVF) + Residual: The policy is represented by a combination of a
manifold stable vector field and a residual policy represented by a fully connected
neural network π(xxx,xxxres) = Φθ(xxx) + Fψ(xxxres).

The policy output is used to represent the mean of a Gaussian distribution from which we
sample the actions aaa ∼ N (µµµ,σσσ). As mentioned earlier, we use PPO to solve the tasks in
the different environments (see Section 5.1.1) and evaluate the learning process of the
model by storing and evaluating it every 50 epochs.

The motivation for our experiments is to answer several research questions. First, we want
to investigate whether the MSVF approach is able to learn an insertion in the presented
environments. Next, we will evaluate the performance of using an MSVF as a nominal
policy for residual learning, as we believe it to be an appropriate prior. While there are
tasks that require learning orientations, in the environments we present there may not
be a need to learn the orientation in each state since we already know the desired final
orientation. Therefore, we want to investigate whether there is an advantage to learning
orientations, or if we could simply specify the desired final orientation and use a linear
controller to achieve it. As we have presented the advantages of variable impedance
control and force feedback, we also want to investigate how both adaptations affect the
performance of the residual MSVF approach. Finally, we also want to analyze whether
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the MSVF approach is able to learn more difficult insertion tasks by showing its ability to
learn another task called Ubongo3D and perform insertions with less clearance.

5.2.1. Performance of an MSVF Policy in Classic Reinforcement Learning

In our first experiment, we want to evaluate the overall performance of an MSVF compared
to an MLP. In this scenario, there is no residual policy, but the policy is completely defined
by the MSVF or the MLP. The idea of this experiment is to show the general ability of the
two models to learn the task independently and also to evaluate how their learning differs
from each other. For this reason, we test the MSVF and the MLP in all three environments
and discuss the results below.

As one can be seen in Figure 5.4, the MLP approach takes some time to learn, but steadily
improves. In our experiments, we also evaluated longer training runs, where it can be
seen that the MLP converges at the end. On the other hand, the MSVF approach is very
unstable in learning and suffers from unlearning.

One might think that this is just a tuning problem, but we have done our best to eliminate
this behavior. Not only have we tried several hyper-parameter configurations and used
learning rate optimizers like ADAM [76], but we also avoid gradient problems caused by
backpropagation through the ODE solver by using the adjoint method [53]. Moreover,
there is an intuitive explanation for the reason of this unlearning. The MSVF itself
constrains the problem to provide stability, which is done by using a diffeomorphism
between manifolds. A main problem with this approach is that if we want to change the
direction of only one vector, this will affect at least the vectors within a certain space
around that vector, as the mapping is smooth. That is, if we want to change vectors at the
sides of the insertion, we will also change the vectors pointing into the insertion. The main
problem is that we do not learn to directly output a vector but to learn a mapping to a
space that outputs the vectors. This means that we do not directly change our output, but
need to change the mapping between the spaces to indirectly affect the output. Therefore,
to achieve the desired behavior, i.e., not change the other vectors, the mapping between
spaces must be torn apart, which means that large changes to the weights are required to
achieve a small adjustment. While this is not such big problem in behavioral cloning (here
the intermediate policies do not affect data collection for future learning), it is a problem
in reinforcement learning to require large changes in the weights for small changes in
the output. Imagine that a small desired change in an output requires many updates that
could actually degrade performance at times. If intermediate updates really decrease the
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Figure 5.4.: Performance of MLP and MSVF - This figure shows the results for the different
environments with respect to the the MSVF approach and the MLP approach. In
this evaluation there is no residual learning and we stopped learning after 300
epochs as the MSVF diverges. With longer training, it can be seen that that the
MLP approach converges. The solid line represents the mean of the result for the
evaluated approach and epoch and the shaded area shows the 95% confidence
interval. Further configurations of the approaches and the environment can be found
in Appendix A.

reward, then this change gets very unlikely in RL and the agent is likely to be stuck in a
local optima.

