
Latent Derivative Bayesian Last Layer Networks

Joe Watson*† Jihao Andreas Lin*† Pascal Klink† Joni Pajarinen†‡ Jan Peters†
† Department of Computer Science, Technical University Darmstadt

‡ Department of Electrical Engineering and Automation, Aalto University

Abstract

Bayesian neural networks (BNN) are power-
ful parametric models for nonlinear regression
with uncertainty quantification. However, the
approximate inference techniques for weight
space priors suffer from several drawbacks.
The ‘Bayesian last layer’ (BLL) is an alter-
native BNN approach that learns the feature
space for an exact Bayesian linear model with
explicit predictive distributions. However,
its predictions outside of the data distribu-
tion (OOD) are typically overconfident, as
the marginal likelihood objective results in a
learned feature space that overfits to the data.
We overcome this weakness by introducing
a functional prior on the model’s derivatives
w.r.t. the inputs. Treating these Jacobians as
latent variables, we incorporate the prior into
the objective to influence the smoothness and
diversity of the features, which enables greater
predictive uncertainty. For the BLL, the Jaco-
bians can be computed directly using forward
mode automatic differentiation, and the dis-
tribution over Jacobians may be obtained in
closed-form. We demonstrate this method
enhances the BLL to Gaussian process-like
performance on tasks where calibrated uncer-
tainty is critical: OOD regression, Bayesian
optimization and active learning, which in-
clude high-dimensional real-world datasets.

1 Introduction

Bayesian neural networks (BNN) [43, 50] offer the pos-
sibility of combining the expressivity of neural networks
with the principled uncertainty quantification and reg-

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

xi φi yi

θ β σ2
µ0

Λ0

sj Jφj
zj π

|X|

|T |

Figure 1: Graphical model of the Gaussian latent
derivative Bayesian last layer network. Bottom dashed
components indicate the latent derivative extension to
the BLL (top).

ularization derived from Bayesian methods. However,
inference for priors over the weights is intractable,
resulting in extensive study of learning such BNNs
via approximate inference [50, 30, 19, 25, 38, 7]. De-
spite their many varieties, these approximate models
can suffer from several drawbacks, such as unintuitive
priors, expensive training procedures, inaccurate pos-
teriors and/or large model parameter spaces. More-
over, these models are typically restricted to sampling
from implicit predictive densities, and have been crit-
icized for their inaccurate uncertainty quantification
[24, 23, 53, 54, 81, 85]. In many risk-sensitive and
safety-critical applications, such as in medical diagno-
sis [21] and model-based control [17], well-calibrated
predictive uncertainty is essential when the model is
used outside of the data distribution (OOD). In con-
trast to Bayesian neural networks, Gaussian processes
(GP) offer exact nonlinear, non-parametric Bayesian
modeling through linear regression of a rich (often
infinite) feature space, specified by a derived kernel
function [63]. While a powerful and popular tool for
probabilistic modeling [29], exact inference computa-
tion does not scale gracefully for large datasets, and
the model’s quality depends heavily on the choice of
kernel given the data. Moreover, some kernels have
been shown to suffer from the curse of dimensionality
due to their use of distance metrics in the data space [4].
Despite sparse methods improving scalability [78, 72],
parametric models still provide an attractive offer of

Latent Derivative Bayesian Last Layer Networks

Gaussian Process
(Arcsine1)

Mean-field
Variational Inference

(Tanh)
Bayesian Last Layer

(Tanh)

Latent Derivative
Bayesian Last Layer

(Tanh)

Figure 2: A toy example depicting Bayesian modeling of a complex function () from sparse data (). The
Gaussian process has well-calibrated uncertainty, but its fixed kernel structure can result in an undesirable function
space for inference. Weight space mean-field variational inference (VI) exhibits poor in-between uncertainty
[24, 23] and has an implicit predictive density. The Bayesian last layer has an explicit density and a deterministic
feature space. However, these features overfit, resulting in poor epistemic uncertainty too. We introduce a ‘latent
derivative’ prior to the BLL that encourages variance in the model’s Jacobian distribution, diversifying the
feature space by capitalizing on the network’s large hypothesis space. This diversity results in increased predictive
uncertainty, without sacrificing the fit.

flexible model specification with data-independent com-
putation and parameterization.

The Bayesian last layer [39, 51] is an alternative BNN
approach in the spirit of GPs, combining a Bayesian
linear model with a learned, finite feature space, rep-
resented by a neural network. While the linear model
ensures the analytical tractability of both inference
and predictive distribution, the neural features provide
the broad, adaptive hypothesis space offered by neural
network architectures. Since Gaussian processes are
just Bayesian linear models in an expressive feature
space, can’t learned neural features perform as well
as kernels? While the network can be trained easily
using gradient descent on the negative marginal likeli-
hood, i.e. type-II maximum likelihood, there is a catch:
The overparameterization leads to overfitting of the
feature space [39, 63], resulting in a reduced hypothesis
space of functions which severely limits the predictive
uncertainty quantification (Figure 2).

To encourage diversity in the BLL’s neural features,
without sacrificing the model’s attractive properties,
we incorporate a novel functional prior into the model
specification. We posit that well-calibrated uncertainty
quantification may be effectively characterized by the
distribution of the model’s Jacobian w.r.t. the net-
work’s inputs (Figure 3), which is also a Gaussian
process [64, 75]. Previous methods to improve BNN
uncertainty quantification rely on additionally model-
ing the data distribution, requiring OOD samples to
explicitly boost the predictive uncertainty [27]. The
derivative prior works in- and outside the data distri-

1Note that the arcsine kernel is equivalent to an infinite
hidden layer network with erf activations, therefore shares
a similar hypothesis space to sigmoid and tanh networks.

bution, influencing the model’s hypothesis space and
therefore epistemic uncertainty directly. By incorporat-
ing this prior into the objective, using the functional KL
divergence (fKL) [68, 16, 76], the smoothness and di-
versity of the feature space is influenced by the variance
of the prior. As a result, this training procedure resem-
bles functional variational inference (fVI)[76]. Due to
the BLL’s deterministic features, the Jacobian may be
computed directly using forward mode automatic differ-
entiation (AD) [61], and the distribution over Jacobians
can be obtained in closed-form thanks to the Bayesian
last layer. However, during training the divergence
to the functional prior must be approximated using
samples. Moreover we believe this prior is intuitive,
and its functional nature should enable the model to
remain suitably calibrated independent of model size,
as Bayesian models should [62].

By combining the analytic convenience of the Bayesian
last layer, forward mode automatic differentiation and
the novel functional prior over the Jacobian, we present
a practical, calibrated Bayesian neural network that
offers comparable utility to Gaussian processes, across
small and large tasks. This class of BNN makes the
case, like GPs, that priors are not required over the
feature parameters. This reduction of complexity is
motivated for applied domains such as robotics, where
fast, well-calibrated Bayesian models are needed for
sample-efficient, safe and risk-averse settings such as
model-based reinforcement learning [18]. In these do-
mains, the balance between simplicity and performance
is key for practical use, and ideally not dependent on
the amount of data in the task. To evaluate the benefit
of this prior, we compare against standard BLLs and
other baselines for OOD regression, active learning and
Bayesian optimization, where epistemic uncertainty

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Lo
w

G
ra
di
en
t

V
ar
ia
nc
e

Predictive
Distribution

Function
Samples

H
ig
h

G
ra
di
en
t

V
ar
ia
nc
e

Figure 3: At a data point , the epistemic uncertainty
of a (locally) linear model is increased about the point
if the variance of the function gradients is large.

is needed. We show that the latent derivative (LD)
prior enhances the BLL’s predictive uncertainty, scal-
ing to large, real-world datasets with high-dimensional
inputs, achieving superior or comparable performance
on key tasks. We also introduce two new benchmarks
for OOD prediction and active learning that utilize
existing datasets from real-world robotic systems.

2 The Bayesian Last Layer

Intuitively, Bayesian last layer networks can be viewed
as Bayesian linear regression in a projected feature
space, where the projection is learned by a neural
network. Alternatively, they can be thought of as a
neural network whose parameters of the last layer are
integrated out via exact, analytical Bayesian inference.
While the BLL can be easily deployed for multivariate
regression, the following derivations (and later exper-
iments) in this work focus on univariate targets for
simplicity.

Let D = {(xi, yi)}ni=1 be the observed data, xi ∈
Rk, yi ∈ R, such that X ∈ Rn×k and y ∈ Rn.
Additionally, let φ(·;θ) : Rk → Rm be a feature
space projection with parameters θ, φi = φ(xi;θ)
and Φ =

[
φ>1 . . .φ

>
n

]
∈ Rn×m, the matrix of vertically

stacked row vectors. It is common to add constant or
linear terms to Φ to implicitly represent bias or identity
terms. However, for notational clarity, we ignore these
terms and denote the projected feature space as Rm.

A latent function f is modeled using Bayesian linear
regression [9, 6, 49] with weights β and additive, zero-
mean, Gaussian noise ε with variance σ2, where

yi = f(xi;θ) = φ>i β + εi. (1)

Placing a conjugate Gaussian prior N (µ0,Λ
−1
0) over

β results in a Gaussian posterior N (µn,Λ
−1
n) with an

explicit Gaussian predictive distribution for query x [6],

y | x,D,θ ∼ N (· | φ>xµn, σ2 + φ>x Λ−1n φx), (2)

where µn and Λn are the mean vector and precision
matrix of the posterior weight distribution.

The observation noise σ2, prior weight parameters µ0

and Λ0, and θ can be either set to constants or opti-
mized jointly by maximizing the log-marginal likelihood.
With µ0 = 0, this model is equivalent to a Gaussian pro-
cess with kernel k(x,x′;θ) = φ(x;θ)>Λ−10 φ(x′;θ) [63].
For a more Bayesian treatment, an inverse gamma prior
can be placed on σ2, inducing a Student-t weight poste-
rior and predictive density (Section A). We use ‘GBLL’
and ‘TBLL’ to differentiate these two approaches.

3 Latent Derivative Priors

For the Bayesian last layer, the neural features φ are
optimized using type-II maximum likelihood on the
marginal likelihood (Equation (18)). While type-II ML
can be effective at tuning hyperparameters, e.g. the
lengthscale of a kernel, optimizing too many parameters
runs the risk of overfitting [63]. For the BLL, this man-
ifests as the feature space converging about the mean
function. While this results in adequate uncertainty
far away from the data, predictions are overconfident
between datapoints (Figure 2).

To improve the diversity of the feature space, we are
motivated to augment the marginal likelihood objective
to leverage the expressiveness of the neural network
without sacrificing fit. In this work, we build on the
intuition that the distribution of the model’s derivatives
influences the epistemic uncertainty OOD (Figure 3).
Given that the derivative of a Gaussian process is also a
Gaussian process [46], computing the feature Jacobian
Jφx using forward mode AD allows us to reason about
the predictive Jacobian in closed-form, which for 1D
regression is a vector-valued, probabilistic function, i.e.
a Gaussian process, which we denote z,

∂f

∂x
(x) := z(x) = Jφx

>β, z ∼ p(· | x,D,θ), (3)

p(z | x,D,θ) = GP(z|Jφx

>µn,Jφx

>Λ−1n Jφx). (4)

In typical regression, z is unobserved and therefore a
quantity we wish to remain uncertain about. Moreover,
with expressive function approximators we should be
free to shape the uncertainty of z without interfering
with the fit of f . In the Bayesian framework, we can
shape this uncertainty by placing a functional prior π
on z ∈ Rk

min
θ
DKL(π(z | x) || p(z | x,D,θ)), (5)

enforced through a functional KL divergence (fKL).

Latent Derivative Bayesian Last Layer Networks

Combining the conventional marginal likelihood with
this fKL, we propose a novel joint objective

max
θ

log p(D | θ)−DKL(π(z|x) || p(z | x,D,θ)), (6)

which can be interpreted from two perspectives.

Maximum Entropy Regularization Since Bayesian
linear regression typically considers a fixed feature
space or kernel, jointly learning the features can be
viewed as an inverse problem [77]. Inverse problems,
especially in probabilistic settings, are commonly regu-
larized using the principle of maximum entropy [34, 71].
Choosing the features that are the most unstructured,
or the least committed to a specific model, offers not
just robustness but ideally translates to calibrated epis-
temic uncertainty in our setting. One could choose to
encourage maximum entropy directly in the predictive
distribution. However, optimizing this objective could
result in underfitting or increased aleatoric uncertainty,
if the data is in conflict with the functional prior. As
the derivatives are unobserved, we have more freedom
specifying a latent derivative prior. Interestingly, while
neural networks are typically overparameterized and
benefit from regularization, e.g. weight decay, its role is
generally to keep parameters small to avoid overfitting.
Due to the Bayesian treatment of the last layer, we
are less concerned with overfitting in the features as
long as they are sufficiently diverse. The role of the
LD prior is to diversify the feature space adequately
so that the Bayesian linear model can return a regular-
ized, accurate mean function and expressive predictive
variance.

A Latent Variable Model As many regularization
schemes can be motivated from a Bayesian reasoning,
we can also take a more probabilistic view of the latent
derivative term. Given a distribution over latent deriva-
tives, we can construct a latent variable model (LVM)
by considering the first-order Taylor expansion (7) over
our predictive model f (2). By reparameterizing our re-
gression problem (y,x) into a perturbed form (y, x̄, δ),

y = f(x) = f(x̄ + δ) ≈ f(x̄) +
∂f

∂x
(x̄)>δ, (7)

= f(x̄) + z(x̄)>δ, (8)

the above Taylor approximation illustrates how z in-
fluences the predictive uncertainty as the perturbation
δ grows. As typical regression problems only consider
directly corresponding pairs (y, x̄,0), this latent vari-
able perspective is irrelevant for the training data as
δ = 0. However, by characterizing prediction between
and outside the training data as δ 6= 0, one can appre-
ciate how controlling the distribution of z influences
the epistemic uncertainty in the predictions, as illus-
trated in Figure 3. This view perhaps helps explain

why the the combined objective, Equation (6), strongly
resembles the evidence lower bound objective (ELBO)
used for inference of LVMs [32]. The key distinction
is that z does not influence the likelihood of the ob-
servations, as δ = 0 for the training data. Also, our
fKL uses the forward KL (M-projection) instead of
the reverse KL (I-projection), which the ELBO uses.
The forward KL encourages the distribution to cover
as much probability mass as possible which translates
to a flat distribution with higher variance, i.e. higher
entropy, whereas the reverse KL prefers to seek an in-
dividual mode which typically results in lower variance
and potential overfitting [47]. We discuss this topic in
more detail in Section G of the Appendix.

We now discuss specific aspects of the LDBLL.

The Latent Derivative Objective Although the
BLL’s derivative distribution can be represented in
closed-form, it is a stochastic process rather than a
weight distribution. As a result, its KL divergence to
a prior process π manifests as a functional KL, which
is not a well-defined quantity when the prior does not
share the same feature space. In contrast to a regular
KL divergence between finite-dimensional probability
distributions, a functional KL between stochastic pro-
cesses requires the evaluation of an infinite-dimensional
integral, which is intractable due to the lack of an
infinite-dimensional Lebesgue measure [16]. However,
it is possible to use a finite index set T to estimate
the otherwise intractable fKL because the fKL between
a prior and posterior conditional Gaussian process is
equal to the divergence at observations conditioned on
T [76],

DKL(p(f) || p(f | T)) = DKL(p(fT) || p(fT | T)). (9)

While we could evaluate the divergence at the training
data, i.e. T =D, to account for OOD prediction, we add
some noise by defining T = {sj ∼ N (· | xj , γI)}nj=1

and estimate the LD fKL as

1

|T |
∑
sj∈T

DKL(π(z | sj) || p(z | sj ,D,θ)). (10)

The index set T should ideally represent the true data
distribution. Since this data distribution is typically
unknown, we create index sets by sampling near the
observed training data as a proxy. This is not necessar-
ily the optimal sampling strategy, as this would depend
on both the data distribution and task. However, we
believe it balances staying within and outside the data
distribution, and therefore should be a robust strategy
across settings.

