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Abstract

In this thesis, we analyze Monte-Carlo gradient estimators for episodic policy search. The
widely-used score function estimator has a high variance and low computational complex-
ity, whereas the lesser-known measure-valued derivative estimator shows low variance at
the cost of linear scaling of computational complexity with parameter dimensions.

Therefore, we explore combinations of both estimators to obtain a gradient estimator
with low variance and low computational complexity. We first investigate a convex
combination of score function and measure-valued estimator at selected sub-dimensions
and then examine partially correcting score function gradients from previous iterations
with measure-valued gradient estimates. To obtain an initial understanding of both
estimators, we first conduct experiments on black-box test functions and a simplified
episodic task. We then compare approaches of combining estimators on the continuous
control Mujoco tasks in terms of their average rewards, variances, and deviations from
reference gradients.

Our experiments reveal comparable or improved average rewards for a convex combination
compared to a score function baseline. The combination increases the variance of the
overall estimator but decreases variance for a subset of chosen dimensions. However, the
level of variance decrease is strongly affected by the parameters chosen for the combined
estimator, such as the number of selected dimensions. Our results also demonstrate a
significant impact of the dimension selection strategy and the combination weights on the
combined estimators. We find that a convex combination of the measure-valued derivative
can achieve high variance reduction at chosen dimensions. However, with growing number
of chosen dimensions, the advantage of utilizing the measure-valued derivative diminishes.
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Zusammenfassung

In dieser Arbeit analysieren wir Monte-Carlo-Gradientenschätzer für die episodische
Policy-Suche. Der weit verbreitete Score-Funktion-Schätzer hat eine hohe Varianz und
eine niedrige Rechenkomplexität, während der Measure-Valued-Derivative-Schätzer eine
niedrige Varianz, aber eine lineare Skalierung der Rechenkomplexität mit der Parameter-
dimension aufweist.

Daher untersuchen wir Kombinationen beider Schätzer, um einen Gradientenschätzer
mit geringer Varianz und geringer Rechenkomplexität zu erhalten. Wir untersuchen
zunächst eine konvexe Kombination aus Score-Funktion- und Measure-Valued-Derivative-
Schätzer bei ausgewählten Dimensionen und untersuchen dann die Teil-Korrektur von
Score-Funktions-Gradienten aus früheren Iterationen mit dem Measure-Valued-Derivative-
Gradienten. Um ein erstes Verständnis für beide Schätzer zu erlangen, führen wir Expe-
rimente mit Black-Box-Testfunktionen und vereinfachten episodischen Aufgaben durch.
Anschließend vergleichen wir die Ansätze zur Kombination der Schätzer auf den Mujoco-
Aufgaben.

Unsere Experimente zeigen vergleichbare oder verbesserte Rewards für eine konvexe
Kombination im Vergleich zu einem Score-Funktion-Schätzer. Die Kombination erhöht
die Varianz des Gesamtschätzers, verringert aber die Varianz für eine Teilmenge der
ausgewählten Dimensionen. Das Ausmaß der Varianzverringerung wird jedoch stark von
den Parametern für den kombinierten Schätzer beeinflusst, wie etwa die Anzahl der
ausgewählten Dimensionen. Unsere Ergebnisse zeigen auch einen signifikanten Einfluss
der Dimensionsauswahlstrategie und der Kombinationsgewichte auf die kombinierten
Schätzer.

Wir stellen fest, dass der Measure-Valued-Derivative-Schätzer eine hohe Varianzreduktion
erreicht. Mit zunehmenden Dimensionen verringert sich jedoch der Vorteil der Verwen-
dung des Measure-Valued Derivative-Schätzer. Da die Berechnungskomplexität mit den
Parameterdimensionen skaliert, erzielt ein Score-Funktion-Schätzer mit der gleichen
Komplexität oft vergleichbare Ergebnisse.
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Notation

SF Score function

MVD Measure valued derivative

ηSF
N A score function estimator using N samples.

ηMVD
M A measure valued derivative estimator using M samples.

ĝSF Single score function gradient estimate or sample.

ĝMVD Single measure valued derivative estimate or sample.

x Plain script denotes scalars

x Bold script denotes vectors.

X Uppercase bold script denotes matrices.

In Identity matrix of dimension n

∇xf(x) Nabla operator describes ∇xf(x) =
[︂
∂f(x)
∂xi

...∂f(x)∂xN

]︂
⟨x,y⟩ Describes the scalar product between vectors x and y.

p(x;ω) Probability distribution of random variable x parametrized by ω.

x ∼ p(x;ω) x is sampled according to p(x;ω).

Ep(x;ω) [f(x)] Expected value of f(x), where x is distributed by p(x;ω).

Vp(x;ω) [f(x)] Variance of f(x), where x is distributed by p(x;ω).

N (x;µ,Σ) Normal distribution with mean µ and covariance Σ.
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1. Introduction

In Monte-Carlo gradient estimation, we are concerned with finding the gradient of the
distributional parameters of an expectation. This seemingly specific problem is ubiquitous
in applications ranging from operational research [21, 40] to derivative pricing [15, 10]
and generative modelling [20].

Another field where Monte-Carlo gradient estimation plays an important role is reinforce-
ment learning. In particular, the score function estimator, which was originally introduced
through the REINFORCE algorithm [44], has been widely used for policy search and
actor-critic methods. However, the score function estimator is known to show high vari-
ances without a proper variance reduction method [17]. This high variance constitutes
the biggest drawback for the score function since less precise gradients lead to slower
convergence. Therefore, reducing the variance of gradient estimators translates directly
to an improvement in many reinforcement learning methods.

At the same time, episodic policy search methods have achieved remarkable success.
Algorithms like evolutionary strategies [35] use the score function estimator to optimize
policy parameters in a black-box optimization setting. Evolutionary strategies combine
the score function with additional heuristics to stabilize the algorithm and have shown
performance on par with more complex policy gradient methods. With the additional
advantage of large-scale parallelization, reduced variance for long-horizon tasks, and with-
out the requirement to backpropagate a gradient, algorithms in the class of evolutionary
strategies offer an attractive alternative to other reinforcement learning methods.

One viable way to improve such algorithms is to use a gradient estimator with less
variance. A lesser-known gradient estimator using the measure-valued derivative (MVD)
[30] provides such an alternative. Despite its low variance properties, the MVD estimator
has not enjoyed wide attention in the reinforcement learning community. For this reason,
we will explore in this thesis ways of applying the MVD to improve gradient estimation
for the setting of episodic policy search.
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The thesis is outlined as follows. In the remainder of this chapter, we will define the
problem and introduce related works. We explain the three most widely used gradient
estimators and their advantages and disadvantages in Chapter 2. Chapter 3 introduces
the setting of episodic policy search and how the introduced estimators can be applied in
this setting. Chapter 4 details the approaches we will use to extend the score function
estimator with the MVD. In Chapter 5, we conduct experiments analyzing the different
estimators and the extensions utilizing the MVD. Finally, Chapter 6 discusses the potential
use cases for the MVD in episodic policy search and gives an outlook on possible future
research directions.

1.1. Problem Statement

Our goal for this thesis is to improve gradient estimation for the objective below.

J(ω) = Ep(θ;ω) [f(θ)] =

∫︂
θ
f(θ)p(θ;ω) dθ, (1.1)

where we aim to find the parameters ω of distribution p(θ;ω) that maximizes the objective
J(ω).

argmax
ω

J(ω)

Here f(θ) is assumed to be an unknown function, i.e. we are dealing with a black-
box optimization problem. We can solve this problem via Gradient Ascent [28]. For
this purpose an estimate of the gradient is needed. By assuming interchangeability of
integration and derivation, we can rewrite (1.1). For the validity of the assumption, we
refer to [27].

∇ωJ(ω) = ∇ω

∫︂
θ
f(θ)p(θ;ω) dθ =

∫︂
θ
f(θ)∇ωp(θ;ω) dθ (1.2)

The integral in (1.2) is in most cases intractable and cannot be solved analytically. There-
fore, we have to estimate the gradient with Monte Carlo estimation. However, ∇ωp(θ;ω)
is not guaranteed to be a probability distribution itself. This means that we cannot rewrite
equation (1.2) as an expectation, which is a requirement for Monte Carlo estimation.
This thesis will investigate two gradient estimators, which circumvent this problem and
explore strategies to combine both estimators.
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1.2. Related Works

Gradient Estimation. The topic of Monte-Carlo gradient estimation spans a wide array
of research areas and extensive reviews have been provided in [13, 27]. More recently,
variance reduction for gradient estimation has included learned components. Grathwohl
et al. construct a neural control variate for the score function estimator [16]. Ren et al.
learn a parameterized distribution for antithetic sampling [31]. In contrast, our approach
focus on variance reduction through the MVD estimator. Similar to our approach, Parmas
et al. combine the pathwise with the score function estimator for model-based policy
search [29]. We instead examine a combination between the MVD and score function
estimator for the model-free episodic policy search setting.

Measure-Valued Derivatives. Measure-valued derivatives have been first introduced by
Pflug [30] with subsequent development of MVD for Markov processes by Heidergott et al.
[26]. In machine learning, MVD has been explored for approximate Bayesian inference.
In [34], Rosca et al. demonstrate the superior variance characteristics of the MVD over
the score function in the use case of Bayesian logistic regression. Furthermore, Buesing et
al. compare the MVD to the finite-difference estimator and the score function estimator
[5]. In reinforcement learning, MVD has been studied in the context of step-based policy
gradient methods [2]. Carvalho et al. give an extensive analysis of the MVD in the setting
of actor-critic policy gradient algorithms [6].

Episodic Policy Search. Policy search encompasses a large family of algorithms, and a
comprehensive survey is given in [9]. In our work, we set the focus on gradient-based
episodic policy search methods. One such method is PEPG, which uses a score function
gradient for policy optimization [36]. Similarly, Wiestra et al. [43] extend the score
function gradient with the natural gradient, where the distance metric is with respect
to the distribution instead of the parameters. Recently, policy search algorithms relying
on the score function such as ES [35] and ARS [25] have shown remarkable success and
sparked a wide range of extensions. For example, variance reduction for ES has been
explored by Choromanski et al. through the use of orthogonal search directions [8]. Tang
et al. propose a novel control variate specifically for ES [38]. Other approaches identify
relevant sub-spaces of the parameters to reduce the dimensionality of the problem [7, 37,
24]. Our approach also aims to identify relevant sub-dimensions while reducing variance
along those dimensions using the MVD gradient estimator.
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2. Gradient Estimation

The theory of Monte-Carlo estimation states that one can approximate the integral

Ep(x;ω) [f (x)] =

∫︂
f(x)p (x;ω) dx

as
1

N

N∑︂
i=1

f (xi) x ∼ p (x;ω) .

To maximize the objective J (ω) in equation 1.1 with an estimation of the gradient
∇ωJ (ω), we need to reformulate the following equation as an expectation like above

∇ωJ(ω) =

∫︂
θ
f(θ)∇ωp(θ;ω) dθ.