Although it might be very difficult in RL to optimize such a constrained approach like
MSVFs beyond a certain level of performance, we are certain that with some additional
effort we can take advantage of MSVFs for RL. For this reason we believe that learning a
residual that provides more flexibility to the learning process by performing easy to learn
local adjustments, allows to use MSVFs and some of their benefits in RL. Therefore, we
consider viewing them as a learnable stable bias that accelerates learning in combination
with another policy. In order to do so, we will use MSVFs as a nominal policy for residual
policy learning and show that this approach performs incredibly well for insertion tasks.
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Figure 5.5.: Performance of residual methods - This figure shows the performance of the
approaches with residual learning for the three environments. Although, the linear
approach converges to a similar performance with longer training, we interrupt the
training after 300 epochs because the MSVF approach has already achieved similar
performance. The solid line represents the mean of the result for the evaluated
approach and epoch and the shaded area shows the 95% confidence interval. Further
configurations of the approaches and the environment can be found in Appendix A.

5.2.2. Performance of an MSVF Policy in Residual Policy Learning

As we have shown in the previous experiment, MSVFs alone are not sufficient to accelerate
RL in insertion tasks. We found that a particular problem with MSVFs is that they are
unable to perform small but local adjustments to their policy. This motivates the use of
a residual network to learn exactly these small local adjustments. For this reason, we
evaluate a residual policy that uses an MSVF as its nominal policy and also learns an
MLP for the residual signal. Furthermore, to evaluate whether MSVFs are an appropriate
nominal policy, we compare this approach to a linear nominal policy, which is a linear
stable vector field pointing to the goal pose. It is important to note that the latent stable
vector field of the MSVF policy and the stable vector field of the linear nominal policy are
identical, the only difference being that the MSVF can learn to deform this vector field
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by learnig to adjust its diffeomorphism. This allows us to evaluate whether it is useful to
learn such a diffeomorphism or to use only the linear signal for the nominal policy.

As can be seen in Figure 5.5, the MSVF used as the nominal policy outperforms the linear
nominal policy in all environments. While the linear nominal policy, when trained over a
longer period of time, also converges to the same performance, it requires much more
data to do so. These results show that learning an MSVF along with an MLP provides
better performance for the insertion tasks tested. The learning is not only stable, but also
has a very small variance and improves very quickly in the beginning. In our opinion,
the ability to learn a globally stable vector field that leads to the insertion, along with an
unstable MLP that learns to take care of smaller corrections, is a very strong inductive bias
for a policy. To explain why the final performance is better in the Franka environment
than in the Box3D environment, it is important to know that the initial position in the
Franka environment is closer to the insertion than in the Box3D environment, resulting in
fewer steps needed for an optimal policy.

5.2.3. Benefits and Costs of Learning Orientations

A key assumption of the MSVF approach is that we know the desired goal pose and thus
the desired orientation. Since learning the orientation increases the state space and
therefore could lead to a more difficult problem, one could argue that if we know the
desired orientation, we can simply use a linear controller to achieve that orientation.
Therefore, we will investigate whether there is a cost or benefit to learning orientations
by changing the output of the policies to only the velocity with respect to the position
and creating a simple PD-controller to achieve the desired orientation. We evaluate this
setting not only with the two residual policies (linear and MSVF), but also with a standard
MLP without a nominal policy.

When orientation is not learned, the MSVF is still a very good inductive bias for residual
policy learning, as can be seen in Figure 5.6. However, it is now more on par with the
other approaches. Tables 5.1 and 5.2 show that the non-MSVF approaches have increased
their performance especially in three-dimensional tasks, where learning rotations without
using Lie groups is rather difficult. On the other hand, the actual performance of the
MSVF approach is now worse compared to learning the rotations for the three-dimensional
environments. We have found that for the three-dimensional tasks, it is performance-
enhancing to learn some tilting and twisting of the object rather than fixing its orientation
before actually inserting the object. Combining this with the fact that the structure of
Lie groups allows efficient learning of the orientation, we can explain why the MSVF
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Figure 5.6.: Performance without learning orientations - This figure shows how the residual
approaches perform compared to the MLP approach when the velocity for the
orientation is not learned, but is provided by a linear controller. This controller
provides a velocity signal that linearly rotates the object to the desired orientation,
and the linear signal is clipped in the same way as when the orientation is learned.
The solid line represents themean of the result for the evaluated approach and epoch
and the shaded area shows the 95% confidence interval. Further configurations of
the approaches and the environment can be found in Appendix A.

approach benefits from learning orientation, while the non-MSVF approaches seem to
learn orientation at some cost.