Prior Specification We choose the latent derivative
prior π as a Gaussian process with a mean function µπ

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 1: Means and standard errors of test metrics for different BNNs with leaky relu (LR) and tanh (TA)
activations for nonlinear regression of gap (Cartpole, CO2, Sarcos, WAM) and standard (UCI) datasets.

(a) Log-Likelihood

gap standard

model cartpole co2 sarcos wam boston concrete power yacht

gp rbf −4.01± 0.00 −4.49± 0.00 −5.07± 0.03 −2.10± 0.01 −2.41± 0.06 −3.08± 0.02 −2.76± 0.01 −0.17± 0.03
gbll lr −115.94± 50.48 −11.23± 1.95 −379.72± 53.31 −378.90± 41.63 −2.90± 0.05 −3.09± 0.03 −2.77± 0.01 −1.67± 0.11

ta −27.95± 9.96 −8.44± 0.92 −403.15± 30.66 −173.61± 11.61 −3.06± 0.03 −3.21± 0.03 −2.83± 0.01 −0.70± 0.10
ldgbll lr −11.68± 2.14 −2.04± 0.03 −51.98± 6.59 −35.36± 4.17 −2.60± 0.04 −2.97± 0.03 −2.77± 0.01 −1.13± 0.06

ta −8.07± 1.60 −2.52± 0.16 −169.77± 5.08 −106.86± 8.28 −2.57± 0.05 −2.89± 0.03 −2.82± 0.01 −0.73± 0.05
mfvi lr −12.19± 3.08 −7.23± 0.59 −52.23± 5.72 −315.55± 26.33 −2.39± 0.04 −2.97± 0.03 −2.77± 0.01 −1.43± 0.17

ta −650.53± 358.66 −26.90± 1.08 −59.30± 4.36 −311.69± 19.86 −2.48± 0.04 −3.04± 0.02 −2.79± 0.01 −1.44± 0.15
ensemble lr −5.20± 0.11 −6.67± 0.34 −7.64± 0.84 −4.79± 0.26 −2.48± 0.09 −3.04± 0.08 −2.70± 0.01 −0.35± 0.07

ta −3.75± 0.28 −9.84± 0.41 −13.24± 0.83 −17.73± 0.88 −2.48± 0.08 −3.03± 0.07 −2.72± 0.01 −0.03± 0.05
dropout lr −3.73± 0.14 −2.42± 0.01 −8.58± 0.50 −15.46± 0.40 −2.36± 0.04 −2.90± 0.02 −2.80± 0.01 −1.82± 0.01

ta −27.84± 1.54 −2.96± 0.01 −25.92± 0.62 −18.28± 0.12 −2.41± 0.04 −3.03± 0.01 −2.86± 0.01 −2.24± 0.01
swag lr −106.72± 34.69 −3.56± 0.11 −15.34± 0.47 −29.49± 2.50 −2.64± 0.16 −3.19± 0.05 −2.77± 0.02 −1.11± 0.05
map lr −5800.91± 2276.39 −15.73± 0.50 −199.49± 15.53 −39.54± 2.00 −2.60± 0.07 −3.04± 0.04 −2.77± 0.01 −5.14± 1.62

ta −64.36± 21.45 −12.09± 0.33 −121.14± 10.30 −26.92± 0.66 −2.59± 0.06 −3.11± 0.04 −2.76± 0.01 −1.77± 0.53

(b) RMSE

gap standard

model cartpole co2 sarcos wam boston concrete power yacht

gp rbf 13.64± 0.00 1.70± 0.00 2.75± 0.00 1.63± 0.01 2.83± 0.16 5.62± 0.13 3.72± 0.04 0.40± 0.03
gbll lr 221.60± 55.83 2.53± 0.26 3.69± 0.15 2.18± 0.06 4.19± 0.17 5.01± 0.18 3.85± 0.03 1.09± 0.09

ta 9.47± 0.93 2.59± 0.17 4.08± 0.15 3.26± 0.12 4.61± 0.23 5.50± 0.23 4.09± 0.04 0.43± 0.03
ldgbll lr 179.20± 79.00 2.59± 0.71 2.80± 0.11 1.87± 0.06 3.38± 0.18 4.80± 0.18 3.85± 0.04 0.75± 0.10

ta 10.32± 1.98 2.38± 0.14 2.51± 0.03 3.12± 0.07 3.12± 0.14 4.39± 0.14 4.05± 0.04 0.52± 0.05
mfvi lr 10.69± 2.13 1.82± 0.07 2.95± 0.19 3.36± 0.45 2.74± 0.16 4.80± 0.13 3.86± 0.04 1.10± 0.11

ta 7.72± 0.55 3.35± 0.11 2.13± 0.05 1.46± 0.02 2.93± 0.13 5.04± 0.12 3.91± 0.04 1.26± 0.14
ensemble lr 37.03± 4.88 2.10± 0.03 3.01± 0.05 1.73± 0.03 2.79± 0.17 4.55± 0.12 3.59± 0.04 0.83± 0.08

ta 5.50± 1.22 2.58± 0.03 2.30± 0.02 1.36± 0.00 2.71± 0.13 4.51± 0.13 3.66± 0.04 0.38± 0.03
dropout lr 4.59± 0.22 2.18± 0.09 2.67± 0.04 1.41± 0.02 2.78± 0.16 4.45± 0.11 3.90± 0.04 1.21± 0.13

ta 10.96± 0.35 5.19± 0.03 2.08± 0.02 1.29± 0.00 2.77± 0.15 4.90± 0.10 4.18± 0.03 1.20± 0.11
swag lr 49.39± 8.45 10.73± 1.08 3.03± 0.07 1.66± 0.03 3.08± 0.35 5.50± 0.16 3.85± 0.05 1.13± 0.20
map lr 52.50± 7.62 1.93± 0.03 3.27± 0.13 2.04± 0.05 3.02± 0.17 4.75± 0.12 3.81± 0.04 0.94± 0.09

ta 6.49± 0.62 2.01± 0.03 2.67± 0.12 1.73± 0.02 3.01± 0.17 5.15± 0.13 3.78± 0.04 0.39± 0.04

and covariance function Σπ,

π(z | x) = GP(z | µπ(x),Σπ(x)). (11)

In practice, we set the prior to be constant, with
µπ(x) = 0 and Σπ(x) = I in whitened data space.
The zero mean derivative prior is motivated by the
zero mean weight prior. The derivative covariance is
harder to specify. While a constant covariance may
not be the optimal LD prior for a given task, from a
practical perspective it is straightforward to specify,
analogous to Gaussian weight priors used for BNNs.
Domain knowledge (such as a physics model) could
be used to define a more complex derivative prior pro-
cess, which would combine the benefits of task-specific
knowledge and black-box function approximation.

With the Bayesian last layer, it may appear that a LD
prior ‘overdefines’ the BLL and that the two proba-
bilistic treatments conflict. However, as the LD prior
seeks to leverage the expressive feature space of the
neural network, the universal approximation capability

of the neural features should be capable of satisfying
both the BLL likelihood and derivative prior. How-
ever, due to the construction of the model there are
two constraints that can inform our choice of LD prior
based on the weight prior. One is that as zero mean
weight prior suggests a zero mean derivative prior, due
to the linearity of Equation (3). The other is that as
σ2 → 0, V[z]→ 0 due to the weight posterior (defined
in Equation (16)) in Equation (4).

In light of this second aspect, we found that scaling the
LD prior with the alearotic uncertainty σ2 improved the
prior specification and reduced underfitting in the non-
linear regression tasks. However, the fixed LD prior was
beneficial for tasks requiring greater uncertainty quan-
tification, such as active learning. While this scaling
can be viewed as a form of empirical Bayes (EB) [48], its
limited application suggests better EB approaches may
exist. For example, µπ would benefit from adapting to
linear trends in the data, and Σπ could be improved by
adapting to the relative smoothness w.r.t. each input

Latent Derivative Bayesian Last Layer Networks

dimension. We shall investigate alternative approaches
in future work. Moreover, this aleatoric scaling arises
naturally when considering multivariate output regres-
sion and the matrix normal distribution. We discuss
the details of this in Appendix A.

4 Experiments

We evaluated the LD prior on several tasks that require
predictive uncertainty, namely nonlinear regression, ac-
tive learning and Bayesian optimization, to verify that
our proposed functional latent derivative prior improves
the BLL in terms of adequate epistemic uncertainty in
the absence of observed data. More detailed discussions
and visualizations of all involved datasets can be found
in Section I.

4.1 Nonlinear Regression

For the nonlinear regression benchmarks, we compare
our LDBLL to the standard BLL and several other
baselines: the nonparametric Gaussian process, a regu-
larized network (MAP) and popular BNN approaches.
These include mean-field variational inference (MFVI)
[7], Monte Carlo dropout [25], ensembles [38] and
stochastic weight averaging (SWAG) [44]. All regres-
sion problems involve real-world data, however, inspired
by previous work based on in-between uncertainty [23],
we distinguish between four novel ‘gap’ tasks, namely
Cartpole, CO2, Sarcos and WAM, and ‘standard’ tasks
from the popular UCI benchmark. Our goal is to show
that the LDBLL improves the BLL significantly in
terms of combating overconfidence during OOD pre-
diction, which shall be demonstrated by the gap tasks,
while maintaining competitive performance on the stan-
dard benchmarks. Due to the abundance of data, the
Gaussian BLL backbone without Bayesian treatment of
the observation noise was used for nonlinear regression.
CO2 The Mauna Loa atmospheric carbon dioxide
dataset contains CO2 measurements over several
decades [63]. To encode the periodicity without us-
ing specialized models, we augment the time input
with sinusoidal features with an annual frequency. The
gap region for testing considers central and edge por-
tions.
Cartpole Here, telemetry is recorded from a Quanser
cartpole system performing a swing-up maneuver. We
use the dynamic state (position, velocity and accelera-
tion) of the cart and pole for inverse dynamics modeling
of the drive torque. The gap region is about the hang-
ing position, where θ < 45◦, as depicted by Figure 11
in the Appendix.
Sarcos This dataset [79] contains the telemetry from
a 7 DOF manipulator. It is used as a regression bench-
mark for inverse dynamics modeling, regressing the

21-dimensional state to a drive torque. In the central
portion of the data, the robot’s pose induces a bias
torque (likely due to gravity) in one of the upper motor
drives. Therefore, modeling the inverse dynamics on
this torque requires OOD prediction. Forecasting un-
seen aspects of dynamics from limited data represents
a key challenge in MBRL for robotics.
WAM This dataset is also derived from a robotic
manipulator, the cable-driven 4 DOF Barrett WAM.
However, here the distribution shift is generated by
demanding the same complex motion at different veloci-
ties. By training on a slower motion and evaluating the
inverse dynamics model for data collected at a faster
speed, the prediction considers the same trajectory but
now with higher variance in the values of the state and
input due to the larger accelerations at play.
UCI These datasets consists of several disparate re-
gression problems that vary in size and dimension, and
are a common benchmark for probabilistic nonlinear
regression.
Flight Delay The flight delay dataset is a large-scale
regression task of 700k datapoints used to demonstrate
scalability [29]. While Bayesian methods are generally
less useful for large datasets, as uncertainty should be
minimal assuming no distribution shift, models should
be able to scale adequately. We detail a batch method
for training the BLL using a variational approximation,
which aids the model in scaling to large datasets at
the cost of non-exact inference during training. We
describe this method in Section B and the results in
Section I.

More details about the novel gap tasks are discussed
in Section I.

Empirical results, displayed in Table 1, show that,
in terms of the gap tasks, the LDBLL outperforms
the standard BLL significantly in terms of test log-
likelihood, which captures the adequacy of the ratio
between goodness of fit (RMSE) and predicted uncer-
tainty (entropy). This indicates the LD prior influences
a better feature space for predictive uncertainty OOD.
For standard regression, results were comparable, which
makes sense as OOD uncertainty is not useful in this
setting.

With respect to the baselines, the GP, MC dropout and
ensembles performed better across gap and standard
regression tasks. In fact, the GBLL performance was
typically closer to the MAP model than the BNN, and
the LD prior did not improve this performance enough
to be deemed a competitive alternative. This could be
due to capacity (GPs and ensembles have more param-
eters) and or a superior prior (e.g. the RBF kernel,
the Bernoulli weight prior of MC dropout). Superior
performance is also characterized by ‘underfitting’ on
the training data (see the tables in Section I.1), sug-

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

0 10 20 30 40

1

2

3

4

Iterations

R
M
SE

0 10 20 30 40

−8

−6

−4

−2

Iterations
Lo

g-
lik

el
ih
oo

d

0 10 20 30 40

2.5

3

3.5

4

Iterations

P
re
di
ct
iv
e
E
nt
ro
py

gp
t-bll

ld t-bll
mfvi

Figure 4: Active learning on the Cartpole dataset, reporting the quartile range over 20 seeds.

gesting the LD prior is not regularizing enough during
training. While the LD prior is interpretable due to
the function space setting, it is not straightforward to
assign values to when setting priors for a given task.
As empirical Bayes would only tune the prior towards
overfitting, it remains an open question how to design
the LD prior to provide appropriate regularization for
regression tasks.

4.2 Active Learning

Active learning [14] is the setting where a probabilistic
model takes an active role in data acquisition, choosing
points to optimize learning w.r.t. a utility measure.
It is useful in domains such as system identification,
where sampling data can be an expensive process. We
use the Cartpole dataset introduced in Section 4.1,
which contains a dynamical system performing a ‘swing-
up’ control task. The (much smaller) swing-up por-
tion is highly informative while the remaining samples
from stabilization are generally redundant. Therefore,
information-theoretic data acquisition offers a signifi-
cant improvement over a random strategy. Section I.2
describes the experiment in detail and Figure 4 shows
the results on a held out test set. In this experiment
we also compare to a GP, which excels at uncertainty
quantification under small datasets. The LDTBLL
matches the GP in terms of RMSE and final LLH,
however its predictions appear slightly overconfident
during learning in comparison. Moreover, the LD prior
evidently improves performance significantly on the
standard BLL, which is miscalibrated with consider-
able variance. MFVI struggles to perform the task due
to its lackluster uncertainty quantification, which is
evident from its relatively small predictive entropy on
the test set. As a result, its selected data will likely be
collected from uninformative regions and thus essen-
tially random. This would explain its slow progress in
both RMSE and LLH improvement.