Like has beenmentioned in section 1.1, a straightforward reformulation is not possible. The
estimators introduced in this chapter aim to rewrite gradient ∇ωJ (ω) as an expectation
and give rise to unbiased Monte-Carlo estimators of the gradient. We describe such an
estimator as

ηN (ω) ≈ ∇ωJ (ω)

ηN (ω) =
1

N

N∑︂
i=1

ĝ (θ∗
i ) θ∗ ∼ p∗ (θ∗;ω∗) .

It is noted that through the reformulation, the distribution p∗ (θ∗;ω∗) can be in general
different from p(θ;ω) as is the case for the pathwise estimator or the measure-valued
derivative estimator. Here ηN (ω) is a gradient estimator that uses N Monte-Carlo samples
of the gradient estimate ĝ. Each sample itself can be used as a valid Monte-Carlo estimator,
as ĝ = ηN=1. However, in chapter 4 where we make use of the empirical variance of the
Monte-Carlo samples, this distinction between samples ĝ and estimator ηN proves to be
very useful. In general, we desire three properties for Monte-Carlo estimators
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Unbiasedness. If the gradient estimator is unbiased, then in expectation, the estimated
gradient will be the same as the true gradient

E [ηN (ω)] = ∇ωJ (ω) .

An unbiased gradient estimator allows convergence guarantees to be made [32]. However,
as we will see in chapter 5 under certain assumptions, an unbiased estimator can also
yield good convergence properties.

Low Variance. Having a low variance gradient estimator, in general, gives us faster
convergence as the gradients are more accurate and the learning rate can be set to higher
values. In principle, one can always use more samples to reduce variance as the variance
decreases as O (1/N) with the number of samples N . However, each introduced gradient
estimator will have its intrinsic variance properties along with its variance reduction
techniques. Making use of these intrinsic variance properties and combining them to
reduce variance will be the core theme of this thesis.

Low computational cost. As has been noted above, we can always get more accurate
estimators by using more samples. However, each of the introduced estimators requires a
different number of samples to yield the same variance. On top, each sample may require
a different number of evaluations of the black-box function f (θ). The number of function
evaluations especially is an important metric, as in the policy search case, each evaluation
equates to an expensive rollout of the robotic system or simulation environment. Therefore
we focus on the number function evaluations instead of number of samples and prefer an
estimator that gives lower variance with the same number of evaluations.

This chapter introduces three Monte-Carlo gradient estimators: the pathwise estimator,
the score function estimator, and the measure-valued derivative estimator. Each of them is
unbiased, but they differ in their variance and computational aspects and their application
domain.

2.1. Pathwise Estimator

The pathwise estimator also known as the reparametrization trick or push-in estimator
makes use of a known sampling path h(ϵ,ω) of the original distribution to move the
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distributional parameters ω into the cost function. For an univariate Gaussian N (θ;µ, σ2),
this sampling path could for example be h (ϵ,ω) = µ + σϵ with ϵ ∼ N (0, 1). Using the
sampling path, the base distribution p(ϵ) becomes independent of distributional parameters
ω and we can propagate the gradient straight through the cost function:

∇ωEp(θ;ω) [f(θ)] = ∇ω

∫︂
p(θ;ω)f(θ)dθ

= ∇ω

∫︂
p(ϵ)f(h(ϵ,ω))dϵ.

The pathwise estimator is therefore given by

ηN (ω) =
1

N

N∑︂
i=1

∇ωf(h(ϵi,ω)) ϵ ∼ p(ϵ).

2.1.1. Variance

In general the pathwise estimator has favourable variance characteristics [27]. However,
in certain use cases, this estimator can exhibit large variances. This is for example in the
case of noisy cost evaluations [6] or when samples have to be tracked over a long path
until the cost evaluation [29].

2.1.2. Computational Aspects

Another important advantage is the low cost of computation. In theory, each sample of the
estimator only requires O (1) function evaluation. Despite its advantages, the pathwise
estimator is limited in its application domain. First of all, a sampling path needs to be
known a priori, secondly it is restricted to continuous distributions, even though relaxations
exist in the form of the Gumbel-Softmax [19]. Lastly and most importantly, the pathwise
estimator assumes differentiability of the cost function f (θ). In black-box optimization,
however, the cost function is assumed to be unknown and the gradient inaccessible. For
this reason, the pathwise estimator is not suited for our concern. Nevertheless, in model-
based approaches, the pathwise estimator has been used successfully for policy search
[29, 22].
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2.2. Score Function

The score function (SF) in statistics is the derivative of the log-likelihood function with
respect to the distributional parameters and finds usage for example inmaximum likelihood
estimation. We can derive a Monte-Carlo gradient estimator using the following identity
of the SF

∇ωp(θ;ω) = ∇ω log p(θ;ω)p(θ;ω).

Using the above identity, we can formulate the expectation as

∇ωEp(θ;ω) [f(θ)] = ∇ω

∫︂
p(θ;ω)f(θ)dθ

=

∫︂
∇ωp(θ;ω)f(θ)dθ

=

∫︂
p(θ;ω)∇ω log p(θ;ω)f(θ)dθ.

The SF estimator is then given through

ηN (ω) =
1

N

N∑︂
i=1

∇ω log p(θi;ω)f(θi) θ ∼ p(θ;ω).

2.2.1. Variance

In general the SF estimator exhibits the largest variances among the three estimators.
The variance is dependent on the form of the cost function and the dimensionality of
the parameters [27]. For this reason variance reduction methods are crucial for the SF
estimator. In the following we will introduce two of them.

Baseline We can reduce the variance of the SF estimator by subtracting a baseline b:

∇ωEp(θ;ω) [f (θ)− b] =

∫︂
p (θ;ω)∇ω log p (θ;ω) (f (θ)− b) dθ
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Subtracting the baseline does not change the unbiasedness property of the estimator as∫︂
p (θ;ω)∇ω log p (θ;ω) bdθ = b

∫︂
∇ωp (θ;ω) dθ = b∇ω

∫︂
p (θ;ω) dθ = 0.

Here the log-likelihood identity is used again as ∇ω log p(θ;ω)p(θ;ω) = ∇ωp(θ;ω) for
the above reformulation. This gives us the SF estimator with baseline variance reduction
as

ηN (ω) =
1

N

N∑︂
i=1

∇ω log p(θi;ω) (f(θ)− b) θ ∼ p(θ;ω).

In practice, often a moving average of the cost function evaluations is used as the baseline.
However, for certain classes of algorithms optimal baselines exist. In our case, using the
score function for episodic policy search is equal to the PGPE algorithm [36]. For the
PGPE, the optimal baseline [9] can be formulated as

b =

∑︁N
i=1(∇ω log p(θi;ω))2f(θi)∑︁N

i=1(∇ω log p(θi;ω))2
.

Antithetic Sampling The idea of antithetic sampling is to draw negatively correlated
samples for the Monte Carlo estimation instead of independent samples [14]. Intuitively
if f(x) is high for a sample x, then for its antithetic sample x̃, f(x̃) should yield a low
value. A Monte-Carlo estimator with antithetic sampling is then given by

1

2N

N∑︂
i=1

f(xi) + f(x̃i)

2
(2.1)

Through the negative correlation structure, we can achieve error cancellation and variance
reduction. However, ensuring negative correlation is difficult, since it depends on the cost
function and the underlying distribution [31]. Several works have focused on learning
such an antithetic sampler instead [31, 45]. Following Ren et al [31], for the simple case
of a zero-mean Gaussian N (x;0,Σ), antithetic variates can be given as x̃ = −x and
x. This fact together with a reparametrization of the Gaussian is used for the antithetic
sampling in Evolutionary Strategies [35] that we will introduce in section 3.1.

2.2.2. Computational Aspects

Like the pathwise estimator, the SF estimator only require O(1) function evaluations for
each sample. However in practice due to its high variance, a higher number of samples is
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required to get a comparable variance to the other estimators. The score function estimator
is more broadly applicable than the pathwise estimator. It can be used for continuous
as well as discrete distributions. Moreover, the cost functions can be non-smooth or
non-differentiable, which allows for its use in black-box optimization

2.3. Measure-Valued Derivative

We can also compute an unbiased gradient estimate using the measure-valued derivative
[30]. The estimator is based on the Hahn-Jordan decomposition that allows us decompose
the derivative ∇ωd

p(θ;ω) into a difference of two distributions scaled by a constant factor.

∇ωd
p(θ;ω) = cωd

(p+(θ;ω)− p−(θ;ω))

Here p+ and p− are the positive and negative distributions for the MVD decomposition.
Together with the constant factor cωd

they form a triplet (cωd
, p+, p−) that is different for

each distribution and parameter. The MVD triplets for commonly encountered distributions
are listed in table 2.1. Using the above decomposition the gradient can be formulated as

∇ωd
Ep(θ;ω) [f(θ)] = ∇ωd

∫︂
p(θ;ω)f(θ)dθ (2.2)

=

∫︂
∇ωd

p(θ;ω)f(θ)dθ (2.3)

= cωd

(︃∫︂
p+(θ;ω)f(θ)dθ −

∫︂
p−(θ;ω)f(θ)dθ

)︃
. (2.4)

Now the MVD estimator can be written as

ηN (ωd) =
cωd

N

(︄
N∑︂
i=1

f(θ+
i )−

N∑︂
i=1

f(θ−
i )

)︄
; θ+ ∼ p+(θ;ω), θ− ∼ p−(θ;ω)

Note here that the derivative is only computed with respect to a single parameter dimension
d. As a result, estimating the gradient involves computing the MVD along each dimension.

2.3.1. Variance

The MVD estimator in general shows low variance as compared to the SF estimator. The
variance of the MVD is given in [27] as:

Vp(θ;ω) [ĝ] = Vp+(θ+;ω)

[︁
f(θ+)

]︁
+Vp−(θ−;ω)

[︁
f(θ−)

]︁
−2Covp+(θ+;ω)p−(θ−;ω)[f(θ

+)f(θ−)],
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where ĝ denotes single samples of the MVD estimator. From the above expression we can
observe that we can reduce the variance when f(θ+) and f(θ−) are positively correlated.
The variance reduction method coupling makes use of this fact and achieves variance
reduction through reusing common random numbers. In practice, it means we generate
the positive sample θ+ via a transformation of the negative sample θ− or vice versa. Unless
otherwise stated, we will always use the MVD in combination with coupling.

2.3.2. Computational Aspects

For a single sample of the MVD estimator O(2D) function evaluations are required, where
D specifies the dimensionality of the parameters θ. As such it scales linearly with the
number of dimensions. Due to the low variance of the MVD however, it can be observed
that the SF estimator requires a similar number of function evaluations as the MVD to
yield comparable variance levels [6].

To compute the MVD for multivariate distributions, we consider a fully factorized distri-
bution p(θ;ω) =

∏︁D
i=1 p(θi;ωi). In this case, positive samples for the d-th dimension can

be constructed by sampling θ+ from p+(θ+;ω) = p+(θ+d ;ωd)
∏︁D

k=1,k ̸=d p(θk;ωk). In prac-
tice, this means we can simply sample from the original multivariate distribution p(θ;ω)
and replace the d-th dimension with samples from the positive part of the univariate
decomposition. The same goes for the negative samples.