5.2.4. Variable Impedance Control in Residual Learning

Since not learning the orientation did not provide any benefits to our approach, we will
now to evaluate the impact of two other modifications on the performance. The first
modification is the implementation of variable impedance control, as explained in Section
4.3, which will be evaluated below. Then, in the following section, we evaluate the impact
of the second modification, which includes forces in the observations used to train the
residual network, as explained in Section 4.4. For the first modification, we only adjust
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Figure 5.7.: Performance with additional variable impedance control - This figure shows
the performance of the residual approaches compared to the MLP approach when
variable impedance control is added. This means that the output of the residual
policies are not only the velocities in terms of position and orientation, but also the
gains used to control the robot. The gains learned are the diagonal of the stiffness
matrix and the damping matrix is set accordingly to obtain a stable system. The
solid line represents the mean of the result for the evaluated approach and epoch
and the shaded area shows the 95% confidence interval. Further configurations of
the approaches and the environment can be found in Appendix A.

the residual policies so that they also output the stiffness parameters, while the nominal
policies remain unchanged.

As Figure 5.7 shows, performing variable impedance control leads to a very good per-
formance. It not only increases the performance of the MSVF approach, but also that
of the other two approaches when compared to the basic approach, as shown in Tables
5.1 and 5.2. The increase in performance can be explained partly by the possibility of
increasing and decreasing the gains for the different dimensions individually depending
on the state, but also by the fact that it is possible to reach a higher maximum gain. We
set the maximum gain for this setting to be 2KKKP and the minimum gain to 0.5KKKP , where
KKKP is the fixed gain used in the basic approaches.

50



Box2D

0 10 20
Steps

1

0

1

Po
si

ti
on

 G
ai

ns

Box3D

0 5 10 15
Steps

1

0

1

Po
si

ti
on

 G
ai

ns

Franka

0 10 20
Steps

1

0

1

Po
si

ti
on

 G
ai

ns

0 10 20
Steps

1

0

1

O
ri

en
ta

ti
on

 G
ai

ns

0 5 10 15
Steps

1

0

1
O

ri
en

ta
ti

on
 G

ai
ns

0 10 20
Steps

1

0

1

O
ri

en
ta

ti
on

 G
ai

ns

x y z

Figure 5.8.: Evolution of gains during a single epoch - This figure shows the evolution of
gains during an epoch of the best performing policy in all three environments. The
values on the x-axis show the current step in the epoch, and the values on the y-
axis represent the gains. The gains are not given as they are used in the controller,
but before they are mapped to their actual values, i.e., immediately after the Tanh
is applied. This means that −1 is mapped to the minimum possible gain and 1 is
mapped to themaximum possible gain, and everything in between ismapped linearly
in the same way. Further configurations of the approaches and the environment can
be found in Appendix A.

Although it could be argued that similar performance could be achieved by simply increas-
ing the gain for the fixed setting, it is important to consider the difference between a fixed
and a learned gain. A learned gain can be adapted to the task and allows one to find the
optimal gain for each state. Thus, if a small gain is more beneficial than a large one, the
policy can learn such a gain, which is not the case with a fixed gain. Another advantage
of learning the gains is that one does not need to tune the gains, but can simply set a
desired range and learn them. To show that there is a difference in performing variable
impedance control compared to using a fixed gain, we show in Figure 5.8 the evolution
of the gains during a single epoch of our residual MSVF approach. It can be seen that
the gains depend strongly on the state of the system, e.g. in the Box3D environment the
initial gain for the z-axis is much lower than for the other axes. This can be explained
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Figure 5.9.: Performance when the residual only performs variable impedance control
and does not output any velocities -When performing variable impedance control
using the residual policy, the need to also output velocities could be eliminated since
they are already given by the nominal policy. Therefore, this figure shows how the
residual approaches perform when the residual network outputs only the gains
for the variable impedance control and the velocities are completely given by the
nominal policies. The solid line represents the mean of the result for the evaluated
approach and epoch and the shaded area shows the 95% confidence interval. Further
configurations of the approaches and the environment can be found in Appendix A.

because it is advantageous to first align the x and y dimensions before increasing the gain
for the z dimension and inserting the object.

