Measure-Valued Derivatives
for Machine Learning

Measure-Valued Derivatives fiir Maschinelles Lernen
Master thesis by Mattis Manfred Kaemmerer
Date of submission: 31.08.2021

1. Review: Joao Carvalho, M.Sc.
2. Review: Prof. Dr. Jan Peters
Darmstadt

s TECHNISCHE
7=\ UNIVERSITAT
)~ DARMSTADT

Erklarung zur Abschlussarbeit gemaf
§22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Mattis Manfred Kaemmerer, die vorliegende Masterarbeit geméaf}
§22 Abs. 7 APB der TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind
als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder dhnlicher Form
noch keiner Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs. 2 APB) ein Tduschungsversuch
vorliegt, der dazu fiihrt, dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch
verbraucht wird. Abschlussarbeiten diirfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Planen.

Darmstadt, 31.08.2021

M. Kaemmerer

Contents

1 Introduction
1.1 Notation o o o e e e e e e e e e e e e e e e e
1.2 Probabilistic Objectives e
1.3 Related Work e

2 Gradient Estimators
2.1 Pathwise Gradient Estimator
2.2 Score-Function Gradient Estimator
2.3 Measure-Valued Derivative e
2.4 Convex Combination of Estimators
2.5 Gaussian Mixture Models e

3 A Framework for Monte-Carlo Gradient Estimators
3.1 Framework Description e
3.2 Extensibility of the Framework
3.3 Bayesian LogisticRegression
3.4 \Variational Auto-Encoders e

4 Gradient Analysis
4.1 Bayesian Logistic Regression 0.
4.2 Variational Auto-Encoder e
4.3 Randomized Convex Combinations«
4.4 Discrete Distributions

5 Discussion
5.1 The Expected Advantage of the Pathwise Estimator
5.2 Issues of the Score-Function Estimator
5.3 Potential of the Measure-Valued Estimator

10
13
18
19

22
22
24
25
26

29
29
30
38
41

6 Conclusion 60

Figures and Tables

List of Figures

1.1

2.1

2.2

2.3

Simple computation graph when trying to backpropagate the gradient
through a probabilistic node p. Since we cannot directly compute 9z/a4, the
backpropagation ends at p. In this graph, z ~ p(z;) is the latent variable,
and f is the cost. We omit the subgraph of the direct dependency of f(z;6)
on 6, since it does not impact this computation.

Computational graph of the pathwise gradient estimator. The new deter-
ministic ¢ node replaces p, and allows the gradient to flow through the
whole path. In this graph, z = g(€; 6), where € ~ ¢(¢€), is the latent variable,
and f is the cost. We omit the subgraph of the direct dependency of f(z;6)
on 6, since is does not impact this computation.

Computational graph of the score-function gradient estimator. We sample
from p, which is not a problem, because we do not require its gradient for
the computation of f(z)Vylogp(z). In this graph, z ~ p(z;0) is the latent
variable, and f is the cost. We omit the subgraph of the direct dependency
of f(z;0) on 6, since is does not impact this computation.

Computational graph of the measure-valued gradient estimator. We sample
from the two components p;” and p; of the decomposition, evaluate f, and
multiply the difference of the results by the normalization factor 6. In this
graph, z ~ p(z;0) is the latent variable, and f is the cost. We omit the
subgraph of the direct dependency of f(z;) on 6;, since is does not impact
this computation. e e e e

6

9

2.4

2.5

3.1
3.2

3.3

4.1

4.2

4.3

4.4

Probability densities for the measure-valued derivative decomposition for
the gradient 9V/oy of the univariate standard normal distribution N(0, 1),
where p*(u,02) = p+ oW(2,0.5), and p~ (i1,02%) = p — oW(2,0.5).

Probability densities for the measure-valued derivative decomposition for
the gradient 9V/as of the univariate standard normal distribution N (0, 1),
where p*(pu,0?) = M(0,1), and p~ (1, 02) = N(0,1).

Typical implementation of VAEs in PyTorch, omitting boilerplate code.

A high-level representation of the basic variational auto-encoder archi-
tecture. The encoder and decoder are neural networks. The decoder is
trained directly through backpropagating the losses, but we require a gra-
dient estimator for the encoder gradients. In this figure, we call the data
x € R", the latent representation z ~ p(z; Encoder(x)), z € R™, and the
reconstruction Decoder(z) =&, £ € R™.

VAE implementation using the framework of this thesis, omitting boilerplate
code. In contrast to figure 3.1, the loss function in this case only calculates
the binary cross-entropy loss.

Variances of Bayesian Logistic Regression with m = 30 latent dimensions,
trained on the breast cancer dataset [10]. The optimizer used is SGD with
learning rate « = 1072 and batchsize B=32.

Train and test losses of Bayesian Logistic Regression with m = 30 latent
dimensions, trained on the breast cancer dataset [10]. The optimizer used
is SGD with learning rate o = 1073 and batch size B=32.

Train and test losses of a VAE with two fully connected 400-dimensional
layers in both the encoder and the decoder with ReLU activations, m = 20
latent dimensions, trained on the MNIST dataset. The optimizer used is
ADAM with learning rate o = 1073 and batch size B=128.

Reconstructions by VAEs generated after the training shown in figure 4.3.
Here, MVD means the measure-valued estimator, PD means the pathwise
estimator, and SF means the score-function estimator. All reconstructions
are generated using models trained with the highest number of samples.

17

24

34

4.5

4.6

4.7

4.8

4.9

Training loss of a VAE with two fully connected 400-dimensional layers in
both the encoder and the decoder with ReLU activations, m = 20 latent
dimensions, trained on the MNIST dataset. The optimizer used is ADAM
with learning rate « = 1072 and batch size B = 128. The tracked time
in the horizontal axis does not correspond to a real-time measure, but
reflects the relative processing time required by the gradient estimator
computations only. At the end of the graph, the pathwise estimator with 1
sample completed 10 epochs, while the others are cut off at that point. . .

Train and test losses of a VAE with convolutional networks, m = 64 latent
dimensions, trained on the Omniglot dataset. The optimizer used is ADAM
with learning rate « = 1072 and batchsize B=144.

Variances of the estimators while training VAEs on MNIST and Omniglot
datsets. The variances are computed during training, using the same
experiment set-up as figures 4.3 and 4.6 respectively. The y-axis of both
graphs is shown in logarithmicscale.

Train and test losses of a VAE with recurrent LSTM, GRU, and vanilla RNN,
m = 20 latent dimensions, trained on the ECG5000 dataset. The optimizer
used is ADAM with learningrate a = 5% 1074

Train and test losses of a VAE with recurrent LSTM, GRU, and vanilla RNN,
m = 4 latent dimensions, trained on the synthetic sinusoidal dataset.
The optimizer used is ADAM with learning rate « = 5% 1074,

4.10 Losses of training varying combinations of measure-valued and score-

function (MVSF) estimators. The hyperparameters as well as the model
are the same as in figure 4.3. We only vary how many dimensions of the
score-function estimate are randomly replaced by a measure-valued esti-
mate. The estimators are set up such that they use the same number of
loss evaluations, which in this case are always 80 in total. In the legend, a
MV / b SF stands for a dimensions of measure-valued gradient estimates,
and b dimensions of score-function gradient estimates.

35

4.11 Losses of training varying sample sized of the randomized, convex MVSF
combination estimator. In this figure, all MVSF combinations replace 10 of
40 parameter dimensions by measure-valued estimates. Both plots show
the same data, but with different color schemes. In the second plot, we
show the MVSF estimator in red and the pure SF estimator in blue to be
able to directly compare the estimator types. The hyperparameters as well
as the model are the same as in figure 4.3. The estimators are set up such
that they use the same number of loss evaluations, which in this case are
always80intotal.

4.12 Probability mass functions while training a categorical distribution with
k = 3, using the SGD optimizer with learning rate o = 0.1, using softmax
parameterization. The loss function is a simple, shifted parabola f(z) =
(x —0.5)%, shown as a dashed blue line. We train for 100 iterations, plotting
every 20 iterations from top to bottom.

4.13 Probability mass functions while training a categorical distribution with
k = 100, learning rate « = 0.1, using softmax parameterization. The loss
function is a simple, shifted parabola f(x) = (z — 0.5)2, shown as a dashed
blue line. We train for 1000 iterations, plotting every 200 iterations from
top to bottom. Since the density of categories is so high here, we plot them
as lines, even though they are still discrete.

4.14 Evaluating different Gumbel softmax temperatures 7 training a categorical
distribution with £ = 100, learning rate « = 0.1, using softmax parameteri-
zation. The loss function is a simple, shifted parabola f(x) = (x — 0.5)%,
shown as a dashed blue line. We train for 1000 iterations, plotting every
200 iterations from top to bottom. Since the density of categories is so high
here, we plot them as lines, even though they are still discrete.

4.15 Probability mass functions while training a categorical distribution with
k = 100, learning rate « = 0.1, using softmax parameterization. The loss
function is a sine f(x) = sin(4nzx), shown as a dashed blue line. The loss
function is shifted and squished such that we can see the extrema in the
plot, but it was unaltered during training. We train for 1000 iterations,
plotting every 200 iterations from top to bottom. Since the density of
categories is so high here, we plot them as lines, even though they are still
discrete. e

4.16 Approximate expected values while training a categorical distribution with
the same set-up as in figure 4.15. We initialize the class probabilities equally
AS Lk o o e e e e e 50

4.17 Approximate expected values while training a categorical distribution with
the same set-up as in figure 4.15. For this training, we initialize the proba-
bilitiesrandomly. 51

4.18 Approximate expected values while training a Poisson distribution with a
shifted parabola loss. The measure-valued estimator using 1 sample, i.e., 2
loss evaluations, while the score-function estimator uses 2 samples for the
same number of loss evaluations. Learning rate is « = 0.01, training In \. . 53

4.19 Probability mass functions while training a Poisson distribution with the
score-function estimator using 2 samples. We only vary the initial rates,
learning rate is & = 0.1, training In A. The learning rate is too high in this
case, hence the estimator overshoots and gets stuck in an extremely skewed
distribution. L 54

4.20 Probability mass functions while training a Poisson distribution with the
measure-valued estimator using 1 sample, i.e., 2 loss evaluations. We only
vary the initial rates, learning rate is « = 0.1, training In A. Unlike the score-
function estimator in figure 4.19, the measure-valued estimator reliably
finds a solution, independent of starting parameters. 54

List of Tables

1.1 Common distributions, their notation, and probability density/mass func-
tions. We list the univariate versions here, because we assume factorizable
distributions for our evaluations. 3

2.1 Reparameterizations for some common univariate distributions. We sample
from the base distribution ¢(¢), and transform the samples with g(e;).
U(a,b) denotes the uniform distribution. 10

2.2 Measure-valued derivative triples (cp, p™,p~) to estimate Vyp for common
distributions. See Table 1.1 for information on the distributions. 18

Abstract

In this thesis, we analyze the measure-valued derivative as an unbiased gradient estimator
for stochastic models.

We compare it to two other approaches, the pathwise derivative, and the score-function
method. We give a formal introduction to the topic by defining the general probabilistic
objective, as well as the estimators. Then, we develop a Python framework based on
PyTorch, which supports extensible modules for datasets, models, probability distribution
families, and gradient estimators.

Using our framework, we conduct several experiments using approaches such as Bayesian
logistic regression, and variational auto-encoders. To find new use cases for the measure-
valued estimator, we explore some novel approaches, such as a convex combination of
estimators, and applying it to discrete mixture models. We design these experiments to
reveal some of the characteristics of the three estimators, focusing more on the measure-
valued estimator. Based on these results, we discuss the implications on the usefulness of
the measure-valued estimator. Also, we show some of the advantages and disadvantages
of the other estimators, and find rules on when which estimator should be applied.

We find that the measure-valued estimator shows potential in many use cases, and performs
very well compared to the score-function estimator.

Zusammenfassung

In dieser Thesis analysieren wir die Measure-Valued-Derivation als erwartungstreuen
Gradientenschitzer fiir stochastische Modelle.

Wir vergleichen das Measure-Valued-Derivativ mit zwei anderen Ansitzen, dem Pathwise-
Derivativ und dem Score-Function-Derivativ. Wir definieren den generellen, probabilisti-
schen Richtwert und geben eine formale Einfiihrung, sowohl in die Problemstellung als
auch in die Schétzer. Dann entwickeln wir ein Python Framework, basierend auf PyTorch,
welches erweiterbare Module fiir Datensétze, Familien von Wahrscheinlichkeitsverteilun-
gen und Gradientenschétzern unterstiitzt.

Mit unserem Framework fiihren wir einige Experimente durch, in denen wir Ansitze
wie Bayes’sche logistische Regression und Variational Auto-Encoder verwenden. Um neue
Anwendungsfille fiir den Measure-Valued-Schétzer zu finden, erforschen wir einige An-
sdtze, wie zum Beispiel eine konvexe Kombination von Schétzern, oder ihn auf diskrete
Mischverteilungen anzuwenden. Wir entwerfen diese Experimente so, dass wir einige
Charakteristiken der drei Schitzverfahren aufzeigen konnen und fokussieren uns dabei
auf den Measure-Valued-Schéitzer. Basierend auf diesen Ergebnissen diskutieren wir die
Implikationen fiir die Niitzlichkeit des Measure-Valued-Schéatzers. Aul’erdem zeigen wir
einige Vor- und Nachteile der anderen Schétzer auf und finden Regeln, wann welcher
Schéitzer verwendet werden sollte.

Wir stellen fest, dass der Measure-Valued-Schétzer Potenzial in vielen Anwendungen
aufweist und besonders im Vergleich zum Score-Function-Schétzer sehr gute Ergebnisse
liefert.

1 Introduction

In this thesis, we evaluate the measure-valued derivative (MVD) [46, 52] against the
more commonly used pathwise derivate (PD) [52] and the score-function derivative
(SF) [15, 58]. All of these algorithms are used for estimating the parameter gradient of
models, which contain a probabilistic component. We focus on the MVD, since it is the
least explored estimator of the three [46], and is sufficiently distinct to warrant further
exploration. The rest of this chapter contains a detailed explanation of the problem
formulation, as well as the definitions of the three estimators.

Before going into formal details, this section introduces the task on a higher level, and
is supposed to build some context for what is shown in the following sections. For
more details refer to these respective sections. Since the models we focus on are by
design non-deterministic, i.e., produce different outputs for the same input, we cannot
directly estimate their gradients. Instead, we model the probabilistic component as a
random variable, and optimize the parameters using the gradient of its probability density.
For some specific cases, this leads to a closed-form solution, but, in general, we have
to rely on stochastic gradient optimization [5]. However, since our models produce
probabilistic outcomes, we can not directly optimize the objective value, but only its
expected value given the probabilistic nature of the model. This is the case, because the
probabilistic component depends on the model parameters that we are optimizing. In
practice, estimating an expectation can be achieved via Monte-Carlo estimation [45]. Alas,
once we formulate our problem as finding a stochastic estimate of the gradient of the
expectation, we see that the gradient of an expected value is not directly an expected value
itself. If it was possible to rearrange the gradient in such a way that we could express it as
an expected value, then we could apply Monte-Carlo estimation again. The approaches we
compare in this thesis all focus on this task. Given that we applied one of these approaches,
we can estimate the parameter gradients of the probablistic components’ parameters.