4.3 Bayesian Optimization

Bayesian optimization (BO) [55, 73] is a sample-efficient
black-box global optimization method. By constructing
a Bayesian model of the objective, an uncertainty-
derived utility function can be used to decide optimal
function evaluations. Again, we compare to a GP,
which is preferred for BO over BNNs. We performed
BO on two tasks (Figure 5), chosen to highlight both
the strengths and weaknesses of the LDBLL for BO.
They are described in Section I.3

Sinc in a Haystack This toy example is designed to
demonstrate the utility of the LDBLL in optimizing
high frequency functions, where the optima may be
highly local. The function, f(x)= sinc(6(x − 1)), is
challenging to optimize despite being smooth, as it re-
quires large epistemic uncertainty to avoid suboptimal
convergence. While all models demonstrate high vari-
ance in performance, the standard TBLL typically fails
to achieve any improvement, whereas the LDTBLL
is evidently superior. Its ‘maximum entropy’ nature
translates to a powerful exploration strategy.

Hartmann6 This is a standard BO benchmark, with
a six-dimensional state and six local minima. Figure 5
shows that the GP is vastly superior at this task, con-
verging rapidly and consistently. This is due in part to
the function’s smoothness combined with the smooth-
ness assumption of the GP kernel. While the LDBLL
converges faster than the BLL, indicating that the LD
prior scales to higher dimensions, both converge to a
similar suboptimal value compared to the GP. This
suggests that either the LDBLL fails to capture the
finer grained epistemic uncertainty required to fully
converge, or that the specific BO optimizer used here
benefits from the GP’s smoothness and is less suited
to optimizing the BLL due to its increased roughness.

Latent Derivative Bayesian Last Layer Networks

0 10 20 30 40

0

0.5

1

Iterations

Im
m
ed
ia
te

R
eg
re
t

Sinc in a Haystack

0 20 40 60 80 100

0

1

2

Iterations

Hartmann6

gp
t-bll

ld t-bll

Figure 5: Bayesian optimization on two tasks, displaying the quartiles of regret over 20 seeds.

5 Related Work

Bayesian Neural Networks BNNs have existed
since the 1980s as a means of both utilizing neural
networks as statistical models [43] and for general reg-
ularization [31]. The early work of Neal [50] provided
several key contributions, namely the insight that the
limit of an infinite hidden layer neural network is a
Gaussian process under certain conditions, and the
use of Hamiltonian Monte Carlo for approximate in-
ference. Despite the statistical elegance of MCMC
training methods [1] and their advancements [33, 12],
they are expensive to deploy and scale poorly with
larger models. These shortcomings have motivated
a focus on variational inference methods [31, 59, 26]
for BNNs, including unbiased gradient estimation [7]
and other advanced techniques [76, 20, 84, 28]. There
is a large family of alternative approximate methods:
Including the Laplace approximation [43, 19, 66], en-
sembles [38, 53, 3, 57], expectation propagation [30],
Monte Carlo dropout [25], variational dropout [36],
and a range of gradient-based approaches [40, 44]. The
Bayesian last layer (also referred to as adaptive basis
function and neural linear) model was introduced as a
‘marginalized neural network’ (MNN) [39] as a neural
equivalent to sparse GPs. To mitigate feature overfit-
ting, the MNN uses an ensemble of feature networks.
BLLs have previously been applied to Bayesian opti-
mization [74], bandit problems [80, 65], active learning
[60], reinforcement learning [52] and regression [51], but
there appears a lack of work on improving their gen-
eral performance. Inference networks [70] are similar
to fVI, but take a functional mirror-descent interpre-
tation and incrementally fit the GP prior, enabling
minibatch training. Prior Networks [45] use the neural
network to parameterize a marginalized distribution,
therefore directly predicting Dirichlet distributions for
classification.

Gaussian Processes Beyond Neal’s infinite limit,
there is a rich body of research on the intersection
of GPs and NNs. The arcsine (or MLP) [82] and ar-
ccosine [13] covariance functions represent the kernel
of an infinite single hidden layer network with erf and
ReLU activations respectively. The manifold GP [11]
uses a neural network to learn an intermediate feature
space so that the covariance function performs bet-
ter on non-smooth functions. Deep kernels [83] define
closed-form kernels using neural network components
for more expressive covariance functions that are able
to incorporate inductive biases such as convolutional
operators. Deep Gaussian processes [15, 10, 67] stack
GPs to learn a hierarchical representation of interme-
diate latent variables to build sophisticated statistical
models. Moreover, the Student-t process [69] is a Gaus-
sian process with an inverse gamma / Wishart prior
over the aleatoric uncertainty.

Functional Priors As Gaussian processes are exact
distributions over functions, sparse GPs may be viewed
as approximate inference over functions [16], minimiz-
ing the fKL from its exact posterior via inducing points.
The functional variational BNN (fBNN) [76] uses the
fKL to use explicit or implicit stochastic processes as
functional priors. They use a GP trained on the data
as a prior, which can be viewed as an elaborate form
of empirical Bayes. While this prior improves the per-
formance of the variational BNN compared to other
methods, it is not evident when and to what extent
improvement is made over the GP prior. The noise
contrastive prior (NCP) [27] is a similar idea where the
training data is perturbed by random noise to serve
as a ‘data prior’ for a BNN, in order to increase un-
certainty estimation OOD. While effective empirically,
the data prior is again akin to empirical Bayes as the
prior is defined by the data. Related work has also
considered transforming the BNN weight prior into the
prior of a GP [22]. The practice of combining kernels
in GPs has been translated to BNN architectures and

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

activation functions, producing periodic and mixing
phenomena in the network’s feature space for more
expressive models [58]. Variational implicit priors [41]
use variational inference to worth with functional pri-
ors you can only sample from, e.g. simulators, which
provides the flexibility of a broad range of complex
processes to be adopted as priors.

6 Conclusion

We introduced the latent derivative prior, a novel func-
tional prior for the Bayesian last layer which improves
epistemic uncertainty by promoting feature diversity.
This model has several attractive properties over weight
space BNNs, namely explicit predictive distributions
and an intuitive prior that directly enhances functional
uncertainty. The LDBLL further demonstrates that,
like GPs, linear Bayesian models can be sufficient for
many problems if the underlying feature space is ad-
equately expressive. We have shown through a suite
of tasks that the LD objective significantly improves
the uncertainty quantification of the BLL, such that
the model is a viable parametric alternative to GPs for
downstream tasks like active learning. The LD prior
would be further improved by adequate specification
for a given task or dataset. Using the notion of deriva-
tives, this prior could provide a way of incorporating
domain knowledge (i.e. from physics) into the model
to improve performance over pure black box models.
Moreover, the application of the BLL and LDBLL to
multivariate prediction tasks such as model-based con-
trol and classification is an open avenue, in particular
how the notion of derivative uncertainty applies to
classification.

Acknowledgements

We wish to thank Svenja Stark and Michael Lutter
for proofreading and feedback. Pascal Klink and Joni
Pajarinen are funded by the DFG project PA3179/1-1
(ROBOLEAP). Furthermore, this research was sup-
ported by grants from NVIDIA and the NVIDIA DGX
Station. Thanks also to Danijar Hanfner for providing
access to the flight delay dataset and the anonymous
reviewers for helpful comments during the review pro-
cess.

References

[1] Christophe Andrieu, Nando De Freitas, Arnaud
Doucet, and Michael I Jordan. An introduction
to mcmc for machine learning. Machine learning,
2003.

[2] Maximilian Balandat, Brian Karrer, Daniel R.
Jiang, Samuel Daulton, Benjamin Letham, An-

drew Gordon Wilson, and Eytan Bakshy. BoTorch:
A Framework for Efficient Monte-Carlo Bayesian
Optimization. In Advances in Neural Information
Processing Systems 33, 2020.

[3] D. Barber and Christopher Bishop. Ensemble
learning in bayesian neural networks. In General-
ization in Neural Networks and Machine Learning,
1998.

[4] Yoshua Bengio, Olivier Delalleau, and Nicolas
Le Roux. The curse of dimensionality for local
kernel machines. Technical Report TR-1258, Uni-
versité de Montréal, 2005.

[5] Eli Bingham, Jonathan P. Chen, Martin
Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip,
Paul Horsfall, and Noah D. Goodman. Pyro: Deep
Universal Probabilistic Programming. Journal of
Machine Learning Research, 2018.

[6] Christopher M. Bishop. Pattern Recognition and
Machine Learning. Springer-Verlag, Berlin, Hei-
delberg, 2006.

[7] Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural network. In International Con-
ference on Machine Learning, 2015.

[8] Alexandr A. Borovkov. Probability Theory.
Springer London, 2013.

[9] G. E. P. Box and G. C. Tiao. Bayesian Inference
in Statistical Analysis. John Wiley & Sons, New
York, 1973.

[10] Thang Bui, Daniel Hernández-Lobato, Jose
Hernandez-Lobato, Yingzhen Li, and Richard
Turner. Deep gaussian processes for regression
using approximate expectation propagation. In
International Conference on Machine Learning,
2016.

[11] R. Calandra, J. Peters, C. E. Rasmussen, and
M. P. Deisenroth. Manifold gaussian processes for
regression. In International Joint Conference on
Neural Networks, 2016.

[12] Tianqi Chen, Emily B. Fox, and Carlos Guestrin.
Stochastic gradient hamiltonian monte carlo. In
International Conference on Machine Learning,
2014.

[13] Youngmin Cho and Lawrence K. Saul. Kernel
methods for deep learning. In Advances in Neural
Information Processing Systems, 2009.

Latent Derivative Bayesian Last Layer Networks

[14] David A. Cohn, Zoubin Ghahramani, and
Michael I. Jordan. Active learning with statis-
tical models. In Advances in Neural Information
Processing Systems, 1995.

[15] Andreas Damianou and Neil Lawrence. Deep gaus-
sian processes. In Artificial Intelligence and Statis-
tics, 2013.

[16] Alexander G. de G. Matthews, James Hensman,
Richard Turner, and Zoubin Ghahramani. On
sparse variational methods and the kullback-leibler
divergence between stochastic processes. In Inter-
national Conference on Artificial Intelligence and
Statistics, 2016.

[17] Marc Deisenroth and Carl E Rasmussen. Pilco: A
model-based and data-efficient approach to policy
search. In International Conference on Machine
Learning, 2011.

[18] Marc Peter Deisenroth, Gerhard Neumann, Jan
Peters, et al. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2013.

[19] John S. Denker and Yann LeCun. Transforming
neural-net output levels to probability distribu-
tions. In Advances in Neural Information Process-
ing Systems, 1991.

[20] M. Emtiyaz Khan, D. Nielsen, V. Tangkaratt,
W. Lin, Y. Gal, and A. Srivastava. Fast and
Scalable Bayesian Deep Learning by Weight-
Perturbation in Adam. In International Confer-
ence on Machine Learning, 2018.

[21] Angelos Filos, Sebastian Farquhar, Aidan N.
Gomez, Tim G. J. Rudner, Zachary Kenton, Lewis
Smith, Milad Alizadeh, Arnoud de Kroon, and
Yarin Gal. Benchmarking bayesian deep learn-
ing with diabetic retinopathy diagnosis. https:
//github.com/OATML/bdl-benchmarks, 2019.

[22] Daniel Flam-Shepherd, James Requeima, and
David Duvenaud. Mapping gaussian process priors
to bayesian neural networks. In NIPS Bayesian
deep learning workshop, 2017.

[23] Andrew Foong, Yingzhen Li, José Hernández-
Lobato, and Richard Turner. ’in-between’ un-
certainty in bayesian neural networks. In ICML
Workshop on Uncertainty and Robustness in Deep
Learning, 2019.

[24] Andrew Y. K. Foong, David R. Burt, Yingzhen Li,
and Richard E. Turner. On the expressiveness of
approximate inference in bayesian neural networks.
arxiv e-prints, 2019.

[25] Yarin Gal and Zoubin Ghahramani. Dropout as
a bayesian approximation: Representing model
uncertainty in deep learning. In International
Conference on Machine Learning, 2016.

[26] Alex Graves. Practical variational inference for
neural networks. In Advances in Neural Informa-
tion Processing Systems, 2011.

[27] Danijar Hafner, Dustin Tran, Alex Irpan, Timothy
Lillicrap, and James Davidson. Noise contrastive
priors for functional uncertainty. In Uncertainty
in Artificial Intelligence, 2019.

[28] Manuel Haußmann, Fred A. Hamprecht, and
M. Kandemir. Sampling-free variational inference
of bayesian neural networks by variance backprop-
agation. In Uncertainty in Artificial Intelligence,
2019.

[29] James Hensman, Nicolò Fusi, and Neil D.
Lawrence. Gaussian processes for big data. In
Uncertainty in Artificial Intelligence, 2013.

[30] José Miguel Hernández-Lobato and Ryan P.
Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In Interna-
tional Conference on Machine Learning, 2015.

[31] Geoffrey E. Hinton and Drew van Camp. Keep-
ing the neural networks simple by minimizing the
description length of the weights. In Conference
on Computational Learning Theory, 1993.

[32] Matthew D. Hoffman, David M. Blei, Chong Wang,
and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(4):1303–
1347, 2013.

[33] Matthew D. Homan and Andrew Gelman. The no-
u-turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo. Journal of Machine
Learning Research, 15, 2014.

[34] E. T. Jaynes. Information theory and statistical
mechanics. Physical Review, 106, 1957.

[35] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

[36] Durk P Kingma, Tim Salimans, and Max Welling.
Variational dropout and the local reparameteri-
zation trick. In Advances in Neural Information
Processing Systems, 2015.

[37] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath,
Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. The Journal
of Machine Learning Research, 2017.

https://github.com/OATML/bdl-benchmarks
https://github.com/OATML/bdl-benchmarks

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

[38] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In
Advances in Neural Information Processing Sys-
tems, 2017.

[39] Miguel Lázaro-Gredilla and Aníbal R. Figueiras-
Vidal. Marginalized neural network mixtures for
large-scale regression. Transactions on Neural
Networks, 21(8), 2010.

[40] Qiang Liu and Dilin Wang. Stein variational gradi-
ent descent: A general purpose bayesian inference
algorithm. In Advances in Neural Information
Processing Systems, 2016.

[41] Chao Ma, Yingzhen Li, and Jose Miguel
Hernandez-Lobato. Variational implicit processes.
In International Conference on Machine Learning,
2019.

[42] David J. C. MacKay. Information-based objec-
tive functions for active data selection. Neural
Computation, 4(4), 1992.

[43] David J. C. MacKay. A practical bayesian frame-
work for backpropagation networks. Neural Com-
putation, 4(3), 1992.

[44] Wesley J Maddox, Pavel Izmailov, Timur Garipov,
Dmitry P Vetrov, and Andrew Gordon Wilson. A
simple baseline for bayesian uncertainty in deep
learning. In Advances in Neural Information Pro-
cessing Systems, 2019.

[45] Andrey Malinin and Mark Gales. Predictive uncer-
tainty estimation via prior networks. In Advances
in Neural Information Processing Systems, 2018.

[46] Andrew McHutchon. Nonlinear Modelling and
Control using Gaussian Processes. PhD thesis,
University of Cambridge, 2014.

[47] Tom Minka et al. Divergence measures and mes-
sage passing. Technical report, Technical report,
Microsoft Research, 2005.

[48] Carl N Morris. Parametric empirical bayes in-
ference: theory and applications. Journal of the
American statistical Association, 78(381), 1983.

[49] Kevin P. Murphy. Machine Learning: A Proba-
bilistic Perspective. The MIT Press, 2012.

[50] Radford M. Neal. Bayesian Learning for Neural
Networks. PhD thesis, University of Toronto, CAN,
1995.