The MVD can be used for any type of cost function and allows for discrete and continuous
distributions alike [27]. Like the SF estimator, the MVD estimator does not require a
differentiable cost function. For this reason, both make the only two viable estimators of
the three introduced that can be applied for black-box optimization.
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Distribution p(θ;ω) Constant cω Positive distribution p+ Negative distribution p p−

Bernoulli(ω) 1 δ1 δ0

Poisson(ω) 1 P(ω) + 1 P(ω)

Normal(ω, σ2) 1
σ
√
2π

ω + σW(2, 0.5) ω − σW(2, 0.5)

Normal(µ, ω2) 1
ω M(µ, ω2) N (µ, ω2)

Exponential(ω) 1
ω E(ω) ω−1Er (2)

Gamma(a, ω) a
ω G(a, ω) G(a+ 1, ω)

Weibull(α, ω) 1/ω W(α, ω) G(2, ω)1/α

Table 2.1.: MVD Triplets (cω, p
+, p−) for common distributions. The derivative is com-

puted with respect to the distributional parameters ω. Expressions for the
distributions are provided in table 2.2.

Name Domain Notation Probability Density / Mass Functions

Gaussian R N (x;µ, σ2) 1√
2πσ2

exp
(︁
−1

2

(︁x−µ
σ

)︁)︁2
Double-sided Maxwell R M(x;µ, σ2) 1√

2πσ3 (x− µ)2 exp
(︂
− (x−µ)2

2σ2

)︂
Weibull R+ W(x;α, β, µ) αβ(x− µ)α−1 exp (−β(x− µ)α)1{x≥0}

Poisson N0 P(x; θ) exp(−θ)
∑︁∞

j=0
θj

j! δj

Erlang R+ Er (x; θ, λ) λθxθ−1 exp(−λx)
(θ−1)!

Gamma R+ G(x;α, β) βα

Γ(α)x
α−1 exp(−xβ)1{x≥0}

Exponential R+ E(x; γ) G(1, λ)

Table 2.2.: Table of commonly encountered distributions along with their densities or
mass functions.
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3. Episodic Policy Search

In policy search, we aim to change the parameters of a policy such that a reinforcement
learning agent using the policy optimizes its objective. Within policy search algorithms,
several distinctions can be made. One can utilize a model of the environment dynamics to
sample trajectories, which results in the class of model-based approaches. This class of
algorithms typically benefits from reduced sample complexity. Model-free methods, on
the other hand, learn policy parameters without an environment model. Such approaches
can be helpful when a model is unknown or difficult to estimate [33]. A further distinction
can be made in terms of how the agent explores the environment. One option is to utilize
a stochastic policy and sample actions at each time step. However, such an approach
typically leads to jerky trajectories and exhibits high variance for long-horizon tasks [9,
41]. An alternative is episodic policy search, where we sample policy parameters from
an upper-level policy at the start of the episode. This option leads to exploration in the
parameter space. It has the advantage that we can obtain smooth trajectories, and its
variance is insensitive to the task horizon [35, 41].

This chapter will consider the model-free episodic case, which can be alternatively regarded
as a black-box optimization problem. Here the black-box is an unknown environment
modeled as f(θ). It returns the total accumulated rewards given θ that parametrizes a
lower-level deterministic policy πθ and is sampled from an upper-level policy distribution
p(θ;ω). Our goal is then to optimize with respect to the distributional parameters ω. This
problem set-up is described by the equation

J(ω) = Ep(θ;ω) [f(θ)] .

In order to maximize the above objective, an approach is to estimate the gradient as
ηN (ω) ≈ ∇ωJ(ω) via Monte-Carlo. In essence, most algorithms in this class can be
summarized through the pattern given in algorithm 1.
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Algorithm 1: Episodic Policy Search Algorithm Pattern
Hyperparameters : learning rate α, Monte-Carlo samples N
Input : initial parameters ω0, distribution p(θ;ω), policy πθ, black-box

function f(θ)
1 for i in 0, 1 · · · do
2 ηN (ωi)← monte-carlo-gradient(p(θ;ωi), f(θ), πθ, N)
3 ωi+1 ← ωi + αηN (ωi)

Most episodic policy search algorithm like Parameter Exploring Policy Gradients (PEPG)
[36] or Evolutionary Strategies (ES) [35] follow the basic pattern 1. While they distinguish
themselves in components such as the upper-level or lower-level policy, they all rely on the
SF for gradient estimation in line 2. Nevertheless, the additional heuristics for state and
reward normalization can have a dramatic impact on the performance of the algorithm
like in the case of Augmented Random Search (ARS) [25].

In this chapter, we introduce three algorithms for episodic policy search based on the
SF estimator: PEPG, ES and ARS. Since they all share the basic pattern for parameter
optimization given in algorithm 1, we will only introduce their difference in gradient
estimation and the additional heuristics used. Finally, we will also replace gradient
estimation in pattern 1 with a MVD estimator, arriving at an episodic search algorithm
using the MVD.

Following ES and ARS, we will also assume the upper-level policy distribution to be
a Gaussian with isotropic covariance N (θ;µ, σID), where D denotes the parameter
dimensions. However, the derivations can be easily transferred to the case of a Gaussian
with diagonal covariance. In order to avoid overly verbose pseudocode and to stay close to
the experimental set-up in chapter 5, the code provided in this chapter will only estimate
gradient with respect to the mean vector µ. Pseudocode for the estimation of the gradient
with respect to the standard deviation follow equivalently.

3.1. Episodic Policy Search with SF

As stated, we assume the upper-level policy to be represented by a Gaussian with isotropic
covariance N (θ;µ, σID) with parameter dimensions D. In this case, we can arrive at
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expression for the score function of d-th dimension of µ through

∇µd
log(N (θ;µ, σID)) = ∇µd

log

D∏︂
d=0

N (θd;µd, σ)

= ∇µd

D∑︂
d=0

logN (θd;µd, σ)

=
θd − µd

σ2
.

Similarly, we obtain for the standard deviation σ

∇σ logN (θ;µ, σID) =
(θd − µd)

2 − σ2

σ3
.

Using the score function expressions, we arrive at gradient estimators for the parameters
of the Gaussian

ηN (µ) =
1

N

N∑︂
i=1

(θi − µ)

σ2
f(θi) θ ∼ N (θ;µ, σID)

ηN (σ) =
1

N

N∑︂
i=1

(θi − µ)2 − σ2)

σ3
f(θi) θ ∼ N (θ;µ, σID).

With a reparametrization of the Gaussian as θ = µ+ σϵ and ϵ ∼ N (ϵ;0D, ID), we can
get a new perspective on the gradient estimators:

ηN (µ) =
1

N

N∑︂
i=1

ϵi
σ
f(µ+ σϵi) ϵ ∼ N (ϵ; ,0D, ID)

ηN (σ) =
1

N

N∑︂
i=1

(ϵ2i − 1)

σ
f(µ+ σϵi) ϵ ∼ N (ϵ;0D, ID).

This new perspective tells us that, in fact, one can view the above equations as estimating
the gradient with respect to a Gaussian-smoothed version of the objective [35, 8]. The
smoothed version f(µ+ σϵ) is differentiable, even if the original f(θ) is not [8]. Using
the estimator described in algorithm 2 with pattern 1, gives us a basic episodic policy
search algorithm using the SF estimator.

26



Algorithm 2: Basic SF Gradient Estimation
Hyperparameters :Monte-Carlo samples N
Input : initial parameters µ0, σ0; distribution N (θ;µ, σID); policy πθ;

black-box function f(θ)
for i in 0, 1 · · ·N do

1 θi ← µ+ σϵi with ϵ ∼ N (ϵ;0D, ID)
2 ri ← evaluate f(θi)

end
3 ηN (µ)← 1

N

∑︁N
i=1

ϵi
σ ri

4 return ηN (µ)

PEPG and ES. Algorithm 2 forms the basis for Evolutionary Strategies (ES) [35] and
Parameter Exploring Policy Gradients (PEPG) [36]. Like in the shown algorithm, both
approaches make use of the SF for gradient estimation. ES also models the upper-level
policy as a Gaussian with isotropic covariance. PEPG, on the other hand, represents the
upper-level policy as a Gaussian with diagonal covariance. While PEPG also optimizes the
standard deviation, ES fixes the standard deviation as a hyperparameter. Overall, both ES
and PEPG show close resemblance. Therefore we will introduce them both together.

As mentioned before, additional heuristics can have a major impact on the performance
of black-box optimization algorithms. One class of such heuristics is to normalize the
rewards. Since the rewards or evaluations of the black-box function directly scale the SF
estimator, high magnitude rewards can lead to large variance of the gradient estimates.
For this matter, the heuristic used in PEPG is to normalize rewards using the a priori known
maximum reward or the maximal reward encountered so far. Another approach, followed
by ES, is to transform rewards into ranks using a monotonously increasing function[35,
43].

One important extension to algorithm 2 introduced in PEPG and ES is that of antithetic
sampling. Like mentioned in the previous chapter 2, antithetic sampling makes use of the
negative correlation of two samples for variance reduction. For a zero-mean Gaussian
N (x;0,Σ) antithetic samples are given as x and x̃ = −x . Thus following the expression

27



2.1 for antithetic sampling, we obtain

ηN (µ) =
1

N

N∑︂
i=1

ϵi
σ
(
f(µ+ σϵi)− f(µ− σϵi)

2
) ϵ ∼ N (ϵ; ,0D, ID)

ηN (σ) =
1

N

N∑︂
i=1

(ϵ2i − 1)

σ

(f(µ+ σϵi)− f(µ− σϵi))

2
ϵ ∼ N (ϵ; ,0D, ID).

Furthermore, PEPG also proposes to use a baseline for variance reduction. The antithetic
SF estimator and the SF estimator with baseline are shown in algorithms 3 and 4.

Algorithm 3: SF Gradient Estimation with Antithetic Sampling
Hyperparameters :Monte-Carlo samples N
Input : initial parameters µ0, σ0, distribution N (θ;µ, IDσ), policy πθ;

black-box function f(θ)
for i in 1, 2 · · ·N do

1 ϵi ∼ N (ϵ;0D, ID)
2 θ+

i ← µ+ σϵi
3 θ−

i ← µ− σϵi
4 r+i ← evaluate f(θ+

i )
5 r−i ← evaluate f(θ−

i )

end
6 ηN (µ)← 1

2N

∑︁N
i=1

ϵi
σ

r+i −r−i
2

7 return ηN (µ)

Augmented RandomSearch. Like ES and PEPG, Augmented Random Search (ARS) [25]
makes use of the antithetic SF for gradient estimation. However, one striking difference is
the class of policies used. While ES models θ as parameters of a large neural network,
ARS uses θ as a linear policy. Despite the simplicity of ARS, it achieves results that are
state-of-the-art for black-box optimization.