Here is an outline of the contents of the thesis. In chapter 2, we derive the three approaches
and discuss them in detail. In chapter 3, we present how we implement the approaches to

evaluate them on practical tasks. We build a framework based on PyTorch [49], which
allows us to represent probability distributions as probabilistic nodes, and easily extend the
set of available distributions to be used by all three approaches. Chapter 4 shows the results
of our evaluations. Using Bayesian logistic regression, and variational auto-encoders, we
compare the approaches in various situations, and analyze their characteristics on practical
experiments. In chapter 5, we discuss the results and draw some conclusions based on
our findings. We work out where the measure-valued derivative should be considered
as a valuable alternative, and how we take the most advantage from its benefits. Also,
we outline some options for future research to explore possible improvements to the
algorithm. At last, we give a high-level overview of our findings in chapter 6.

1.1 Notation

Throughout the thesis, bold letters like « and z represent vectors. We write the probability
p(X = «) in the shorter form p(x), and write p(x;6) for the distribution over random
vectors x with distributional parameters § € RP. When we sampled x ~ p(z), we assume
x € S, where S is the support of the distribution, i.e., the set of possible outcomes.
Furthermore, we write Vg to indicate a vector of the partial derivatives of the respective
elements of 9, i.e.

of of]T

V@f: [%,,aeD

As a short form for E,.,(z.0) [- - |, we write Epg.0) [. .].

1.2 Probabilistic Objectives

Many machine learning problems, e.g., variational inference [6], Bayesian logistic regres-
sion, or variational auto-encoders, require a probability distribution in their models. In
these cases, we write the probability distribution as @ ~ p(«;6), where 0 are the parame-
ters of the distribution. We also define a cost function f(x;#), which is a deterministic
objective function, and does not have to depend on 6, but will often contain some form of
regularization. This function depends on the problem, e.g., variational inference uses the

Table 1.1: Common distributions, their notation, and probability density/mass functions.
We list the univariate versions here, because we assume factorizable distribu-
tions for our evaluations.

Name Support | Notation Probability Density/Mass Function
Uniform R U(x;a,b) 5= for z € [a,b] otherwise 0

Normal R N (z; i, 02) \/2;7 exp (—% (%)2>

Double-sided Maxwell | R M(z; p, 0?) ﬁ(m —)% exp <—%)

Weibull RY | W5a,8,1) | afle—) Lexp (=A@ — 1)) Lisoy
Erlang R* Er(z;0,A) W

Gamma R+ G(z;a,) Fﬂ(:) 2 exp (=) Iiz>0y
Exponential R* E(z; N) Gg(1,)

Poisson No P(z;0) exp (—0) > 72, %51

evidence lower bound (ELBO), which we use for some evaluations in this thesis as well.
Combining this setup lets us define a probabilistic objective J as

J(0) = Epaip) [f (2:0)] .

Or, given the definition of expectations, we can also write this as the indefinite integral

J(0) = / pla;) f (a:0) da.

In many cases, f(x;6) also depends on other parameters than 6, but we assume that these
are independent of #, and absorb them into the definition of f for the sake of simplicity.
Since p is not deterministic, we cannot directly formulate its gradient as a deterministic
function. In a gradient propagation framework, this would mean that the computational
graph of the gradient is interrupted at p. Figure 1.1 visualizes the issue in a simple
computational graph. The computational graphs in this thesis are inspired by Schulman et
al. [53], but differ in that they use the nodes for operations, and edges for values. Round
nodes produce probabilistic values, while rectangular nodes produce deterministic values.
We show the graphs for the gradient calculations in blue, and the normal computation
path in black. Also, we separate the two graphs visually by a dashed horizontal line.

Gradient Derivation. Using gradient ascent, we want to find arg max, J(x; 6). Hence,
we take the gradient of J(#) w.r.t. 6,

Vo (6) = Vo / p(; 0) f (; 0) da

With some assumptions based on probability theory [13, 25], we assume that we can
interchange the derivative and integral,

Vo (0) = / Vo [p(:0) f (a; 0)) dac.

Due to the product rule of derivatives and the same interchanging trick as before applied
on both parts, we have

VoJ(6) = / (Vop(a; 0)) f(a: 6)dz + / pla:0)Vo f (: 0)de, (1.1)

A B

where we can solve the two parts A and B of the sum separately.

Estimating the Second Summand. First, we look on the second integral B, because this
one is substantially easier to estimate, assuming we chose f to be differentiable w.r.t. 6.
Note that this integral is an expectation

Eyw) (Vo (z;0)] = / p(;0)Vo f (@: 0)de

Monte-Carlo estimation allows us to estimate this integral by sampling () ~ p(&:6), N
times, and evaluating

Ep(a:0) [Vo (2 0)] Zvaf

With a high enough N, this should give us a good estimate for this component of the
gradient, and, by the strong law of large numbers, it approaches the true value for N — oo,
which is called consistent estimation [56]. This estimate is also unbiased, since

N
Ep(z;0) [;[Zlvef(i(n)] Z [Vef)} =Ep0) [Vof(z:0)].

However, this only solved the easier part of the gradient calculation.

Estimating the First Summand. Recall the first component of the gradient from equation
1.1,

A= / (Vop(a: 0)) f(x: 6)dx.

Ideally, we would like to apply Monte-Carlo estimation here as well, which would also
guarantee unbiasedness and consistency. Note, however, that we cannot directly express
this as an expectation, since Vyp(x;) is generally not a probability distribution.

Solving this problem is the main goal of the approaches we evaluate in this thesis, and
we present three different ways to do it, which all bring their own advantages and
disadvantages. We refer to these approaches as Monte-Carlo estimators, because they all
produce an expectation, which is intended to be estimated via Monte-Carlo estimation. In
chapter 2, we introduce the three approaches, and show how they interact with Monte-
Carlo sampling to estimate this component of the gradient.

Figure 1.1: Simple computation graph when trying to backpropagate the gradient through
a probabilistic node p. Since we cannot directly compute 9z/s6, the backpropa-
gation ends at p. In this graph, z ~ p(z;) is the latent variable, and f is the
cost. We omit the subgraph of the direct dependency of f(z;6) on 6, since it
does not impact this computation.

L@ z f
Forward pass

Backward pass
— 87_]‘.
>< af 0z

1.3 Related Work

In this section, we give an overview of the current state of research on measure-valued
derivatives for variational methods. We do not focus on the pathwise and score-function
estimators, as they are well explored, and have been in use for quite a while.

The measure-valued derivative was introduced by Pflug [51] in 1989 as the weak derivative.
Heidergott et al. [28] extend the theory to a general differentiation concept for Markov
chains. They also provide decompositions for many common distributions, e.g., for
Gaussian distributions [27].

Buesing et al. [7] discuss MVDs in the machine learning setting as a finite-difference
estimator, and compare it to other Monte-Carlo gradient estimation methods. Although
the measure-valued derivative has mainly been used for other statistics applications yet,
Mohamed et al. [46] and Rosca & Figurnov [52] find that it is also interesting for machine
learning research in their surveys and empirical analysis. The topic is gaining traction in
some specific areas, for example, reinforcement learning [44], and a general exploration
of machine-learning applications seems worthwhile.

2 Gradient Estimators

In this chapter, we present three stochastic gradient estimators, the pathwise estimator in
section 2.1, the score-function estimator in section 2.2, and the measure-valued estimator
in section 2.3. Since this thesis is focused on the measure-valued estimator, we do not
compare the pathwise and score-function estimators in detail. Instead, we work out the
most important characteristics in comparison to the measure-valued estimator, and discuss
them more thoroughly. There are two major metrics on which we base our comparisons.
For one, we look at the variance of each estimator. This is an important measurement
for the value of a stochastic estimator, because it not only influences the quality of the
results, but also the number of Monte-Carlo samples required to get close to the true
gradient. While a lower variance might be advantageous in most situations, we should
also note that there is always a trade-off here. For example, a low variance estimator
might get stuck in small, bad local optima. However, a higher variance estimator will
struggle especially in smooth areas. The second major measure is the computation time
of the estimators. This includes the number of loss function evaluations required for a
single sample, as well as the computations required to compute the estimate. A general
comparison of this measure is not possible, since it largely depends on the type of problem
and the complexity of the model. However, we discuss some general tendencies of the
estimators, e.g., the measure-valued estimator scaling linearly with the size of the latent
space.

2.1 Pathwise Gradient Estimator

The pathwise gradient estimator [52] is the most frequently used approach of the three
when the loss function f is differntiable w.r.t. the distribution parameters #, and, as we
will see, with good reason. It has some strict requirements, and often requires some work
around it to be applicable.

As a general concept, the term pathwise is supposed to mean that we can follow the
path of the gradient backwards through the whole computation. In practical terms, the
pathwise estimator allows us to apply automatic gradient frameworks like TensorFlow
[43] or PyTorch [49]. To get a visual understanding of the pathwise estimator, consider
the graph in figure 2.1. In comparison to the issue presented in figure 1.1, we see that we
avoid the probabilistic node in the computation graph of the gradient. In fact, avoiding the
gradient computation through a probabilistic node is what all three approaches presented
in this thesis have in common. The pathwise estimator achieves this by moving the
dependency on 6 out of the probabilistic node, and instead finding a new deterministic
node g(x; #), which we call the reparameterization of p. This new node g(z; #) must fulfill
a few restrictions for this method to work, and we cannot guarantee that there always
exists a suitable reparameterization. First of all, it must ensure that there is a probability
distribution ¢(€), which does not depend on 6, such that = = g(e; §) with € ~ ¢(€). Then,
we can rewrite A from equation 1.1 as

A= / (Vop(z:0)) f(x;0)dx = / 4(€)Va/(9(e:0); 0)de, where e ~ g(e),
which is an expectation in the form of

A =TEye [Vof(g(e 0);0)],

and in this form, we can directly estimate the gradient via Monte-Carlo estimation,

N
1
A~ N;VM(Q(G):0);6), where ™ ~ q(e),

which is called pathwise gradient estimator.

Variance. The pathwise gradient estimator is often seen as the default stochastic gradient
estimator, because it usually has low variance. When we talk about variance in the context
of stochastic gradient estimators, we mean the variance of single gradient estimates. This
is a very important measure to compare the estimators, because it directly influences the
required number of Monte-Carlo samples N to get a good estimate of the true gradient. The
more variance an estimator has, the larger N has to be to sufficiently reduce the estimate’s
error. Intuitively, the variance of pathwise is low, because we keep all information on the
intermediate computations, and propagate this information to the gradient estimate. This
is different to the other two approaches, where we do not have access to the intermediate

Figure 2.1: Computational graph of the pathwise gradient estimator. The new determinis-
tic g node replaces p, and allows the gradient to flow through the whole path.
In this graph, z = g(e; 0), where € ~ g(e€), is the latent variable, and f is the
cost. We omit the subgraph of the direct dependency of f(z;#) on 6, since is
does not impact this computation

€
0
S i f ce
Forward pass
Backward pass

. 0z of

af 00 of 0z

90 oz

gradients. The price we pay for that is the strict requirements of the pathwise gradient
estimator. We are required to ensure that we can propagate the gradient through all
computations that use the parameters . This includes not only the mapping g, but
especially the objective function f. A lot of research has been conducted to apply the
pathwise estimator to many problems, where these restrictions are not given beforehand
[21, 14, 42].

Computation Time. Since backpropagation is well optimized in modern machine learn-
ing frameworks, this gradient estimator is often also the most efficient timewise. However,
this may become a problem in models, where we create a large computational graph
between the sampling and computation of the cost function. This could, e.g., happen in
variational auto-encoders, or generative adversarial networks, where we have a potentially
large neural network model between the sampling and cost function.

Distribution p(z; 0) Base ¢(¢; 0) Reparameterization g(e; 6)
Normal N (p; o) e ~N(0,1) pu— e
Standard Normal AV (0;1) | €1,€e2 ~ U(0,1) In(1/e;) cos(2mez)
Exponential £(\) e~ E(1) e

Table 2.1: Reparameterizations for some common univariate distributions. We sample
from the base distribution ¢(¢), and transform the samples with g(¢; 0). U(a, b)
denotes the uniform distribution.

2.2 Score-Function Gradient Estimator

The score-function gradient estimator [15], also called Reinforce [58], or log-ratio trick,
uses a form of importance sampling to estimate the gradient using samples of the current

distribution. Again, let’s look at the problematic term

A:/(Vep(w;H))f(w;é’)d%

from equation 1.1. We want to express this in terms of expectations. Using the fact that

Vg log p(x;0) =

we can derive the score function gradient as

A= / (Vep(a; 0)) f(x; 0)dz

N /p(fc, 0)

0)

Vop(z; 0)
p(x;0)

(Vop(z; 0)) f(2;0)dx

_ / p(:)P0 o o)

p(x; 0)

— [plai0)7(:0)Vatog pla:6)de

= Ep(a:) [f(2:0) Vg log p(z; 0)] .

10

Figure 2.2: Computational graph of the score-function gradient estimator. We sample
from p, which is not a problem, because we do not require its gradient for
the computation of f(2)Vylogp(z). In this graph, z ~ p(z;6) is the latent
variable, and f is the cost. We omit the subgraph of the direct dependency of
f(z;6) on 0, since is does not impact this computation.

0
@ z f .
Forward pass
Vologp(z;0) Backward pass

In terms of Monte-Carlo estimation, we have the score-function gradient estimator

N
> f(@;0)Vglog p(w; 0), where @ ~ p(w;6),

n=1

1
A=y
which is more generally applicable than the pathwise gradient estimator, but also comes
with some downsides. Figure 2.2 shows the computational graph of the score-function
gradient estimator. Important to note is that this estimator neither requires a differentiable
objective f, nor a reparameterizable p. Even though, in many cases, we would like to choose
f to be differentiable, sometimes we cannot avoid a non-differentiable objective. E.g., in
some reinforcement learning settings, where we do not know the concrete form of f, and
can only evaluate it as a black-box. Also, whenever we do not have a reparameterization g
for p, which is required for the pathwise gradient estimator as shown in section 2.1, we can
still apply the score function estimator. The only hard requirement of the score-function
estimator is that we can compute Vg log p(x; 6).

Variance. The score-function estimator has the highest variance of all three estimators.
One reason is the term Vy log p(«; #), which produces large negative values for low prob-
abilities. Especially for higher latent dimensions, this causes a huge problem, because
the probability of any single sample becomes very small as the space grows exponentially.
Thus, the variance is not only high for the estimate’s direction, but also for its magnitude.
For this reason, the score-function estimator depends a lot more on a good learning rate

1

schedule, and profits strongly from optimization schemes which adjust the gradient’s
magnitude, e.g., Adam [36]. Intuitively, we can imagine that, since we sample from p
directly, we tend to underestimate the importance of outcomes which are unlikely under
the current distribution. Due to the strong negative response to unlikely samples, the
gradient is sometimes forced into a lesser informed direction. Hence, we have to average
over a higher number of gradient estimates. To reduce the variance of the score-function
estimate, we can introduce a baseline b, e.g., a running average of the cost, such that the
estimator becomes

N
1
NZ (z;0) — b) Vglogp(x;0), where ~ p(x;6).

The estimate remains unbiased. To show the unbiasedness, we first use the linearity of
expectations to separate the expectation into the two parts

Ep(z0) [(f(2:0) — b) Vglogp(x; 0)] = Epzp) [f(x;0) Vg log p(x; 0)] — bE,y(a6) [V log p(z;)],

unbiased 0

as long a b is independent of x. The second term is zero, because

Ep(z;0) [Vologp(x; 0)] = / p(x; 0) Vo log p(x; 0)dx

Y RN IC
_/p(0 p(x;0) ¢

=Vpy /p(ac;@)da: =Vl =0.

However, in most cases, b depends on evaluations of f, which is not unbiased, but still
produces decent results [23].