[51] Sebastian W. Ober and Carl Edward Rasmussen.
Benchmarking the neural linear model for regres-
sion. In Symposium on Advances in Approximate
Bayesian Inference, 2019.

[52] Brendan O’Donoghue, Ian Osband, Rémi Munos,
and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In Jennifer G. Dy and
Andreas Krause, editors, International Conference
on Machine Learning, 2018.

[53] Ian Osband, John Aslanides, and Albin Cassirer.
Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems, 2018.

[54] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary
Nado, D. Sculley, Sebastian Nowozin, Joshua Dil-
lon, Balaji Lakshminarayanan, and Jasper Snoek.
Can you trust your model's uncertainty? evaluat-
ing predictive uncertainty under dataset shift. In
Advances in Neural Information Processing Sys-
tems, 2019.

[55] Anthony O’Hagan. Some bayesian numerical anal-
ysis. Bayesian Statistics, 1992.

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems, 2019.

[57] Tim Pearce, Felix Leibfried, Alexandra Brintrup,
Mohamed Zaki, and Andy Neely. Uncertainty in
neural networks: Approximately bayesian ensem-
bling. In International Conference on Artificial
Intelligence and Statistics, 2020.

[58] Tim Pearce, Russell Tsuchida, Mohamed Zaki,
Alexandra Brintrup, and Andy Neely. Expressive
priors in bayesian neural networks: Kernel combi-
nations and periodic functions. In Uncertainty in
Artificial Intelligence, 2019.

[59] Carsten Peterson and Eric Hartman. Explorations
of the mean field theory learning algorithm. Neural
Networks, 1989.

[60] Robert Pinsler, Jonathan Gordon, Eric Nalisnick,
and José Miguel Hernández-Lobato. Bayesian
batch active learning as sparse subset approxi-
mation. In Advances in Neural Information Pro-
cessing Systems, 2019.

Latent Derivative Bayesian Last Layer Networks

[61] Louis B. Rall. Automatic Differentiation: Tech-
niques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer, 1981.

[62] Carl Edward Rasmussen and Zoubin Ghahramani.
Occam's razor. In Advances in Neural Information
Processing Systems, 2001.

[63] Carl Edward Rasmussen and Christopher K. I.
Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2005.

[64] CE. Rasmussen. Gaussian processes to speed up
hybrid monte carlo for expensive bayesian integrals.
Bayesian Statistics, 2003.

[65] Carlos Riquelme, George Tucker, and Jasper
Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks
for thompson sampling. In International Confer-
ence on Learning Representations, 2018.

[66] Hippolyt Ritter, Aleksandar Botev, and David
Barber. A scalable laplace approximation for
neural networks. In International Conference on
Learning Representations, 2018.

[67] Hugh Salimbeni and Marc Deisenroth. Doubly
stochastic variational inference for deep gaussian
processes. In Advances in Neural Information
Processing Systems, 2017.

[68] Matthias Seeger. Bayesian Gaussian Process Mod-
els: PAC-Bayesian Generalisation Error Bounds
and Sparse Approximation. PhD thesis, University
of Edinburgh, 2003.

[69] Amar Shah, Andrew Wilson, and Zoubin Ghahra-
mani. Student-t Processes as Alternatives to Gaus-
sian Processes. In International Conference on
Artificial Intelligence and Statistics, 2014.

[70] Jiaxin Shi, Mohammad Emtiyaz Khan, and Jun
Zhu. Scalable training of inference networks for
Gaussian-process models. In International Con-
ference on Machine Learning, 2019.

[71] C Ray Smith and Walter T Grandy Jr. Maximum-
Entropy and bayesian methods in inverse problems,
volume 14. Springer Science & Business Media,
2013.

[72] Edward Snelson and Zoubin Ghahramani. Sparse
gaussian processes using pseudo-inputs. In Ad-
vances in Neural Information Processing Systems,
2005.

[73] Jasper Snoek, Hugo Larochelle, and Ryan P.
Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in Neural
Information Processing Systems, 2012.

[74] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan
Kiros, Nadathur Satish, Narayanan Sundaram,
Md. Mostofa Ali Patwary, Prabhat Prabhat, and
Ryan P. Adams. Scalable bayesian optimization
using deep neural networks. In International Con-
ference on Machine Learning, 2015.

[75] E. Solak, R. Murray-Smith, W.E. Leithead, D.J.
Leith, and C.E. Rasmussen. Derivative obser-
vations in gaussian process models of dynamic
systems. In Advances in Neural Information Pro-
cessing Systems, 2003.

[76] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and
Roger Grosse. Functional variational bayesian
neural networks. In International Conference on
Learning Representations, 2019.

[77] Albert Tarantola. Inverse problem theory and
methods for model parameter estimation, vol-
ume 89. siam, 2005.

[78] Michalis Titsias. Variational learning of inducing
variables in sparse gaussian processes. In Inter-
national Conference on Artificial Intelligence and
Statistics, 2009.

[79] S. Vijayakumar and S. Schaal. Locally weighted
projection regression: An o(n) algorithm for in-
cremental real time learning in high dimensional
spaces. In International Conference on Machine
Learning, 2000.

[80] Noah Weber, Janez Starc, Arpit Mittal, Roi
Blanco, and Lluís Màrquez. Optimizing over a
bayesian last layer. In NeurIPS Bayesian Deep
Learning Workshop, 2018.

[81] Florian Wenzel, Kevin Roth, Bastiaan S Veeling,
Jakub Świątkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton,
and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? In Inter-
national Conference on Machine Learning, 2020.

[82] Christopher K. I. Williams. Computing with infi-
nite networks. In Advances in Neural Information
Processing Systems, 1996.

[83] Andrew Gordon Wilson, Zhiting Hu, Ruslan
Salakhutdinov, and Eric P. Xing. Deep kernel
learning. In International Conference on Artificial
Intelligence and Statistics, 2016.

[84] Anqi Wu, Sebastian Nowozin, Ted Meeds,
Richard E. Turner, Jose Miguel Hernadez-Lobato,
and Alexander L. Gaunt. Deterministic variational
inference for robust bayesian neural networks. In
International Conference on Learning Representa-
tions, 2019.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

[85] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez.
Quality of uncertainty quantification for bayesian
neural network inference. In ICML Workshop on
Uncertainty & Robustness in Deep Learning, 2019.

Latent Derivative Bayesian Last Layer Networks

A Bayesian Last Layer Equations

In this section, we collectively state the equations for Bayesian linear regression [9, 6, 49] with weights β and
additive noise ε, where

yi = f(xi;θ) = φ>i β + εi, (12)

εi ∼ N (· | 0, σ2), (13)

y ∼ N (· | Φβ, σ2I). (14)

Assuming known aleatoric uncertainty σ2 [6], a conjugate Gaussian prior over β results in a Gaussian posterior,

β ∼ N (· | µ0,Λ
−1
0), µn = Λ−1n (Λ0µ0 + σ−2Φ>y), (15)

β | D,θ ∼ N (· | µn,Λ−1n), Λn = σ−2Φ>Φ + Λ0, (16)

with an explicit Gaussian predictive distribution for output y and query x,

y | x,D,θ ∼ N (· | φ>xµn, σ2 + φ>x Λ−1n φx). (17)

The log-marginal likelihood can be written as

log p(D | θ) =
1

2
(µ>nΛnµn − µ>0 Λ0µ0)− 1

2σ2
y>y − n

2
log 2πσ2 +

1

2
log|Λ0| −

1

2
log|Λn|. (18)

Assuming unknown aleatoric uncertainty σ2 [49], a conjugate normal-inverse-gamma prior over β and σ2, such
that the joint prior distribution of β and σ2 factorizes as p(β, σ2) = p(β | σ2)p(σ2), where

β | σ2 ∼ N (· | µ0, σ
2Λ−10), (19)

σ2 ∼ Inv-Gamma(· | a0, b0), (20)

results in a joint posterior distribution which factorizes as p(β, σ2 | D,θ) = p(β | σ2,D,θ)p(σ2 | D,θ), where

β | σ2,D,θ ∼ N (· | µn, σ2Λ−1n), σ2 | D,θ ∼ Inv-Gamma(· | an, bn), (21)

µn = Λ−1n (Λ0µ0 + Φ>y), an = a0 + n
2 , (22)

Λn = Φ>Φ + Λ0, bn = b0 + 1
2 (y>y + µ>0 Λ0µ0 − µ>nΛnµn). (23)

The marginal posterior for β is obtained by integrating p(β, σ2 | D,θ) over σ2, resulting in a Student’s t-distribution
with 2an degrees of freedom,

β | D,θ ∼ St(· | µn, bnanΛ−1n , 2an). (24)

The predictive distribution is also a Student’s t-distribution with 2an degrees of freedom,

y | x,D,θ ∼ St(· | φ>xµn, bnan (1 + φ>x Λ−1n φx), 2an). (25)

The log-marginal likelihood can be written as

log p(D | θ) = log Γ(an)− log Γ(a0) + a0 log b0 − an log bn +
1

2
log|Λ0| −

1

2
log|Λn| −

n

2
log 2π, (26)

where Γ denotes the gamma function.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

B Scalable Batch Training using Variational Inference

While the BLL can be trained using exact inference, this results in gradient updates that leverage the entire
training dataset each iteration. This poses a scaling issue for large models and datasets due to the memory
requirements during backpropagation, especially in the case of a LD prior as the Jacobians are also computed and
stored. Previous work have avoided this complexity by using the MAP approximation while training the features
[74], however this discards the Bayesian component, which we require for fVI. The closed-form posteriors can also
be computed using sequential Bayesian updates on batches of data [6], however we found that this dramatically
increases the complexity of the computation graph and rendered backpropagation for the features unfeasibly slow
for large models.

To offer a compromise between inference accuracy and scalable learning, we detail a training scheme based on
automatic differentiation variational inference (adVI) [37], where the posterior updates and log-marginal likelihood
objective is replaced by the ELBO. Optimizing the (exact) variational posterior, inference and feature learning
can be performed using backpropagation on batches of data. Since the expected likelihood term of the ELBO can
be computed exactly, we still retain some of the benefits of the BLL approach. Defining a variational posterior
qφ(β | D) = N (µq,Λ

−1
q) with parameters φ, the ELBO objective (that replaces the log marginal) is

LELBO(Dbatch, φ) = Eqφ(β|D)[log p(Dbatch | β)]− nbatch

n
DKL(qφ(β | D) || p(β)). (27)

For univariate prediction where β is the multivariate normal, the expected loglikelihood is

Eqφ(β|D)[log p(D | β)] = −n
2

log 2πσ2 − 1

2σ2
(y>y − y>Φµq − µ>q Φ>y + µ>q Φ>Φµq + tr

{
Φ>ΦΛ−1q

}
). (28)

After training, we compute the exact posterior for the learned features using sequential Bayes on minibatches
of data. Using this variation, we observe that on real data there is typically a reduction in performance,
indicating features learned using exact inference are superior to those from this variational approximation. The
main weakness is that empirical Bayes is no longer easy to perform, as it would now require expensive bilevel
optimization of the prior and ELBO. Not optimizing the weight prior may result in underfitting for certain tasks.
For the implementation, Λq was parameterized through a diagonal and lower triangular matrix to ensure positive
definiteness. Note that when the variational posterior is the true posterior (Equations 15-16), the ELBO objective
is equal to the log-marginal likelihood (Equation (18)) by definition.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
−15

−10

−5

0

Iterations

L
og

M
ar

gi
n

al
L

ik
el

ih
o
o
d

/
E

L
B

O

Exact (fixed features)

Exact (learned features)

Variational (fixed features)

Variational (learned features)

Figure 6: Illustration of the performance gap between the exact and variational BLL on a toy 1D regression
problem. While the weight prior was fixed, the aleatoric variance was optimized for all cases. As expected,
the variational approximation lags behind exact inference, however when combined with feature learning the
variational objective aids convergence, presumably because it is a numerically beneficial objective. Reassuringly,
all models converge to similar performance. For the fixed feature space, fourier features of increasing frequency
were used. For the learned features, two layers of tanh activations were used. The width of both feature spaces
were equal.

Latent Derivative Bayesian Last Layer Networks

C Bayesian Last Layer Derivative Distribution

To compute the derivative of the predictive random variable y, we apply the limit definition of the derivative to
two distinct predictions without aleatoric noise, namely f(ξ) = f̄ξ + εξ and f(ξ + δ) = f̄δ + εδ, where f̄ is the
predictive mean function and ε is the zero-centered epistemic uncertainty (17, 25)

∂f

∂x
(ξ) = lim

δ→0

f(ξ + δ)− f(ξ)

ξ + δ − ξ , (29)

= lim
δ→0

f̄δ + εδ − f̄ξ − εξ
δ

, (30)

= lim
δ→0

f̄δ − f̄ξ
δ

+ lim
δ→0

εδ − εξ
δ

. (31)

Here, the first term corresponds to its expected value and the second term represents its variance. The following
derivations make use of the Uniform Convergence Theorem (UCT) to change the order of expectations, variances
and limits [8].

To compute the expected value, we rearrange until we can apply the expectation operator to the individual terms.
Afterwards, we separate the terms which are relevant for the limit from the terms which are constant w.r.t. the
limit. Finally, we evaluate the limit

E
[
∂f

∂x
(ξ)

]
, = E

[
lim
δ→0

f(ξ + δ)− f(ξ)

ξ + δ − ξ

]
, (32)

= E
[

lim
δ→0

f̄δ + εδ − f̄ξ − εξ
δ

]
, (33)

= lim
δ→0

E
[
f̄δ
]

+ E [εδ]− E
[
f̄ξ
]
− E [εξ]

δ
, (34)

= lim
δ→0

φ>δ µn + 0− φ>ξ µn − 0

δ
, (35)

=

[
lim
δ→0

φδ − φξ

δ

]>
µn, (36)

= Jφ
>
ξ µn. (37)

Here, Jφξ represents the Jacobian of φ(·;θ) evaluated at ξ. Since the predictive mean functions for both the
Gaussian and the Student-t models are the same, the expected value of their derivative distributions are also the
same.

Before we compute the variance, we first derive a closed-form expression for the joint zero-centered epistemic
uncertainty p(εξ, εδ), which we will need later. Subtracting the mean and discarding the aleatoric noise component
from the predictive distributions (17, 25) yield

p(εξ, εδ) = N
([
εξ
εδ

] ∣∣∣∣0, [φ>ξ Λ−1n φξ φ>ξ Λ−1n φδ

φ>δ Λ−1n φξ φ>δ Λ−1n φδ

])
, (38)

for the Gaussian and

p(εξ, εδ) = St
([
εξ
εδ

] ∣∣∣∣0, bnan
[
φ>ξ Λ−1n φξ φ>ξ Λ−1n φδ

φ>δ Λ−1n φξ φ>δ Λ−1n φδ

]
, 2an

)
, (39)

for the Student-t model, respectively.

