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Abstract

Neural linear models (NLM) and Gaussian processes (GP) are both examples of Bayesian
linear regression on rich feature spaces. In contrast to the widespread use of nonpara-
metric GPs for probabilistic nonlinear regression, NLMs remain an underused parametric
alternative because standard type II maximum likelihood (ML) training leads to overcon-
fidence outside of the data distribution. Therefore, we propose to augment this training
procedure through functional variational inference (fVI) proposed by Sun et al. (2019),
which is particularly well suited for NLMs due to their closed-form predictive distribution.
Additionally, we investigate whether an appropriate functional prior can guide parametric
NLMs to attain nonparametric GP performance, despite using fewer parameters. Results
show that functional priors can improve performance of NLM over ML training, and that
the NLM performs on par with weight space BNNs in this setting.

1. Introduction

GP NLM NLM NLM NLM
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Figure 1: Predictive densities of Bayesian models — of data *. The models are trained
with type IT ML (§), functional ELBO (}) and functional KL (}) objectives, and the NLMs
use leaky ReLU activations. Functional priors demonstrate that the NLM is expressive
enough to learn diverse feature spaces and approximate a GP, but type II ML and fELBO
training can lead to overfitting in the features resulting in reduced OOD uncertainty.

The neural linear model (NLM) (Léazaro-Gredilla and Figueiras-Vidal (2010); Ober and
Rasmussen (2019)) is a Bayesian neural network which combines deterministic neural net-
work features with a distibution over the final layer weights. As such, it is a form of
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Bayesian linear regression with a finite feature space, contrasting Gaussian processes (GP)
with infinite features spaces induced by kernel functions (Rasmussen and Williams (2005)).
These infinite feature spaces make GPs rich probabilistic models for nonlinear regression,
which are capable of expressing well-calibrated uncertainty quantification (UQ) outside of
the data distribution (OOD). This UQ is crucial for tasks where sample efficiency and safety
are critical, such as active learning, Bayesian optimization and model-based reinforcement
learning. Bayesian neural networks (BNN) have been widely criticized for their poor UQ
(e.g. Foong et al. (2019); Osband et al. (2018)), which impedes their performance in tasks
for which Bayesian methods are preferred.

The neural linear model has several attractive qualities compared to alternative BNN
approaches, such as Hamiltonian Monte Carlo (Neal (1995)), stochastic variational inference
(Blundell et al. (2015)), Monte Carlo dropout (Gal and Ghahramani (2016)) and deep en-
sembles (Lakshminarayanan et al. (2017)). The predictive distribution is closed-form, rather
than an implicit distribution, reducing the computational complexity of prediction. As it is
a Bayesian linear model, it also has fewer parameters for equivalent architectures compared
to models with weight-space priors. However, as this neural feature space is trained with
type II maximum likelihood (ML), the features typically overfit to the data and struggle
to express well-calibrated UQ when predicting OOD (Lazaro-Gredilla and Figueiras-Vidal,
2010). Kernel feature spaces demonstrate less susceptibility to this overfitting, as fewer
parameters are optimized. Despite this weakness, as GPs struggle to scale as well as BNNs
due to their nonparametric nature, we are motivated to enable NLMs that can match GP
performance. Therefore, we would wish to assess whether the finite neural feature space is
even capable of matching or surpassing the performance of Gaussian process kernels.

To investigate this aspect of NLMs, we look at functional variational inference (fVI),
which seeks to apply approximate inference over function distributions. With the functional
variational BNN (fBNN), Sun et al. (2019) used a GP posterior as a functional prior for
BNNs, which was then refined on the data using the functional evidence lower bound ob-
jective (fELBO). While this approach is essentially a form of empirical Bayes that requires
two Bayesian models to be learned, we seek to use fVI to assess the representational power
of NLMs in the context of GPs and other priors. If NLMs are capable of matching or sur-
passing the performance of nonparametric GPs, then this motivates research into learning
objectives for NLMs that encourages more kernel-like feature spaces.

2. Neural Linear Model

Intuitively, NLMs can be viewed as Bayesian linear regression in a projected feature space,
where the projection is learned by a neural network. Note that while the NLM can be easily
deployed for multivariate regression, the following derivations (and later experiments) in this
work focus on univariate targets for simplicity.