Computation Time. The time required for computing a single estimate is comparable to
the pathwise gradient estimator, though it does not depend as much on the complexity
of f, as we do not need to compute its gradient. However, as we show in chapter 4,
the algorithm suffers more from a higher number of samples than the measure-valued
estimator with coupled sampling, which we introduce in detail in the next section.

12

2.3 Measure-Valued Derivative

The measure-valued gradient estimator [46], also called weak derivative, or measure-
valued derivative (MVD), is the main focus of this thesis. In equation 1.1, we derived the
term

A= [(Vopta:0) fw:0)de,

as a summand of the gradient of our probabilistic objective V.J(#). Since this is not an
expectation, we cannot directly apply Monte-Carlo estimation. Instead, using the measure-
valued derivative, we rearrange this term such that it becomes a sum of expectations.
The measure-valued derivative is based on a Hahn-Jordan decomposition of the gradient
Vop(z; 6) into

Vo.p(a;0) = co, [p; (:0) — p; (x:0)] .

This decomposition exists for all probability distributions, and is not unique. We explicitly
use the index 7 here, to indicate that this decomposition must be applied for all dimensions
of 6. Hence, the measure-valued gradient estimate scales linearly in the dimensions of 6.
Using the gradient decomposition, A can be written as

A= / (Vo,p(;0)) f(a;0)dx
— [o (07 (@300~ p; (@:60) S (i)
— e ([t @oas@iorio ~ [o (@o)s@ioie),
fori =1,...,D and § € R”. Hence, the measure-valued gradient is

0, (Ept o) (@ 0)] = By) [(0)])
where we can use Monte-Carlo estimation. The computational graph is shown in figure 2.3.
Table 2.2 shows some common decompositions. We list only a few here, but decompositions
exist for all probability distributions.

Variance. The measure-valued gradient estimator has a considerably lower variance
than the score-function estimator presented in section 2.2, and, as we show in chapter 4,
is comparable to the pathwise estimator from section 2.1. This comes from the sampling

13

Figure 2.3: Computational graph of the measure-valued gradient estimator. We sample
from the two components p;” and p;” of the decomposition, evaluate f, and
multiply the difference of the results by the normalization factor 6. In this
graph, z ~ p(z;0) is the latent variable, and f is the cost. We omit the
subgraph of the direct dependency of f(z;6) on 6;, since is does not impact
this computation.

Forward pass

o A Backward pass

14

method used by this estimator. Figure 2.4 and figure 2.5 show how we sample from a
univariate normal distribution to get a measure-valued gradient estimate for the mean u
and the variance o2. Generally, we focus the sampling very specifically for the positive
measure 2T ~ p*(z;6), and the negative measure 2z~ ~ p~(z;0). Due to the construction
of the gradient estimate, we separate the change induced by Vyp(z;60) into the part
p+, where we add mass, and the part p—, where we remove mass. By focussing the
sampling on exactly these areas, each sample becomes more meaningful compared to
simple importance sampling, as it is used by the score function estimator. The variance is
given by

Vp(m;é) [VGf(x)] = Vp*(m;@) [f(w)] + Vp*(:z:;@) [f(.%')] - 2C0Vp+(cc’;9)p*(m;0) [f(wl)7 f(.’B)])

We can also reduce the variance further by positively correlating f(«') and f(x), e.g., by
using the common random numbers during sampling. This trick is called coupling, and
we implicitly use it for all our evaluations, similar to the baseline for the score function.

Computation Time. Since we need to sample in each dimension of #, the computation
time of one estimate grows linearly with the number of dimensions of . E.g., for a k-
dimensional multivariate Gaussian with diagonal, i.e. factorizable, covariance, we require
k samples for the positive and negative components, which sums up to 4k samples and
evaluations of f for one estimate. This is why, whenever we talk about a fair comparison
between the score-function estimator, the pathwise estimator, and the measure-valued
derivative estimator, we refer to using the same number of evaluations of f with all of
them, by increasing the number of samples of the other estimators accordingly. In short,
let § € R be the parameters of a distribution, then the measure-valued gradient estimator
requires 2D evaluations for a single estimate, while the other two estimators only require
one.

If p(x;0) is fully factorizable, i.e., the full gradient is equal to the sum of the partial
gradients, we can estimate the gradient of any multivariate distribution by sampling from
the distribution and replacing the i-th dimension with samples from p;” and p; . This
allows us to compute correlated samples for all dimensions using only one sample of the
multivariate distribution, which reduces the variance and saves computation. For the rest
of this thesis, unless stated otherwise, we assume p(x; 6) is fully factorizable, or, in other
words, the univariate p;(x; 6;) are pairwise independent. This is mostly relevant when we
talk about the implementation in chapter 3 and evaluation in chapter 4. Note, though,
that the measure-valued estimator is still applicable in non-factorizable cases, e.g., for
Gaussians with full covariance.

15

Figure 2.4: Probability densities for the measure-valued derivative decomposition for the
gradient 9N /s, of the univariate standard normal distribution A/(0, 1), where
Pt (p,0%) = p+oW(2,0.5), and p~ (p,0%) = p — aW(2,0.5).

— Mu, 0?)
.......... N(u+0.1,0°%) S N
e bt o)

16

Figure 2.5: Probability densities for the measure-valued derivative decomposition for the
gradient 9V /s. of the univariate standard normal distribution A/(0, 1), where
pT(p,0%) = M(0,1), and p~ (s, 0?) = N(0, 1).

— Ny, 0?)
__________ N, (0+0.1)?)
—== p*(u,0?)
- p~(u,0%

17

Distribution p(z;#) | Constant ¢y | Positive part p* | Negative part p~
Bernoulli(0) 1 o 9o
Poisson(6) 1 PO)+1 P(0)

Normal(6, 02) 1/ovar 0+ oW(2,0.5) | 0—oW(2,0.5)
Normal(, 6?) 1/0 M(p, 6%) N (u, 0%)

Exponential(6) 1/¢ £() =1Er(2)
Gamma(a, 6) /g G(a,0) Gla+1,0)
Weibull(a, 0) 1/ W(a, 0) G(2,0)'/

Table 2.2: Measure-valued derivative triples (cg,p*, p~) to estimate Vyp for common
distributions. See Table 1.1 for information on the distributions.

2.4 Convex Combination of Estimators

Convex combinations of multiple unbiased estimators are still unbiased. Let us define two
unblased estimators T1 and Tg Considering the expectation of the convex combination of
T and Tb, we can show that due to the linearity of the expectation

Ep(a) |cT1(@;0) + (1 — o) T (a; 9)} — Bp(aip) [ﬁ(m; 9)] + (1= OB,mp) [@(m; 9)}
= CEp(m;Q) [f(:cv 9)] + (1 - C)Ep(m;e) [f(:cv 9)]
= Ep(:t,;G) [f(wv 6)])

hence, the convex combination of 77 and 75 remains unbiased.

Using a convex combination of estimators might be interesting for the measure-valued
estimator, because it allows us to use the estimator only for some dimensions. This
gives us some flexibility in choosing how much computation we want to use. In section
4.3, we discuss the option of naively replacing random dimensions of a score-function
estimate with measure-valued estimates. Though, generally, we find that there are a lot of
unexplored options in this approach.

18

2.5 Gaussian Mixture Models

As the measure-valued estimator is applicable for all distributions [28], we consider
discrete mixture models in this thesis as well. These are discrete combinations of multiple
probability distributions. Hence, we have two main parts. The first, which we will refer to
as the selector s(¢), is a discrete probability distribution. We call the second components
¢(0,), which is a set of probability distributions from a family of distributions. To sample
from discrete mixtures, we first sample from the selector

2~ 5(29),
then sample from the selected component
x ~ c(x;0,).

As a practical and often used example, we first focus on Gaussian mixture models, where
the selector is a categorical distribution C(¢), and the k£ € N* components are Gaussian
distributions NV (p, X).

Gaussian Mixtures and the Score-Function Estimator. Since the only hard requirement
is that we know the derivatives a% log C(z; ¢) and % log N (x;6,), we can apply the score-
function estimator to these problems. The log-derivative of a multivariate distribution is
calculated as 9

on log N (z; 1, %) =27 (2 —),

and

1

a(; log N(@;1,%) = =5 2271 = (BT 0 D) + 7@ — p) (= —) 271,
where (X! ® I) denotes the Hadamard product, i.e., a diagonal matrix containing the
diagonal of X ~!. For the categorical distribution, we find that the derivative of the log-

probability is

k T k T 1 117
Ve logClx;9) = Vylo fix:V z;rloggy = |—,...,—| ,
slogC(z;9) = V4 ggqﬁ ¢>; g¢ [d)i ¢k]

where x; € {0,1}" is a vector with 1 at the i-th position and 0 everywhere else. Hence,
we can directly use the score-function estimator.

19

Gaussian Mixtures and the Pathwise Estimator. To use the pathwise estimator for
discrete mixtures, we have to use a trick to get around the discrete distribution. Because
the sampling requires a non-differentiable arg max operation, we cannot reparameterize
discrete distributions. Hence, we need a substitute distribution, which samples as if it was
a categorical distribution, but can be reparameterized. Current research uses the Gumbel
softmax [33] as a substitute. To sample from the Gumbel-softmax distribution, we sample
gi ~ Gumbel(0, 1), and calculate

z ~ arg max [g; + log ¢;] .
i

In practical implementations, we sample from the Gumbel distribution using uniform
samples u ~ U(0,1), and calculate g = —log (—log(u)). Since the samples g; do not
depend on the class probabilities ¢;, and all other operations are differentiable, we can
calculate the pathwise gradient estimate of C(z; ¢) via

1 11"
ViC(:16) = Vi - log (~ log(u) + o] = | |
¢z Qbk
which is the same as for the score-function gradient. However, since the sampling is not
the same, the estimators still produce different results.

Gaussian Mixtures and the Measure-valued Estimator. At last, we can also estimate
the gradient of a Gaussian mixture using the measure-valued estimator. For the measure-
valued estimate of the gradient of the components N (x;6;) fori = 1,..., k, we refer to
the decomposition listed in table 2.2.

As for the measure-valued gradient of the categorical distribution, we use the probability
mass function

!
Cla;0) =Y @l wp; =] v + (1 — z;) @(1 - ¢y),

=1

for every output i = 1, ..., k. Same as with the score-function derivation, we assume the
distribution outputs a one-hot encoded class x € {0, 1}*, z ~ C(x; ¢). Taking the partial
derivative for every dimension j = 1, ..., k, we get

0
9¢i

Clx; ¢) =

k
(:czT:L') ¢+ ((1 - ZI)Z)TQS) (1—¢) =xlx - z;az?m

j.i .
J#u

0
d¢i

20

Due to = and z; being one-hot encodings, the expression z! z is 1 if and only if z = z;.
This means we can replace terms in the form of ! with the Dirac delta distribution
d(x;). Hence, we get the measure-valued triplet

co =1, p/(9)=0d(z), p;(¢)=051~—z)

We should note that this means we need to evaluate the loss function only once per
category. As discussed in section 2.3, we normally expect 2D, where D is the number
of dimensions of ¢, i.e., k. However, in this case we require only D evaluations. This
is due to the fact that we are evaluating the full domain of the distribution, essentially
marginalizing over it, instead of sampling from it.

In conclusion, we can apply all three estimators to Gaussian mixtures models. We conduct
some experiments to evaluate their respective performances in section 4.4.

21

3 A Framework for Monte-Carlo Gradient
Estimators

We introduced the probabilistic objective in chapter 1, and the three gradient estimators
- pathwise, score-function, and measure-valued - in the last chapter 2. In this chapter,
we design a Python framework based on PyTorch and describe how these estimators are
implemented in it. The main contribution of this framework is the extensibility with
regards to different estimators, probability distributions, models, and datasets. Essentially,
we can extend and replace any of these parts.

At the end of the chapter, and in chapter 4, we conduct some experiments and evaluate
their results to compare the characteristics of the estimators in practice. Finally, in chapter
5, we discuss the results and develop some practical insights on how the estimators should
be used.

3.1 Framework Description

In this section, we describe some of the issues with most implementations of variational
methods in PyTorch. First, let us consider how most current implementations work in
PyTorch. As an example, we use a small variational auto-encoder [35], which we show on
a high level in figure 3.2.

The variational auto-encoder is commonly implemented using rsample of PyTorch dis-
tributions, which implements the reparameterization trick, i.e., the pathwise gradient
estimator. In figure 3.1 we can see how many assumptions are implicitly put into most
variational auto-encoder implementations. While we also find in 4 that this is not a bad
default, it is problematic that this is treated as the only option. Hence, in our framework,
we want to make obvious, that we are using the pathwise estimator here. Also, we want
to design this such that the surrounding code does not need to know about the specific

22

estimator used. Unfortunately, we cannot directly integrate the other estimators into the
automatic gradient calculation offered by the framework. The reason is that they do not
use the derivative of their successor like the pathwise estimator does, but instead rely
on the losses directly. To be able to implement general Monte-Carlo gradient estimators,
we define an estimator as MC(f,d, z), where f is the loss function, d is a decoding or
prediction function, mapping from samples to the outputs we expect of the model, and x is
the data or the label, depending on what the model expects. This allows each estimator to
function on the same inputs. In addition to the different inputs for the gradient estimation,
the other estimators also rely on different sampling methods than the pathwise estimator.
For the score function estimator, we need to make sure that the samples are not attached
to the computation graph, which we do by simply sampling directly from p. For the
measure-valued estimator, we even need to sample from the two distributions p*™ and p~.
We do this by stacking the samples of the two distributions, then relying on PyTorch’s
broadcasting logic to calculate the losses without having to change the loss function. This
is also the reason why we cannot directly pass the losses to MC, as we don’t know the
samples beforehand. Consider figure 3.3 on how this looks in terms of code.

Important to notice is that we commonly see the output of the encoder being the dis-
tribution parameters directly. This has two major disadvantages. For one, we obviously
have to change the encoder model whenever we change the distribution. While this is not
problematic for the implementation itself, it causes many implicit dependencies. Also, it
hides the parameterization of the distribution. Most distributions expect parameters of a
specific domain D, e.g., for multivariate normal distributions N (x, X), ¥ must be positive
semidefinite. Since we often work with models that produce outputs in R, we use functions
R — D, to ensure that model outputs are in the required domain. As an example, for a
multivariate normal distribution with diagonal covariance, we could train the model to
produce exp In ¢ instead, which allows us to train the model for In o, and let the automatic
backpropagation handle the gradient. There are always advantages and disadvantages to
these transformations, hence one might be inclined to compare, or exchange them in some
situations. This is once again a case, where the typical implementations are very resistant
to changes. In figure 3.1, we don’t see anything of this transformation, because it was
absorbed into the encoder. We argue that the encoder should not be the entity which this
transformation depends on. Instead, we build the framework such that the encoder can
be an arbitrary model which can output any R”, where D is the sum of the dimensions
of all parameters of the distribution. E.g., for a multivariate normal distribution with
5 latent dimensions, i. e. D = 30, we expect the encoder output to be in R3°, which
puts as much flexibility into the encoder as possible. We call this output of the encoder
raw parameters. To deal with the parameterization of the distribution, we instead create

23

Figure 3.1: Typical implementation of VAEs in PyTorch, omitting boilerplate code.

mu, sigma = vae.encode(original)

normal = torch.distributions.Normal(mu, sigma”™2)
sample = normal.rsample ()

reconstruction = vae.decode(sample)

Binary Cross—Entropy + KL Divergence

losses = loss function (reconstruction, original)
losses .mean ().backward ()

subclasses of the distributions, which transform the raw parameters into a valid parameter
set for the distribution. This gets rid of the two disadvantages mentioned above. For one,
we can now replace the encoder with any model, without requiring the model to know
anything about the distribution. Secondly, we can also replace the distribution, as well as
its parameterization, without having to change anything about the surrounding model, as
long as we provide the correct number of raw parameters. Producing the correct number
of parameters, however, should be trivial in most situations, as we also implement a way
to ask the distribution for the dimensions of its parameters.