Apart from the policy parametrization, the biggest difference between ARS and ES or
PEPG is its heuristics for reward normalization and state normalization. In ARS, reward
normalization is achieved by rescaling the rewards of an iteration with their standard
deviation r′i = ri

σR
i ∈ [1 · · ·N ], where σR is the standard deviation of all rewards
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Algorithm 4: SF Gradient Estimation with Baseline
Hyperparameters :Monte-Carlo samples N
Input : initial parameters µ0, σ0, distribution N (θ;µ, IDσ), policy πθ;

black-box function f(θ)
for i in 1, 2 · · ·N do

1 ϵ ∼ N (ϵ;0D, ID)
2 θi ← µ+ σϵi
3 ri ← evaluate f(θi)

end
4 ηN (µ)← 1

N

∑︁N
i=1

ϵi
σ (ri − b)

5 b← update as moving average of ri···N or according to optimal baseline given in
section 2.2

6 return ηN (µ)

collected during one iteration. This approach is motivated by the observation that at high
rewards, perturbations to the policy can cause large variations in rewards [25].

An additional heuristic used in ARS aims to normalize the states of the environment. Since
the environment states can have arbitrary ranges, the states with large ranges result in
larger action outputs in contrast to states with a small ranges. Therefore, normalization
allows the linear policy to have equal influence on the environment states [25]. Practically
this normalization is applied as:

xnormalized = diag(Σx)
−1/2(x− µx),

where x denotes the environment states. The covariance Σx and mean µx of the environ-
ment states are computed as running statistics that are updated at each iteration. The
modified antithetic SF estimator with the ARS heuristics is given in algorithm 5.

3.2. Episodic Policy Search with MVD

The gradient estimation in pattern 1 can be equally performed with the MVD. Let us recall
from section 2.3 that the MVD specifies the derivative of a distribution using a triplet
(cωd

, p+(θ;ω), p−(θ;ω)) as

∇ωd
p(θ;ω) = cωd

(p+(θ;ω)− p−(θ;ω))
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Algorithm 5: Antithetic SF Gradient Estimation with ARS Heuristics [25]
Hyperparameters :Monte-Carlo samples N
Input : initial parameters µ0, σ0, distribution N (θ;µ, σID), policy πθ;

black-box function f(θ)
for i in 1 · · ·N do

1 ϵi ∼ N (ϵ;0D, ID)
2 θ+

i ← µ+ σϵi
3 θ−

i ← µ− σϵi
4 r+i ← collect rewards f(θ+

i ) using policy π(x) = θ+ diag(Σx)
−1/2(x− µx)

5 r−i ← collect rewards f(θ−
i ) using policy π(x) = θ− diag(Σx)

−1/2(x− µx)

end
6 σR ← standard deviation of combined rewards from r+1···N and r−1,··· ,N .
7 ηN (µ)← 1

2N

∑︁N
i=1

ϵi
σR

(r+i − r−i )

8 µx,Σx ← update mean and covariance using all the states encountered so far during
training.

9 return ηN (µ)

As given in table 2.1, the triplet for the mean µ of an univariate Gaussian is given as
(1/σ

√
2π, µ+W(2, 0.5), µ−W(2, 0.5)) and the Monte-Carlo estimator for µ is

ηN (µ) =
1

Nσ
√
2π

N∑︂
i=1

f(µ+ σϵ+i )− f(µ− σϵ−i ) , ϵ+ ∼ W(2, 0.5), ϵ− ∼ W(2, 0.5).

For the standard deviation σ, the triplet is (1/σ,M(µ, σ2),N (µ, σ2)) with the estimator
been

ηN (σ) =
1

Nσ

N∑︂
i=1

f(θ+i )− f(θ−i ) , θ+ ∼M(θ;µ, σ), θ− ∼ N (θ;µ, σ).

Note here that the gradient estimator for µ shows close resemblance to the SF estimator
using antithetic sampling. As previously, we would like to estimate the gradient of the
mean vector µ for N (θ;µ, σID). Like is described in section 2.3, for a fully factorized
distribution p(θ;ω) =

∏︁D
d=1 p(θd;ωd), the positive component of the MVD for dimension

d is given as

p+d (θ;ω) = p+d (θd;ωd)

D∏︂
k ̸=d

p(θk;ωk),
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with the same applying to the negative component. For estimating the gradient with
respect to µd, a sample from the positive component p+(·) is constructed by first sampling
from N (θ;µ, σID) and replacing the d-th component with a sample from the Weibull
W(2, 0.5). We can now formulate gradient estimation using the MVD in algorithm 6, which
in combination with pattern 1 forms a fully functional episodic policy search algorithm
using MVD. Note that we can share samples ϵ in line 2 and 3 to use coupling as variance
reduction.

Algorithm 6: MVD Gradient Estimation
Hyperparameters :Monte-Carlo samples N
Input : initial parameters µ0, σ0, distribution N (θ;µ, σID), policy πθ;

black-box function f(θ)
for d in 1 · · ·D do

for i in 1 · · ·N do
1 θi ∼ N (θ;µ, σID)
2 θ+d ← µd + σϵ+i with ϵ+ ∼ W(ϵ; 2, 0.5)

/* use ϵ+ as ϵ− for variance reduction with coupling */
3 θ−d ← µd − σϵ−i with ϵ− ∼ W(ϵ; 2, 0.5)
4 θ+ ← [θ1, · · · , θ+d , · · · , θD]
5 θ− ← [θ1, · · · , θ−d , · · · , θD]
6 r+i ← evaluate f(θ+) using policy πθ+

7 r−i ← evaluate f(θ−) using policy πθ−

end
8 η(µd)← 1

Nσ
√
2π

∑︁N
i=1 r

+
i − r−i

end
9 ηN (µ)← [η(µ1), η(µ2), · · · , η(µD)]

10 return ηN (µ)
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4. Combining Estimators

The SF estimator generally shows high variance but requires onlyO(1) function evaluations
per Monte-Carlo sample. At the same time, the MVD estimator has been shown to exhibit
low variance, however requiring O(2D) evaluations, where D denotes the parameter
dimensionality [27, 34]. Ideally, we would like to obtain a Monte-Carlo gradient estimator
that has both properties of reduced variance and efficient computation. As can be seen, the
strength and weaknesses of both estimators are complementary. Therefore, an intuitive
step towards an estimator with the above-mentioned desirable properties is to combine
the SF with the MVD estimator.

For this reason, we will introduce two approaches for such a combination in this chapter.
First, we will formulate an unbiased estimator based on the convex combination between
SF and MVD estimators. Secondly, we introduce a biased estimator that makes use
of previous gradient directions and corrects them using MVD gradients at a subset of
parameter dimensions.

4.1. Convex Combination

The idea behind using a convex combination of SF and MVD estimator is to use the gradient
from SF estimation as a basis and improve variance along a subset of the parameter
dimensions with a convex combination of SF and MVD. We assume that reduced variance
along all dimensions is not necessary for improved performance in a high-dimensional
space. As other works suggest, contribution of the parameters to overall performance
is limited to a subset of the parameter dimensions [23, 42]. For this reason, we aim to
selectively improve variance along a subset of dimensions using a convex combination
of the SF and MVD estimator. Overall, there are two essential aspects of this approach.
First, how the weights of the combination are determined, and second how the relevant
dimensions are selected.
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In general if both combined estimators are unbiased, the convex combination also yields
an unbiased estimator. Let η1(ω) and η2(ω) be two unbiased estimators for gradient
∇ωJ(ω), then

E [cη1(ω) + (1− c)η2(ω)] = cE [η1(ω)] + (1− c)E [η2(ω)]

= c∇ωJ(ω) + (1− c)∇ωJ(ω) = ∇ωJ(ω).

Therefore combining a SF estimator with a MVD estimator along selected dimensions will
still yield an unbiased estimator. At the same time, this strategy allows us to reduce the
variance along a selected subset of dimensions.

4.1.1. Combination Weights

A naive way to choose the combination weights is to replace the estimated SF gradients
with the MVD gradients for certain dimensions. However, this approach assumes that the
MVD estimator will always yield a lower variance, which is not guaranteed to be the case
[27]. Additionally, a replacement effectively discards the information gained from the
SF estimation. A more principled approach is given by the inverse-variance weighting
[11, 29]. Let the estimator variance of the SF be σ̂SF = V

[︁
ηSF
N

]︁
and the MVD estimator

variance be σ̂MVD = V
[︁
ηMVD
M

]︁
, then the weighting is given by

cSF =
σ̂−2
SF

σ̂−2
SF + σ̂−2

MVD
cMVD = 1− cSF

Through this weighting, the convex combination yields an estimator that has the least
variance among all weighted estimators [11]. However, computing the estimator variances
poses a problem as a faithful computation requires repeated estimation of ηSF

N and ηMVD
M .

For each computation of the SF estimator ηSF
N , O(N) function evaluations are needed

and O(2MK) evaluations are needed for a computation of the MVD estimator ηMVD
M ,

where K is the number of selected dimensions. However, this increase in the required
number of evaluations defeats our original goal of computational efficiency, as the major
computational burden is the evaluation of the black-box function.

We know that the variance of Monte-Carlo estimators decrease with the number of samples
N as O(1/N). Since each estimator ηN is computed from averaging N samples ĝ, we can
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use the empirical variance of the samples V [ĝ] to approximate the estimator variance
V [ηN ] as

V [ηN ] ≈ V [ĝ]

N

Let σ̄SF be the variance V
[︂
ĝSF

]︂
of the SF estimator ηSF

N withN samples and let σ̄MVD be

the variance V
[︂
ĝMVD

]︂
of the MVD estimator ĝSF

M using M samples, then we reformulate
the weighting as

cSF =
σ̄−2
SF/N

σ̄−2
SF/N + σ̄−2

MV D/M cMVD = 1− cSF .

Estimating σ̄SF and σ̄MVD however requires at least two samples for the respective
estimator. In cases, where less than two samples are available, we choose the replacement
strategy instead.

4.1.2. Selection Strategy

An important question is how we select the dimensions along which the MVD gradient
should be estimated. A simple baseline is to select dimensions uniformly random. However,
this does not take into account the particular structure of the optimization problem.

An alternative approach is to select the dimensions with the highest variance. We have two
possibilities to compute this variance. The first option computes the empirical variance
V
[︂
ĝSF

]︂
from the SF samples. With the second option, we estimate the variance from an

outer product of the estimated gradient, which follows the variance estimation method
from Choromanski et al. [7]. This second version of the variance estimation is similar
to the non-central second-moment approximation found in ADAM [20, 1]. These two
variance computations schemes can be additionally extended by computing them on a
moving average basis. The moving average version of the two variance estimation schemes
is shown in algorithm 7, with the empirical variance formulation as V1 and the outer
product version as V2.
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Algorithm 7: Updating covariance matrix with version V1 in blue and version V2 in
orange
Input : covariance matrix Cov, decay rate r, SF samples ĝSF

1···N , CCMVD estimator
ηCCMVD

1 Cov← (1− r) Cov + rV
[︂
ĝSF
1···N

]︂
2 Cov← (1− r) Cov + rηCCMVD

(︁
ηCCMVD

)︁⊺
4.1.3. Algorithm

With a selection strategy and the combination weights, we now have everything in place
to formulate an algorithm for episodic policy search using a convexly combined estimator
from the SF and the MVD, which we term CCMVD.