Let D = {(x;,:)}"_; be the observed data, x; € R¥, y; € R, such that X € R™** and
y € R™. Additionally, let ¢(-;0): R¥ — R™ be a feature space projection with parameters
0, ¢; = d(x;;0) and ® = [gblT e ¢),ﬂ € R™ ™ the matrix of vertically stacked row vectors.
It is common to add constant or linear terms to ® to implicitly represent bias or identity
terms. However, for notational clarity, we ignore these terms and denote the projected
feature space as R™.
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A latent function f is modeled using Bayesian linear regression (Box and Tiao (1973);
Bishop (2006); Murphy (2012)) with weights 3 and additive, zero-mean, Gaussian noise €
with variance o2, where

yi = f(xi;0) = ¢! B+« (1)

Placing a conjugate Gaussian prior N (po, Ay 1) over B results in a Gaussian posterior
N (ptn, A1) with an explicit Gaussian predictive distribution for query x,

Y1%,D,0 ~ fo(x) = N(- | g ptn, 0° + P Ay ), (2)

where p, and A, are the mean vector and precision matrix of the posterior weight dis-
tribution. The exact posteriors are detailed in Section A. The observation noise o2, prior
weight parameters pg and Ag, and @ can be either set to constants or optimized jointly by
maximizing the marginal likelihood. With gy = 0, this model is equivalent to a Gaussian
process with kernel k(x,x';0) = ¢(x;0)T Ay p(x';0) (Rasmussen and Williams (2005)).
This connection highlights that the NLM can be viewed as a distribution over functions
p(f), in which f is restricted to the form of Equation (1).

3. Functional Variational Inference

Functional variational inference considers optimizing a parameteric posterior ¢(f) using
the functional evidence lower bound objective (fELBO) through use of a functional KL
divergence (fKL) and functional prior p(f),

L(D) := Efq(yflogp(D | )] = Dxr(q(f) | p(f))- 3)

Here, L(D) is a lower bound of the log-marginal likelihood log p(D), such that maximizing
L(D) translates to maximizing p(D). In general, p(f) and ¢(f) can be arbitrary stochastic
processes, i.e. distributions over functions, and the fKL between two stochastic processes
(de G. Matthews et al. (2016)) is a generalization of the regular KL divergence between
two finite dimensional probability distributions. However, the generalization to function
space introduces obstacles in terms of tractability. Roughly speaking, evaluation of the
fKL requires integration in an infinite-dimensional vector space, which is intractable as
there is no infinite-dimensional Lebesgue measure (Hunt (1992)). Nonetheless, it is possible
to approximate this quantity for Gaussian processes by averaging over a finite number of
evaluations at s locations x; (Sun et al. (2019)),

Dxr(a(f) 1 p(f) = 5 351 Dru(fa(x)) 1] fo(x5)), (4)

such that the quantity is concrete.

A key factor for a successful fKL approximation is the choice of {x;}. Ideally, {x;}
should be representative of the domain of f. In general, it is impossible to entirely cover
or reasonably represent the behavior of arbitrary distributions p(f) and q(f) over R* with
any finite number of samples. Therefore, it is necessary to select a bounded subset of the
original domain as ‘domain of interest’, which can be challenging if the underlying data
distribution is unknown.
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4. Functional Priors in Practice

While the variational stochastic process ¢(f) can be modeled using any probabilistic func-
tion approximator, such as a NLM or any other Bayesian neural network, a beneficial yet
practicable choice for the prior stochastic process p(f) is less apparent. White Gaussian
noise (WGN), more specifically a Gaussian process with zero mean and isotropic covariance,

p(f) = gP( ‘ OaU§)7 fp(x) = N( | 0705)? (5)

is a simple candidate which is often used by GPs (Rasmussen and Williams, 2005). However,
while GPs typically optimize the variance of this prior using type II ML, here it is fixed. To
attain scale invariance across datasets, it is sensible to define this prior in whitened space.

Alternatively, it is possible to use a more informative prior, such as a Gaussian process
posterior GP(f | 0,K) whose kernel parameters were calibrated using the available training
data (Sun et al. (2019); Shi et al. (2019)). The scalar k, vector k and matrix K are computed
using the kernel, training data and function input x, so

fp(x) =N (- | E(x), V(x)), E(x) =k K ly, V(ix)=k—-k K 'k. (6)

Note that this choice of functional prior p(f) involves the training data D. Therefore, it is
not a pure prior in a Bayesian sense, but could be interpreted as a form of empirical Bayes
(Morris (1983)), which may result in overfitting.