3.2 Extensibility of the Framework

In this section, we describe which parts of the algorithms can be extended — datasets,
models, distributions, and gradient estimators.

Datasets. Datasets are loaded using a dataset registry, which allows us to add new
datasets by registering a dataset class. This class requires a function for loading the
dataset, the shape of the data, as well as a string identifier. This allows us to derive the
models’ dimensions directly from the given dataset. The datasets also support configurable
batch sizes.

Models. The framework is generally compatible with any PyTorch models, and supports
the same functionalities, e.g., persisting to disk, and automatic parameter detection for

24

optimizers. To add a probabilistic node to a model, we instantiate one of our model classes,
which have the same sampling interface as the standard PyTorch distributions.

Distributions. Distributions of the framework adhere to the sampling interface of PyTorch
distributions. However, implement the distributions such that they take any real numbers
as inputs, and assume they ensure the restrictions. One example for this would be a
categorical distribution which applies a softmax on its parameters to ensure normalization.
This allows us to implement different parameterizations via subclasses which are separated
from models. The distributions also implement a backward function, which estimates the
gradient given an estimation strategy, as well as backpropagating that gradient through
the PyTorch autograd [1]. This means that, as long as the distributon parameters are
attached to the computational graph, the gradient is correctly propagated through the
graph regardless of the estimator.

Gradient Estimator Strategies. We support the score-function estimator, as well as the
measure-valued estimator for all implemented distributions, and the pathwise estimator
where it is applicable. This includes categorical distributions using the Gumbel softmax,
which could also be extended to other discrete distributions. To estimate a gradient, we
call backward on the distribution instance with the estimator strategy, and a function
that calculates the losses from samples. This allows each strategy to implement their own
sampling and loss evaluations. The clean separation of distributions and estimators allows
us to replace the specific components for evaluations and comparisons, while it guarantees
a persistent setup. I.e., whenever we compare sets of configurations, we can be sure that
the differences we show come from these changes.

3.3 Bayesian Logistic Regression

In this section, we present how we implement Bayesian logistic regression in our framework.
We describe Bayesian linear regression first, because Bayesian logistic regression is based
on it.

Bayesian linear regression uses a linear transformation w’ « of the data a and the sampled
weights w. The intuitive idea here is that we do not train the model parameters directly,
but instead we train a distribution over models which most likely explain the observed

25

data. To do this, we maximize the likelihood p(y|x, w,), with respect to the distribution
parameters . The objective of our optimization becomes

arg max L(0) = ELBOpq(0) = Eunpusn) [Drc1(pllg) +logp(yle, w, 0)],
where ELBO is the Evidence Lower BOund, and Dx.(pl||q) is the Kullbach-Leibler diver-
gence between the latent distribution p and a prior ¢, which we have to choose. When
compared to vanilla linear regression, the Bayesian approach has some advantages. The
prior serves as a regularizer, as well as enabling us to add some prior knowledge into the
training process. Also, the variance of the model gives us an indication of the confidence
of the predictions.

Because the posterior can be found analytically for Gaussian distributions, using variational
inference in this context is not very useful. However, Bayesian logistic regression is based
on this approach and does not have a closed-form solution. Bayesian logistic regression
simply adds a logistic function to confine the outputs to the interval [0, 1]. This transforms
the model into a binary classifier, which learns to separate the classes in the latent space.
To implement this in the framework, all we need to implement is a new model class
which applies the linear transformation, instantiates the distribution, and lastly applies
the logistic function to get the prediction. We present the experiments and results we get
from Bayesian logistic regression in section 4.1.

3.4 Variational Auto-Encoders

In this section, we describe how we implement variational auto-encoders (VAEs) in our
framework, and propose experiments to show some relevant differences between the
estimators. In the course of our evaluations, we focus a lot on VAEs, because, for one,
they allow for varying complexity through the two networks used in the model. Also, the
unsupervised training and the probabilistic reconstructions offer an interesting solution
for many problems where training a deterministic network in a supervised fashion would
not be feasible. For this reason, VAEs are often used for generating stochastic alterations of
data, e.g., to generate images in the style of an artist, or to generate faces of non-existent
people [54, 57, 55]. The flexibility of the approach allows for a lot of use-cases, making
VAEs an interesting model for various applications.

In general, we define a VAE as the combination of an encoder, a decoder, and a latent
distribution, which is parameterized through the encoder. The high-level flow of the

26

Figure 3.2: A high-level representation of the basic variational auto-encoder architec-
ture. The encoder and decoder are neural networks. The decoder is trained
directly through backpropagating the losses, but we require a gradient esti-
mator for the encoder gradients. In this figure, we call the data = € R", the
latent representation z ~ p(z; Encoder(x)), z € R™, and the reconstruction
Decoder(z) = &, ¢ € R™.

R™ -

model is shown in figure 3.2. Like Bayesian logistic regression, the encoder network
uses variational inference to encode the data into a latent space. We use a much smaller
number of dimensions m for the latent space, than the dimensions n of the data. Hence,
the encoder F(x; wg) outputs the parameters 6 of the distribution p(z;). To make the
distribution tractable, we choose a family of distributions and limit our search to that
family, e.g., Gaussian distributions. Then, to train the decoder, we simply sample from the
latent space using the distribution z ~ p(z;#), and run the samples through the decoder
D(z;wp) to get reconstructions. The complete objective is

arg max J(wg, wp) // E(x;wg))f(D(z;wp))dzdex,

WE, WD

where wp are the parameters of the encoder network, and wp are the parameters of the
decoder network.

For the training, we fix the weights of one network, while we train the other. Training
the decoder like this is done easily by running detached samples z ~ p(z;0) for fixed 6
through the decoder. By detached, we mean that the computational graph is cut off from
the sample, which stops the backpropagation at the sample. Hence, we approximate the
gradient with regards to the decoder parameters using the Monte-Carlo sampling and
batch stochastic gradient ascent with batch size B

B

N
1 1
Vapd (wp) & > N D Vu,f(D(zi)), where, z; ~ p(2; E(zj;wp)).
j=1 i=1

27

Figure 3.3: VAE implementation using the framework of this thesis, omitting boilerplate
code. In contrast to figure 3.1, the loss function in this case only calculates
the binary cross-entropy loss.

normal = vae.encode(original)

Calculate gradients of the decoder.

reconstruction = vae.decode(normal.sample())

bce function(reconstruction, original).mean().backward ()
Calculate gradients of the encoder.

normal. kl (prior).mean ().backward ()
normal.backward (bce function, vae.decode, original)

Since the decoder is a deterministic model, we calculate the gradients of wp through
standard backpropagation, i.e., autograd in the case of PyTorch.

For the encoder, however, we require variational inference, as its gradients depend on the
stochastic output of the distribution p(z; E(wg)). Here, we can use one of our gradient
estimator approaches with Monte-Carlo sampling to get gradient estimates for wg. Once
again, we fix the parameters wp, and view f(D(z;wp)) as a loss function which we call
fp(z) for convenience, such that

argmax J(wg) ://p(z;E(:D;wE))fD(z)dzdw,

WE

is the objective for the encoder, which is already in the form we established in section 1.2.
This allows us to use the three stochastic gradient estimators to get gradient estimates for
wEg.

To implement VAEs in our framework, we only require a new model class. This class
contains the encoder, and decoder networks, as well as the distribution family used. When
encoding, it instantiates the distribution using the output of the encoder. Then, we can ask
it for a reconstruction of a sample of the distribution, for which it uses the decoder. Since
the encoder and decoder are separate submodules of the model, they are already separated
for the training. A code snippet of the core training steps is shown in figure 3.3. We use
this implementation to conduct various experiments on the Variational Auto-Encoder in
section 4.2.

28

4 Gradient Analysis

In this chapter, we present the results of our experiments concerning the three gradient
estimators. We focus on results showing characteristics of the estimators to make some
distinctions between them. For this work, we are only comparing Monte-Carlo estimators.
Hence, we look at metrics like the variance of the estimators, and their performance
in terms of results and time required for training. To conduct the experiments, we use
the framework presented in chapter 3. In experiments using normal distributions, we
parameterize the distributions with the logarithm of the standard deviation, and a diagonal
covariance matrix for multivariate normal distributions.

4.1 Bayesian Logistic Regression

The model for Bayesian logistic regression does not have as many moving elements around
the distribution itself. That means, there are little choices in terms of hyperparameters, or
model complexity. The upside of this task is that we can easily compare the estimators
without risking a choice of model that lends itself more towards one of them. This task
stands in contrast to a variational auto-encoder, where we could imagine a certain network
architecture affecting the performance of the estimators differently. While this gives us
results that apply in most situations for the task, it also means that we expect only small
differences in the performance of the estimators. To make clear that the same observations
do not hold in more complex scenarios, we analyze the performance of the estimators on
variational auto-encoders in section 4.2. In this section, we rather focus on the variance
of the estimates, as this metric characterizes the estimators more generally.

In figure 4.2, we find that the performances of the estimators are indeed very close. While
there are marginal differences, they would not be enough to indicate superiority of any one
estimator. However, looking at the variances in figure 4.1, we see that the score-function

29

Figure 4.1: Variances of Bayesian Logistic Regression with m = 30 latent dimensions,
trained on the breast cancer dataset [10]. The optimizer used is SGD with
learning rate o = 1072 and batch size B = 32.

e

101 4~
—— MVD W_/_\/_\///
Pathwise

- Reinforce

Variance

100 4

0 1000 2000 3000 4000 5000
Iterations

estimator has by far the highest variance. As expected, the pathwise estimator has the
lowest variance, while the measure-valued estimator is between the other estimators.

4.2 Variational Auto-Encoder

As discussed in section 3.4, we conduct experiments using variational auto-encoders with
fully connected, convolutional, and recurrent encoder/decoder networks. We train our
models on the MNIST [41], Omniglot [40], ECG5000 [20] datasets.

MNIST Dataset. In figure 4.3, we show the losses of training a variational auto-encoder
on the MNIST dataset. We find that the performances of the score-function and measure-
valued estimators are similar given the score-function estimator is allowed the same
number of function evaluations. The pathwise estimator achieves the best test loss on this
dataset. However, looking at the reconstructions in figure 4.4, it seems unlikely to be able

30

Figure 4.2: Train and test losses of Bayesian Logistic Regression with m = 30 latent
dimensions, trained on the breast cancer dataset [10]. The optimizer used is
SGD with learning rate a = 1073 and batch size B = 32.

Train Losses
120

= MVD 1 sample(s)
1101 ‘ Pathwise 120 sample(s)
= Reinforce 120 sample(s)

100 A

90 A

80 1

Loss

704

60

50 A

40 A

30 T T T T T T
0 200 400 600 800 1000 1200

Iterations

Test Losses

= MVD 1 sample(s)
1101 ‘ Pathwise 120 sample(s)
= Reinforce 120 sample(s)

Loss

30 T T T T

Epochs

31

to identify an obviously better choice. There are clearly some artifacts, especially in the
two fives and the six for all reconstructions.

However, the performances change dramatically when considering the process time instead
of iterations. Figure 4.5 shows the losses with respect to the process time. For this plot,
we track only the time required for sampling, evaluating the loss function, and calculating
the gradient estimate from the loss evaluations. This means that we get little noise from
other calculations, letting us compare only the computations directly influenced by the
respective estimators. Also, we compare process times, which do not correspond to a
fixed unit of time, but should only be compared to each other. We cut off the plot once
the first estimator was done, which in this case was the pathwise estimator with one
sample. We can see that in this comparison, the score-function estimator falls behind
irrespective of sample sizes. Also, the pathwise estimators are very close, even favoring
the one sample estimator in the end. This in itself shows that for shorter runs, it is not
worth it to use a high number of samples. The additional computation required does not
pay off in these scenarios. Also, a higher variance at the start of the training may allow
the estimators to escape poor local minima more easily. Considering the performance
of the measure-valued estimator, we see that it now shows a clear advantage over the
score-function estimator. A possible reason for this might be slightly better optimization of
the measure-valued estimator in our implementation. However, it also profits from reusing
the same random sampling for its coupling, which saves on random number generation.
As for the computation of the gradient, it requires less backpropagation than the other
estimators, as it uses no explicit gradient terms. We can conclude that considering process
time, the measure-valued estimator performs worse than the pathwise estimator. For
the score-function estimator, we find that a large number of samples slows down the
estimator a lot. It would be useful to analyze the root of this problem, and re-evaluate the
comparison if better optimization is possible, though this is out of the scope of this thesis.

Omniglot dataset. For a more complex task, we train a VAE using convolutional layers on
the Omniglot dataset [40]. Since the dataset contains 105x105 images of a larger number
of symbols, the reconstruction requires a much more complex model for reasonable results
than MNIST. Our results can be seen in figure 4.6.

In this more complex task, we find that the score-function estimator becomes very unstable.
This also becomes clear in the variances displayed in figure 4.7 we recorded during the
trainings on MNIST and Omniglot. Looking at the MNIST dataset, we see that the variance
of the score-function estimator is initially very high, but it is at least stable once the baseline
is established. However, in the case of Omniglot, the score-function estimator becomes

32

Figure 4.3: Train and test losses of a VAE with two fully connected 400-dimensional
layers in both the encoder and the decoder with ReLU activations, m = 20
latent dimensions, trained on the MNIST dataset. The optimizer used is ADAM
with learning rate o = 102 and batch size B = 128.

Train Losses

220
= MVD 1 sample(s)
200 1 - Pathwise 1 sample(s)
- Pathwise 80 sample(s)
- Reinforce 10 sample(s)
180 1 —— Reinforce 80 sample(s)
¥ 160
[e]
)
140 A
120 A
100 A
0 1000 2000 3000 4000
Iterations
Test Losses
150
= MVD 1 sample(s)
- Pathwise 1 sample(s)
140 A - Pathwise 80 sample(s)
- Reinforce 10 sample(s)
- Reinforce 80 sample(s)
130 A
&
o
)
120 A
110 A
100 T T T T T T T T
0 1 2 3 4 5 6 7 8 9
Epochs

33

Figure 4.4: Reconstructions by VAEs generated after the training shown in figure 4.3.
Here, MVD means the measure-valued estimator, PD means the pathwise
estimator, and SF means the score-function estimator. All reconstructions
are generated using models trained with the highest number of samples.

St 2 O b9 0} 5
WOl S 7 0 bgq 01 5
S 7 0090) 5

J S 7 O g 01 5

unstable after about five epochs. On the other hand, the measure-valued and pathwise
estimators behave similarly to the MNIST training, suggesting that they remain stable
even for more complex tasks.

ECG5000 dataset. A third common architecture for variational auto-encoders are recur-
rent neural nets [11]. For this architecture we use the ECG5000 dataset [20], a time-series
classification dataset. Since the data is ordered in a temporal manner, the model has to
incorporate its previous reconstructions into the next reconstruction. The architecture
we use for this allows us to train recurring modules of the same structure for which the
previous output is an input to the next module. We use long short-term memory (LSTM)
[29], gated recurrent unit (GRU) [9], and vanilla RNN modules.