To compute the variance, we follow a similar procedure as for the expected value, first rearranging and then
applying the variance operator to the individual terms using the variance rule for the sum of two random variables.
Since the predictive mean is constant w.r.t. the variance operator, the corresponding terms evaluate to zero.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Thus, the variance operator is only applied to ε

V
[
∂f

∂x
(ξ)

]
= V

[
lim
δ→0

f(ξ + δ)− f(ξ)

ξ + δ − ξ

]
, (40)

= V
[

lim
δ→0

f̄δ + εδ − f̄ξ − εξ
δ

]
, (41)

= lim
δ→0

1

δ2
(
V
[
f̄δ+εδ

]
+ V

[
f̄ξ+εξ

]
− C[f̄δ+εδ, f̄ξ+εξ]− C[f̄ξ+εξ, f̄δ+εδ]

)
, (42)

= lim
δ→0

1

δ2
(V[εδ]+V[εξ]− C[εδ, εξ]− C[εξ, εδ]) . (43)

Replacing the variance terms with the Gaussian model yields

V
[
∂f

∂x
(ξ)

]
= lim

δ→0

1

δ2
(
φ>δ Λ−1n φδ + φ>ξ Λ−1n φξ − φ>ξ Λ−1n φδ − φ>δ Λ−1n φξ

)
, (44)

= lim
δ→0

1

δ2
(
(φδ − φξ)>Λ−1n (φδ − φξ)

)
, (45)

= Jφ
>
ξ Λ−1n Jφξ. (46)

The corresponding derivation for the Student-t model is almost identical with the only difference being a scalar
factor. Note that the Student-t distribution requires an additional factor to convert from scale into variance,
which we will drop again later to convert back into scale

V
[
∂f

∂x
(ξ)

]
=

2an
2an − 2

bn
an

lim
δ→0

1

δ2
(
φ>δ Λ−1n φδ + φ>ξ Λ−1n φξ − φ>ξ Λ−1n φδ − φ>δ Λ−1n φξ

)
, (47)

=
2an

2an − 2

bn
an

lim
δ→0

1

δ2
(
(φδ − φξ)>Λ−1n (φδ − φξ)

)
, (48)

=
2an

2an − 2

bn
an

Jφ
>
ξ Λ−1n Jφξ. (49)

Finally, we can assemble our derivative distributions

N (z | Jφx

>µn,Jφx

>Λ−1n Jφx) or St(z | Jφx

>µn,
bn
an

Jφx

>Λ−1n Jφx , 2an), (50)

for the Gaussian and Student-t model respectively.

D Forward Mode Automatic Differentiation

Forward mode automatic differentiation can be represented using dual number algebra. Similar to complex
numbers, dual numbers consist of a real part and a dual part, which is a second real number multiplied by a
nilpotent ε, i.e. ε2 = 0. The real part represents the function value and the dual part represents the directional
derivative with respect to the initial input. Both parts can be computed jointly and efficiently by adapting
primitive operations.

For example, let z = 2x+ 2ε = 〈2x, 2〉 be a dual number, where Re(z) = 2x is the real part and Du(z) = 2 is the
dual part. Note that the dual part is the partial derivative of the real part w.r.t. x. Now, let f be the square
function f(x) = x2. Applying f to z and cancelling any ε2 = 0 results in another dual number,

f(z) = f(〈2x, 2〉) = (2x+ 2ε)2 = 4x2 + 8xε+�
�>

0
4ε2 = 4x2 + 8xε = 〈4x2, 8x〉, (51)

where 4x2 is the real part and 8x is the dual part, which is the partial derivative of 4x2 w.r.t. x.

For neural network layers, the function value and the directional derivative w.r.t. the input can be derived as
closed-form expression, given input value x and Jacobian J. For example, let f be an affine transformation with
weight matrix A and bias term b,

f(〈x,J〉) = f(x + Jε) = A(x + Jε) + b = Ax + AJε+ b = 〈Ax + b,AJ〉. (52)

Latent Derivative Bayesian Last Layer Networks

In general,

f(〈ξ,J〉) = 〈f(ξ),
∂f

∂x
(ξ)J〉, (53)

which, using dynamic programming, can be turned into efficient implementations.

For a neural network with two hidden layers and element-wise activation functions σi, the output y given input x
can be expressed using intermediate steps

h1 = A1x + b1,
∂h1

∂x
= A1, (54)

z1 = σ1(h1),
∂z1
∂h1

=
∂σ1

∂h1
, (55)

h2 = A2z1 + b2,
∂h2

∂z1
= A2, (56)

z2 = σ2(h2),
∂z2
∂h2

=
∂σ2

∂h2
, (57)

y = A3z2 + b3,
∂y

∂z2
= A3, (58)

where Ai and bi are the weight matrices and bias terms of the corresponding layers, and hi and zi are intermediate
values. The right column lists all intermediate partial derivatives.

Using the dual number notation and the general relationship from Equation (53), and initializing the Jacobian
with the identity matrix I, we can write

h1 = 〈 A1x + b1, A1〉, (59)

z1 = 〈 σ1(h1),
∂σ1

∂h
(h1)A1〉, (60)

h2 = 〈 A2z1 + b2, A2
∂σ1

∂h
(h1)A1〉, (61)

z2 = 〈 σ2(h2),
∂σ2

∂h
(h2)A2

∂σ1

∂h
(h1)A1〉, (62)

y = 〈 A3z2 + b3, A3
∂σ2

∂h
(h2)A2

∂σ1

∂h
(h1)A1〉, (63)

where (∂σi/∂h)(hi) is the partial derivative of the activation function σi w.r.t. its input and evaluated at hi. In
particular, assuming that closed-form expressions are available for ∂σi/∂h, the dual part of each intermediate
result only depends on previously computed values. Thus, dynamic programming can be leveraged to jointly
compute the real and the dual part with a single forward pass.

To confirm that the dual part is indeed the desired partial derivative of output y w.r.t. initial input x, we apply
the chain rule of derivatives, such that ∂y/∂x factorizes as

∂y

∂x
=

∂y

∂z2

∂z2
∂h2

∂h2

∂z1

∂z1
∂h1

∂h1

∂x
. (64)

Substituting the corresponding expressions confirms the equivalence.

E Implementation Details

For this work, we used the PyTorch library [56]. Additionally, for the MFVI baselines, we used Pyro [5]. All
models are implemented to support multivariate inputs and multiple outputs.

For all BLL models, we set µ0 = 0 and Λ0 to a diagonal matrix with m (+k if using identity features, +1 if
using bias term) distinct parameters along the diagonal. Identity features and bias term for the Bayesian weights
β were always used. Hidden bias terms were enabled for all neural network layers. We conducted experiments
with tanh and leaky relu activation functions, the number of hidden neural network units varied, they are listed
in Section I. The prior weight precision matrix Λ0 is initialized to identity.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

For the Gaussian model, we use a diagonal covariance matrix parameter Σ to represent the aleatoric uncertainty
independently for each output dimension. We initialized Σ to identity.

For the Student-t model, we use a degree of freedom parameter ν0 and a diagonal, positive definite matrix V0 to
represent an inverse-Wishart distribution instead. We initialized ν0 and all diagonal entries of V0 to 2, to match
initial values of 1 for the inverse-gamma distribution in the one-dimensional output case.

If prior parameter values are estimated jointly via backpropagation of the marginal likelihood (and fKL) objective
they are learned in log-space using a proxy variable to assert positive value constraints.

For the noise distribution used to create index sets, we set γ = 0.01, such that the standard deviaton for each
input dimension equals 0.1 in whitened space.

For MFVI, we used independent N (0, ω/
√
nin) priors for all neural network weights, where nin is the number

of input features to the corresponding layer and ω = 4, such that the GP limit exists [50]. Bias terms with
independent N (0, 1) priors were enabled for all layers. The variational distribution was implemented using
AutoDiagonalNormal from Pyro. For optimization, we used SVI and Trace_ELBO from Pyro for optimization.
To compute predictions for validation or evaluation, we drew 100 samples from the weight distributions.

Further details for individual experiments are listed in Section I.

Computational Resources The experiments were conducted on a computer with an AMD Ryzen 9 3900X
12-Core Processor, an Nvidia RTX 2080 graphics card and 64GB of RAM. Large models and datasets were run
on an Nvidia DGX workstation.

Algorithm 1 Latent derivative Bayesian last layer training.
1: \\ Initialize prior and neural network parameters
2: ψ0 := Λ0,Σ← I, I (Gaussian) or ψ0 := Λ0, ν0,V0 ← I, 2, 2I (Student-t)
3: θ ∼ N
4: for num_epochs do
5: \\ Compute features, Bayesian update, marginal likelihood
6: Φ ← φ(X;θ)
7: ψn ← Bayes(Φ,y,ψ0) . Eq. (15) & (21)
8: L ← − 1

nLLH(ψ0,ψn, n) . Eq. (18) & (26)
9: \\ Draw samples, compute Jacobian and fKL using posterior
10: S ∼ N (X, γI)
11: Jφ ← φ(S;θ)
12: L ← 1

n fKL(Jφ,ψn, σ
2
z) . Eq. (10)

13: \\ Compute gradients, update neural network and (optionally) prior parameters
14: θ,ψ0 ← Adam(L)
15: end for

F Computational Complexity

In terms of prediction, the BLL and the LDBLL perform the same operations, given that the LD setting only
affects the training of the feature space. Therefore, they also share the same computational complexity, namely
O(m2) time per prediction, where the feature space dimension m is assumed to be the largest hidden layer
dimension and the computation of activation functions is neglected. The computational complexity of the training
procedure differs for the BLL and the LDBLL since, in addition to the conventional marginal likelihood objective
which is used for the BLL, the LDBLL also requires evaluation of the fKL objective. With the same assumptions
about the hidden layer dimensions and computation of activation functions, the marginal likelihood objective can
be computed in O(nm2+m3) time, where n = |D| is the size of the training set. The additional fKL objective
which is required for the LDBLL can be computed in O(|T |(mk2+k3)) time, where |T | is the number of points in
the index set and k is the number of input dimensions of the latent function f . A complete training epoch for the
LDBLL can thus be computed in O(nm2+m3 + |T |(mk2+k3)) time. Setting the index set T to Gaussian samples
near the training data implies |T | = |D| = n, factorizing the computational complexity for a single training
epoch into O(n(m2+mk2+k3)+m3). We see that for k ≤ m, the additional complexity introduced by the fKL

Latent Derivative Bayesian Last Layer Networks

objective is manageable. However, the cubic scaling of the complexity w.r.t. k highlights the need for approximate
techniques for very high-dimensional inputs such as images. Although not evident in the asymptotic analysis of
computational complexity, if T 6= D then a single training epoch requires two separate forwarded passes through
φ, to compute the features for D and the features and their Jacobians for T respectively. If T = D then the same
features can be used for both objectives and their Jacobians can be computed jointly in the same forward pass
which saves one forward pass of feature computations. However, in practice, the difference is negligible because
the feature computations are rather insignificant compared to the computation and backpropagation of Jacobians.

G M- vs. I-Projection for the functional KL

As the covariance of z contains an inner product of the Jacobians (Jφx

>Λ−1n Jφx), it is highly structured in a way
that approximates the Hessian (i.e. as in Gauss-Newton optimization). Therefore the structure of the covariance
depends strongly on x, the BLL and the underlying function being modelled. Rather than design π to reflect
this variation, ideally the objective would be less concerned with the specific structure and rather the size of the
covariance. Fortunately, for the KL divergence between multivariate Gaussian distributions, the M-projection
enforces the small covariance penalty with a trace term and the large covariance penalty via the entropy difference.
As the trace and entropy terms can be viewed to act on the covariance’s structure and size respectively, for the
‘max entropy’ latent derivative objective, the M-projection encourages z to grow in entropy. It was observed
empirically that the M-projection was indeed better than the I-projection for training the model.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

H Ablation and Hyperparameter Sensitivity Study

To illustrate the importance and sensitivity of the LDBLL’s model parameters, we provide some visualizations of
their effects. We use the function of Figure 2 as a reference with [50, 50] tanh networks trained to convergence,
unless specified otherwise.

Network Size

As Bayesian models should scale gracefully with model complexity [62], in Figure 7 we show that the model
predictions are comparable with significantly increasing network size.

[50, 50] [100, 100, 100] [200, 200, 200, 200]

Figure 7: LDTBLL with increasing network size. While the fit does vary with the model size, this is mainly due
to the increased fidelity. The mean and variance maintain a reasonably consistent shape throughout.

Activation Function

In Figure 8 we show how the hypothesis space changes with activation function.

Tanh Leaky ReLU Softplus

Figure 8: LDTBLL with increasing a range of activation functions. Although the hypothesis space changes (i.e.
smoothness), the mean and variance remain consistent.

Latent Derivative Variance

In Figure 9, we demonstrate that reducing Σπ reduces the diversity of the feature space, but for increasing Σπ a
reduced effect is seen due to the limited network capacity.

Σπ = 0.01 Σπ = 1 Σπ = 100

Figure 9: LDTBLL with varying latent derivative variance. The prior controls the variety of the function space,
but this is mainly only an issue for small values of Σπ.

Latent Derivative Bayesian Last Layer Networks

I Experiments

In this section, we explain our experiments and display hyperparameters and detailed numerical results.

I.1 Nonlinear Regression

We compared the BLL and LDBLL across a set of popular BNN baselines: MFVI, Monte Carlo dropout (MC
dropout), ensembles and SWAG, along with a Gaussian process and MAP (maximum likelihood neural network
training with weight decay) baseline. We evaluated these models for nonlinear regression experiments on ‘gap’
tasks, namely Cartpole, CO2, Sarcos and WAM, and ‘standard’ UCI benchmarks.

For all experiments, we used Adam [35] with default parameter configurations except the learning rate. All
learning rates were handtuned for every pair of model and data. The number of training epochs were selected
using a validation set that consists of 20% of the training data. We implemented early stopping by tracking the
validation log-likelihood up until a maximum number of epochs. The number of training epochs that yielded the
highest validation log-likelihood is used to re-train on the full training data. For BLL and LDBLL, we compute
the validation log-likelihood after every epoch, whereas for implicit predictive distributions, due to the necessity of
sampling during prediction, it is too expensive to compute the validation log-likelihood after every epoch. Instead,
we updated the validation log-likelihood every 100 epochs. Since tracking the validation log-likelihood is also too
expensive for GP regression, we stopped optimization when the average marginal likelihood of the past κ epochs
decreased less than threshold ρ compared to the average of the previous κ epochs. For all datasets, κ was set to
11 and ρ was set to 1e-4, except UCI Naval where ρ was set to 1e-2. The number of hidden units, learning rates
and maximum number of epochs are listed in Table 6 for ‘gap’ and Table 17 for ‘standard’ tasks, respectively.
With respect to model-specific hyperparameters of the baselines, we either adopted the recommended values, or
manually chose a reasonable value that performed well across tasks. This was to ensure a fair comparison to the
BLL, which also had fixed hyperparameters across tasks.

For BLL and LDBLL, hyperparameters, such as the weight prior and aleatoric noise, were optimized via
backpropagation using the marginal likelihood. For the LDBLL fKL objective, the model observation noise was
used instead of a fixed noise prior. The index set was created by adding noise to the training data, except for CO2,
where the training data itself was used as index set because adding noise caused problems with the sinosoidal
features. For MFVI, ensembles, MC dropout, SWAG and MAP, a minibatch size of 32 was used for all regression
experiments. For the ensembles, 5 models were used. For MC dropout, a dropout probability of 0.2 was used.
For SWAG, the sampling learning rate was set to double the training learning rate, and 30 steps were used when
sampling. As an additional note: the baselines above are sometimes trained with an additional network to model
heteroskedastic noise. We do not do this and assume Gaussian homoskedastic noise across all models.

CO2
The Mauna Loa atmospheric carbon dioxide dataset contains CO2 measurements over several decades. To encode
the periodicity, we added sin(2πx) and cos(2πx) features, such that the input was three-dimensional.