When performing variable impedance control in residual learning, the need to also learn
the position and orientation velocities could vanish, since these are already specified by
the nominal policy. To evaluate this scenario, we modify the output of the residual MLP
so that it outputs only the stiffness parameters and no velocities at all. In Figure 5.9, we
can see that the linear nominal policy performs very well in the two-dimensional task.
However, all residual MSVF approaches suffer from the adaptation, as again unlearning
appears when they try to perform small local adaptations, as already seen before. The
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Figure 5.10.: Performance when the residual also observes forces - This figure shows how
using of a force signal in addition to the standard observation of the environment
changes the learning performance of the approaches. For the residual approaches,
the force signal is only given to the residual network so as not to affect the nominal
policy. The solid line represents the mean of the result for the evaluated approach
and epoch and the shaded area shows the 95% confidence interval. Further config-
urations of the approaches and the environment can be found in Appendix A.

reason why the linear nominal policy does not perform well in three dimensions can be
explained by the behavior of the nominal policy near the insertion. When very close to
the insertion, the x and y values of the velocities tend to be small because the agent is
already close to 0 in these dimensions. On the other hand, the velocity in the z dimension
is still quite large because the agent has not yet inserted the object. This leads to very
small signals in the x and y dimension, which are very important for the insertion, but are
weakened by the large force in the z dimension, so that the agent bumps into the wall.

5.2.5. Force-Feedback

As mentioned earlier, we also want to test the impact of including forces in the observation
for the residual MLP to see if this leads to an increase in performance. In general, including

53



Figure 5.11.: Ubongo3D task - This figure shows the Ubongo3D task. In this environment, all
objects are formed from linked cubes with the dimension 0.038 × 0.038 × 0.038.
The controlled object is the red ubongo object and should be inserted so that it fits
exactly into the free space between the green and the blue ubongo objects. The
offset defining the insertion width wINSERTION is equal to wOBJ +0.005 to provide some
free space for the insertion.

forces increases the observation space and can make learning a mapping more difficult,
but especially in the case of tasks with many contacts, force can be very useful information.
Unfortunately, the implementation of force sensors in IsaacGym is not yet perfect; at the
time of the publication of this work, there were several reported problems. For this reason,
we decided not to use a force sensor, which may generate false signals, but to use the
simulator’s contact forces as an approximation to a force sensor.

As Figure 5.10 shows, observing the force does not really help, but actually leads to
slightly worse results than previous settings, which can also be seen in Tables 5.1 and 5.2.
However, it seems that the residual MSVF approach is not affected as much by learning
the force, which can be explained by the fact that the MSVF is still learned without force
and therefore learns in the same observation space as before, and only the residual MLP
has to learn in a larger observation space. Still, the results should be treated with caution
because the force signal is only a rough approximation. We believe that this information
could be very useful for learning in a real system when using a real force sensor. Also, since
the performance of the residual MSVF approach did not degrade much in the experiment,
learning with a force sensor in the real system should not be problematic since the residual
MSVF approach seems to be quite consistent.
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Figure 5.12.: Performance for the Franka Ubongo3D task - This figure shows on the left
the performance of the approaches with residual learning for the FrankaUbongo
environment compared to the MLP approach. The same experiment is shown on
the right, but with variable impedance control. The solid line represents the mean
of the result for the evaluated approach and epoch and the shaded area shows
the 95% confidence interval. Further configurations of the approaches and the
environment can be found in Appendix A.

5.2.6. Alternative Insertion Task - Ubongo3D

To evaluate how our approach adapts to different insertion tasks, we also want to evaluate
it in another environment called FrankaUbongo. This environment is inspired by the board
game Ubongo3D [77] and has already been used for real world robot object manipulation
[19]. The considered task is illustrated in Figure 5.11, and for the manipulation of the
insertion object we use again the Franka robot. The general setup such as friction, starting
pose and others is identical to the Box3D-Franka environment presented in Section 5.1.1,
only the objects are changed to reflect the Ubongo3D task. In this task, we also do not fix
the object with a certain distance to the end-effector, but place it directly between the
grippers of the Franka robot, as shown in Figure 5.14. Furthermore, the object cannot
move independently, as if it were firmly stuck to the grippers.
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Figure 5.13.: Performance with a reduced clearance - This figure shows the performance at
a reduced clearance of 2 millimeters in the Box3D and Ubongo3D environments
with the Franka robot. All approaches also perform variable impedance control as
this gave the best performance in previous experiments. The solid line represents
the mean of the result for the evaluated approach and epoch and the shaded area
shows the 95% confidence interval. Further configurations of the approaches and
the environment can be found in Appendix A.