Figure 4.8 contains the losses on the ECG5000 dataset. In this case, we can see that the
estimators perform similarly. The score-function estimator is still less stable than the other
two estimators, but it does not diverge like in the case of convolutional architectures. For
LSTMs, we find that the pathwise and measure-valued estimators perform very similarly.
However, for GRU modules, the pathwise estimator yields significantly better results.
Vanilla RNN modules represent an interesting case here, because they suffer more from
vanishing and exploding gradients [29]. LSTMs and GRUs aim to mitigate this problem,
and we can also see this in our losses. Since the pathwise estimator relies on the gradient

34

Figure 4.5: Training loss of a VAE with two fully connected 400-dimensional layers in both
the encoder and the decoder with ReLU activations, m = 20 latent dimensions,
trained on the MNIST dataset. The optimizer used is ADAM with learning
rate « = 1073 and batch size B = 128. The tracked time in the horizontal
axis does not correspond to a real-time measure, but reflects the relative
processing time required by the gradient estimator computations only. At the
end of the graph, the pathwise estimator with 1 sample completed 10 epochs,
while the others are cut off at that point.

220
- MVD 1 sample(s)
200 - Pathwise 1 sample(s)
- Pathwise 80 sample(s)
- Reinforce 10 sample(s)
180 1 —— Reinforce 80 sample(s)
v 160 A
o
|
140 A
120 A
100 A
0 1 2 3 4 5 6

Process Time

35

Figure 4.6: Train and test losses of a VAE with convolutional networks, m = 64 latent
dimensions, trained on the Omniglot dataset. The optimizer used is ADAM
with learning rate o = 1072 and batch size B = 144.

Train Losses

12000 A = MVD 1 sample(s)
Pathwise 256 sample(s)
10000 - - Reinforce 256 sample(s)
8000 A
@
o
- 6000
4000 A
2000 A
0 500 1000 1500 2000 2500
Iterations

Test Losses
14000

= MVD 1 sample(s)
12000 - ‘ Pathwise 256 sample(s)
- Reinforce 256 sample(s)

10000 A

8000 A

Loss

6000 A

4000 +

2000 ~

36

Figure 4.7: Variances of the estimators while training VAEs on MNIST and Omniglot dat-
sets. The variances are computed during training, using the same experiment
set-up as figures 4.3 and 4.6 respectively. The y-axis of both graphs is shown
in logarithmic scale.

MNIST
103 - — MVD
- Pathwise
- Reinforce

102 4
(V]
o)
C
.©
g

101 4

100 4

0 1000 2000 3000 4000
Iterations
Omniglot
m— MVD
108 { = Pathwise
- Reinforce

106 4
(V]
2
8 10% A
o
>

102 4

100 |

0 500 1000 1500 2000 2500

Iterations

37

which is propagated through the whole computation, we observe a higher variance in that
case.

Sinusoidal data. In the results for the ECG5000 dataset, we have seen an indication of
exploding gradients while training the pathwise estimator. As an attempt to isolate the
issue, we train the estimators on synthetic data in the form of noisy sine functions. We
show the results using the three module types in figure 4.9. From our experiments, it
seems like the vanilla RNN modules are unable to model the data, independent of the
estimator used. With LSTMs, it seems like the estimator does not produce much of a
difference in the results as well. The biggest difference we observe is the large spike
in variance using the pathwise estimator with GRU modules. Once again, this happens
due to the estimator relying on the gradient propagation through the whole calculation.
However, this is not enough to completely destabilize the learning process. Hence, our
results do not suggest that the pathwise estimator is a worse choice with RNN models.
We should note that the score-function estimator is competitive to the others in this task
as compared to our other experiments.

4.3 Randomized Convex Combinations

We have shown in section 2.4 how we can combine two unbiased estimates into one
unbiased estimate. In this section, we use this to create a convex combination of the
score-function and measure-valued estimator.

For the following argument, we refer to the notation established in section 2.4. Let T}
be the score-function estimator and fg be the measure-valued estimator. We choose this
combination, because the characteristics of these estimators work well together. As we
discussed in chapter 2.2, the score-function estimator gives us a high variance estimate, but
is more flexible in terms of sample size. On the other hand, the measure-valued estimator
presented in section 2.3 is a low variance estimate, but it requires loss evaluations linear
to the number of parameter dimensions of the latent distribution. However, if we consider
a convex combination, we might be able to reduce the variance of the score-function
estimate by replacing it with a partial measure-valued estimate. To do this, we choose
the factor c as a vector ¢ € [0, 1]P. This means, we completely replace the score-function
estimate by a measure-valued estimate in the dimensions i where ¢; = 0.

38

Figure 4.8: Train and test losses of a VAE with recurrent LSTM, GRU, and vanilla RNN,
m = 20 latent dimensions, trained on the ECG5000 dataset. The optimizer
used is ADAM with learning rate a = 5 x 10™%.

Loss

Loss

Loss

100

90

80

701

60

50 4

40

o

304

201

10

100

90

80

701

60 1

50

401

304

201

10

100

90

80

701

60 4

504

40

304

201

10

Train Losses

LSTM

Loss

Test Losses

—— MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)

N M&

204
0 10 20 30 40
Epochs
Test Losses
80 4 = MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)
704
60
2
o
S50
401
KS//_/\
30 S
201 .
0 10 20 30 40

Epochs

Vanilla RNN

—— MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)
|
\/\,\ Wy \ /'.
M | ,
A Rl \
""W“’W‘U r\ﬁlh W 0/ “u .\ \
AN KA) WW) W
W
0 2000 4000 6000 8000 10000
Iterations
Train Losses
= MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)
\lm
| A
{ |
Wiy : |
L T
i o A i o e
s L AT
0 2000 4000 6000 8000 10000
Iterations
Train Losses
|
W\J A
N\
¥ "\Wq" !
Wi
—— MVD 1 sample(s)
~— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)
0 2000 4000 6000 8000 10000
Iterations

Loss

Test Losses

120 = MVD 1 sample(s)

~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)
100 4

80 1

60 1

401

0 10 20 30 40
Epochs

39

Figure 4.9: Train and test losses of a VAE with recurrent LSTM, GRU, and vanilla RNN,
m = 4 latent dimensions, trained on the synthetic sinusoidal dataset. The
optimizer used is ADAM with learning rate o = 5 % 1074,

LSTM

Train Losses

Test Losses

140 120

—— MVD 1 sample(s)
~—— Pathwise 80 sample(s)
120 L

—— Reinforce 80 sample(s) 100 4

—— MVD 1 sample(s)
~—— Pathwise 80 sample(s)
- Reinforce 80 sample(s)

10 20 30 40
Epochs

Test Losses

1001 0
N \/ \ 804
604 N N‘./ W\ VA 60
VA
404 404
204 204
0 1000 2000 3000 4000 5000 6000 0
Iterations
Train Losses
120
= MVD 1 sample(s)
. 100 4
1004 ~—— Pathwise 80 sample(s) \
\\ —— Reinforce 80 sample(s) |
\ 80|
80
— \ , 609 |
§ \x)o%\ §

40 % 401

= MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)

Epochs

Test Losses

(
by
/Q
‘\\ >
g
i

= MVD 1 sample(s)
~—— Pathwise 80 sample(s)
—— Reinforce 80 sample(s)

201 N 201
\'\
B e - — L —
0 0
0 1000 2000 3000 4000 5000 6000 0
Iterations
Train Losses
—— MVD 1 sample(s) 1301
~—— Pathwise 80 sample(s)
1401 — Reinforce 80 sample(s) 120 4
1201 1104
u | 1
@
S A v
A A WA 100
\/ A NAA
~ \ I f \ A\ \
1001 WVW VAN \/, L LA M/\K‘\f
y ‘/i‘\v“- N 90
80 1 '
80 4
0 1000 2000 3000 4000 5000 6000 0

Iterations

Epochs

40

To evaluate this approach, we implement the combination in our framework and train
the same model as we used in section 4.2. We also use the MNIST dataset and the same
hyperparameters. This allows us to directly compare the performances with varying
combinations. To see the general performance of the approach, we evaluate all combina-
tions using the same number of loss evaluations. Hence, we use 4D — 2|¢| for a normal
distribution NV (u, X2) with diagonal covariance to calculate the number of samples for the
score-function estimate. For the measure-valued estimate, we always use the minimal
number of loss evaluations, calculating one estimate only. We always replace the same
dimensions in the mean and covariance gradients. In total, we end up with 4D evaluations
for all combinations.

The losses are shown in figure 4.10. Unfortunately, all combinations perform worse than
purely using the score-function estimator. For this reason, it does not seem like we can
improve upon the score-function estimate using a randomized convex combination with
measure-valued estimates. The upshot, however, is that we can indeed produce stable
estimators using such a naive combination. Since we generate the full score-function
estimate before we need to decide which dimensions we want to replace by a partial
measure-valued estimate, there is a lot of design space in this approach. At this point, we
don’t take any additional information about the estimate into account. For example, if we
were able to incorporate an upper bound on the variance of the score-function estimate in
each dimension, a replacement strategy could focus on the dimensions with the highest
estimated variance.

Another thing to note here, is that the performance using the measure-valued estimate
for five dimensions yields the closest performance to the full score-function estimator. In
figure 4.11, we show how these estimator behave when we gradually lower the sample
size of the score-function estimate. It becomes clear in this case, that the randomized
convex combination does not yield better results than a pure score-function estimator.
The convex combination with 60 evaluations is about as good as a pure score-function
estimator with 40 evaluations here. In section 5.3, we discuss the implications of this
observation in more detail.

4.4 Discrete Distributions

In this section, we evaluate the characteristics of the estimators on discrete mixture models.
As we have shown in section 2.5, all three estimators can be applied to finite, discrete
Gaussian mixture models.

41

Figure 4.10: Losses of training varying combinations of measure-valued and score-
function (MVSF) estimators. The hyperparameters as well as the model
are the same as in figure 4.3. We only vary how many dimensions of the
score-function estimate are randomly replaced by a measure-valued esti-
mate. The estimators are set up such that they use the same number of loss
evaluations, which in this case are always 80 in total. In the legend, a MV /
b SF stands for a dimensions of measure-valued gradient estimates, and b
dimensions of score-function gradient estimates.

Train Losses

160
\ —— 0MV/20SF
——— 10 MV /10 SF
150 \ —— 15MV/5SF
\ —— 20 MV /OSF
140 A 3(,\ w5 MV /15 SF
\
w
& 130 A
-
120 1
110 1
100 T . . .
0 1000 2000 3000 4000
Iterations
Test Losses
130
— 0 MV /20 SF
~—— 10 MV /10 SF
125 4 —— 15MV/5SF
— 20 MV /0 SF
—— 5MV/15SF
120 1
a
o
-
115 4
110 1 _— |
105 T T T T T T T
0 1 2 3 4 5 6 7 8

42

Figure 4.11: Losses of training varying sample sized of the randomized, convex MVSF
combination estimator. In this figure, all MVSF combinations replace 10 of
40 parameter dimensions by measure-valued estimates. Both plots show
the same data, but with different color schemes. In the second plot, we show
the MVSF estimator in red and the pure SF estimator in blue to be able to
directly compare the estimator types. The hyperparameters as well as the
model are the same as in figure 4.3. The estimators are set up such that they
use the same number of loss evaluations, which in this case are always 80

in total.

130.0

127.5 A

125.0 1

122.5 A

120.0 1

Loss

117.5 A

115.0 1

112.5 A

110.0 A1

MVSF 30 evaluations
MVSF 40 evaluations
MVSF 60 evaluations
SF 30 evaluations
SF 40 evaluations
SF 60 evaluations

130.0

127.5 A

125.0 A1

122.5 A

120.0 A

Loss

117.5 A1

115.0 A

112.5 A

110.0 A

MVSF 30 evaluations
MVSF 40 evaluations
MVSF 60 evaluations
SF 30 evaluations
SF 40 evaluations
SF 60 evaluations

43

To get a first impression on the estimators in simple scenarios, we start by using only
categorical distributions. For all of these experiments, we use categorical distributions
with & categories, and start with equal probabilities, i.e., p(x;) = 1/k, i =0, ..., k, unless
stated otherwise. We convert the samples to integers and divide them by k£, such that the
samples are in [0, 1] to display varying k using the same area of the loss. As we allow the
trained parameters w to be in R, we use a softmax-parameterized categorical distribution,
which normalizes the probabilities. Note that due to the construction of the framework,
we ensure that the gradient flows through the softmax parameterization for all three
estimators. We always use k samples for the score-function and pathwise estimators to
have a fair comparison to the k loss function evaluations required by the measure-valued
estimator. To make sure we stay in the same area of the loss function, we normalize the
categorical outputs 7 by dividing by k& — 1, such that i/x—1 € [0, 1].

Small Numbers of Categories. Figure 4.12 shows how the probability mass functions
are adapted when training with the three algorithms. We can see that the measure-valued
estimator on the left gives the most aggressive estimate in this case.

As for the pathwise estimator, the probabilities only change slowly. Also, especially in the
lower probabilities, we see a slight bias, even though the losses are equal for both of them.
These characteristics stem from the Gumbel softmax. To show this more clearly, we can
look at a larger number .

The score-function estimator performs very similar to the pathwise estimator here. We
find that the difference surfaces in larger k as well.

Large Number of Categories. As we increase the number of categories, some character-
istics become more clearly visible. In figure 4.13, we see the probability mass functions of
categorical distributions with £ = 100 categories. Looking at the measure-valued estimator,
we still see promising results. The estimate is unbiased and shows the clearest peak of all
three estimators.

The behavior of the pathwise estimator is a bit more visual than with three categories.
We can still see the same two issues, namely, the slow learning and the slight bias.
Unfortunately, the bias is inherent to the Gumbel softmax [33]. However, we can influence
the learning rate by choosing a lower temperature, as shown in figure 4.14. As we can see,
the temperature controls the aggressiveness of the estimate through altering the uniform
samples. With lower temperatures, the model leans towards the general area of interest

44

Figure 4.12: Probability mass functions while training a categorical distribution with

k = 3, using the SGD optimizer with learning rate o = 0.1, using softmax
parameterization. The loss function is a simple, shifted parabola f(z) =
(x — 0.5)2, shown as a dashed blue line. We train for 100 iterations, plotting
every 20 iterations from top to bottom.

Measure-valued Pathwise Score-function
05T — 05T 77— 051 7
2 N\ /! N\ /! \ -) /!
2 \ / \ / S p(x) /
T 0.4 1 AN / 0.4 \ / 0.4 AN /
T \ / \ / \ /
o \ / \ 4 \ /
iy N 4. N / N %
o | S 4 0.3 N V4 0.3 1 \ 4
P 0.3 \\\ ’/, . \\\ ’/, . \\\ ’,/
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
.05 v 7 0.5 v 7 0.5 v 7
2 N\ / N\ / N /
o \ / \ / \ /
B \ / \ / \ /
© 0.4 \ / 0.4 ' / 0.4 \ /
3 \ / \ / \ /
= N V) N 7 N 4
8 \\ // \\ // \\ //
2 0.3 A \\\~ ”,/ 0.3 1 \\\\ /,// 0.3 A \\\\ ”,/
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
.05 ™ 7 0.5 ~ 7 0.5 ™ 7
2 N\ / N\ / N\ /
'g k Il \\ Il \\ l/
 0.4- \ / 0.4 \ / 0.4 \ J/
3 AN G AN / AN /,
- N / N 4 N 7
o N // N // \\ ,/
¥ 0.3 N , 0.3 1 AN 2 0.3 1 N ,
< Sl -’ Sao 7 Sao -’
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.5 17— - 05T i 05T y
2 \ / \ / \ /
(=} \ / \ / \ /
= \ / \ / \ /
£ 0.41 \\ /' 0.4 1 \\ /l 0.4 1 \\ /l
2 \ / \ / \ /
- N 7z AY 7/ AY 4
o \ 4 \ 4 \ 7
© 0.3+ AN e 0.3 1 AN e 0.3 1 AN e
< \\\ ’// \\\ ’// \\\ ”/
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
.05 ~ T 0.5 ~ T 0.5 ~ -
wn \ / \ / \ /
[\ / \ / \ /
o \ / \ / \ /
= \ / \ / \ /
© 0.4 \\ / 0.4 “\ / 0.4 \ /
8 \ 4 AY / \ 4
.y AS 7 AS 4 AS /
o N 4 N 4 N /
% 0.3 AN e 0.3 A AN e 0.3 4 AN e
< Sao 7 oo 7 Seo _7
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
- 0.5 v g 0.5 ~ 0.5 ~ 4
2 \ / \ / \ /
o \ / \ / \ 7/
2 \ / N / AN /!
© i \ i]
5 0.4 AN / 0.4 N ,/ 0.4 AN K
= \ / AY ’ \ 7
8 \\ ,I \\ // \\ /I
= 0.3 AN e 0.3 1 AN e 0.3 A N e
< S~ S RPtad
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X

45

more quickly, but the bias becomes more pronounced. Since the pathwise estimator is not
the focus of this thesis, we discuss this only with regards to the measure-valued estimator.