1960 1970 1980 1990 2000 2010 2020

320

340

360

380

400

420

Year

C
O

2
co
n
ce
n
tr
at
io
n
(p
p
m
)

train
test

Figure 10: CO2 dataset with test gap regions.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 2: Regression results for the co2 dataset, means and standard errors over 10 seeds

co2 train test

n = 498, k = 3 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↑
gp rbf 0.52± 0.00 −0.77± 0.00 0.82± 0.00 1.70± 0.00 −4.49± 0.00 0.87± 0.00
gbll lrelu 0.37± 0.01 −0.52± 0.03 0.75± 0.04 2.53± 0.26 −11.23± 1.95 0.79± 0.04

tanh 0.50± 0.01 −0.74± 0.02 0.88± 0.02 2.59± 0.17 −8.44± 0.92 0.93± 0.02
ldgbll lrelu 0.46± 0.01 −1.50± 0.03 1.97± 0.03 2.59± 0.71 −2.04± 0.03 2.14± 0.03

tanh 0.42± 0.00 −1.18± 0.02 1.62± 0.03 2.38± 0.14 −2.52± 0.16 1.79± 0.06
mfvi lrelu 0.39± 0.01 −0.50± 0.02 0.62± 0.04 1.82± 0.07 −7.23± 0.59 0.67± 0.05

tanh 0.40± 0.00 −0.53± 0.01 0.66± 0.03 3.35± 0.11 −26.90± 1.08 0.65± 0.03
ensemble lrelu 0.35± 0.01 −0.40± 0.01 0.59± 0.01 2.10± 0.03 −6.67± 0.34 0.77± 0.01

tanh 0.41± 0.00 −0.55± 0.00 0.69± 0.01 2.58± 0.03 −9.84± 0.41 0.79± 0.02
dropout lrelu 0.59± 0.03 −2.07± 0.00 2.55± 0.00 2.18± 0.09 −2.42± 0.01 2.78± 0.00

tanh 0.91± 0.00 −2.15± 0.00 2.61± 0.00 5.19± 0.03 −2.96± 0.01 2.71± 0.00
swag lrelu 7.16± 0.56 −3.27± 0.07 3.38± 0.08 10.73± 1.08 −3.56± 0.11 3.64± 0.08
map lrelu 0.34± 0.00 −0.33± 0.01 0.35± 0.01 1.93± 0.03 −15.73± 0.50 0.35± 0.01

tanh 0.40± 0.00 −0.52± 0.00 0.53± 0.00 2.01± 0.03 −12.09± 0.33 0.53± 0.00

Cartpole
Telemetry is recorded from a Quanser cartpole system performing a swing-up maneuver. We use the dynamic
state (position, velocity and acceleration) of the cart and pole for inverse dynamics modeling of the drive torque.

Table 3: Regression results for the cartpole dataset, means and standard errors over 10 seeds

cartpole train test

n = 665, k = 6 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↑
gp rbf 0.87± 0.00 −1.45± 0.00 1.68± 0.00 13.64± 0.00 −4.01± 0.00 4.18± 0.00
gbll lrelu 0.26± 0.02 −1.26± 0.10 1.74± 0.10 221.60± 55.83 −115.94± 50.48 3.94± 0.14

tanh 0.11± 0.01 −0.76± 0.25 1.25± 0.25 9.47± 0.93 −27.95± 9.96 2.32± 0.26
ldgbll lrelu 0.25± 0.02 −0.94± 0.16 1.40± 0.17 179.20± 79.00 −11.68± 2.14 4.85± 0.29

tanh 0.17± 0.02 −0.71± 0.26 1.18± 0.27 10.32± 1.98 −8.07± 1.60 3.19± 0.25
mfvi lrelu 0.41± 0.10 −0.37± 0.22 0.76± 0.22 10.69± 2.13 −12.19± 3.08 3.13± 0.18

tanh 0.32± 0.12 0.28± 0.39 0.07± 0.42 7.72± 0.55 −650.53± 358.66 1.27± 0.32
ensemble lrelu 0.19± 0.05 0.35± 0.30 0.09± 0.30 37.03± 4.88 −5.20± 0.11 5.39± 0.14

tanh 0.56± 0.06 −0.78± 0.13 1.00± 0.14 5.50± 1.22 −3.75± 0.28 3.06± 0.14
dropout lrelu 0.35± 0.01 −1.26± 0.01 1.73± 0.01 4.59± 0.22 −3.73± 0.14 2.48± 0.04

tanh 0.70± 0.01 −1.40± 0.01 1.80± 0.01 10.96± 0.35 −27.84± 1.54 1.84± 0.01
swag lrelu 1.21± 0.09 −1.51± 0.09 1.63± 0.06 49.39± 8.45 −106.72± 34.69 3.06± 0.12
map lrelu 0.38± 0.02 −0.74± 0.08 1.09± 0.09 52.50± 7.62 −5800.91± 2276.39 1.09± 0.09

tanh 0.60± 0.03 −0.95± 0.06 1.12± 0.08 6.49± 0.62 −64.36± 21.45 1.12± 0.08

Latent Derivative Bayesian Last Layer Networks

Train Test

−0.1

0

0.1

x

−2

0

2

θ

0 1000 2000 3000 4000 5000 6000 7000

−0.5

0

0.5

Timesteps

τ

Figure 11: Visualization of the Quanser cartpole swing-up dataset, depicting cart position x, pole angle θ and
cart drive torque τ . The complete dataset also includes the velocities and accelerations. Note that the first ∼2000
sample contains the swing-up, while the subsequent telemetry is the sustained stabilization. As a consequence,
the data distribution is significantly non-uniformly distributed in the state space, so uncertainty-driven active
learning is superior to a random data selection strategy. This figure illustrates the gap split, where the θ < 45◦

region is used for testing. For active learning the whole dataset is accessible and a different test split is used.

Train Test

q0

q̇ 0

q1

q̇ 1

q2

q̇ 2

q3

q̇ 3

Timesteps

τ

Figure 12: Phase plots for each join state q and base drive torque τ to illustrate the gap dataset generated by
running the same trajectory at two different speeds on the Barret WAM 4 DOF manipulator.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Sarcos
The Sarcos dataset [79] is the telemetry collected from a 7-DOF robot manipulator. The dataset is typically used
for modelling the inverse dynamics, mapping the dynamic state (position, velocities and accelerations) to the
torques supplied to the electric drives of each joint. To test epistemic uncertainty, we designed a new split of this
dataset to test OOD prediction, where the 5th joint moving < 10◦ induces a significant bias in the torque of the
6th joint due to gravity (Figure 13). Therefore the test data for this split contains values not present in both the
inputs and targets of the training data.

Table 4: Regression results for the sarcos dataset, means and standard errors over 10 seeds

sarcos train test

n = 19172, k = 21 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↑
gp rbf 0.07± 0.00 0.84± 0.01 −0.46± 0.01 2.75± 0.00 −5.07± 0.03 1.35± 0.00
gbll lrelu 0.06± 0.01 1.04± 0.08 −0.67± 0.05 3.69± 0.15 −379.72± 53.31 −0.55± 0.05

tanh 0.09± 0.01 0.90± 0.05 −0.71± 0.01 4.08± 0.15 −403.15± 30.66 −0.52± 0.01
ldgbll lrelu 0.09± 0.00 0.66± 0.04 −0.28± 0.04 2.80± 0.11 −51.98± 6.59 0.09± 0.03

tanh 0.05± 0.00 1.18± 0.01 −0.78± 0.01 2.51± 0.03 −169.77± 5.08 −0.59± 0.01
mfvi lrelu 0.08± 0.00 1.05± 0.03 −0.87± 0.02 2.95± 0.19 −52.23± 5.72 0.12± 0.04

tanh 0.07± 0.00 1.04± 0.01 −0.73± 0.01 2.13± 0.05 −59.30± 4.36 −0.19± 0.02
ensemble lrelu 0.05± 0.00 1.50± 0.02 −1.25± 0.02 3.01± 0.05 −7.64± 0.84 1.43± 0.03

tanh 0.06± 0.00 1.37± 0.01 −1.17± 0.01 2.30± 0.02 −13.24± 0.83 0.77± 0.02
dropout lrelu 0.08± 0.00 0.73± 0.00 −0.33± 0.00 2.67± 0.04 −8.58± 0.50 0.92± 0.02

tanh 0.13± 0.00 0.31± 0.00 0.07± 0.00 2.08± 0.02 −25.92± 0.62 0.19± 0.00
swag lrelu 0.10± 0.00 0.83± 0.02 −0.60± 0.03 3.03± 0.07 −15.34± 0.47 0.79± 0.03
map lrelu 0.04± 0.00 0.81± 0.00 −0.34± 0.00 3.27± 0.13 −199.49± 15.53 −0.34± 0.00

tanh 0.06± 0.00 0.78± 0.00 −0.33± 0.00 2.67± 0.12 −121.14± 10.30 −0.33± 0.00

WAM
This dataset is also derived from a robotic manipulator, the cable-driven 4 DOF Barrett WAM. However, here
the distribution shift is generated by demanding the same complex motion at different velocities. By training on
a slower motion and evaluating the inverse dynamics model for data collected at a faster speed, the prediction
considers the same trajectory but now with higher variance in the values of the state and input due to the larger
accelerations at play.

Table 5: Regression results for the wam dataset, means and standard errors over 10 seeds

wam train test

n = 16497, k = 12 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↑
gp rbf 0.11± 0.00 0.23± 0.01 0.20± 0.01 1.63± 0.01 −2.10± 0.01 1.54± 0.00
gbll lrelu 0.08± 0.01 1.07± 0.10 −1.11± 0.05 2.18± 0.06 −378.90± 41.63 −1.08± 0.05

tanh 0.12± 0.00 0.68± 0.03 −0.65± 0.03 3.26± 0.12 −173.61± 11.61 −0.37± 0.02
ldgbll lrelu 0.16± 0.01 0.40± 0.04 −0.23± 0.05 1.87± 0.06 −35.36± 4.17 −0.05± 0.04

tanh 0.12± 0.00 0.65± 0.03 −0.47± 0.03 3.12± 0.07 −106.86± 8.28 −0.18± 0.03
mfvi lrelu 0.05± 0.00 1.62± 0.02 −1.53± 0.02 3.36± 0.45 −315.55± 26.33 −0.70± 0.08

tanh 0.05± 0.00 1.64± 0.02 −1.51± 0.02 1.46± 0.02 −311.69± 19.86 −1.43± 0.02
ensemble lrelu 0.03± 0.00 1.91± 0.00 −1.57± 0.00 1.73± 0.03 −4.79± 0.26 1.26± 0.06

tanh 0.03± 0.00 1.95± 0.01 −1.58± 0.00 1.36± 0.00 −17.73± 0.88 0.06± 0.01
dropout lrelu 0.06± 0.00 0.81± 0.00 −0.38± 0.00 1.41± 0.02 −15.46± 0.40 0.17± 0.01

tanh 0.10± 0.00 0.56± 0.00 −0.17± 0.00 1.29± 0.00 −18.28± 0.12 −0.10± 0.00
swag lrelu 0.08± 0.00 1.04± 0.05 −0.78± 0.06 1.66± 0.03 −29.49± 2.50 −0.08± 0.05
map lrelu 0.04± 0.00 0.51± 0.00 −0.02± 0.00 2.04± 0.05 −39.54± 2.00 −0.02± 0.00

tanh 0.05± 0.00 0.50± 0.00 −0.02± 0.00 1.73± 0.02 −26.92± 0.66 −0.02± 0.00

Latent Derivative Bayesian Last Layer Networks

Train Test

0 10000 20000 30000 40000

−0.75
−0.50
−0.25

0.00
0.25
0.50

θ 0

0 10000 20000 30000 40000

−50
0

50
100

τ 0

0 10000 20000 30000 40000

−0.8
−0.6
−0.4
−0.2

θ 1

0 10000 20000 30000 40000

−80
−60
−40
−20

0
20

τ 1
0 10000 20000 30000 40000

−0.4
−0.2

0.0
0.2

θ 2

0 10000 20000 30000 40000

−10
0

10
20
30
40

τ 2

0 10000 20000 30000 40000
0.75
1.00
1.25
1.50
1.75
2.00

θ 3

0 10000 20000 30000 40000

0

20

40

60

τ 3

0 10000 20000 30000 40000

−0.25
0.00
0.25
0.50
0.75
1.00
1.25

θ 4

0 10000 20000 30000 40000

−2
0
2
4

τ 4

0 10000 20000 30000 40000

−0.8
−0.6
−0.4
−0.2

0.0
0.2

θ 5

0 10000 20000 30000 40000

−4
−2

0
2
4

τ 5

0 10000 20000 30000 40000

−0.2
0.0
0.2
0.4
0.6

Timesteps

θ 6

0 10000 20000 30000 40000

−2.5
0.0
2.5
5.0
7.5

10.0

Timesteps

τ 6

Figure 13: Visualization of the Sarcos data, with joint positions θ and drive torques τ . The gap () is generated
from θ4 during the period of sustained displacement, and the regression target is τ5 due to the induced offset.
Note that the data has been downsampled by a factor of 60 for plotting, so the high frequency component of the
data are not visible.

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 6: Number of hidden units, learning rates and maximum number of epochs for gap regression tasks.

gap co2 cartpole sarcos wam

hidden dims 50 50 50 50 200 200 200 200

gbll lrelu 1e-3, 10000 1e-3, 7000 1e-3, 8000 5e-4, 15000
tanh 1e-3, 10000 1e-3, 7000 1e-3, 7000 5e-4, 15000

ldgbll lrelu 1e-3, 10000 1e-3, 10000 1e-3, 10000 5e-4, 15000
tanh 1e-3, 10000 1e-3, 10000 1e-3, 10000 5e-4, 15000

mfvi lrelu 1e-3, 50000 1e-3, 50000 1e-3, 40000 1e-3, 60000
tanh 1e-3, 50000 1e-3, 50000 1e-3, 40000 1e-3, 60000

dropout lrelu 1e-3, 50000 1e-3, 50000 1e-3, 40000 1e-3, 60000
tanh 1e-3, 50000 1e-3, 50000 1e-3, 40000 1e-3, 60000

ensemble lrelu 1e-3, 1000 1e-3, 8000 1e-3, 40000 1e-3, 3000
tanh 1e-3, 1000 1e-3, 10000 1e-3, 3000 1e-3, 3000

dropout lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000
tanh 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000

swag lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000
map lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000

tanh 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000
gp rbf 1e-2, 2000 1e-2, 1000 1e-2, 5000 1e-3, 5000

Criticism of the ‘In-between uncertainty’ gap experiment and benchmarks
The gap splits of the UCI benchmark [23] were motivated to evaluate the epistemic uncertainty of Bayesian
Neural Networks, which is typically not necessary in standard regression tasks where the train and test data are
drawn from the same distribution. The introduction of this benchmark will hopefully lead to greater scrutiny of
the quality of Bayesian neural networks as Bayesian statistical models.