Lastly, it is also possible to use the fKL solely as the optimization objective, i.e. Equa-
tion (4) rather than Equation (3), so that ¢(f) approximates another stochastic process
p(f), e.g. a Gaussian process posterior. If p(f) adequately represents the observed data
then ¢(f) will naturally fit the data by minimizing the fKL while also inheriting other
properties, such as extrapolation behavior and uncertainty quantification. In particular,
this functional inference can transfer stochastic processes which are modeled by arbitrary
probabilistic function approximators, e.g. GPs and NLMs, even if both models have consid-
erably different architectures. This could enable model compression and distillation, which
may be practical for nonparametric models like Gaussian processes.

The computational complexity of the training procedure for NLMs with the fELBO
is of important practical concern and hence we discuss it here. The prediction complex-
ity is, regardless of the chosen training procedure, in O(m?) per prediction, assuming the
feature-space dimension m to be the largest of all hidden-layer dimensions and neglecting
the computation of the non-linearities of the network. The total complexity during training
of evaluating the fELBO (Equation (3)) is the sum of the complexities of evaluating the
marginal likelihood and the fKL approximation (Equation (4)). Under the previous assump-
tions, the complexity of the marginal likelihood objective for the NLM is in O(nm24+m?).
The complexity of computing the fKL approximation depends on the number of samples s
and the types of involved stochastic processes. Assuming that f, and f, are both Gaussian
and already available, computation of the fKL term with s samples {x;} requires O(sd?)
for d output dimensions, which simplifies to O(s) for d = 1. Computing f, consists of evalu-
ating the NLM’s predictive distribution, which is in O(sm?) for s samples. The complexity
of computing f, depends on the chosen prior. The WGN prior is available in O(1) time,
whereas the GP prior requires GP training once (O(n?)) and GP prediction (O(sn?)) per
objective evaluation.



NEURAL LINEAR MODELS WITH FUNCTIONAL GAUSSIAN PROCESS PRIORS

MODEL BOSTON CONCRETE ENERGY WINE YACHT
ap § RBF  —2516+0.114 —3.512+0.011 —0.659+0.050 —0.963+0.021 —0.150 +0.037
NLM §  LRELU —2.563+0.048 —3.105+0.026 —0.905+£0.058 —1.000+0.013 —1.325+0.087
TANH ~ —2.634+£0.043 —3.107+£0.019 —1.067+0.077 —0.991+0.011  —0.954 + 0.082
WGN f LRELU  —2.569+0.069 —3.167+0.014 —1.126+£0.017 —0.981+0.018 —1.592+0.075
TANH ~ —2.570£0.066 —3.093+0.015 —1.381+0.024 —0.989+0.017 —1.100  0.109
GP{ LRELU —2.538+0.087 —3.010+0.024 —0.627+0.063 —0.976+0.030 —0.7850.099
TANH ~ —2.594+0.121 —3.015+0.037 —0.748+0.046 —0.994+0.022 —0.697 +0.077
GPf LRELU —2.604+0.140 —3.449+0.005 —0.660+0.036 —0.959+0.021 —0.886 0.083
TANH ~ —2.533+£0.126 —3452+0.007 —0.633+0.041 —0.991+0.019 —0.723+0.072
BBB! ¥ RELU  —2.602+£0.031 —3.14940.018 —1.500+0.006 —0.977+0.017 —2.408 +0.007
NNG2 % RELU  —2.446+0.029 —3.039+0.025 —1421+0.005 —0.969+0.014 —2.3160.006
fBNNS  GP 1 RELU  —2.301+0.038 —3.096+0.016 —0.684+0.020 —1.040+0.013 —1.033+0.033
(a) Log-Likelihood
MODEL BOSTON CONCRETE ENERGY WINE YACHT
GP § RBF 2.977+0.249 5.540 £ 0.162 0.472+0.021 0.628 £0.019 0.363 +0.028
NLM § LRELU  3.055£0.178 5.007 £0.124 0.459£0.015 0.649+0.010 0.922 £ 0.094
TANH  3.195+0.154 5.127+0.133 0.523+0.017 0.639+0.010 0.576 £ 0.067
WGN I LRELU 3.010£0.228 5.043+0.156 0.458 £0.021 0.641+0.013 1.189 £+0.137
TANH 2984 +0.194 4.897+0.156 0.544+0.026 0.646 =0.013 0.633 £0.120
GP I LRELU 2.982+0.226 4.833+0.140 0.437+£0.020 0.638+0.017 0.502 £ 0.053
TANH  3.026 £0.223 4.828 £0.211 0.503£0.019 0.652+0.015 0.480 £ 0.047
GP t LRELU 2.962 £ 0.246 5.536 £0.130  0.463 £0.018 0.627 +0.015 0.471 £ 0.049
TANH  2.830 £ 0.255 5.664+0.144 0.453£0.018 0.648+0.014 0.453 £0.047
BBB! * RELU 3.171 +£0.149 5.678 + 0.087 0.565£0.018 0.643 £0.012 1.174+0.086
NNG2 * RELU  2.742£0.125 5.019+0.127 0.485£0.023 0.637+0.011 0.979 £0.077
fBNN? GP § RELU 2.378 £0.104 4.935+0.180 0.412+0.017 0.673+0.014  0.607 £ 0.068