As for the score-function estimator, we get a similar shape to the measure-valued estimator.
However, the higher variance of the gradients causes many small errors, and the resulting
expected loss is not as low as the measure-valued estimator result.

Multiple Modes. We looked at a simple parabola to spot characteristics of the estimators,
but in reality that is not what we would like to use mixture models for. In general, we
would like to be able to represent multiple modes of the data, e.g., when encoding digits
for the MNIST dataset. To reflect this in a toy problem, we use a sinusoidal loss function.
We show some intermediate probability mass functions in figure 4.16, since they show
the differences of the estimators well.

In these results, we see the bias of the Gumbel softmax very clearly. The peaks do not
match the minima of the loss function, and the distribution becomes biased towards zero.

On the other hand, we see that the score-function estimator still estimates the general
direction of the gradient correctly. In comparison to the measure-valued estimate, the
results are still not as clear.

The approximate expected values during trainings are shown in figure 4.16, initializing
the parameters with equal probabilities, and figure 4.17 with random initialization. In
general, the measure-valued gradient performs so well here, because it is not really
estimating by sampling. Instead, this gradient is based on an enumeration of the whole
domain, comparable to marginalizing. Obviously, this is only possible for distributions with
finite domains. Still, for finite discrete mixture models based on categorical distributions,
the measure-valued gradient gives us the best results for the gradient of the categorical
distribution. We should note in this case that we can combine different estimators for the
mixture, e.g., using measure-valued estimates for the categorical selector, and pathwise
estimates for the Gaussian components.

Discrete Distributions With Infinite Support. We established that the measure-valued
derivative is a good choice for stable results in the context of finite discrete mixture models.
However, we also find that this result is not suprising, since it actually enumerates the
support of the distribution instead of sampling, and is not stochastic for this reason. While
this yields a reliable gradient for the distribution, we have to evaluate whole support of
the distribution, which can be a downside for very large supports.

46

Figure 4.13: Probability mass functions while training a categorical distribution with

k = 100, learning rate « = 0.1, using softmax parameterization. The loss
function is a simple, shifted parabola f(z) = (z — 0.5)2, shown as a dashed
blue line. We train for 1000 iterations, plotting every 200 iterations from top
to bottom. Since the density of categories is so high here, we plot them as
lines, even though they are still discrete.

Measure-valued Pathwise Score-function
X] 1 J I] N
4 0012 Do 0.012 bl 0.012 . p(x)
s o o b
© [[[
4 1 4 1 4 1
8 0.010 — 0.010 i 0.010 —+
o (] (] [
- [1 Vg
< 1y Vi ‘i
0.008 +— - M - - 0.008 +— - Az - - 0.008 +— - N - -
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
$ 0.012- I 0.012 - I 0.012 - I
o 1 1 1 1 1 1
g | o i
9] - [11
£ 0.010 1 1 0.010 A T 0.010 A T
= || 1 ll] || 1
S V) i 'y
< Y X W
0.008 +— . * . — 0.008 1— . ¥ . — 0.008 1— . i . .
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
) — — —
g 0.012 A ,| ! 0.012 A ‘ ! 0.012 A ,| !
'E 1 ,' ! Il ! 'I
g VT - I
£ 0.010 -) 0.010 A VT 0.010 A !
o 1] 1
o (] [Y
< [[} [
% \) \ \f
0.008 T T ' T T 0.008 T T . T T 0.008 T T . T T
0.00 025 050 075 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
I HE] HE] HE]
8 0.012 A [0.012 [0.012 [
o [Vo Vo
B L . !
@ [[et
o}] + T
£ 0.010 [0.010 - [0.010 - [
o 1 1 1 1 1 1
o [' Vi
© \ \ \
E \/ \/ \/
0.008 +— . ¥ . — 0.008 1— . ¥ . — 0.008 1— . ¥ . .
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
¢ 0.012- v 0.012 v 0.012 - v
k] ! [!
g 1 1 1 1 1]
u T V!]
[1 1 1 1 1 1
£ 0.010 1 i 0.010 A] 0.010 A !
o \ 1 \ 1 \ 1
8 v ! V! '
V! V! V!
2 \J v/ \J
0.008 +— - + - —! 0.008 1 — - t - —! 0.008 1— - t - -
0.00 025 050 0.75 1.00 0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
@ T T T T
50012+ ! ': 0.012 ! i 0.012 ! :"
© ‘.' Vo il
i) ! . |
£ 0.0101 [0.010 1 [0.010 1 [
1 1 1
S [[[
- Y V1 \
< 0.008 1~ . ¥ . —! 0.008 1 — . y . —! 0.008 1 . \ . .
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00

x
x
x

47

Figure 4.14: Evaluating different Gumbel softmax temperatures 7 training a categorical
distribution with & = 100, learning rate o = 0.1, using softmax parameter-

ization. The loss function is a simple, shifted parabola f(x)

(xr —0.5)?,

shown as a dashed blue line. We train for 1000 iterations, plotting every 200
iterations from top to bottom. Since the density of categories is so high here,
we plot them as lines, even though they are still discrete.

=0.1 T=025 T=0. T=0.75 T=1.0
0.0110 i 0.0110 . 0.0110 i 0.0110 . 0.0110 =
. i i " N 1 p(x)
£ 0.0105 1 1 0.0105 T 0.0105 A T 0.0105 A T 0.0105 A V- (0
2 1 1 1 1 .
® 1 i 1 H i
$ 0.0100 H 0.0100 A H 0.0100 A H 0.0100 A H 0.0100 A H
g
= H i H 1 H
2 0.0095 1 i 0.0095 i 0.0095 i 0.0095 Hi 0.0095 i
W i i 1] i
v [[[} i
0.0090 1 + — 0.0090 1 2 — 0.0090 1 s — 0.0090 1 3 — 0.0090 1 : .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0110 - 0.0110 . 0.0110 T 0.0110 T 0.0110 T
: i ' H H h
§ 0.0105 A 1 0.0105 i 0.0105 A " 0.0105 A " 0.0105 A "
® 1l 1 1 1 1
o [N T 1 L L1
£ 0.0100 A Ih 0.0100 H 0.0100 A n 0.0100 A i 0.0100 A m
o i [1 I i
o 11} 1] 1] hH "
~0.0095 i 0.0095 i 0.0095 A i 0.0095 A i 0.0095 A i
< 1] 0 I I u
0.0090 1~ ! — 0.0090 1+ X — 0.0090 1~ X — 0.0090 1~ X — 0.0090 1+ ! .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0110 Y 0.0110 ; 0.0110 - 0.0110 o 0.0110 Y
“ H H H " i
§ 0.0105 A ' H 0.0105 i ! 0.0105 i ! 0.0105 ' ! 0.0105 ' |
8 i] H L [
£ 0.0100 A i 0.0100 i 0.0100 A :u 0.0100 A 1 0.0100 A e
E i i i i i
¥ 0.0095 i 0.0095 i\ 0.0095 |l 0.0095 il 0.0095 I
< i i Hi Hi H
0.0090 1 ¢ — 0.0090 1 : — 0.0090 1 : — 0.0090 1 y — 0.0090 1 : .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0110 o 0.0110 o 0.0110 o 0.0110 o 0.0110 o
" I : I : I : 1 : 1 :
§ 0.0105 A 1 0.0105 T 0.0105 1 0.0105 T 0.0105 i
2 n n b H H
©
£ 0.0100 A 1 0.0100 A H 0.0100 A i 0.0100 A 1 0.0100 A H
= H i i i 1
o III III Ill :l :l
© 0.0095 A W 0.0095 H 0.0095 i 0.0095 A it 0.0095 A h
< i ||' ||' ||' \
0.0090 1 1 — 0.0090 1 L — 0.0090 1] — 0.0090 1 L — 0.0090 1] .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0110 T 0.0110 0.0110 - 0.0110 T 0.0110 T
1 1
i ¥ ' ' ¥
5 0.0105 A N 0.0105 0.0105 i 0.0105 " 0.0105 "
® n Ul e ul
o 1 1 [Nl [
£ 0.0100 A i 0.0100 A 0.0100 A i 0.0100 A i 0.0100 A i
= i I i i
<3 " 1 " 1"
® 0.0095 u 0.0095 0.0095 A u 0.0095 A i 0.0095 A i
< [o o "
0.0090 1~ ! — 0.0090 1 — 0.0090 1~ U — 0.0000 1~ U — 0.0090 L ! ‘
0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0110 o 0.0110 o 0.0110 o 0.0110 o 0.0110 o
v [N} [N [N [N [N
c 1 1y [1 LN}
S 0.0105 4 0.0105 1 0.0105 A i 0.0105 A ¥ 0.0105 A ¥
g 1 : 1 : 1 : 1 :] :
£ 0.0100 1" 0.0100 A " 0.0100 A " 0.0100 A i 0.0100 A 1
=3 " i i 1 1
1 1 1 1 1
2 0.0095 A i 0.0095 H 0.0095 H 0.0095 I 0.0095 i
= 1 Iy [I i
< I [[[[
0.0090 1 0 — 0.0090 1+ 5 — 0.0090 1 C — 0.0090 1 C — 0.0090 1 5 :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X X X

48

Figure 4.15: Probability mass functions while training a categorical distribution with
k = 100, learning rate « = 0.1, using softmax parameterization. The loss
function is a sine f(z) = sin(4wx), shown as a dashed blue line. The loss
function is shifted and squished such that we can see the extrema in the
plot, but it was unaltered during training. We train for 1000 iterations, plotting
every 200 iterations from top to bottom. Since the density of categories is
so high here, we plot them as lines, even though they are still discrete.

At 600 iterations. At 400 iterations. At 200 iterations. At 0 iterations.

At 800 iterations.

At 1000 iterations.

Measure-valued Pathwise Score-function
0.03 7 7~ 0.03 7 7 0.03 7 7,
4 \\ / \\ II II \\ \\ I, / \‘ / \\ p (X) 4
II \ II \ / 1 \ I’ \ 1 II \ I’ \
0.02 4 I \ I \ I 0.02 A 1 \ I \ 1 0.02 4 I \ b === f(x)
1 \ 1 \ I 1 \ 1 \ I 1 \ 1 . i
,l ‘\ ,’ ‘\ 1’ ll ‘\ ,l ‘\ /I II ‘\ II ‘\ Il
0.01 4 \ 0.01 A \ \ 0.01 4)
II \ I’ \‘ Il II \ I' \ ,I ,I \ I’ \\ II
/ \\ / A / \\ / Ny / \\ / \\ /
0.00 £— -t ——t 0.00 £— et e 0.00 £— -t ——f
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.03 7 7, 0.03 7 7 0.03 7 7,
II \‘ I' \‘ II ,/ \\ ,l \‘ I, II \\ I, \‘ I,
1 \ 1 \ 1 1 \ 1 \ 1 1 \ 1 \ 1
0.02 4 1 \ 1 \ 1 0.02 A 1 \ 1 \ ! 0.02 1 1 \ 1 \ !
! \ 1 \ 1 { \ 1 \ 1 1 \ 1 \ 1
1 \‘ ,I \\ II 'I \‘ ,l \‘ ,I ,l \‘ ,I \\ ,I
0.01 A ,,’ (S v 0014 T W 0017 I o
/ \\ /I \ / / \\ /I \ / / \\ /I \\ /
0.00 £— T - " 0.00 £— r - " 0.00 £— : : "
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.03 ~ 7 0.03 7~ 7~ 0.03 ~ 7~
II \\ I/ \\ II I/ \\ II \\ l/ II \\ I/ \\ I/
\ \ \ \ \ \ 1
0.02 4 /' \ I’ \ :I 0.02 A /’ \ :’ \ II 0.02 1' \ 1’ \ I
1 \ 1 \ 1 1 \ 1 \ 1 1 \ 1 \ 1
1 \‘ 'I \\ Il 'I \‘ l’ \‘ Il ,l \‘ [I \\ ll
0011 /’, oo/ oS 0-011 / N \ oS 0-011 / N/ N/
/ \\ / \ / / \\ / \ / / \\ / \\ /
0.00 £— —t ——L 1 0,00 £— — —f 1 0.00 £— —t —t
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.03 7~ 7. 0.03 7, 7~ 0.03 7~ 7,
7\ /7 \ / /7 N\ /7 N\ 4 VY Y 7
II \\ II \‘ I’ ,I \\ I’ \‘ II II \\ II \‘ I’
0.02 4 / \ 1 \ 1 0.02 A / \ 1 \ / 0.02 4 1 \ 1 \]
1 \] \] / \ I} \ / I} \] \ I
1 \‘ ,l \\ Il 'I \‘ ,l \‘ Il ,I \‘ ,I \\ ll
0-011 1’, N/ NS 0-011 / N NN 0-011 / N/ NS
/ \\ / \ / /7 \\ 7/ \ / / \\ 7 \\ /
0.00 £— - —f 1 0,00 £— —f —f 1 0.00 £— L -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.03 7 7~ 0.03 7 7 0.03 7 7,
PR FAR / PR FAR / PR FERY /
1 \ 1 \ 1 1 \ 1 \ 1 1 \ 1 \ 1
0.02 4 I \ 1 \ 1 0.02 A 1 \ 1 \ 1 0.02 4 1 \ 1 \ 1
1 \ 1 \ 1 1 \ 1 \ 1 1 \ 1 \ 1
1 \‘] \\ I 1 \‘ 1 \‘] 1 \‘ 1 \\ /
0.01 1 ,,’ | ,,’ { I,’ 0.01 1 ,,’ \ ,,’ \ ,,’ 0.01 A ,,’ | ,,’ v I,’
! \\ /’ \ /, ! \\ /I \ /, ! ‘\ /’ \\ /I
0.00 T T T T T 0.00 T T T T T 0.00 T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.03 7~ 7, 0.03 7~ 7 0.03 7~ 7
VAEAY 7\ / /N /7 N 4 17\ /7 N\ 7
II \\ ,I \‘ II 'I \\ II \‘ II II \\ ,I \‘ II
0.024 \ ! \ 1 0.024 \ 1 \ ! 0.024 \ ! \ !
1 \] \] / \ I ¥] I} \ I} \]
1 \‘ II \\ II 'I \‘ II \‘ II ,l \‘ II \\ 'l
0.014 / X] \)i 0.014 4 \ I \ / 0.014 4 A I A)i
1 \ 7/ \ 7/ / \ 7 \ 1 1 \ 1 \ 7
/ \ 1/ \ / / AY / \ 7. / \ / \ /
0.00 £— e —t . - ——t . -t e
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X

Figure 4.16: Approximate expected values while training a categorical distribution with
the same set-up as in figure 4.15. We initialize the class probabilities equally
as k.

m— MVD
- Pathwise
- Reinforce

0.086 -

' “"‘W‘W bbb
T 0.082 A | Mmm

0.078 A

0 200 400 600 800
Iterations

50

Figure 4.17: Approximate expected values while training a categorical distribution with the
same set-up as in figure 4.15. For this training, we initialize the probabilities

randomly.
— MVD
0.0925 A - Pathwise
- Reinforce
0.0900 -
0.0875 -

l*‘.
0.0850 \WMW.WMW | .
FrRHRER

0.0800 A

~](6)

0.0775 A

0.0750

0 200 400 600 800
Iterations

51

To further explore the behavior of the measure-valued estimator on discrete distributions,
we look at the Poisson distribution. Since this distribution has infinite support with
only one parameter dimension, the gradient estimation differs with respect to the other
distributions we have evaluated. For the measure-valued gradient estimate of a Poisson
distribution P(\), we use the triplet

=1 pt=PN)+1, p =P).