To evaluate the performance for this task, we again compare our residual MSVF approach
against a nominal linear policy using an MLP as residual network and an MLP without
a residual policy. In addition, we also evaluate the performance of performing variable
impedance control, as it gave the best performance for the Box3D-Franka environment.
The results are shown in Figure 5.12, and again we can see that the residual MSVF
approach outperforms the other approaches. The performance of the MLP and the linear
approach decrease drastically compared to the previous Franka task, as can also be seen
in Tables 5.1 and 5.2. We believe this is due to the added complexity for the insertion. In
contrast, the residual MSVF approach is able to achieve almost the same performance as
in the previous task. An illustration of a single run of the best performing policy for the
FrankaUbongo task can be seen in in Figure 5.14.
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5.2.7. Less clearance

As we always have used a clearance of 0.005 so far, which corresponds to 5 millimeters,
we now want to reduce this clearance to show that our approach is also able to learn the
task when the insertion becomes more difficult. For this reason, we will again evaluate
the best performing approaches for the Franka Box3D and Ubongo3D environments, but
now reduce the clearance to 0.002, or 2 millimeters.

As can be seen in Figure 5.13, the performance of all approaches decreases when the
clearance is reduced from 5 to 2 millimeters. Although this was to be expected, it is still
the case that the residual MSVF approach performs better than the others and solves the
task with a success rate of 1.0. Interestingly, the reduction in clearance seems to have less
effect on the Ubongo3D task than on the Box3D. This can be explained by the fact that
in the Ubongo3D, the clearance is reduced in only one dimension, as the blue and green
Ubongo objects move closer together. In the Box3D task, the clearance is reduced in two
dimensions because the insertion object becomes wider, which could explain the larger
performance drop.
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Figure 5.14.: Example run of the best policy in the Franka Ubongo environment
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Figure 5.15.: Performance of a deterministic policy - In this figure, the regular stochastic
policy is compared with a deterministic version of the same policy. Both policies
are identical, except that in the deterministic version only the mean of the the
Gaussian was used as output, i.e. the output was sampled without stochasticity for
evaluation. Both policies are trained as explained in Section 5.2.4 and represent our
residual MSVF approach with variable impedance control. The solid line represents
the mean of the result for the evaluated approach and epoch and the shaded area
shows the 95% confidence interval. Further configurations of the approaches and
the environment can be found in Appendix A.

5.2.8. Extraction of a Deterministic Policy

As this work builds the foundation for further research, which should also include the adap-
tation of the approach to a real-world scenario, we also want to evaluate the performance
of the learned policy when there is no stochasticity, i.e. its deterministic. A deterministic
policy is often desirable in the real world, as stochastic policies might actually damage the
robot. Since the noise is usually decreased over training, the final policy will often be near
deterministic and therefore one can make it deterministic by only considering the mean
and not the variance of the Gaussian. For this reason, we compare the best performing
policy (Nominal (MSVF) + Residual with variable impedance control), with itself but only
using the mean of the Gaussian without any variance to generate actions.
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In Figure 5.15 it can be seen that just using the mean of the Gaussian without any variance,
we receive a deterministic policy that nearly performs as good as the stochastic one. There
are performance losses, yet all approaches still have a success rate of 1.0, in addition those
loses are quite minimal for the Franka environment.