As has beenmentioned in section 2.2, heuristics can have a large impact on the performance
of policy search methods. For a fair comparison with the state-of-the-art ARS, we extend
CCMVD with the same state and reward normalization as ARS. Similar to ARS the SF
estimator in line 2 of algorithm 8 use antithetic sampling and in general follows algorithm
5. The MVD estimation in line 7 follows the previously specified algorithm 6 with the
additional extension of the state normalization heuristic from ARS.

One difference between the CCMVD and ARS is that the standard deviation of return σR
is computed from the combined returns collected from SF and MVD estimation. A further
extension to be elaborated is a warm-up period in line 7 of algorithm 8, where we initially
sample MVD dimensions uniformly random before selecting them using the covariance
matrix. The warm-up period has the purpose of improving the running average estimate
of the covariance matrix.

As we can see in algorithm 8, the CCMVD estimator has three parameters: the number
of SF sample N , the number of MVD samples M and the number of dimensions K to
estimate the MVD gradient. These terms determine the computational complexity, which
results in 2(N +KM) function evaluations. At the same time, these terms also determine
how much variance reduction can be achieved, as the reduction is directly determined by
how many dimensions we select and how many MVD samples we use for each dimension.
In general, we would like to find a CCMVD estimator that uses the same budget of function
evaluations as a SF estimator while achieving less variance and faster convergence. As we
will see in chapter 5, this choice of N,M and K proves to be complicated.
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Algorithm 8: CCMVD Gradient Estimation
Hyperparameters : standard deviation σ, number of SF samples N , number of MVD

samples M , number of MVD dimensions K, warm-up period w,
decay rate r

Input : initial parameters ω, distribution N (θ;µ, σID), policy πθ;
black-box function f(θ), current iteration t

/* 1) gradient estimation following ARS with antithetic SF and heuristics. */
1 ηSF

N , ĝSF
1···N ← antithetic-sf-gradient(N (θ;µ, σID), f(θ), πθ, N)

2 Cov← Update covariance according to V1 or V2 from algorithm 7
3 if t < w then
4 Sample dimensions d1···K uniformly random
5 else
6 d1···K ← select K dimensions with the highest trace of Cov
/* 2) gradient estimation for selected dimensions d1···K with MVD using ARS

heuristics. */
7 ηMVD

M , ĝMVD
1···M ← mvd-gradient(N (θ;µ, σID), f(θ), πθ,M, d1···K)

8 ηCCMVD ← use SF estimator ηSF
N as basis

/* 3) approximating inverse-variance weighting */
9 σ̂SF ← trace(V

[︁
ĝSF
1···N

]︁
)/N

10 σ̂MVD ← trace(V
[︁
ĝMV D
1···M

]︁
)/M

/* 4) combine MVD with base SF along selected dimensions. */
11 for d in d1 · · · dK do

12 cSF ←
(︂
1 + σ̂SF [d]2

σ̂MV D[d]2

)︂−1

13 ηCCMVD [d]← cSF ηSF
N [d] + (1− cSF )η

MVD
M [d]

14 return ηCCMVD
N
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4.2. Locally Updated Gradient

If the gradient is smooth, we can expect that gradients from a past iteration to be close
to the current gradient. We can then make use the gradient from previous iterations by
correcting it along selected dimensions. Let us assume that the distributional parameters
ω ∈ RD and ei with i ∈ K denote unit vectors describing the selected dimensions given
by set K ⊆ D with D = {1 · · ·D}. Let also η(ωt) describe the estimated gradient of ω at
iteration t, then

η(ωt) = η(ωt−1) +
∑︂
i∈K

ei (η(ωt)− η(ωt−1))⏞ ⏟⏟ ⏞
correct gradient along dimensions of K

This gradient estimate is biased as it derives from a gradient estimate with respect to a
parameter from a previous iteration, even if η itself is an unbiased estimator.

E [η(ωt)] = E [η(ωt−1)] + E

[︄∑︂
i∈K

ei (η(ωt)− η(ωt−1))

]︄

= E

⎡⎣∑︂
j∈D

η(ωt−1)ej −
∑︂
j∈K

η(ωt−1)ej

⎤⎦+ E

[︄∑︂
i∈K

η(ωt)ei

]︄

= E

⎡⎣ ∑︂
j∈D\K

η(ωt−1)ej

⎤⎦+ E

[︄∑︂
i∈K

η(ωt)ei

]︄

=
∑︂

j∈D\K

E [η(ωt−1)] ej +
∑︂
i∈K

E [η(ωt)] ei

=
∑︂

j∈D\K

∇ωt−1J(ωt−1)ej +
∑︂
i∈K
∇ωtJ(ωt)ei

The first summand in the last line corresponds to the unbiased gradient estimate of the
previous iteration t−1. At iteration t however this estimate becomes biased. For the second
summand, we have a unbiased gradient estimate along the dimensions of K. However, by
our smoothness assumption the corrected gradient should still stay close to the true one.
At the same time, as the correction term only involves computing gradients along a subset
of dimensions, we can reduce the number of function evaluations.
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4.2.1. Algorithm

In our case, we can compute the gradient with the SF estimator at every n-th iteration
and correct at a subset of dimensions with the MVD at iterations in-between. This biased
gradient estimator, which we call Local-Update (LOCU) estimator, is shown in algorithm
9. We make use of the same dimension selection strategies as for the CCMVD estimator
detailed in algorithm 8. Furthermore, the same state normalization and reward normal-
ization as for ARS and CCMVD are applied here. We chose to use a simple replacement
strategy instead of combination weights from section 4.1. The reason is that the empirical
variance of the SF gradient samples V

[︂
ĝSF

]︂
is not available at the iteration when the

MVD is used for correction.

Algorithm 9: Gradient Estimation with LOCU Estimator
Hyperparameters : standard deviation σ, number of SF samples N , number of MVD

samples M , number of MVD dimensions K, warm-up period w,
decay rate r, update interval n

Input : initial parameters ω, distribution N (θ;µ, σID), policy πθ;
black-box function f(θ), current iteration t

1 if t mod n = 0 then
/* 1) Full antithetic SF gradient following ARS in algorithm 5. */

2 ηSF
N , ĝSF

1···N ← estimate-sf-gradient(N (θ;µ, σID), f(θ), πθ, N)
3 Cov← Update covariance according to V1 or V2 from algorithm 7
4 ηLOCU ← ηSF

N

5 else
6 if t < w then
7 Sample dimensions d1···K uniformly random
8 else
9 d1···K ← select K dimensions with the highest trace of Cov

/* 2) Partial gradient for correction at dimensions d1···K using MVD with ARS
heuristic. */

10 ηMVD
M , ĝMVD

1···M ← estimate-mvd-gradient(N (θ;µ, σID), f(θ), πθ,M, d1···K)

11 for d in d1 · · · dK do
12 ηLOCU [d]← ηMVD

M [d]

13 return ηLOCU
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5. Experiments

This chapter presents the experiments that demonstrate the potential benefit of using the
MVD for episodic policy search. At first, we will explain our experimental setup. Then in
section 2, we analyze the properties of SF and MVD estimator without any extensional
heuristics in a simplified setting. Lastly, in section 3, we present the results for combining
the SF and MVD estimator.

5.1. Experimental Setup

General Setup. We follow the setup of ARS [25] and ES [35]. The upper-level policy
distribution is chosen to be a Gaussian with fixed isotropic covariance N (θ;µ, σ2ID),
where σ is set to be a hyperparameter. We therefore only estimate the gradient ∇µJ(µ).
Following ARS, we set the parameter for the lower-level policy θ as a linear policy and
initialize it with a zero matrix.

Throughout our analysis, we will utilize the antithetic version of the SF estimator and
combine MVD with coupling as both extensions yield high variance reductions for the
respective estimator. When analyzing the combined estimators, we compare to an an-
tithetic SF estimator extended with state and reward normalization from ARS, which
essentially results in the original ARS algorithm. The number of samples used for the
baseline antithetic SF are transferred from Mania et al. [25]. Unless otherwise stated, the
optimizer used will be SGD.

Environments. For comparing the estimators in chapter 2, we use the black-box test
functions Quadratic ,Styblinski and Rosenbrock. Their analytical expressions with a 3D
plot are shown in figure 5.1. The comparison of the estimators in the episodic setting
is conducted on the Mujoco environment Swimmer-v3 [39]. All other experiments are
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conducted using version 3 of the Mujoco locomotion tasks included in OpenAI Gym [4,
39]. The dimensions for the linear policies for each environment are listed in table 5.1.

Environment Parameter Dimensions

Swimmer-v3 16

Hopper-v3 33

HalfCheetah-v3 102

Walker2d-v3 102

Ant-v3 888

Table 5.1.: Parameter dimensions for the Mujoco environments used. The size of the
parameter dimension is determined from the size of the observation space
multiplied by the size of the action space.

Evaluation Metrics. We evaluate the gradient estimator regarding the average reward
achieved, the variance, and the deviation from a reference gradient. The average reward
is computed as an average over 100 evaluations of the black-box function.

For the variance of the gradient estimator V [ηN (ω)], we compute 100 samples of ηN

and calculate the variance from these samples. The shown variance is averaged over
all parameter dimensions. The reduction in the variance of estimator η relative to η′ is
measured as

V [η]− V [η′]

V [η′]
.

Here, a negative value indicates a reduction with respect to η′. We measure variance
reduction at 10 evaluation points across the optimization process and show the averaged
variance reduction across those 10 evaluation points.

We measure the deviation of the estimated gradient η from a reference gradient g as the
deviation in angle and in magnitude. The deviation in angle is given as the cosine distance

d∢ = 1− ⟨ η, g⟩
||η||||g||
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and the deviation in magnitude is expressed through the relative absolute distance

d||·|| =
||η − g||
||g||

.

Here, we want both distances to be close to 0. In cases where a true gradient is available,
such as for the black-box test functions, we use the auto-differentiation library jax [3]
to compute a reference gradient. Otherwise, the reference gradient is estimated from
an antithetic SF estimator. The number of Monte-Carlo samples N for the reference
gradient is determined through min(100D, 1000), where D denotes the dimensionality of
the parameter space.

5.2. Comparing Estimators

Before analyzing the results for a combination of estimators, it makes sense to examine
how each estimator performs individually. Doing so gives us an initial intuition about
the expected improvement from adding the MVD estimator. Here, we are particularly
interested in the case when both estimators use the same number of function evaluations,
which are the most expensive computation.

We first compare the SF and MVD estimator on a set of commonly used black-box test
functions. We then examine both estimators in an episodic setting using the Mujoco
environment Swimmer-v3. Lastly, we look at the influence of the ARS heuristics on the
estimator variance. The comparison is made without using additional heuristics such as
state or reward normalization. The influence of those heuristics is studied separately at
the end of this section.