The sampling strategies for the measure-valued gradient estimates are also listed in table
2.2. Since the Poisson distributon expects the rate A to be positive, we train the model to
output In .

In figure 4.18, we show the results when using measure-valued and score-function esti-
mates to train the expected value of a Poisson distribution on a simple, shifted parabola.

With the measure-valued estimator, we reliably get to the optimum independent of the
starting rate. This is to be expected, because the difference f(x + 1) — f(z) for a sample
x ~ P(ax;) is a finite-difference gradient at . In this case, the simple convex loss function
is easily optimized by that gradient. Figure 4.20 shows, how the stronger skew for small
initial rates requires more iterations to get out of. Generally, we should initialize the
Poisson distribution with a higher rate to encourage exploration.

When comparing the measure-valued estimator to the score-function estimator in this
scenario, we find the score-function estimator to be very unstable. The problem here is
that the score-function estimator tends to overshoot for certain initializing, and struggles
to get out of small rates. Figure 4.19 demonstrates this problem when trying to use a
higher learning rate. This happens, because the score-function estimates rely only on
samples x ~ P(xz;\) of the current distribution. Once the distribution becomes very
biased, i.e., in this case P(0; \) ~ 1, the estimator is simply stuck. While a different
choice of hyperparameters can help with this issue, we consider this a serious downside
as compared to the measure-valued estimator. We discuss the implications of these results
further in section 5.3.

52

Figure 4.18: Approximate expected values while training a Poisson distribution with a
shifted parabola loss. The measure-valued estimator using 1 sample, i.e., 2
loss evaluations, while the score-function estimator uses 2 samples for the
same number of loss evaluations. Learning rate is « = 0.01, training In \.

5.0 - — MVD
Reinforce
4.5 H
3 4.0
=
l
3.5 1
3.0 A
\/\/\’\'
0 20 40 60 80
Iterations

53

Figure 4.19: Probability mass functions while training a Poisson distribution with the
score-function estimator using 2 samples. We only vary the initial rates,
learning rate is a = 0.1, training In \. The learning rate is too high in this
case, hence the estimator overshoots and gets stuck in an extremely skewed
distribution.

Ao = 0.367879441 Ao =1.0 Ao =5.0 Ao = 10.0
1.0 1.0 1.0 1.0
\ 1 1 1 1 1 \ 1
.) 1 1 1) 1) 1
¥ 0.8 1 1 0.8 1 1] 0.8 1 \] 0.8 1 1 1
S] 1 \ 1 } 1] 1
=] \ 1 \ 1
£ 06 \ ! 0.6 \ ! 0.6 \ B 0.6 \ !
@ \ 1 \] \ 1 \ 1
£ 0.4 \ ! 0.4 \ ! 0.4 \] 0.4 \ !
o \ 1 \ 1 \ 1 —)\ 1
202 NS 0.2 o/ 0.2 1 NS 0.2 NS
s \] px) N/
0.0 — 0.0 —L 0.0 — 0.0 —
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
1.0 T 7 1.0 - 7 1.0 - 7 1.0 - T
208 \ 1 0.8 \ 1 0.8 \ 1 0.8 \ I
2 ' { ! | ! | K {
© 0.6 ! | 0.6 } ! 0.6 \ | 0.6 ! |
2 \ ! \ ! \ ! \ !
=04 \ ! 0.4+ \ ! 0.4 \ ! 0.4+ \ !
o \ 1 \ 1 \ 1 \ 1
n \ 1 \ 1 \ 1 \ 1
+ 0.2 N 0.2 N 0.2 @4 0.2 N
< \ ,I \ /I \ /l \ ,I
0.0 t 7 0.0 7 7 0.0 T T 0.0 t 7
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
X X X X

Figure 4.20: Probability mass functions while training a Poisson distribution with the
measure-valued estimator using 1 sample, i.e., 2 loss evaluations. We only
vary the initial rates, learning rate is a = 0.1, training In \. Unlike the score-
function estimator in figure 4.19, the measure-valued estimator reliably finds
a solution, independent of starting parameters.

Ao = 0.367879441 Ao = 1.0 Ao = 5.0 Ao = 10.0
1.0 0 1.0 1.0
\ 1 1 1 1 1 \ 1
.) 1) 1) 1) 1
£ 0.8 1 1 0.84 [l i 0.8 \] 0.8 1 1
S \] \] \ 1 \ 1
=] \ 1 \ 1 \ 1 \ 1
£ 0.6 \ ! 0.6 \) 0.6 \ ! 0.6 \ !
7] \ 1 \ 1 \ 1 \ 1
2 0.4 \ ! 0.4 \ ! 0.4 \ ! 0.4 \ !
s \ | \ -—- f(x)
202 NS 0.2 o/ 0.2 1 N 0.2 NS
s \ oy px) N/
0.0 =l 0.0 — 0.0 o 0.0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
1.0 - 7 1.0 - 7 1.0 T 7 1.0 - 7
2 0.8 \ 1 0.8 \ 1 0.8 \ 1 0.8 \ I
o \ ! \ ! \ H \ !
® 0.6 \ H 0.6 \ ! 0.6 \ I 0.6 \ H
S \ ! \ ! \ ! \ !
Z04 \ H 0.4 4 \ ! 0.4 \ H 0.4 1 \ !
I \ 1 \ ! ' ' \]
= 0.2 N 0.2 \ 0.2 Ve 0.2 Ny
< \ ,/ \ // \ ,l \ ,/
0.0 r " 0.0 r T 0.0 r T 0.0
0 2 4 6 0 2 4 6 0 2 4 6 2 4 6
X X X X

54

5 Discussion

In this chapter, we discuss the results presented in chapter 4. The sections highlight some
of the most important characterizing differences we find, and discuss their implications.
Also, we work out some aspects which would require more research to get a better
understanding.

5.1 The Expected Advantage of the Pathwise Estimator

We conclude that the pathwise estimator is almost always the preferred choice if applicable.

Throughout chapter 4, we have seen the pathwise estimator outperforming the other
two estimators. This is generally not surprising, as we discussed in section 2.1. Since
the pathwise estimator uses all the gradient information of the whole computation, it
produces very low variance estimates. However, we have also shown some downsides to
this approach. In some tasks, differentiability of all intermediate computations introduces
some other problems.

For discrete distributions, we have seen that the Gumbel-softmax trick allows us to estimate
the gradient, but the bias becomes problematic in multimodal situations. We have seen
this problem in section 4.4, and figure 4.16, where the other estimators show much better
results.

In addition to the downsides of the estimator, we also find some other interesting char-
acteristics. In figure 4.5, we have seen that sometimes the pathwise estimator performs
better with less samples. While further investigation of this is outside the scope of the
thesis, we propose two lines of reasoning for this. For one, it is likely that the additional
samples do not contribute meaningfully to the gradient estimate. Hence, any additional
computation on these samples is wasted, as the gradient direction stays the same. Second,
and opposite to the first reasoning, it is possible that a smaller number of samples increases

55

the variance enough to allow the gradient estimate to break out of poor local minima. In
our case, we find the first reasoning more likely, since the higher variances estimators
still achieve less performance in the same time. These findings are also supported by the
considerations of Mohamed et al. [46].

5.2 Issues of the Score-Function Estimator

In this section, we discuss reasons why the score-function estimator may often not be the
best choice for the tasks we evaluated.

Especially in more complex tasks, such as the variational auto-encoder, we find that the
score-function estimator has very high variance. However, since this was not the focus of
this thesis, we did not optimize the score-function estimator as much. Still, we find that
its performance in the best cases only just about matches the performance of the pathwise
estimator. Though this is not a surprise, as stated in section 5.1, we can only confirm this
assumption. Hence, the score-function estimator remains a viable choice only when there
are non-differentiable components in either the loss function, or the distribution itself.

When trying to combine the score-function estimator and the measure-valued estimator
in a convex combination, we find there is some potential for optimization. We were
not able to improve upon the score-function estimator’s performance. Still, we cannot
rule out the potential of the approach. Most suprisingly, we find that the combination
estimator’s performance was best when we used fewer measure-valued dimensions. This
could mean that replacing a small number of dimensions might be enough to benefit from
the low variance of the measure-valued estimate. The results indicate that a randomized
combination is probably not informed enough, and improving the replacement strategy is
required.

We conclude that comparing the score-function estimator to the measure-valued estimator,
we found that for complex tasks, the measure-valued estimator tends to have lower
variance for the same number of function evaluations. It is hard to say which have the
better performance, but our results suggest that the measure-valued estimator has an
advantage here. In our process time comparisons, the score-function estimator suffers a
lot more from a higher number of samples. We acknowledge, however, that this might be
due to the lacking optimization of the score-function estimator. For our score-function
estimator implementation, we rely on the sampling and log probability implementations of
PyTorch, while the measure-valued derivative uses our own implementation for sampling

56

and gradient calculations. Of note, however, is that the score-function estimator requires
more backpropagation for the gradient of the log probabilities, while the measure-valued
derivative computes the gradient of the parameters directly.

5.3 Potential of the Measure-Valued Estimator

In this section, we show the potential of the measure-valued estimator in situations, where
the pathwise estimator is not applicable.

Even though we find that the pathwise estimator clearly outperforms the other estimators
in most applications, we identify certain tasks in which the pathwise estimator struggles.
We suggest that the measure-valued estimator is a strong choice in these scenarios, as it
often produces better results than the score-function estimator. Our results of chapter 4
suggest that the measure-valued estimator is a low variance estimator requiring less care
in the selection of hyperparameters. It performs well throughout all experiments, with
different datasets, models, optimizers, and latent dimension sizes. Its major downside,
however, is the scaling of the required function evaluations. The dimension size factor
limits the choice of number of samples taken per estimate. In comparison, we are free to
choose any number of samples for the other estimators. In a scenario with a large number
of latent dimensions, the sample size can become very important, making these situations
a big problem for the measure-valued estimator.

The optimal gradient estimator differs often between scenarios, but we cannot recommend
the measure-valued estimator as a default choice. When applicable, we find that the
pathwise estimator often outperforms it, while providing some more flexibility in the
choice of hyperparameters. However, whenever a problem requires additional steps to
make the pathwise estimator work, e.g. using discrete distributions, it is worth it to
consider the measure-valued estimator as a low variance alternative.

We find that the optimal estimator choice often depends on the specific use case, and the
estimators differ enough to be able to differentiate them for most specific requirements.
However, in most scenarios we have explored, we can recommend the measure-valued
estimator over the score-function estimator. Our experiments have shown that the gradient
calculations are quicker with the measure-valued estimator, given the same number
of function evaluations. Also, the measure-valued estimator seems less restrictive on
the hyperparameters, and reliably finds local solutions in all experiments. Hence, we
would recommend the score-function estimator over the measure-valued estimator only

57

in situations, where a lower number of samples with the score-function estimator is
advantageous.

For the rest of this section, we discuss our results with regards to the specific scenarios
and ideas we have explored in chapter 4.

Convex Combinations Concerning the approach of convex combinations, our results
indicate that simply replacing random dimensions does not yield better results than just
using one of the estimators. Still, there is a lot of space for further research here, as we
could imagine a lot better performance with a better combination strategy. While the
results of convex combinations were worse for us, we have to recognize that we chose
the most simple implementation for the approach. We suspect a well informed strategy
for choosing the measure-valued estimate dimensions could improve this approach a lot.
To find such a strategy we recommend investigating ways to find the dimensions which
influence the score-function estimate’s variance the most, and replacing those dimensions.

Discrete Mixture Models. Another approach we evaluate is the use of the measure-valued
estimator for discrete mixture models. The most common form of discrete mixture models
are Gaussian mixture models. In section 4.2, we conclude that the pathwise estimator is
probably the best choice for normal distributions. Hence, we focus our evaluations on the
selectors, which are categorical distributions in the case of discrete Gaussian mixtures.
We find that the measure-valued estimator enumerates the support of the distribution
in this case. This makes the gradient inherently not stochastic. Unsurprisingly, we find
that the resulting gradient works very well for various loss shapes. However, it comes
with the major downside of being completely rigid in terms of loss function evaluations.
It requires exactly k evaluations, where k is the number of categories. We find that the
other estimators in this case allow for some more flexibility, but yield much less reliable
results. Interestingly, the score-function estimator proved as the second best choice in this
scenario, as it still yields an unbiased, but stochastic result. The pathwise estimator using
the Gumbel-softmax trick we have to apply for categorical distributions yields less good
results. This seems especially problematic for multimodal losses, which we would expect
in most real-world applications.

Concluding, for the gradient of the discrete, finite selector of the mixture, we recommend
the measure-valued estimator, or the score-function estimator, if less loss evaluations are
desirable. For the gradient of the Gaussian components, we recommend the pathwise
estimator, as they are easily reparameterizable.

58

Poisson Distributions. Since the measure-valued derivative relies on enumerations for
categorical distributions, we also evaluate Poisson distributions as discrete distributions
with infinite support. We find that the measure-valued estimator is much more stable than
the score-function estimator.

Our results demonstrate some areas where the score-function estimator struggles in figure
4.19. On one side, if the rate A of the distribution is very low, the distribution becomes
skewed towards zero, i.e., P(0;) ~ 1 for A — 0. For the score-function estimator, since it
samples x ~ P(x) directly, we end up only sampling one value. To alleviate this problem
we have two options. Simply reducing the learning rate is sometimes enough to avoid
overshooting into this problem. While this approach is easy, it does not guarantee that this
doesn’t happen. The other option is trying to choose a baseline with a smaller decay rate.
This only works if the initial rate was not in the critical range close to zero, because the
baseline has to incorporate the loss difference to other areas. As we can see, both options
only reduce one part of the problem. On the other side, if the rate \ is very large, the
probabilities become very small. Since the score-function estimator relies on the gradient
of the log probabilities, it produces large gradients at this point. If the learning rate is not
chosen carefully, or if) is sufficiently large, it often reduces \ to a very small number. At
this point it is again running into the A — 0 problem where the distribution is skewed
towards one value. Hence, the choice of initial)\ is essential to the performance of the
score-function estimator on Poisson distributions.

The measure-valued estimator has shown stable results in our experiments, mostly indepen-
dent of \g. A very small)y requires a few more iterations, but nonetheless the learning is
stable in this case as well. We find that the measure-valued estimator seems the preferred
choice of estimator in this case, because it is unaffected by the skew of the distribution.
Also, the estimator is not as restrictive for Poisson distributions, as they have only one
parameter, so they require at most only two loss evaluations for an estimate. Hence, for
Poisson distributions, we recommend the measure-valued estimator as the most stable
choice.