5.3. Conclusion of Experiments

AnMSVF alone, without adaptations, is apparently not suitable to be used for reinforcement
learning in insertion tasks. However, in our experiments, we have shown that the residual
MSVF approach outperforms the approaches against which we have compared it. It
outperforms not only an MLP, but also an appropriate residual counterpart where we
replaced the MSVF with a linear nominal policy. The final performance and the success
rate of the residual MSVF approach are either much higher or at least similar to the other
approaches, as can also be seen in Tables 5.1 and 5.2. Furthermore, we have shown that
the residual MSVF approach is not only capable of learning the desired velocities, but also
of performing variable impedance control. Although the current implementation of force
feedback is error-prone, the residual MSVF approach was also able to incorporate such
force feedback and still learn a reasonable policy, while other approaches mostly suffered
from this modification. We then showed that we can not only solve a box insertion task
using the residual MSVF approach, but also handle more difficult insertion tasks such as
the Ubongo3D task without further tuning. In addition, we evaluated how our approach
performed when the insertion clearance was reduced or when a deterministic version of
the policy was used for evaluation. Both resulted in minor performance losses, but the
approach was still able to achieve a success rate of 1.0. Overall, we have shown that our
residual MSVF approach not only increases final performance, but also learns faster than
the approaches we compared it to.
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Comparison of the Number Steps Required to Insert the Object

Method Box2D Box3D Franka Ubongo3D

Baseline

MLP 61.92± 3.55 164.81± 111.32 177.52± 110.19 345.24± 10.43

MSVF 169.41± 85.72 109.41± 154.45 252.55± 169.71 -

Residual (Linear) 63.25± 4.05 183.16± 45.28 93.12± 20.83 342.89± 20.64

Residual (MSVF) 51.82± 0.8 33.82± 2.27 22.87± 3.44 24.46± 6.86

Not
Learning
Rotation

MLP 55.53± 3.48 142.68± 15.77 63.32± 8.06 -

Residual (Linear) 98.18± 117.56 144.85± 21.86 42.75± 2.75 -

Residual (MSVF) 49.41± 0.81 69.34± 3.41 46.14± 13.79 -

Variable
Impedance
Control

MLP 30.36± 2.89 23.99± 4.06 239.71± 136.29 365.61± 8.24

Residual (Linear) 29.98± 4.4 21.63± 1.94 109.63± 14.6 335.99± 20.92

Residual (MSVF) 22.67± 0.5622.67± 0.5622.67± 0.56 17.76± 1.3917.76± 1.3917.76± 1.39 22.66± 2.6422.66± 2.6422.66± 2.64 22.91± 1.9722.91± 1.9722.91± 1.97

Observing
Force

MLP 119.94± 106.84 386.25± 10.54 247.36± 59.06 -

Residual (Linear) 58.67± 3.37 378.75± 10.62 106.62± 20.5 -

Residual (MSVF) 51.82± 1.4 55.64± 45.39 22.82± 3.12 -

Table 5.1.: Comparison of number of steps - This table shows the results of all evaluated
approaches in the different environments. The shown values are the number of steps
required to insert the object and refer to the last epoch, i.e. epoch 300. The number
of steps is given in a ± b where a is the mean over all seeds and b describes the
confidence interval. Baseline refers to the experiment in Sections 5.2.1 and 5.2.2, not
learning rotations to Section 5.2.3, variable impedance control to Section 5.2.4 and
observing force to Section 5.2.5. The last column refers to the FrankaUbongo task
presented in Section 5.2.6.
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Comparison of the Achieved Success Rates

Method Box2D Box3D Franka Ubongo3D

Baseline

MLP 0.99± 0.01 0.89± 0.23 0.82± 0.30 0.19± 0.04

MSVF 0.66± 0.34 0.85± 0.39 0.55± 0.57 -

Residual (Linear) 0.99± 0.01 0.95± 0.04 0.99± 0.01 0.22± 0.09

Residual (MSVF) 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00

Not
Learning
Rotation

MLP 0.99± 0.01 0.79± 0.04 1.00± 0.001.00± 0.001.00± 0.00 -

Residual (Linear) 0.82± 0.47 0.79± 0.06 1.00± 0.001.00± 0.001.00± 0.00 -

Residual (MSVF) 1.00± 0.001.00± 0.001.00± 0.00 0.99± 0.01 1.00± 0.00 -

Variable
Impedance
Control

MLP 0.98± 0.01 1.00± 0.001.00± 0.001.00± 0.00 0.62± 0.44 0.13± 0.04

Residual (Linear) 0.98± 0.01 1.00± 0.001.00± 0.001.00± 0.00 0.98± 0.02 0.24± 0.09

Residual (MSVF) 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00 1.00± 0.001.00± 0.001.00± 0.00