5.2.1. Test Functions

Zeroth-order optimization such as ES has been argued to be strongly affected by the
dimensionality of the problem [35, 28]. Test functions used in the black-box optimization
literature offer an excellent opportunity to probe the performance of our estimators on
varying dimensions, as the dimensionality is only a parameter of the function. For this
purpose, we analyze SF and MVD estimators on the Quadratic, Styblinski, and Rosenbrock,
which are shown in figure 5.1.
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Figure 5.1.: Shown are the black-box test functions. Figure 5.2a depicts the Quadratic
function, figure 5.2c shows the Rosenbrock and figure 5.2b displays the Sty-
blinski function.

Before analyzing the estimators on higher-dimensions, we first gain an intuition for the
two dimensional case. In figure 5.2, we see the trajectories of the optimized mean for both
estimators along with the contour of the cost function. We also visualize the estimated
gradients and the true gradient as arrows in the zoomed-in areas, where the true gradient
is shown as the green arrow. Here it is obvious, that the gradients estimated with the MVD
are more centered around the true gradient.

In higher dimensions, we can observe in figure 5.3 that all estimators perform similarly
well in terms of average reward achieved. Despite the similarity, the variance and other
properties for the corresponding reward curves show a qualitative difference between the
estimators.

Variance. In figure 5.4, we plot the estimator variance V [ηN (ω)] that corresponds to
the reward curves in figure 5.3. The variance is lower for the MVD in all test functions.
For Rosenbrock, the improved variance of the MVD estimator is only observed at an early
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MVD Coupling SF Antithetic

(a) Quadratic

MVD Coupling SF Antithetic

(b) Styblinski

MVD Coupling SF Antithetic

(c) Rosenbrock

Figure 5.2.: Shown are the trajectories of the optimized mean for the antithetic SF and
MVD. The red diamond depicts the starting point. The arrows in the zoomed-
in area shows samples of the estimated gradients. The green arrow corre-
sponds to the true gradient.

stage of optimization. However, looking at the reward curves in figure 5.4 we can see that
the Rosenbrock converges early. For the other functions, a clear advantage of the MVD
estimator can be noticed. Variance is lower for the MVD estimator even when compared
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(a) Average reward on the test functions with the parameter dimensions set to D = 10. The
antithetic SF estimator withN = 10 andN = 20 samples uses the same number of function
evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.
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(b) Average reward on the test functions with the parameter dimensions set toD = 100. The an-
tithetic SF estimator with N = 100 and N = 200 samples uses the same number of function
evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.

Figure 5.3.: Comparison of the average reward using parameter dimensionsD = 10 and
D = 100. The learning and standard deviation used is provided in appendix
B.
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to a SF estimator with a doubled function evaluation budget. Contrary to our initial
assumption, transitioning from 10 dimensions to 100 dimensions does not significantly
impact the variance of the estimators.

Gradient Distances. Looking at the deviation in magnitude and angle in figure 5.5 and
figure 5.6, we observe similar improvements for the MVD as in the case of the variance. The
cosine and the relative absolute distance of the MVD estimator are lower than the distances
for SF estimator using the function evaluation budget. With a function evaluation budget
of two times that of the MVD estimator, the SF estimator still exhibits higher distances.
For Rosenbrock, the shown distances exhibit erratic behavior, which could be attributed to
its early convergence. Similar to the variance case, the increase of dimensionality hardly
affects the gradient distances of the estimators.

5.2.2. Episodic Setting

The previous section analyzed the estimator on test functions from the black-box opti-
mization literature. These functions represent a simplified case, where the reward is
immediately returned, and there is no notion of an environment or a reinforcement learn-
ing agent. In this section, we will examine the estimators in an episodic setting, where the
agent has to step through the environment for a fixed horizon length until it receives the
reward. As we will see, this change of setting has a significant impact on the qualitative
difference of these estimators.

In figure 5.7, we plot the average reward for the Swimmer-v3 environment using a linear
policy of dimension 16. The plot depicts the reward corresponding to the other metrics
shown in this subsection. As we can see, the performance is similar for all estimators except
the single-sample SF estimator. However, despite using a comparable number of function
evaluations, the SF estimators slightly improve over the MVD estimators. Compared to the
previous test function setting, this decrease in performance for the MVD is also reflected
in the other metric we measure.

Variance. In contrast to the test function setting, the MVD estimator loses its advantage
over the SF estimator. As can be seen in figure 5.8 the SF estimators using the same
amount of evaluations show lower variance than their corresponding MVD counterparts.
For example, the MVD using 2 samples and 32 function evaluations has a higher variance
than a SF estimator using 16 samples and 16 function evaluations. When considering the
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(a) Variance of the gradient estimators for parameter dimensions 10. As in figure 5.3, the anti-
thetic SF estimator with N = 10 and N = 20 samples uses the same number of function
evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.
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(b) Variance of the gradient estimators for parameter dimensions 100. As in figure 5.3, the anti-
thetic SF estimator with N = 100 and N = 200 samples uses the same number of function
evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.

Figure 5.4.: Comparison of the estimator variance V [ηN (ω)] for dimensions 10 and 100.
The learning and standard deviation used is provided in appendix B.
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(a) Cosine distance of the gradient estimators for parameter dimensions 10. As in figure 5.3, the
antithetic SF estimator withN = 10 andN = 20 samples uses the same number of function
evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.
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(b) Cosine distance of the gradient estimators for parameter dimensions 100. As in figure 5.3,
the antithetic SF estimator with N = 100 and N = 200 samples uses the same number of
function evaluations as the MVD estimator with N = 1 and N = 2 samples, respectively.

Figure 5.5.: Comparison of the cosine distance d∢ for dimensions 10 and 100. The learn-
ing and standard deviation used is provided in appendix B.
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(a) Relative absolute distance of the gradient estimators for parameter dimensions 10. As in
figure 5.3, the antithetic SF estimator with N = 10 and N = 20 samples uses the same
number of function evaluations as the MVD estimator with N = 1 and N = 2 samples,
respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iterations ×103

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
A

bs
ol

ut
e

D
is

ta
nc

e

Quadratic

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iterations ×103

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Styblinski

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iterations ×103

0

1000

2000

3000

4000

5000

Rosenbrock

MVD Coupling - N 1 MVD Coupling - N 2 SF Antithetic - N 50 SF Antithetic - N 100 SF Antithetic - N 200

(b) Relative absolute distance of the gradient estimators for parameter dimensions 10. As in
figure 5.3, the antithetic SF estimator with N = 100 and N = 200 samples uses the same
number of function evaluations as the MVD estimator with N = 1 and N = 2 samples,
respectively.

Figure 5.6.: Comparison of the relative distance absolute d||·|| for dimensions 10 and 100.
The learning and standard deviation used is provided in appendix B.
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Figure 5.8.: Shown is estimator varianceV [ηN (ω)] for Swimmer-v3. The learning rate is
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same budget of function evaluations, the variance is increased for the MVD in the episodic
setting. However, increasing the MVD samples to a small fraction of the SF samples still
improves variance for the MVD. For example, the MVD using 2 samples shows a similar
variance as the SF using 8 samples.

Gradient Distances. The same trend as observed for variance, can be seen in figure 5.9
and figure 5.10 for the cosine distance and relative absolute distance. Looking at the cosine
distance in figure 5.9, the MVD using 2 samples and 32 evaluations is approximately on par
with the SF estimator using 16 samples and 16 evaluations, thus requiring 16 evaluations
more. Similar observations can be made for the relative absolute distance in figure 5.10.
Here the single-sample MVD shows a similar deviation in magnitude to the reference
gradient as the MVD with two samples. The relative absolute distances for both estimators
are comparable to a SF estimator using 8 samples, showing again that the MVD achieves
similar performance as the SF estimator using a small fraction of SF samples but more
function evaluations.

Effect of ARS Heuristics. As mentioned in section 3.1, episodic policy search algorithms
often benefit enormously from additional heuristics used. Therefore, we are interested
in how these heuristics affect the estimated gradient. In particular, as our primary goal
is the reduction of variance through the usage of the MVD estimator, investigating the
effect of applied heuristics allows us to exclude a possible variance reduction through
these heuristics. Since we extend the combined estimators with ARS heuristics, we will
focus on the state normalization and reward normalization used in ARS.

In figure 5.11, we see the variance for four different cases differing between whether
heuristics were used, which heuristic was used or when both heuristics were used. While
the use of state normalization largely preserves the variance qualitatively and quantita-
tively, the application of reward normalization drastically decreases the variance. This
decrease can be intuitively understood since both estimators compute the gradient es-
timate as a weighted difference of rewards. Normalization of the rewards and, in most
cases, a reduction in absolute magnitude thus will reduce the variance of the gradient
estimator. However, we can also observe that the reward normalization still preserves the
qualitative difference between the estimators.
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Figure 5.9.: Shown is the cosine distance d∢ for Swimmer-v3. The learning rate is 1e−4
and the standard deviation is set to 0.1. As in figure 5.7, the antithetic SF
estimator with N = 16 and N = 32 samples uses the same number of
function evaluations as the MVD estimator with N = 1 and N = 2 samples,
respectively.
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5.3. Combining Estimators

By estimating MVD gradients along a few specifically chosen dimensions, we aim to
mitigate the high computational complexity of the MVD estimator and reduce variance
at the chosen dimensions. In this section, we present the results of the combination
approaches introduced in chapter 4 that aim to achieve such a goal.

We compare the combined estimators to an antithetic SF estimator extended with the state
and reward normalization from ARS. In essence, the extended antithetic SF estimator
is equivalent to the original ARS algorithm. In the following, we will refer to it as the
baseline SF estimator or simply SF estimator. The number of samples for the baseline SF
estimator is adjusted to match the function evaluation budget of the compared combined
estimator and are taken over from Mania et al. [25].

5.3.1. Convex Combination

The MVD yields lower variance than the SF for the same number of samples but requires
function evaluations linear in the parameter dimensions. Therefore, the crucial component
for the CCMVD is to reduce dimensionality by selectively choosing the dimensions for
MVD computation.

In section 4.1.1, we have introduced three such selection strategies for the CCMVD. The
first one selects dimensions uniformly random and acts as a baseline comparison. The
second and third strategies select the dimensions of highest variance from an estimation
of the covariance matrix and are described in algorithm 7. The first version V1 of the
covariance estimation uses the empirical variance of the Monte-Carlo samples and the
second version V2 estimates the covariance using an outer product of the estimated
gradient.

Another important aspect is the parameters for the CCMVD. Namely, the number of
samples for the base SF estimator N , the number of MVD dimensions K, and the number
of samples for each MVD dimension M . Each tuple of parameters (N,K,M) shown in
the figures equates to the same amount of function evaluations 2(N +KM).

To compare the baseline SF and the CCMVD estimator, we evaluated a grid search for
selecting the best learning rate and standard deviation for both estimators. The results of
the grid search can be found in appendix A and the chosen hyperparameters are shown in
appendix B.
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Even though a significant improvement can only be observed for the Hopper-v3, we can
still see that the different selection strategies yield different qualitative results. This
qualitative difference between dimension selection schemes is summarized in figure 5.12,
where we show the best (N,K,M) configuration for each selection scheme together with
the SF baseline. The complete results for all selection strategies are given in appendix C.1.
Selection based on variance is either close to the SF baseline or improve it. In contrast,
the average reward for the random selection is significantly lower than the SF baseline
and the variance-based selections.