However, evaluating the benchmark, the authors discovered several weaknesses in the experiment’s initial
formulation that hinders its utility as a useful benchmark. The gap splits are generated by creating k splits for a
k dimensional input, and each split contains a ‘gap’ test set defined by the corresponding dimension (i.e. the
second split has a gap in the 2nd input). The gap / test indices are computed by sorting the data along the gap
dimension, and extracting the central third. Due to the definition of the splits, they do not represent a statistical
effect, but a structural one. Performance between splits depends heavily on the relevance of the input to the
regression problem, therefore the standard error in performance is influenced, potentially dominated, by the splits
themselves. Also, there is no guarantee that the gap exhibits ‘interesting behavior’, e.g. OOD data. If the gap is
approximately linear, then crude, overconfident predictions could achieve deceptively good results. Due to these
reasons, we chose to curate our own gap datasets that we hope is adopted as a standard benchmark.

Latent Derivative Bayesian Last Layer Networks

UCI
In this subsection, we display all regression results for the ‘standard’ UCI benchmarks. We also report results on
standard regression for the sarcos dataset.

Table 7: Regression results for the boston dataset, means and standard errors over 20 seeds

boston train test

n = 455, k = 13 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 1.23± 0.01 −1.86± 0.01 2.19± 0.01 2.83± 0.16 −2.41± 0.06 2.39± 0.01
gbll lrelu 0.23± 0.03 −2.35± 0.04 2.85± 0.04 4.19± 0.17 −2.90± 0.05 2.85± 0.04

tanh 0.56± 0.06 −2.74± 0.04 3.24± 0.04 4.61± 0.23 −3.06± 0.03 3.24± 0.04
ldgbll lrelu 0.52± 0.02 −2.05± 0.03 2.53± 0.03 3.38± 0.18 −2.60± 0.04 2.61± 0.03

tanh 0.65± 0.02 −2.06± 0.03 2.53± 0.03 3.12± 0.14 −2.57± 0.05 2.58± 0.03
mfvi lrelu 1.51± 0.04 −2.09± 0.03 2.44± 0.03 2.74± 0.16 −2.39± 0.04 2.45± 0.03

tanh 1.45± 0.04 −2.12± 0.03 2.50± 0.03 2.93± 0.13 −2.48± 0.04 2.50± 0.03
ensemble lrelu 0.54± 0.02 −1.59± 0.04 2.05± 0.04 2.79± 0.17 −2.48± 0.09 2.18± 0.03

tanh 1.09± 0.03 −1.79± 0.04 2.16± 0.04 2.71± 0.13 −2.48± 0.08 2.24± 0.03
dropout lrelu 1.33± 0.03 −2.03± 0.02 2.41± 0.02 2.78± 0.16 −2.36± 0.04 2.41± 0.02

tanh 1.55± 0.03 −2.12± 0.01 2.48± 0.01 2.77± 0.15 −2.41± 0.04 2.48± 0.01
swag lrelu 2.12± 0.10 −2.21± 0.05 2.41± 0.06 3.08± 0.35 −2.64± 0.16 2.41± 0.06
map lrelu 0.64± 0.03 −2.09± 0.04 2.57± 0.04 3.02± 0.17 −2.60± 0.07 2.57± 0.04

tanh 1.48± 0.03 −2.18± 0.03 2.58± 0.03 3.01± 0.17 −2.59± 0.06 2.58± 0.03

Table 8: Regression results for the concrete dataset, means and standard errors over 20 seeds

concrete train test

n = 927, k = 8 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 3.41± 0.03 −2.79± 0.01 3.05± 0.01 5.62± 0.13 −3.08± 0.02 3.13± 0.01
gbll lrelu 1.60± 0.03 −2.74± 0.03 3.20± 0.03 5.01± 0.18 −3.09± 0.03 3.20± 0.03

tanh 1.83± 0.03 −2.84± 0.03 3.30± 0.04 5.50± 0.23 −3.21± 0.03 3.30± 0.04
ldgbll lrelu 1.67± 0.03 −2.59± 0.02 3.03± 0.03 4.80± 0.18 −2.97± 0.03 3.05± 0.03

tanh 1.70± 0.03 −2.50± 0.02 2.93± 0.02 4.39± 0.14 −2.89± 0.03 2.93± 0.02
mfvi lrelu 3.04± 0.08 −2.62± 0.03 2.88± 0.03 4.80± 0.13 −2.97± 0.03 2.88± 0.03

tanh 3.16± 0.09 −2.66± 0.03 2.92± 0.03 5.04± 0.12 −3.04± 0.02 2.92± 0.03
ensemble lrelu 2.06± 0.08 −2.21± 0.05 2.47± 0.05 4.55± 0.12 −3.04± 0.08 2.55± 0.04

tanh 2.37± 0.11 −2.29± 0.05 2.47± 0.04 4.51± 0.13 −3.03± 0.07 2.54± 0.04
dropout lrelu 2.60± 0.04 −2.65± 0.01 3.01± 0.01 4.45± 0.11 −2.90± 0.02 3.02± 0.01

tanh 3.66± 0.01 −2.87± 0.00 3.17± 0.00 4.90± 0.10 −3.03± 0.01 3.17± 0.00
swag lrelu 3.98± 0.09 −2.81± 0.02 2.90± 0.02 5.50± 0.16 −3.19± 0.05 2.90± 0.02
map lrelu 2.48± 0.02 −2.49± 0.02 2.79± 0.02 4.75± 0.12 −3.04± 0.04 2.79± 0.02

tanh 3.72± 0.02 −2.75± 0.01 2.88± 0.01 5.15± 0.13 −3.11± 0.04 2.88± 0.01

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 9: Regression results for the energy dataset, means and standard errors over 20 seeds

energy train test

n = 691, k = 8 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 0.30± 0.00 −0.30± 0.01 0.52± 0.01 0.47± 0.01 −0.66± 0.04 0.57± 0.01
gbll lrelu 0.16± 0.01 −0.34± 0.03 0.79± 0.03 0.46± 0.02 −0.69± 0.03 0.79± 0.03

tanh 0.30± 0.01 −0.32± 0.03 0.58± 0.03 0.44± 0.02 −0.62± 0.04 0.58± 0.03
ldgbll lrelu 0.40± 0.01 −0.71± 0.03 1.03± 0.04 0.50± 0.02 −0.81± 0.03 1.04± 0.04

tanh 0.41± 0.01 −0.67± 0.02 0.95± 0.02 0.53± 0.01 −0.81± 0.02 0.95± 0.02
mfvi lrelu 0.29± 0.01 −0.31± 0.04 0.58± 0.05 0.43± 0.01 −0.63± 0.05 0.59± 0.05

tanh 0.32± 0.01 −0.36± 0.03 0.59± 0.04 0.48± 0.01 −0.72± 0.04 0.60± 0.04
ensemble lrelu 0.14± 0.00 0.28± 0.02 0.09± 0.02 0.41± 0.02 −0.58± 0.07 0.25± 0.01

tanh 0.28± 0.00 −0.19± 0.01 0.39± 0.01 0.41± 0.01 −0.57± 0.06 0.41± 0.01
dropout lrelu 0.41± 0.00 −1.30± 0.00 1.76± 0.00 0.53± 0.01 −1.33± 0.00 1.76± 0.00

tanh 0.59± 0.00 −1.46± 0.00 1.90± 0.00 0.66± 0.01 −1.48± 0.00 1.90± 0.00
swag lrelu 0.78± 0.10 −1.16± 0.10 1.44± 0.10 0.93± 0.09 −1.29± 0.08 1.40± 0.10
map lrelu 0.15± 0.00 0.20± 0.02 0.16± 0.02 0.53± 0.01 −1.44± 0.09 0.16± 0.02

tanh 0.32± 0.00 −0.27± 0.01 0.31± 0.01 0.45± 0.01 −0.79± 0.06 0.31± 0.01

Table 10: Regression results for the kin8nm dataset, means and standard errors over 20 seeds

kin8nm train test

n = 7373, k = 8 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 0.04± 0.00 1.73± 0.01 −1.60± 0.03 0.07± 0.00 1.10± 0.04 −1.49± 0.03
gbll lrelu 0.04± 0.00 1.40± 0.01 −1.01± 0.01 0.08± 0.00 1.11± 0.01 −1.01± 0.01

tanh 0.05± 0.00 1.45± 0.01 −1.16± 0.01 0.07± 0.00 1.27± 0.01 −1.16± 0.01
ldgbll lrelu 0.05± 0.00 1.41± 0.00 −1.17± 0.01 0.07± 0.00 1.23± 0.01 −1.17± 0.01

tanh 0.05± 0.00 1.43± 0.00 −1.19± 0.00 0.07± 0.00 1.29± 0.00 −1.19± 0.00
mfvi lrelu 0.06± 0.00 1.38± 0.01 −1.26± 0.01 0.07± 0.00 1.23± 0.01 −1.25± 0.01

tanh 0.06± 0.00 1.35± 0.01 −1.22± 0.01 0.07± 0.00 1.21± 0.01 −1.22± 0.01
ensemble lrelu 0.05± 0.00 1.59± 0.01 −1.38± 0.01 0.06± 0.00 1.33± 0.01 −1.35± 0.01

tanh 0.05± 0.00 1.52± 0.00 −1.38± 0.00 0.06± 0.00 1.34± 0.01 −1.36± 0.00
dropout lrelu 0.07± 0.00 1.11± 0.00 −0.80± 0.00 0.08± 0.00 1.06± 0.00 −0.80± 0.00

tanh 0.08± 0.00 0.93± 0.00 −0.65± 0.00 0.09± 0.00 0.91± 0.00 −0.65± 0.00
swag lrelu 0.06± 0.00 1.40± 0.01 −1.37± 0.01 0.07± 0.00 1.16± 0.01 −1.37± 0.01
map lrelu 0.06± 0.00 1.41± 0.01 −1.40± 0.01 0.07± 0.00 1.18± 0.01 −1.40± 0.01

tanh 0.06± 0.00 1.42± 0.01 −1.41± 0.01 0.07± 0.00 1.27± 0.01 −1.41± 0.01

Latent Derivative Bayesian Last Layer Networks

Table 11: Regression results for the naval dataset, means and standard errors over 20 seeds

naval train test

n = 10741, k = 16 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 0.00± 0.00 4.64± 0.01 −4.14± 0.01 0.00± 0.00 4.64± 0.01 −4.14± 0.01
gbll lrelu 0.00± 0.00 6.79± 0.29 −6.78± 0.00 0.00± 0.00 6.77± 0.29 −6.78± 0.00

tanh 0.00± 0.00 6.51± 0.03 −6.39± 0.02 0.00± 0.00 6.49± 0.03 −6.39± 0.02
ldgbll lrelu 0.00± 0.00 5.41± 0.03 −4.94± 0.03 0.00± 0.00 5.41± 0.03 −4.94± 0.03

tanh 0.00± 0.00 5.76± 0.03 −5.35± 0.03 0.00± 0.00 5.75± 0.03 −5.35± 0.03
mfvi lrelu 0.00± 0.00 8.34± 0.03 −8.33± 0.03 0.00± 0.00 7.96± 0.02 −8.33± 0.03

tanh 0.00± 0.00 8.40± 0.04 −8.31± 0.04 0.00± 0.00 7.81± 0.35 −8.31± 0.04
ensemble lrelu 0.00± 0.00 7.77± 0.01 −7.36± 0.01 0.00± 0.00 7.74± 0.01 −7.36± 0.01

tanh 0.00± 0.00 7.72± 0.01 −7.31± 0.01 0.00± 0.00 7.70± 0.01 −7.30± 0.01
dropout lrelu 0.00± 0.00 5.20± 0.00 −4.72± 0.00 0.00± 0.00 5.19± 0.00 −4.72± 0.00

tanh 0.00± 0.00 5.01± 0.00 −4.55± 0.00 0.00± 0.00 5.01± 0.00 −4.55± 0.00
swag lrelu 0.00± 0.00 5.60± 0.07 −5.20± 0.07 0.00± 0.00 5.61± 0.06 −5.20± 0.07
map lrelu 0.00± 0.00 8.48± 0.02 −8.45± 0.02 0.00± 0.00 8.01± 0.05 −8.45± 0.02

tanh 0.00± 0.00 8.83± 0.03 −8.84± 0.01 0.00± 0.00 8.74± 0.04 −8.84± 0.01

Table 12: Regression results for the power dataset, means and standard errors over 20 seeds

power train test

n = 8611, k = 4 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 3.30± 0.01 −2.68± 0.00 2.87± 0.00 3.72± 0.04 −2.76± 0.01 2.88± 0.00
gbll lrelu 3.17± 0.02 −2.62± 0.01 2.80± 0.01 3.85± 0.03 −2.77± 0.01 2.80± 0.01

tanh 4.01± 0.01 −2.81± 0.00 2.83± 0.01 4.09± 0.04 −2.83± 0.01 2.83± 0.01
ldgbll lrelu 3.45± 0.04 −2.68± 0.01 2.80± 0.01 3.85± 0.04 −2.77± 0.01 2.80± 0.01

tanh 3.94± 0.01 −2.80± 0.00 2.88± 0.00 4.05± 0.04 −2.82± 0.01 2.88± 0.00
mfvi lrelu 3.65± 0.02 −2.72± 0.00 2.74± 0.00 3.86± 0.04 −2.77± 0.01 2.74± 0.00

tanh 3.77± 0.01 −2.75± 0.00 2.78± 0.01 3.91± 0.04 −2.79± 0.01 2.78± 0.01
ensemble lrelu 3.07± 0.01 −2.55± 0.00 2.66± 0.00 3.59± 0.04 −2.70± 0.01 2.67± 0.00

tanh 3.29± 0.01 −2.61± 0.00 2.69± 0.00 3.66± 0.04 −2.72± 0.01 2.69± 0.00
dropout lrelu 3.77± 0.01 −2.78± 0.00 2.94± 0.00 3.90± 0.04 −2.80± 0.01 2.94± 0.00

tanh 4.12± 0.01 −2.85± 0.00 2.98± 0.00 4.18± 0.03 −2.86± 0.01 2.98± 0.00
swag lrelu 3.41± 0.03 −2.65± 0.01 2.70± 0.00 3.85± 0.05 −2.77± 0.02 2.70± 0.00
map lrelu 3.47± 0.02 −2.66± 0.01 2.67± 0.01 3.81± 0.04 −2.77± 0.01 2.67± 0.01

tanh 3.44± 0.03 −2.65± 0.01 2.66± 0.01 3.78± 0.04 −2.76± 0.01 2.66± 0.01

Table 17: Number of hidden units, learning rates and maximum number of epochs for standard regression tasks.