Observing
Force

MLP 0.75± 0.43 0.09± 0.07 0.65± 0.22 -

Residual (Linear) 1.00± 0.001.00± 0.001.00± 0.00 0.16± 0.08 0.99± 0.02 -

Residual (MSVF) 1.00± 0.001.00± 0.001.00± 0.00 0.98± 0.05 1.00± 0.001.00± 0.001.00± 0.00 -

Table 5.2.: Comparison of success rates - This table shows the results of all evaluated
approaches in the different environments. The shown values are the success rates
achieved in the last epoch, i.e. epoch 300. The success rates are given in a± b where
a is the mean over all seeds and b describes the confidence interval. Baseline refers
to the experiment in Sections 5.2.1 and 5.2.2, not learning rotations to Section 5.2.3,
variable impedance control to Section 5.2.4 and observing force to Section 5.2.5. The
last column refers to the FrankaUbongo task presented in Section 5.2.6.
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6. Conclusion and Future Research

Throughout this work, we have shown that MSVFs are not yet suitable for use in reinforce-
ment learning without further adaption. Although they have great advantages, such as an
intuitive and less complex representation of orientations through the use of Lie groups or
the ability to define a stable policy, they yet suffer from the constraints required to do so.
As we have shown, the most limiting factor is the learning of the diffeomorphism to the
latent stable vector field. By definition, this mapping is smooth and therefore represents a
continuous deformation of the space. However, an advantageous property of a learnable
policy for RL is the ability to achieve small adjustments through small changes in the
weights. This property allows the gradient to be used to perform small updates in a
direction that is likely to lead to higher reward. An MSVF is not able to do this for all
types of adjustments. To provide what might be a fairly small change in the output, the
mapping described by the diffeomorphism would eventually have to tear the space apart.
It becomes even more difficult if this change is to be made only very locally, since this
would require large changes in the weights to affect the mapping only locally.

Nevertheless, an MSVF is able to describe complex, stable vector fields and process
orientations in an appropriate way, making it a highly desirable approach for RL in
robotics. To exploit these advantages, we proposed to use MSVFs in residual policy
learning and therefore combine it with a residual network. This residual network is
capable of learning small local adaptations with just small changes in the weights, and as
we have shown in our experiments, this together forms a very powerful approach. Not
only this approach outperforms a traditional MLP by far, but also outperforms another
residual learning approach where the nominal policy is defined by a linear stable vector
field that is not learned. Moreover, we have shown that this residual MSVF approach
is able to perform variable impedance control. This allows the gains of the controller
to be learned, leading to even better performance of the final policy since the gains no
longer need to be set manually. In addition, we have investigated how the residual MSVF
approach handles an extended observation space that also includes information about
the forces at the end-effector. Although the implementation of the force feedback in the
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simulator used is not yet flawless, the residual MSVF approach was able perform similarly
to previous experiments. Furthermore, we have shown that the residual MSVF approach
is also capable of learning insertion tasks other than a simple box insertion. We evaluated
this using the Ubongo3D environment, where object insertion is more complex.

Future Research

Since this work is, to our knowledge, the first work to apply MSVFs to RL, it builds a
foundation for future research that could improve upon the results shown here. The
first direct extension of this work is to apply the residual MSVF approach to a real robot
system to perform an insertion task like that of Ubongo3D. For this purpose, we believe it
is necessary to switch from using PPO to more sample efficient methods like TD3 [78].
Moreover, various adjustments should be made to the training for sim-to-real, which can
be efficiently implemented in the current framework, since IsaacGym already provides
many of them. It could also be interesting to first use the BC version of MSVFs [21] to
use human demonstrations and learn an initial policy, which is then fine-tuned by the
presented residual MSVF approach using RL in the real system. In this scenario, the
change in performance due to the use of real-world force sensors could also be of interest,
as these had to be approximated in the simulation by using contact forces.