Variance. Variance reduction with the CCMVD is not always given and depends on
the parameter configuration (N,K,M). For this reason, we provide an analysis of the
estimator variance to investigate which configurations lead to an increase or decrease in
variance. We show results for selection strategy V2 as it achieved the highest rewards
previously. Additionally, we compare the CCMVD estimator with a counterpart that relies
on the same selection strategy but replaces the MVD with the SF estimator and term this
estimator as CCSF. This comparison aims to show the advantage of using the MVD for
convex combination over an antithetic SF.

We can see in figure 5.13a the variance reduction of the CCMVD and CCSF relative to
an antithetic SF estimator using the same function evaluations budget. Here, a positive
percentage describes an increase of variance and a negative percentage a decrease. Firstly,
we observe a variance increase for both CCMVD and CCSF irrespective of parameter
configuration. Secondly, it can be seen that the variances of the estimators are determined
mainly by the number of base SF samples N . Increasing N has a more significant impact
on the variance reduction than increasing the number of dimensions K or samples per
dimension M . Despite the variance increase for the estimators, a variance decrease is
achieved for the selected dimension in the case of specific configurations of (N,K,M). In
figure 5.13b, we see that variance at the chosen dimensions is reduced for all cases when
the number of samples for the MVD M is larger one. In such cases, variance reduction
with the CCMVD is mostly more effective than CCSF. However, as the number of selected
dimensions K increases, the number of function evaluations increases with 2KM . By
taking more samples for the CCSF to adjust for the increase of function evaluations, an
increased variance reduction for the CCSF is observed. For the configurations that achieved
an improved reward, we notice a combination of low increase of variance for the overall
estimator combined with a variance decrease at the chosen dimensions, e.g. configuration
(5, 2, 5) for Walker2d-v3.

A possible question is why the per-dimension variance increase is much larger for the
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CCSF in the single-dimension and single-sample case compared to the other parameter
configurations like for Swimmer-v3 or Hopper-v3. Here, a replacement strategy is applied
since inverse-variance weighting is not applicable in these specific scenarios. The absence
of the weighting scheme can act as a possible explanation for the increase. In the following,
we will elaborate on the impact of the weighting scheme.

Influence of Weighting. In figure 5.14, the advantage of applying the inverse-variance
weighting over a replacement strategy for CCMVD and CCSF is analyzed. The figures
show the per-dimensions variance reduction relative to an antithetic SF estimator with the
same function evaluation budget of 2(N +KM). In cases where more than one sample
is taken, we can approximate the estimator’s variance and utilize the inverse-variance
weighting. In such cases, we observe for the CCMVD in figure 5.14a a clear advantage of
using the weighting scheme over a replacement strategy. The effect of the inverse-variance
weighting is most drastic for Walker2d-v3, where an replacement scheme leads to a
variance increase of around 700% contrasted with a variance decrease achieved through
the inverse-variance weighting. A similar trend is observed for CCSF, where estimators
without weighting yield no improvement or an increase in variance. However, applying
the weighting results in a variance reduction for all cases. Comparing the influence of
the weighting on the CCSF and CCMVD, we can see that CCMVD benefits more from the
inverse-variance weighting than the CCSF.

Gradient Distances. We show gradient distances as boxplots in figures 5.15a and 5.15b,
where each box summarizes gradient distances collected from 10 evaluation points. We
compare to gradient distances of an antithetic SF estimator with the same evaluation
budget. Figure 5.15a indicates a lower cosine distance for the antithetic SF estimator than
the CCMVD estimators for most environments. For the Walker2d-v3 and HalfCheetah-v3,
cosine distances are in a comparable range to the antithetic SF. Except for Walker2d-v3,
a lower relative absolute difference for the SF estimator can also be identified in figure
5.15b. Similar to the variance analysis, configurations with a higher number of dimensions
K also show a higher relative absolute distance. For the configurations with an improved
average reward, the gradient distances do not show a significant difference relative to the
antithetic SF comparison.
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Figure 5.12.: Average reward for the Mujoco environments with selection based on uni-
form random sampling, variance estimation V1 and variance estimation V2.
The tuple (N,K,M) consists of the number of antithetic SF samplesN , the
number of dimensions K and the number of MVD samples per dimension
M . The rewards are averaged over 10 seeds.
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Figure 5.13.: Comparison of variance reduction between CCMVD and CCSF. The upper
row show variance reduction relative to an antithetic SF estimator using the
same number of function evaluations. The bottom row show variance re-
duction relative to the base antithetic SF estimator of the convex combina-
tionwithN samples. The dimensionswere selectedwith selection strategy
V2 from algorithm 7. The x-axis shows configurations of (N,K,M).
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Figure 5.14.: Comparison of variance reduction relative to antithetic SF estimator with
the same function evaluation budget of 2(N + KM). The selection strat-
egy for the dimensions is given as V2 of algorithm 7. The x-axis shows
configurations of (N,K,M).
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Figure 5.15.: Boxplots of gradient distances comparing CCMVD with an antithetic SF
estimator using same evaluation budget of 2(N + MK). Each box cor-
responds to statistics of gradient distances collected from 10 evaluation
points at regular intervals during optimization. The x-axis shows configura-
tions of (N,K,M).
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5.3.2. Locally Updated Gradient

When the gradients are locally smooth, computational resources can be saved by reusing
a previous gradient and correcting the previous gradient only at selected dimensions with
an updated gradient. Since the MVD gradient is estimated per dimension, this use case is
ideal for applying the MVD for updating the previous gradient.

The same tuple of parameters (N,K,M) as for the CCMVD estimator specifies the LOCU
estimator. N denotes the number of samples used for estimating a full antithetic SF
gradient, K specifies the number of dimensions to partially correct the full gradient with
the MVD in the next iteration and M gives the number of MVD samples per dimension.
Here, we only consider the case when the reused full gradient is one iteration apart from
the partially corrected gradient. That is partial and full gradient follow each other in
consecutive iterations.

In figure 5.16, the average reward for the LOCU estimator on the Mujoco environments
is shown for different selection strategies. As for the CCMVD estimator, we show the
best configuration for the random selection and selection strategies based on V1 and V2
of algorithm 7. Additionally, we utilize the best hyperparameters from the grid search
conducted for the CCMVD and the baseline SF estimator. We reuse the hyperparameters,
since the parameter tuple (N,K,M) is shared between the LOCU and CCMVD estimator.
An other reason is that the combination process of CCMVD and LOCU only differ in their
combination weights applied.

We can first observe that a significant improvement over the SF baseline with the same
number of evaluations is not achieved. The second observation is that in some envi-
ronments like HalfCheetah-v3 and Walker2d-v3, the decrease in performance for the
variance-based selection strategies is considerable. In particular, for selection strategy
V2, which obtained the best results for the CCMVD estimator, the decrease is notable. A
possible explanation for this finding is given in chapter 6.

Variance. Figure 5.17 shows the variance reduction at the chosen dimensions for the
partial gradient through applying the MVD. Reduction is relative to an antithetic SF
estimator with the same evaluation budget as a full and partial gradient. The figure
reveals that replacingMVD estimates at the selected dimensions increases variance for most
configurations. Increasing the MVD dimensionsK produces a lower variance, Nevertheless,
the variance increase is still significant for those cases.
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Gradient Distances. For the LOCU estimator, we distinguish between a full gradient
computed from N samples of an antithetic SF and a partial gradient that results from
correcting the full gradient at K dimensions with M MVD samples.

This part investigates how much the full gradient differs from the partial gradient and how
much the partial gradient differs from a reference gradient. For this purpose, we plot the
gradient distances collected from 10 evaluation points throughout the optimization process
as box plots. In other words, each box shows the statistics for the gradient distances over
those 10 evaluation points.

Figures 5.18a and 5.18b show the relative and cosine distance between the partial and
the full gradient. These plots depict the deviation of a full gradient from a partial gradient
compared to deviations of two reference gradients separated by the same interval. First
of all, the difference between consecutive reference gradients is comparatively small.
In most cases, the difference is smaller than the distance between the full and partial
gradient, even though the partial gradient modifies the full gradient only at a small subset
of dimensions. Despite a higher cosine and relative distance between full and partial
gradients, the distances are still in a low range as compared to the gradient distances of
the estimated gradients and the reference gradients shown in figures 5.18a and 5.18b.

We compare the relative and cosine distances of full and partial gradient to their respective
reference gradients in figures 5.18a and 5.18b. We show how much the full and partial
gradients deviate from approximated true gradients. It can be seen that, despite reusing
the previous gradient, the deviation of the partial gradient from a reference gradient is
similar to the deviation of the full gradient from a reference gradient.
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Figure 5.16.: Average reward for the Mujoco environments with dimension selection
based on uniform random sampling, variance estimation V1 and variance
estimation V2. The tuple (N,K,M) consists of the number of antithetic SF
samples N for the full gradient, the number of MVD dimensions K used
for the partial gradient, and the number of MVD samples per dimensionM .
The rewards are averaged over 10 seeds.
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Figure 5.17.: Variance reduction of at the chosen dimensions for the partial gradient rela-
tive to an antithetic SF estimator with an evaluation budget of 2(N +MK).
The tuple (N,K,M) consists of the number of antithetic SF samples N
for the full gradient, the number of MVD dimensions K used for the partial
gradient, and the number of MVD samples per dimension M .
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Figure 5.18.: Comparison of gradient distances shown as box plots. Each box depicts
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The x-axis shows configurations of (N,K,M).
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6. Discussion

In this chapter, we interpret the results of the experiments from chapter 5 and highlight
the implications for utilizing the MVD for episodic policy search.

6.1. Test Functions and Episodic Setting

For black-box test functions, the variance of the MVD estimator is lower than an antithetic
SF estimator using the same budget of evaluations. However, experiments in the episodic
setting have shown that the advantage of the MVD regarding its variance is dampened.
Here, considering the same budget of evaluations, the antithetic SF estimator achieves
lower variance. Nevertheless, the MVD estimator results in similar variance levels as the
SF with a fraction of the SF samples.

The contrast between the test function and episodic setting could be explained in the
horizon length and random initial conditions of the episodic task. Previously, Vemula et
al. have indicated that both factors largely impact the performance of gradient-based
episodic policy-search algorithms [41]. Their research, however, focused on the compar-
ison between action and parameter space exploring policy-search methods. Therefore,
additional research should be conducted to compare the influence of both factors on the
variance of different gradient estimators.

Research comparing the SF to the MVD estimator in the use case of approximate Bayesian
inference has also shown an improved variance of the SF estimator when the function
evaluations are limited to be the same [34]. This finding is in line with our results and
suggests a lower variance of the SF when using the same evaluation budget in certain use
cases.
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6.2. Convex Combination

When examining a convex combination of SF and MVD estimators, we have experienced an
increase of variance for the CCMVD compared to the antithetic SF estimator with the same
evaluation budget. However, variance is reduced at the subset of selected dimensions.