(b) RMSE

Table 1: Regression results on the UCI dataset. Models are trained with a type II maximum
likelihood (§), ELBO (x), functional ELBO (i) and functional KL (}) objective. Results
obtained from 1, Blundell et al. (2015); 2, Zhang et al. (2018); 3, Sun et al. (2019).

5. Experimental Results

This section discusses our nonlinear regression experiment, which aims to demonstrate
the viability of combining NLMs with functional inference, leveraging the NLM’s explicit
predictive distribution. To this end, we replicated the experiments presented in Sun et al.
(2019) and evaluated the NLM on several UCI regression datasets. The goal is to assess how
the NLMs with functional priors compare to other Bayesian neural networks with weight
space priors. In this setting, four different optimization objectives, namely type I maximum
likelihood with the conventional weight space prior (§), weight space ELBO (x), functional
ELBO (i) and functional KL (), were used. For the functional inference, we used white
Gaussian noise (WGN) and a Gaussian process (GP) as functional priors.

All models were implemented using PyTorch (Paszke et al. (2019)). For the GPs we
additionally used GPyTorch (Gardner et al. (2018)). The NLM was implemented with
o = 0 and a diagonal matrix with m distinct parameters to represent Ag. The observation
noise parameter o2, neural network weights @ and Ag were learned via backpropagation.
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To encode positive value constraints, 02 and Ay were learned in log-space. Following Sun
et al. (2019), NLMs used a single hidden layer with 50 units. For optimization parameters,
please refer to Appendix B.

Table 1 displays the results of our UCI regression benchmark experiments, comparing
NLMs to GPs and previous work. In general, the NLM achieves competitive performance.
Although using the WGN prior results in underfitting for data with low observation noise
(energy, yacht), it can match or surpass the predictive performance of a GP on data with
high observation noise (boston, concrete, wine). Applying fELBO inference with the GP
prior, the NLM mostly outperforms the other Bayesian neural networks. The fKL objec-
tive with the GP posterior has performance that does indeed match the GP across most
datasets. The NLM with fELBO training also generally outperforms the fBNN, apart from
the boston dataset. Given that the fBNN has approximately twice as many parameters,
a more elaborate training procedure, and an implicit predictive distribution, this indicates
that the NLM is a better function class for functional prior research.

6. Related Work

The study of functional priors for Bayesian inference is a burgeoning field. Our work builds
off Sun et al. (2019), who train a weight-space BNN with a GP posterior using a KL gra-
dient estimator and mean-field stochastic variational inference. Shi et al. (2019) in turn
build off this, taking a mirror descent interpretation to allow for incremental training with
minibatches and the Gaussian process prior. As Gaussian processes are exact distribu-
tions over functions, sparse GPs may be viewed as approximate inference over functions
(de G. Matthews et al. (2016)), minimizing the fKL from its exact posterior via inducing
points. The noise contrastive prior (NCP) of Hafner et al. (2019) is a similar idea where
the training data is perturbed by random noise to serve as a ‘data prior’ for a BNN, in
order to increase uncertainty estimation OOD. While effective empirically, the data prior is
again akin to empirical Bayes as the prior is defined by the data. The practice of combining
kernels in GPs has been translated to BNN architectures and activation functions, pro-
ducing periodic and mixing phenomena in the network’s feature space for more expressive
models (Pearce et al. (2019)). Variational implicit priors (Ma et al. (2019)) use variational
inference to deal with functional priors which you can only sample from, e.g. simulators,
which provides the flexibility of a broad range of complex processes to be adopted as priors.

7. Outlook

The goal of this work is to motivate further research into the NLM by demonstrating its
potential in combination with functional variational inference. Experiments have shown that
this model is just as capable of representing a GP posterior as networks with weight priors,
while being simpler and having closed-form predictive distributions. Our results suggest
that an appropriate functional prior could enable GP-like performance and uncertainty
quantification from NLMs, without requiring a GP posterior for training.
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Figure 2: Reproduction of Figure 1 with tanh activation for the NLM.