59

6 Conclusion

In this thesis, we implement a framework for gradient estimators for stochastic nodes
in computational graphs, and use our framework to explore possible use-cases for the
measure-valued gradient estimator. We compare our results to current research in the
area, and find that our framework reveals some more details on the distinct characteristics
of the measure-valued estimator. For some cases, we show a clear advantage over the
score-function estimator. However, for most cases, we show that the pathwise estimator is
still preferable. We find that the variances of the measure-valued and pathwise estimators
are in fact very close for standard VAE architectures, using fully connected, convolutional,
and recurrent layers.

Discrete distributions are one area where we found the measure-valued derivative to
perform the most stable, and yield the best results of all three estimators. However, it is
not stochastic in this case, as it enumerates the domain of the distribution. The pathwise
estimator seems to suffer a lot from the Gumbel-softmax trick. Even though the score-
function estimator seems preferrable to the pathwise estimator in these cases, we still
find that the higher flexibility of sample size compared to the measure-valued derivative
might often not be worth it.

Considering the convex combination of the score-function estimator with partial measure-
valued estimates, we find some interesting open research questions. While we were not
able to improve the performance of the vanilla estimators by this combination, we could
show that a convex combination still yields stable results, and remains a valid choice for
an estimator. Since we only explored a randomized combination, we suggest that a more
informed version may be able to improve upon these results, and could be a valuable
alternative to the vanilla estimators.

Generally, the measure-valued estimator has shown stable results, performing well in
all cases. Similarly to the pathwise estimator, we find that it does not rely as much on
hyperparameter tuning as the score-function estimator. In conclusion, while the measure-
valued gradient estimator is probably not the best choice if the pathwise estimator is

60

applicable, it shows potential in many scenarios, and seems a reliable, stable alternative,
for example, when using non-differentiable loss functions.

61

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey Andreyevich Radul. “Au-
tomatic differentiation in machine learning: a survey”. In: CoRR abs/1502.05767
(2015). arXiv: 1502.05767. urL: http://arxiv.org/abs/1502.05767.

Yoshua Bengio, Eric Thibodeau-Laufer, and Jason Yosinski. “Deep Generative
Stochastic Networks Trainable by Backprop”. In: CoRR abs/1306.1091 (2013).
arXiv: 1306.1091. urL: http://arxiv.org/abs/1306.1091.

P.J. Bickel and K.A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics.
Mathematical Statistics: Basic Ideas and Selected Topics Vol. 1. Prentice Hall,
2001. 1sBN: 9780138503635. urL: https://books.google.de/books?id=
8p0ZAQAATAAJ.

P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics.
Wiley, 2012. 1sBN: 9781118341919. urL: https : / /books . google . de/
books?id=a3gavZbxydJcC.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. 1sBN: 0387310738.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference: A
Review for Statisticians”. In: Journal of the American Statistical Association 112.518
(Apr. 2017), pp. 859-877. 1ssN: 1537-274X. por: 10.1080/01621459.2017 .
1285773. urL: http://dx.doi.org/10.1080/01621459.2017.1285773.

Lars Buesing, T. Weber, and S. Mohamed. “Stochastic Gradient Estimation With
Finite Differences”. In: 2016.

Luca Capriotti. Reducing the Variance of Likelihood Ratio Greeks with Monte Carlo.
2008. arXiv: 8808.2332 [physics.data-an].

Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014).
arXiv: 1406.1078. urL: http://arxiv.org/abs/1406.1078.

62

https://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1306.1091
http://arxiv.org/abs/1306.1091
https://books.google.de/books?id=8poZAQAAIAAJ
https://books.google.de/books?id=8poZAQAAIAAJ
https://books.google.de/books?id=a3gavZbxyJcC
https://books.google.de/books?id=a3gavZbxyJcC
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/0808.2332
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. urL: http:
//archive.ics.uci.edu/ml.

Otto Fabius and Joost R. van Amersfoort. Variational Recurrent Auto-Encoders. 2015.
arXiv: 1412 .6581 [stat.ML].

Michael Figurnov, Shakir Mohamed, and Andriy Mnih. “Implicit Reparameterization
Gradients”. In: CoRR abs/1805.08498 (2018). arXiv: 1805.08498. urL: http:
//arxiv.org/abs/1805.08498.

Harley Flanders. “Differentiation Under the Integral Sign”. In: The American Math-
ematical Monthly 80.6 (1973), pp. 615-627. 1ssN: 00029890, 19300972. URL:
http://www.jstor.org/stable/2319163.

Paul Glasserman. “Gradient Estimation Via Perturbation Analysis”. In: (1991).
P. Glynn. “Likelihood ratio gradient estimation: an overview”. In: WSC ’87. 1987.

Peter W. Glynn. “Likelihood Ratio Gradient Estimation for Stochastic Systems”. In:
Commun. ACM 33.10 (Oct. 1990), pp. 75-84. 1ssN: 0001-0782. po1: 10.1145/
84537 .84552. urL: https://doi.org/10.1145/84537.84552.

Peter W. Glynn and Donald L. Iglehart. “Importance Sampling for Stochastic Simu-
lations”. In: Management Science 35.11 (1989), pp. 1367-1392. 1ssN: 00251909,
15265501. urL: http://www. jstor.org/stable/2632283.

Peter W. Glynn and Pierre L’Ecuyer. “Likelihood Ratio Gradient Estimation for
Stochastic Recursions”. In: Advances in Applied Probability 27.4 (1995), pp. 1019-
1053. 1ssN: 00018678. UrRL: http://www.jstor.org/stable/1427933.

Peter W. Glynn and Roberto Szechtman. “Some New Perspectives on the Method of
Control Variates”. In: Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer-
Verlag, 2000, pp. 27-49.

Ary Goldberger et al. “PhysioBank, PhysioToolkit, and PhysioNet : Components of a
New Research Resource for Complex Physiologic Signals”. In: Circulation 101 (July
2000), E215-20. po1: 10.1161/01.CIR.101.23.e215.

W.B. Gong and Y.-C Ho. “Smoothed (conditional) perturbation analysis of discrete
event dynamical systems”. In: IEEE Transactions on Automatic Control 32 (Oct.
1987), pp. 858-866.

Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In:
CoRR abs/1701.00160 (2017). arXiv: 1701 .60160. urL: http://arxiv.org/
abs/17061.00160.

63

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1412.6581
https://arxiv.org/abs/1805.08498
http://arxiv.org/abs/1805.08498
http://arxiv.org/abs/1805.08498
http://www.jstor.org/stable/2319163
https://doi.org/10.1145/84537.84552
https://doi.org/10.1145/84537.84552
https://doi.org/10.1145/84537.84552
http://www.jstor.org/stable/2632283
http://www.jstor.org/stable/1427933
https://doi.org/10.1161/01.CIR.101.23.e215
https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160

[23] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. “Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning”. In: J. Mach. Learn.
Res. 5 (Dec. 2004), pp. 1471-1530. 1ssN: 1532-4435.

[24] G. Grimmett, G.R. Grimmett, and D. Stirzaker. Probability and Random Processes.
Probability and Random Processes. OUP Oxford, 2001. 1sBN: 9780198572220.
URL: https://books.google.de/books?id=G31ig-0OM4wSIC.

[25] G. Grimmett and D. Stirzaker. “Probability and random processes”. In: 1982.

[26] Shixiang Gu et al. MuProp: Unbiased Backpropagation for Stochastic Neural Networks.
2016. arXiv: 1511.085176 [cs.LG].

[27] B. Heidergott, F. Vazquez-Abad, and Warren Volk-Makarewicz. “Sensitivity estima-
tion for Gaussian systems”. In: Eur. J. Oper. Res. 187 (2008), pp. 193-207.

[28] Bernd Heidergott, Felisa Vazquez-Abad, and Member Gerad. “Measure valued
differentiation for stochastic processes: The finite horizon case”. In: Jan. 2000.

[29] Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735-1780. 1ssN: 0899-7667. po1: 18.1162/neco.
1997.9.8.1735. urL: https://doi.org/10.1162/neco.1997.9.8.
1735.

[30] Matthew D. Hoffman and David M. Blei. Structured Stochastic Variational Inference.
2014. arXiv: 1404 .4114 [cs.LG].

[31] M. Iri and K. Tanabe. Mathematical Programming: Recent Developments and Ap-
plications. Mathematics and its Applications. Springer Netherlands, 1989. 1sBN:
9780792304906. urL: https://books.google.de/books?id=bkjvAAAAMAAJ.

[32] Tommi Jaakkola and Michael Jordan. “A variational approach to Bayesian logistic
regression models and their extensions”. In: (Aug. 2001).

[33] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-
Softmax. 2017. arXiv: 1611.01144 [stat.ML].

[34] Martin Jankowiak and Theofanis Karaletsos. “Pathwise Derivatives for Multivariate
Distributions”. In: Proceedings of the Twenty-Second International Conference on Arti-
ficial Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama.
Vol. 89. Proceedings of Machine Learning Research. PMLR, Apr. 2019, pp. 333-342.
URL: https://proceedings.mlr.press/v89/jankowiak19a.html.

[35] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2014. arXiv:
1312.6114 [stat.ML].

64

https://books.google.de/books?id=G3ig-0M4wSIC
https://arxiv.org/abs/1511.05176
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1404.4114
https://books.google.de/books?id=bkjvAAAAMAAJ
https://arxiv.org/abs/1611.01144
https://proceedings.mlr.press/v89/jankowiak19a.html
https://arxiv.org/abs/1312.6114

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2015).

Diederik P. Kingma et al. “Semi-supervised Learning with Deep Generative Models”.
In: NIPS. 2014.

Alp Kucukelbir et al. Automatic Differentiation Variational Inference. 2016. arXiv:
1603.00788 [stat.ML].

H. Kushner and G.G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Stochastic Modelling and Applied Probability. Springer New York,
2003. 1sBN: 9780387008943. UrL: https://books.google.de/books?id=
EC2w1SaPb7YC.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level
concept learning through probabilistic program induction”. In: Science 350.6266
(2015), pp. 1332-1338. 1ssN: 0036-8075. po1: 10.1126/science.aab3050.
eprint: https://science.sciencemag.org/content/350/6266/1332.
full . pdf. urL: https://science.sciencemag.org/content/350/
6266/1332.

Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In: (2010).
URL: http://yann.lecun.com/exdb/mnist/.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. “Reparameterization Gradient for
Non-differentiable Models”. In: CoRR abs/1806.00176 (2018). arXiv: 1806 .060176.
URL: http://arxiv.org/abs/1806.00176.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https : / /www .
tensorflow.org/.

J. Carvalho et al. “An Empirical Analysis of Measure-Valued Derivatives for Policy
Gradients”. In: International Joint Conference on Neural Networks (IJCNN). 2021.
URL: https://www. ias . informatik . tu-darmstadt . de/uploads/
Team/JoaoCarvalho/2621_ijcnn-mvd_rl.pdf.

Nicholas Metropolis and S. Ulam. “The Monte Carlo Method”. In: Journal of
the American Statistical Association 44.247 (1949). PMID: 18139350, pp. 335-
341. po1r: 10.1080/01621459 . 1949 . 10483310. eprint: https : / / www.
tandfonline.com/doi/pdf/10.1680/01621459.1949.10483310. URL:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.
104833160.

65

https://arxiv.org/abs/1603.00788
https://books.google.de/books?id=EC2w1SaPb7YC
https://books.google.de/books?id=EC2w1SaPb7YC
https://doi.org/10.1126/science.aab3050
https://science.sciencemag.org/content/350/6266/1332.full.pdf
https://science.sciencemag.org/content/350/6266/1332.full.pdf
https://science.sciencemag.org/content/350/6266/1332
https://science.sciencemag.org/content/350/6266/1332
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1806.00176
http://arxiv.org/abs/1806.00176
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/JoaoCarvalho/2021_ijcnn-mvd_rl.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/JoaoCarvalho/2021_ijcnn-mvd_rl.pdf
https://doi.org/10.1080/01621459.1949.10483310
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1949.10483310
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1949.10483310
https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310
https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310

[46] S. Mohamed et al. “Monte Carlo Gradient Estimation in Machine Learning”. In: J.
Mach. Learn. Res. 21 (2020), 132:1-132:62.

[47] Kevin P Murphy. Machine learning: a probabilistic perspective. Cambridge, MA, 2012.

[48] John Paisley, David Blei, and Michael Jordan. Variational Bayesian Inference with
Stochastic Search. 2012. arXiv: 1206 .6430 [cs.LG].

[49] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. arXiv: 1912.01703 [cs.LG].

[50] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of
machine learning research 12.0ct (2011), pp. 2825-2830.

[51] G. Ch. Pflug. “Sampling Derivatives of Probabilities”. In: Computing 42.4 (Oct.
1989), pp. 315-328. 1ssN: 0010-485X. po1: 10.1007 /BF02243227. urL: https:
//doi.org/10.1007/BF02243227.

[52] Mihaela Rosca and Michael Figurnov. Measure-Valued Derivatives for Approximate
Bayesian Inference. 2019.

[53] John Schulman et al. “Gradient Estimation Using Stochastic Computation Graphs”.
In: NIPS. 2015.

[54] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output Repre-
sentation using Deep Conditional Generative Models”. In: NIPS. 2015, pp. 3483-
3491.urL: http://papers.nips.cc/paper/5775-1earning-structured-
output - representation-using- deep-conditional - generative-
models.

[55] A.K Subramanian. PyTorch-VAE. https://github.com/AntixK/PyTorch-
VAE. 2020.

[56] A. Takeshi, T.A. AMEMIYA, and Harvard University Press. Advanced Econometrics.
Harvard University Press, 1985. 1sBN: 9780674005600. urL: https://books.
google.de/books?id=0bzGQE14CwEC.

[57] Ilya Tolstikhin et al. Wasserstein Auto-Encoders. 2019. arXiv: 1711.01558 [stat.ML].

[58] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning”. In: Machine Learning 8 (1992), pp. 229-256. por:
10.1023/A:1022672621406.

[59] Mark Zlochin and Yoram Baram. “The Bias-Variance Dilemma of the Monte Carlo
Method”. In: July 2000. 1sBN: 978-3-540-42486-4. po1: 10.1007 /3-540-44668-
0_20.

66

https://arxiv.org/abs/1206.6430
https://arxiv.org/abs/1912.01703
https://doi.org/10.1007/BF02243227
https://doi.org/10.1007/BF02243227
https://doi.org/10.1007/BF02243227
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://books.google.de/books?id=0bzGQE14CwEC
https://books.google.de/books?id=0bzGQE14CwEC
https://arxiv.org/abs/1711.01558
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1007/3-540-44668-0_20
https://doi.org/10.1007/3-540-44668-0_20

	Introduction
	Notation
	Probabilistic Objectives
	Related Work

	Gradient Estimators
	Pathwise Gradient Estimator
	Score-Function Gradient Estimator
	Measure-Valued Derivative
	Convex Combination of Estimators
	Gaussian Mixture Models

	A Framework for Monte-Carlo Gradient Estimators
	Framework Description
	Extensibility of the Framework
	Bayesian Logistic Regression
	Variational Auto-Encoders

	Gradient Analysis
	Bayesian Logistic Regression
	Variational Auto-Encoder
	Randomized Convex Combinations
	Discrete Distributions

	Discussion
	The Expected Advantage of the Pathwise Estimator
	Issues of the Score-Function Estimator
	Potential of the Measure-Valued Estimator

	Conclusion