In addition, we think it would be interesting to extend the research on MSVFs in terms of
their internal structure. It would be particularly interesting not to assume that the goal
is known a priori but to build an estimate of the goal, i.e. by using visual information.
This information could then be used to estimate the target of the latent stable vector
field, allowing to extend the use of MSVFs to tasks where the goal is not known or is
uncertain. Finally, we believe it is important to also research whether there are adaptations
that allow an MSVF to perform reasonably well in RL without a residual network. We
believe that the limitation that small local adaptations cannot easily be learned can be
overcome by adjusting the properties of the NODE that describes the diffeomorphism. A
novel formulation of this NODE, which could include attractive or repulsive forces or a
combination of local NODEs that together form a global NODE, could provide the ability to
easily perform local adjustments to the output. This would allow for not only training only
an MSVF, but it would also lead to a guaranteed stable policy, which is highly desirable
for robotics. This future research could also lead to extending the research area of MSVFs
in RL to not only more complex insertion tasks, but to all kinds of tasks where a stable
learnable policy is desired.
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A. Parameters for Experiments

Environment Configurations

Box2D

KKKP position 100

KKKP orientation 25

KKKD 2
√
MMMKKKP

initial state position x ∈ [0.8, 0.99], y ∈ [−0.99, 0.99]

initial state orientation θz ∈ [−π/2, pi/2]

maximum steps 300

maximum linear velocity norm 0.2

maximum angular velocity norm 0.1
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Box3D

KKKP position 100

KKKP orientation 25

KKKD 2
√
MMMKKKP

initial state position x ∈ [−0.99, 0.99]], y ∈ [−0.99, 0.99], z ∈ [0.8, 0.99]

initial state orientation θx, θy, θz ∈ [−π/2, pi/2]

maximum steps 400

maximum linear velocity norm 0.7

maximum angular velocity norm 0.7

Franka Box3D & Ubongo3D

KKKP 150 per dimension

KKKD 2
√
KKKP

NullspaceKKKP null 10 per dimension

NullspaceKKKD 2
√
KKKP null

initial pose qqq0 = (−0.1692, 0.4817, 0.1881,−1.8218,−0.1215, 2.3025, 0.8042)

noise in initial pose 0.05

rest pose equal to initial pose

maximum steps 400

maximum linear velocity norm 0.7

maximum angular velocity norm 0.7
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PPO Configurations

PPO

log variance −0.5

critic coefficient 1

entropy coefficient 0.01

learning rate critic 10−3

learning rate actor 3 · 10−4

weight decay 10−6

discount factor 0.995

lambda (GAE) 0.95

clip PPO loss 0.2

horizon length 100

minibatch size critic 1000

minibatch size actor 1000

mini epochs critic 4

mini epochs actor 4

normalize input False

normalize value True

normalize advantage True
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Approach Configurations

MSVF

NODE

type fully connected neural network

units [32,32]

activation Leaky ReLu

solver steps 10

Scaling Network

type fully connected neural network

units [32,32]

activation Leaky ReLu

Critic Network

type fully connected neural network

units [64,64]

activation ReLu

MLP

Residual Network

type fully connected neural network

units [64,64]

activation ReLu

Critic Network

type fully connected neural network

units [64,64]

activation ReLu
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Nominal (linear) + Residual

Residual Network

type fully connected neural network

units [64,64]

activation ReLu

Critic Network

type fully connected neural network

units [64,64]

activation ReLu
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Nominal (MSVF) + Residual

NODE

type fully connected neural network

units [32,32]

activation Leaky ReLu

solver steps 10

Scaling Network

type fully connected neural network

units [32,32]

activation Leaky ReLu

Residual Network

type fully connected neural network

units [64,64]

activation ReLu

Critic Network

type fully connected neural network

units [64,64]

activation ReLu
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B. Enumeration of Important Libraries

In the following we would like to mention important libraries that we have used throughout
this thesis. We think it is important not only to reproduce the results, but also to give an
insight in how we managed to implement our approach and experiments.

1. PyTorch [79]: PyTorch is an incredibly well known library and is a very important
library used to build and train neural networks and perform automatic differentia-
tion.

2. RL Games [80]: RL Games provides performance oriented implementations of most
common RL algorithms in a framework that also allows to adapt and implement
appraoches.

3. IsaacGym [75]: IsaacGym allows high-performance GPU-based physic simulation,
which is incredibly useful for RL with robots to speed up the simulation process.

4. Theseus [81]: Theseus is a library that provides many end-to-end differentiable
structures, we used this libraries for differentiable implementations of the Lie groups
SO(2), SO(3) .

5. TorchDiffEq [82]: TorchdDiffEq is a library that provides differential ODE solvers
implemented with PyTorch.
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