Appendix A. Bayesian Last Layer Equations

In this section, we collectively state the equations for Bayesian linear regression (Box and
Tiao (1973); Bishop (2006); Murphy (2012)) with weights 3 and additive noise €, where

yi = f(xi:0) = ¢, B+, (7)
e ~N(-10,0%), (8)
y ~N(- | ®8,0°T). 9)

Assuming known aleatoric uncertainty o (Bishop (2006)), a conjugate Gaussian prior over
B results in a Gaussian posterior,

B~ N(| o, Ay, pn = AL (Aopo + 0 2@ Ty), (10)
B|D,0~N(-| pn, A1), A, =02®"® + Ay, (11)

with an explicit Gaussian predictive distribution for output y and query x,
Yy %,D,0 ~ N(- | g pin, 0” + dx A, ). (12)

The log-marginal likelihood can be written as

1 1 AO n
log p(D | ) = (i Anptn — g Aopto —y 'y) + 5 log ||A |, — 5 log2mo®. (13)
n

Appendix B. Optimization Parameters

Gradient-based optimization was performed using Adam (Kingma and Ba (2014)). The GPs
were trained until convergence for up to 3000 epochs at a learning rate of 1le-2. The NLMs
were trained at a learning rate of le-3, and the number of training epochs was determined
by tracking the validation log-likelihood of 10% of the training data for up to 10000 epochs
for ML training and up to 15000 epochs for all fVI variants. The fKL was evaluated using
100 samples per epoch from a uniform distribution consistent with Sun et al. (2019).
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Appendix C. Experimental Results

MODEL BOSTON CONCRETE ENERGY WINE YACHT
Gp § RBF  —1.980+0.013 —3439+0.004 —0.310£0.007 —0.718+0.003 0.415+0.017
NLM 8 LRELU —2.180 £ 0.026 —2.860 £ 0.042 —0.728 £ 0.085 —0.864 +0.014 —1.008 £ 0.086
TANH  —2.290+0.037 —2.842£0.024 —0.973+0.088 —0.906 & 0.008  —0.810 £ 0.053
WGN § LRELU —2.145+0.037 —3.039 £0.012 —1.089 +£0.020 —0.871+£0.004 —1.284£0.072
TANH  —2.169 £ 0.038 —2.917 £ 0.009 —1.362 £ 0.023 —0.9254+0.007 —0.894 £ 0.059
GP{ LRELU —2.072£0.024 -2.759+0.017 -0.281+£0.016 —0.759+0.019 —0.475+0.073
TANH  —2.074+£0.030 —2.761+0.025 —0.582+0.010 —0.822£0.017 —0.53140.028
GP { LRELU —2.017+0.019 —3.389 £ 0.003 —0.4424+0.014 —0.825+£0.004 —0.706 £ 0.102
TANH  —2.057+£0.027  —3.385 £ 0.004 —0.416 £0.007  —0.816 £0.009 —0.524 £ 0.044

(a) Log-Likelihood

MODEL BOSTON CONCRETE ENERGY WINE YACHT
GP § RBF 1.505 £ 0.021 3.464 £0.024 0.309+0.002 0.378+0.003 0.119+0.002
NLM § LRELU 1.239+£0.032 3.087 +0.062 0.342 £0.007  0.527 £ 0.012 0.486 £ 0.029
TANH  1.353£0.034  3.053+£0.052  0.451+£0.008  0.5604+0.009  0.404 &+ 0.023
WGN I LRELU 1.182+0.053 3.315+0.063 0.353 £ 0.006 0.555 £ 0.003 0.548 £ 0.041
TANH  1.301 £0.055  2.877+£0.045 0.470+0.012  0.596 +0.004  0.345 £+ 0.019
GP I LRELU 1.303+£0.019 2.744+0.070 0.306+0.006 0.498 +0.010 0.188 £ 0.007
TANH 1323 +£0.027 2.775+£0.073 0.428£0.004 0.533 £ 0.009 0.370 £ 0.019
GP f LRELU 1.58240.023 4.0194+0.024 0.336+0.003  0.521£0.003  0.223 £0.013
TANH  1.583 +0.022 3.984 £0.027  0.346 £+ 0.002 0.502 £ 0.009 0.287 £+ 0.025

(b) RMSE

Table 2: Training metrics on the UCI dataset. Models are trained with a type II maximum
likelihood (§), ELBO (x), functional ELBO (f) and functional KL (f) objective. Training
results of Blundell et al. (2015); Zhang et al. (2018); Sun et al. (2019) are omitted as they

were not reported.
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