Even though the variance is reduced along selected dimensions, it depends on the config-
uration of base samples N , the number of dimensions K, and the number of additional
samples per dimension M . A low N results in high variance for the whole estimator, while
a low M yields high variance at the selected dimensions. Overall, it is challenging to
select N , K, and M to achieve low variance for the whole estimator and at the selected
dimensions while maintaining the fixed function evaluation budget of 2(N +KM). Using
more than one MVD sample per dimension results in a variance reduction in most cases.
However, when the number of selected dimensions is increased, the combined estimator
CCSF, where the MVD is replaced with another SF estimator, often gains an advantage.
Maintaining the same evaluation budget and increasing selected dimensions allows the
CCSF estimator to take more samples and achieve lower variance. Given an increased
variance of the combined estimators over an antithetic SF baseline and the higher variance
reduction of the CCSF in the case of selecting multiple dimensions, we recommend using
a plain antithetic SF estimator with increased samples in most cases.

Our results also indicate a significant influence of the inverse-variance weighting for the
convex combination. Applying the replacement strategy instead of the weighting scheme,
both CCSF, and CCMVD significantly lower variance. While inverse-variance weighting
can improve variance reduction, the challenge of utilizing the correct configuration of
(N,K,M) remains.

How the dimensions for MVD computation are selected also influences the performance
of the convex combination estimator. Selection strategies based on an estimated variance
outperform a random selection on all the tested environments. The improvement of
variance-based selections over random selection implies a subset of particularly relevant
dimensions for the optimization process that can be identified through the variance of
the estimated gradient. A subspace where relevant gradient directions are located is also
reported in [18, 7]. However, our selection scheme restricts this subspace to one spanned
by the standard basis vectors. Overall, our results indicate that improved dimension
selection also yields improved performance. However, the increase of estimator variance
when applying the convex combination could explain the improvement in a limited number
of environments.
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6.3. Locally Updated Gradient

One interesting result we observed for the LOCU estimator is the decrease of performance
for the variance-based selection schemes. A possible explanation for this finding is using a
replacement strategy instead of the inverse-variance weighting for the LOCU estimator.
As explained previously, the weighting scheme considerably influences variance reduction.
As observed previously, utilizing the replacement strategy leads to higher variance at
the chosen dimensions. Since the selection strategy aims to select the most relevant
dimensions, we potentially increase the variance along those relevant dimensions, which
is more detrimental than randomly selecting dimensions. Such a case is observed for the
HalfCheetah-v3 and Walker2d-v3 environments, where random selection leads to better
performance than other strategies.

Results on the gradient distances for the LOCU estimator indicate that consecutive gra-
dients remain in proximity, and our initial assumption of a locally smooth gradient is
justified for the environments we consider. However, such an assumption strongly depends
on many factors, such as the learning rate and the environment used. Furthermore, we
have shown that the full gradient and the partial gradient, which reuses previous gradi-
ent information, deviate from a reference gradient in a comparable range. This finding
suggests that despite reusing incorrect gradient information from previous iterations, the
partial gradient remains close to the true gradient due to the local smoothness of the
gradients.

Even though the general idea of saving samples through correcting the previous gradient
at specific dimensions seems to be validated, improvements are observed only for one
environment. We hypothesize that this result is due to an increased variance due to using
a replacement scheme instead of inverse-variance weighting. As mentioned, variance
reduction with the inverse-variance weighting is more efficient than a replacement strategy.
Therefore further improvement can be expected when the weighting scheme is extended
to the LOCU estimator using a running average variance estimate similar to the variance-
based selection strategies.
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7. Conclusion

In this thesis, we aimed to explore applications of the measured-valued derivative for
episodic policy search. For this purpose, we have compared the measure-valued estimator
to the widely-used score function estimator and extended both with heuristics from state-
of-the-art episodic policy-search algorithms. To mitigate the growth of computational
complexity with parameter dimensions for the measure-valued derivative, we investigated
two approaches to combine score function and measure-valued estimators.

In general, we have found that variance is more efficiently reduced with the measure-
valued estimator when only the sample size is considered. With the combined estimator,
variance reduces for the subset of chosen dimensions, but variance increases for the overall
estimator. The increase of required evaluations with parameter dimensions represents
a major problem. We notice an advantage for a combined estimator that replaces the
measure-valued derivative with the score function with increasing selected dimensions,
indicating a diminishing advantage with more selected dimensions. Furthermore, combin-
ing both estimators with a more informed choice of dimensions and combination weights
demonstrates improvements or equal performance on the studied environments.

Reusing gradients from previous iterations presents another way to mitigate the growth of
computational complexity of the measure-valued derivative. We have found this approach
leads to improvements only on a limited set of environments. Despite of this, our results
suggest that partial gradients that are locally corrected with the measure-valued estimator
from previously estimated gradients do not show larger deviations than a fully estimated
gradient.

7.1. Future Research

There is a variety of techniques for variance reduction for Monte-Carlo estimators. We
have utilized coupling to reduce variance for the measure-valued derivative in our work.
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Other reduction methods such as control variates or Rao-Blackwellization can be explored
for future research.

During our comparison of the measure-valued derivative with the score function, we
noticed a striking similarity between the antithetic score function estimator and the
measure-valued derivative. The similarity is particularly evident for gradient estimation of
the Gaussian mean. Therefore, an investigation into the source of this similarity promises
further insight into the measure-valued derivative.

The main problem with the measure-valued derivative is the per-dimension gradient
computation. In particular, the gradient estimation is restricted to gradients with respect
to the standard basis. Transforming the basis into a new coordinate frame and estimating
the gradients with respect to the transformed basis is an interesting future avenue. A
similar idea is to compute a directional derivative with the measure-valued derivative
along an arbitrary direction. This approach was introduced by Flynn et al. [12] for the
measure-valued derivative and can be combined with methods to find relevant subspaces
for black-box optimization [7, 37] to compute gradients along vectors spanning the
relevant subspace.
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A. Grid Search Results

0.01 0.025 0.03
STD

0.005

0.01

0.02

0.03

LR

3652 3115 2244

3604 4584 3415

4887 4659 1566

4637 4960 1233

Ant-v3

(a) Search with 40 samples

0.01 0.025 0.03
STD

0.005

0.01

0.02

0.03

LR

4069 3372 3570

4310 4817 4495

4618 5315 4677

4127 5318 5389

HalfCheetah-v3

(b) Search with 8 samples

0.01 0.02 0.03
STD

0.005

0.01

0.02

0.03

LR

2202 2479 2673

3340 2373 2101

2747 3190 2756

2391 3367 2305

Hopper-v3

(c) Search with 4 samples

0.01 0.02 0.025
STD

0.005

0.01

0.02

0.03

LR

355 360 360

347 336 362

346 325 349

349 350 351

Swimmer-v3

(d) Search with 4 samples

0.005 0.01 0.02 0.03
STD

0.005

0.01

0.025

0.03

LR

277 323 373 384

1014 384 421 427

2143 2783 845 783

2556 3913 1873 1064

Walker2d-v3

(e) Search with 60 samples

Figure A.1.: Grid search result for antithetic SF with state and reward normalization,
which is equivalent to ARS [25]. Except for Swimmer-v3, the number of sam-
ples for each environment were transferred from Mania et al. [25]. Shown is
the averaged end reward across 5 seeds.
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Figure A.2.: Grid-search result for CCMVD with selection strategy V2 and inverse-
variance weighting. Shown is the averaged end reward across 5 seeds.
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B. Hyperparameters

B.1. Black-box Test Functions

Test Function Learning Rate Standard Deviation

Quadratic 1e−3 0.1

Styblinski 1e−4 0.1

Rosenbrock 1e−5 0.1

Table B.1.: Table of hyperparameters used for the antithetic score-function/ARS base-
line in chapter 5. Learning rate and standard deviation are obtained from the
configuration of the grid-search in A.1.
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B.2. Convex Combination

B.2.1. SF Hyperparameters

Environment Learning Rate Standard Deviation

Swimmer-v3 0.01 0.025

Hopper-v3 0.02 0.03

HalfCheetah-v3 0.03 0.03

Walker2d-v3 0.03 0.01

Ant-v3 0.03 0.025

Table B.2.: Table of hyperparameters used for the antithetic score-function/ARS base-
line in chapter 5. Learning rate and standard deviation are obtained from the
configuration of the grid-search in A.1.
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B.2.2. CCMVD Hyperparameters

Environment Learning Rate Standard Deviation Warm-Up Covariance Decay

Swimmer-v3 0.01 0.025 1 0.9

Hopper-v3 0.01 0.01 5 0.9

HalfCheetah-v3 0.03 0.025 5 0.9

Walker2d-v3 0.025 0.01 5 0.9

Ant-v3 0.01 0.01 5 0.9

Table B.3.: Table of hyperparameters used for the CCMVD experiments in chapter 5.
Learning rate and standard deviation are obtained from the configuration of
the grid-search in A.2. LOCU estimator and CCMVD share the same hyperpa-
rameters.
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C. Selection Strategy Results

C.1. CCMVD Results
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Figure C.1.: Average reward for the Mujoco environments selection based on variance
estimation V2. The tuple (N,K,M) consists of the number of antithetic SF
samples N , the number of dimensions K and the number of MVD samples
per dimension M . The parameter tuples were chosen according to the grid
search A. The rewards are averaged over 10 seeds.
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Figure C.2.: Average reward for the Mujoco environments selection based on variance
estimation V1. The tuple (N,K,M) consists of the number of antithetic SF
samples N , the number of dimensions K and the number of MVD samples
per dimension M . The parameter tuples were chosen according to the grid
search A. The rewards are averaged over 10 seeds.
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Figure C.3.: Average reward for the Mujoco environments selection based on uniform
random sampling. The tuple (N,K,M) consists of the number of antithetic
SF samples N , the number of dimensions K and the number of MVD sam-
ples per dimension M . The parameter tuples were chosen according to the
grid search A. The rewards are averaged over 10 seeds.
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C.2. LOCU Results
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Figure C.4.: Average reward for the Mujoco environments with dimension selection
based on uniform variance estimation V2. The tuple (N,K,M) consists of
the number of antithetic SF samples N for the full gradient, the number of
MVD dimensions K used for the partial gradient, and the number of MVD
samples per dimensionM . The parameter tuples were chosen according to
the grid search A. The rewards are averaged over 10 seeds.
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Figure C.5.: Average reward for the Mujoco environments with dimension selection
based on variance estimation V1. The tuple (N,K,M) consists of the num-
ber of antithetic SF samples N for the full gradient, the number of MVD di-
mensions K used for the partial gradient, and the number of MVD samples
per dimension M . The parameter tuples were chosen according to the grid
search A. The rewards are averaged over 10 seeds.
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Figure C.6.: Average reward for the Mujoco environments with dimension selection
based on uniform random sampling. The tuple (N,K,M) consists of the
number of antithetic SF samplesN for the full gradient, the number of MVD
dimensions K used for the partial gradient, and the number of MVD sam-
ples per dimension M . The parameter tuples were chosen according to the
grid search A. The rewards are averaged over 10 seeds.
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