standard boston concrete energy kin8nm naval power protein wine yacht sarcos

hidden dims 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 200 200

gbll lrelu 1e-3, 3000 1e-3, 3000 1e-3, 8000 1e-3, 3000 1e-3, 8000 1e-3, 5000 1e-3, 2000 1e-4, 1000 1e-3, 8000 2e-4 30000
tanh 1e-3, 2000 1e-3, 3000 1e-3, 8000 1e-3, 3000 1e-3, 8000 1e-3, 5000 1e-3, 2000 1e-4, 1000 1e-3, 8000 2e-4, 30000

ldgbll lrelu 1e-3, 4000 1e-3, 4000 1e-3, 10000 1e-3, 5000 1e-3, 10000 1e-3, 5000 1e-3, 5000 1e-4, 1000 1e-3, 10000 2e-4, 30000
tanh 1e-3, 4000 1e-3, 4000 1e-3, 10000 1e-3, 5000 1e-3, 10000 1e-3, 5000 1e-3, 5000 1e-4, 1000 1e-3, 10000 2e-4, 30000

mfvi lrelu 1e-3, 10000 1e-3, 15000 1e-3, 30000 1e-3, 20000 1e-3, 100000 1e-3, 20000 1e-3, 30000 1e-4, 20000 1e-3, 20000 5e-3, 10000
tanh 1e-3, 10000 1e-3, 15000 1e-3, 30000 1e-3, 20000 1e-3, 100000 1e-3, 20000 1e-3, 30000 1e-4, 20000 1e-3, 20000 5e-3, 10000

dropout lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 5000
tanh 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 5000

ensemble lrelu 1e-3, 500 1e-3, 500 1e-3, 600 1e-3, 500 1e-3, 500 1e-3, 500 1e-3, 300 1e-4, 500 1e-3, 1200 1e-4, 3000
tanh 1e-3, 500 1e-3, 500 1e-3, 600 1e-3, 300 1e-3, 500 1e-3, 500 1e-3, 300 1e-4, 500 1e-3, 1200 1e-4, 3000

swag lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-5, 4000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 5000
map lrelu 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 5000

tanh 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 10000 1e-4, 5000
gp rbf 1e-2, 1000 1e-2, 1000 1e-2, 2000 1e-2, 1000 1e-3, 3000 1e-2, 1000 1e-3, 3000 1e-2, 1000 1e-2, 2000 1e-2, 5000

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 13: Regression results for the protein dataset, means and standard errors over 20 seeds

protein train test

n = 41157, k = 9 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 2.84± 0.02 −2.86± 0.00 3.25± 0.00 3.60± 0.01 −2.92± 0.00 3.25± 0.00
gbll lrelu 3.40± 0.01 −2.67± 0.00 2.82± 0.01 4.00± 0.02 −2.81± 0.00 2.82± 0.01

tanh 3.48± 0.03 −2.68± 0.01 2.78± 0.01 3.95± 0.02 −2.79± 0.01 2.78± 0.01
ldgbll lrelu 3.53± 0.02 −2.70± 0.00 2.84± 0.00 3.94± 0.02 −2.79± 0.00 2.84± 0.00

tanh 3.43± 0.01 −2.68± 0.00 2.82± 0.00 3.86± 0.02 −2.77± 0.00 2.82± 0.00
mfvi lrelu 3.49± 0.03 −2.67± 0.01 2.70± 0.01 3.86± 0.02 −2.77± 0.00 2.70± 0.01

tanh 3.50± 0.03 −2.67± 0.01 2.68± 0.01 3.90± 0.02 −2.79± 0.00 2.68± 0.01
ensemble lrelu 3.11± 0.01 −2.57± 0.00 2.71± 0.00 3.58± 0.01 −2.68± 0.00 2.73± 0.00

tanh 3.09± 0.00 −2.57± 0.00 2.73± 0.00 3.58± 0.01 −2.67± 0.00 2.75± 0.00
dropout lrelu 3.97± 0.00 −2.81± 0.00 2.91± 0.00 4.09± 0.01 −2.83± 0.00 2.91± 0.00

tanh 4.46± 0.00 −2.92± 0.00 2.98± 0.00 4.52± 0.01 −2.93± 0.00 2.98± 0.00
swag lrelu 3.60± 0.03 −2.70± 0.01 2.72± 0.01 3.98± 0.01 −2.80± 0.00 2.72± 0.01
map lrelu 3.54± 0.04 −2.68± 0.01 2.69± 0.01 3.93± 0.02 −2.80± 0.01 2.69± 0.01

tanh 3.43± 0.03 −2.65± 0.01 2.66± 0.01 3.84± 0.02 −2.78± 0.01 2.66± 0.01

Table 14: Regression results for the wine dataset, means and standard errors over 20 seeds

wine train test

n = 1439, k = 11 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 0.04± 0.02 1.05± 0.14 −0.57± 0.13 0.56± 0.01 −0.45± 0.05 0.55± 0.04
gbll lrelu 0.52± 0.02 −0.91± 0.02 1.20± 0.00 0.64± 0.01 −1.02± 0.01 1.20± 0.00

tanh 0.55± 0.01 −0.94± 0.01 1.20± 0.00 0.64± 0.01 −1.01± 0.01 1.20± 0.00
ldgbll lrelu 0.59± 0.01 −0.98± 0.01 1.22± 0.00 0.64± 0.01 −1.02± 0.01 1.22± 0.00

tanh 0.60± 0.01 −0.99± 0.00 1.23± 0.00 0.63± 0.01 −1.02± 0.01 1.23± 0.00
mfvi lrelu 0.55± 0.00 −0.84± 0.01 0.93± 0.01 0.63± 0.01 −0.95± 0.01 0.94± 0.01

tanh 0.59± 0.00 −0.91± 0.00 0.97± 0.01 0.63± 0.01 −0.97± 0.01 0.97± 0.01
ensemble lrelu 0.55± 0.01 −0.82± 0.01 0.89± 0.02 0.62± 0.01 −0.95± 0.01 0.89± 0.01

tanh 0.57± 0.00 −0.86± 0.01 0.89± 0.01 0.62± 0.01 −0.95± 0.01 0.90± 0.01
dropout lrelu 0.48± 0.01 −0.70± 0.03 0.85± 0.01 0.61± 0.01 −0.93± 0.01 0.85± 0.01

tanh 0.54± 0.01 −0.81± 0.02 0.91± 0.01 0.62± 0.01 −0.94± 0.01 0.91± 0.01
swag lrelu 0.57± 0.00 −0.86± 0.01 0.87± 0.01 0.63± 0.01 −0.96± 0.03 0.87± 0.01
map lrelu 0.55± 0.00 −0.83± 0.01 0.91± 0.01 0.63± 0.01 −0.96± 0.01 0.91± 0.01

tanh 0.58± 0.00 −0.87± 0.01 0.91± 0.01 0.63± 0.01 −0.96± 0.01 0.91± 0.01

Flight Delay
The flight delay dataset has 700k training points and 100k test points, predicting the delay time in minutes using
features describing the flight and aircraft. Due to the large-scale nature of the task, we report the results of
previous work. Note that the noise contrastive prior MFVI+NCP baseline used network of size [1000, 1000, 1000].
The deep Gaussian process is for the (superior) 5 layer model.

We observed competitive performance with a MAP baseline with an architecture of only [100, 100, 100], and this
smaller size allowed us to compare the exact and variational BLL within the GPU memory limits (32GB), as
there was a memory bottleneck in computing the model Jacobians.

Latent Derivative Bayesian Last Layer Networks

Table 15: Regression results for the yacht dataset, means and standard errors over 20 seeds

yacht train test

n = 277, k = 6 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 0.13± 0.00 0.34± 0.01 0.02± 0.01 0.40± 0.03 −0.17± 0.03 0.23± 0.02
gbll lrelu 0.06± 0.00 −1.05± 0.05 1.55± 0.05 1.09± 0.09 −1.67± 0.11 1.55± 0.05

tanh 0.24± 0.02 −0.20± 0.09 0.43± 0.03 0.43± 0.03 −0.70± 0.10 0.43± 0.03
ldgbll lrelu 0.28± 0.01 −0.89± 0.04 1.34± 0.04 0.75± 0.10 −1.13± 0.06 1.37± 0.04

tanh 0.23± 0.01 −0.48± 0.03 0.91± 0.03 0.52± 0.05 −0.73± 0.05 0.93± 0.03
mfvi lrelu 0.26± 0.02 −0.64± 0.07 1.08± 0.07 1.10± 0.11 −1.43± 0.17 1.08± 0.07

tanh 0.31± 0.02 −0.76± 0.08 1.19± 0.09 1.26± 0.14 −1.44± 0.15 1.21± 0.09
ensemble lrelu 0.08± 0.01 0.36± 0.03 0.12± 0.03 0.83± 0.08 −0.35± 0.07 0.38± 0.02

tanh 0.12± 0.00 0.32± 0.01 0.10± 0.02 0.38± 0.03 −0.03± 0.05 0.14± 0.01
dropout lrelu 0.44± 0.01 −1.77± 0.00 2.26± 0.00 1.21± 0.13 −1.82± 0.01 2.26± 0.01

tanh 1.20± 0.01 −2.22± 0.00 2.66± 0.00 1.20± 0.11 −2.24± 0.01 2.67± 0.00
swag lrelu 0.85± 0.13 −1.02± 0.07 1.41± 0.05 1.13± 0.20 −1.11± 0.05 1.33± 0.04
map lrelu 0.03± 0.00 −0.15± 0.14 0.65± 0.14 0.94± 0.09 −5.14± 1.62 0.65± 0.14

tanh 0.08± 0.00 0.45± 0.10 −0.02± 0.11 0.39± 0.04 −1.77± 0.53 −0.02± 0.11

Table 16: Regression results for the sarcoss dataset, means and standard errors over 20 seeds

sarcos train test

n = 35000, k = 21 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
gp rbf 1.66± 0.00 −2.16± 0.00 2.49± 0.00 1.69± 0.01 −2.18± 0.00 2.50± 0.00
gbll lrelu 0.76± 0.02 −2.03± 0.00 2.50± 0.01 1.37± 0.02 −2.11± 0.00 2.50± 0.01

tanh 2.19± 0.03 −2.21± 0.01 2.23± 0.02 2.19± 0.03 −2.22± 0.01 2.23± 0.02
ldgbll lrelu 3.66± 0.06 −3.45± 0.01 3.90± 0.01 3.62± 0.06 −3.45± 0.01 3.90± 0.01

tanh 3.30± 0.07 −3.08± 0.02 3.50± 0.02 3.26± 0.08 −3.08± 0.02 3.50± 0.02
mfvi lrelu 4.17± 0.03 −2.86± 0.01 2.61± 0.03 4.13± 0.03 −2.83± 0.01 2.61± 0.03

tanh 3.84± 0.14 −2.89± 0.05 2.45± 0.05 3.84± 0.14 −2.90± 0.05 2.45± 0.05
ensemble lrelu 1.09± 0.02 −1.57± 0.01 1.81± 0.01 1.28± 0.01 −1.67± 0.01 1.83± 0.01

tanh 1.25± 0.01 −1.67± 0.01 1.87± 0.01 1.38± 0.01 −1.76± 0.01 1.88± 0.01
dropout lrelu 1.77± 0.00 −2.19± 0.00 2.53± 0.00 1.81± 0.01 −2.19± 0.00 2.53± 0.00

tanh 2.85± 0.01 −2.57± 0.00 2.85± 0.00 2.83± 0.01 −2.56± 0.00 2.85± 0.00
swag lrelu 3.16± 0.05 −2.59± 0.02 2.27± 0.03 3.14± 0.06 −2.58± 0.02 2.28± 0.03
map lrelu 1.40± 0.00 −1.76± 0.00 1.80± 0.00 1.54± 0.01 −1.88± 0.01 1.80± 0.00

tanh 1.82± 0.00 −2.02± 0.00 2.03± 0.00 1.84± 0.00 −2.05± 0.00 2.03± 0.00

I.2 Active learning

The cartpole dataset in full is displayed in Figure 11. The regression task was for inverse dynamics, mapping the
dynamic state (k = 6) to the recorded drive torque. To construct the test data, every 5th sample was extracted
from the first half of the data, therefore containing approximately 50 / 50 swing-up and stabilization samples.

For active learning, following previous work [27] an information-based acquisition rule was used, following based
on a Bayesian model’s information gain [42]

Infogain(x) = 0.5 log

(
1 +

σ2
e(x)

σ2
a(x)

)
. (65)

When selecting several points at a time, as this rule can have several local maxima it is beneficial to use this rule

Joe Watson*†, Jihao Andreas Lin*†, Pascal Klink†, Joni Pajarinen†‡, Jan Peters†

Table 18: Regression results for the flight dataset, means and standard errors over 10 seeds

flight delay train test

n = 70000, k = 8 rmse ↓ llh ↑ entr ↓ rmse ↓ llh ↑ entr ↓
map tanh 23.56± 0.03 −4.58± 0.00 4.56± 0.00 24.20± 0.02 −4.61± 0.00 4.56± 0.00
gbll tanh 26.75± 0.09 −4.71± 0.00 4.75± 0.00 27.00± 0.08 −4.72± 0.00 4.75± 0.00
ldgbll tanh 26.60± 0.17 −4.70± 0.01 4.75± 0.00 26.87± 0.17 −4.72± 0.01 4.75± 0.00
var. gbll tanh 30.32± 0.00 −4.74± 0.00 4.71± 0.01 30.47± 0.00 −4.76± 0.00 4.71± 0.01
var. ldgbll tanh 30.33± 0.00 −4.74± 0.00 4.82± 0.01 30.48± 0.00 −4.75± 0.00 4.82± 0.01

svi gp[29] - - - 32.6 - -
dgp 5[67] - - - 24.1 −4.58 -
mfvi+ncp[27] lrelu - - - 24.71 −4.38 -

as a categorical distribution

Cat(X) = Softmax(α Infogain(X)). (66)

By applying a softmax transformation to 65, datapoints can be sampled without replacement. The temperature
α was needed to shape the modes of the distribution. To be robust across dataset sizes and Bayesian models, it
was set to be α = 0.01n/max(Infogain(X)), where n is the number of points.

For the cartpole experiment, starting with 25 randomly drawn samples, 25 additional points were selected over 40
iterations. The complete cartpole dataset contains 7490 points, collected at 250Hz. To construct a fair test set
(over swing-up and stabilization), it was constructed by downsampling the first half of the data by a factor of 5.
Therefore the available training data consisted of 6741 points, and the test 749.

Table 19: Active learning task hyperparameters

iters. num. start num. acquire

cartpole 40 25 25

Table 20: Active learning model hyperparameters

learning rate iterations

tbll tanh, [50, 250], 1 1e-3 1000
ldtbll tanh, [50, 250], 1 1e-4 1000
mfvi tanh, [50, 250], 1 1e-3 5000

Latent Derivative Bayesian Last Layer Networks

I.3 Bayesian optimization

The experiments are performed using BoTorch library [2]. We used their default SingleTaskGp, which uses a
Matérn 5/2 kernel with an inverse gamma prior. The EI acquisition metric was optimizing ‘jointly’ using the
default setting of BoTorch’s optimize_acqf function. Task hyperparameters are detailed in Table 21, and the
models are described in Table 22.

Table 21: Bayesian optimization task hyperparameters

iters. starting samples acq. samples acq. restarts

Sinc in a haystack 40 4 500 100
Hartman6 100 10 5000 1000

Table 22: Bayesian optimization model hyperparameters

Sinc in a Haystack Hartmann6
lr. iters. lr. iters.

gp matérn 1e-3 1000 matérn 1e-3 1000
tbll tanh, [50, 50], 1 1e-3 1000 tanh, [50, 100], 10 1e-3 1000
ldtbll tanh, [50, 50], 1 1e-4 1000 tanh, [50, 100], 10 1e-4 1000

	Introduction
	The Bayesian Last Layer
	Latent Derivative Priors
	Experiments
	Nonlinear Regression
	Active Learning
	Bayesian Optimization

	Related Work
	Conclusion
	Bayesian Last Layer Equations
	Scalable Batch Training using Variational Inference
	Bayesian Last Layer Derivative Distribution
	Forward Mode Automatic Differentiation
	Implementation Details
	Computational Complexity
	M- vs. I-Projection for the functional KL
	Ablation and Hyperparameter Sensitivity Study
	Experiments
	Nonlinear Regression
	Active learning
	Bayesian optimization

