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Fig. 1. (a) The identified dynamics (red) and kinematic (blue) parameter of the Barrett WAM for the Ball in a Cup task. (b) Exploration data for the DiffNEA
to infer the robot dynamics parameters. (c) Exploration data for the DiffNEA white-box model to infer TE and the string length. (d) Successful swing-up on
real system using offline model based reinforcement learning.

Abstract—A limitation of model-based reinforcement learning
(MBRL) is the exploitation of errors in the learned models. Black-
box models can fit complex dynamics with high fidelity, but their
behavior is undefined outside of the data distribution. Physics-
based models are better at extrapolating, due to the general
validity of their informed structure, but underfit in the real
world due to the presence of unmodeled phenomena. In this
work, we demonstrate experimentally that for the offline model-
based reinforcement learning setting, physics-based models can
be beneficial compared to high-capacity function approximators
if the mechanical structure is known. Physics-based models can
learn to perform the ball in a cup (BiC) task on a physical
manipulator using only 4 minutes of sampled data using offline
MBRL. We find that black-box models consistently produce
unviable policies for BiC as all predicted trajectories diverge
to physically impossible state, despite having access to more
data than the physics-based model. In addition, we generalize
the approach of physics parameter identification from modeling
holonomic multi-body systems to systems with nonholonomic
dynamics using end-to-end automatic differentiation.
Videos: https://sites.google.com/view/ball-in-a-cup-in-4-minutes/

I. INTRODUCTION

The recent advent of model-based reinforcement learning
has sparked renewed interest in model learning [1]–[7]. A
learned model should reduce the sample complexity of the
reinforcement learning task, through interpolation and extrap-
olation of the acquired data, and thus enable the application to
physical systems. Building upon the vast literature of model
learning for control, various new approaches to improve black-
box models with physics have been proposed. However, the
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question of what is a good model for MBRL and how this
might differ from models for control has not been thoroughly
addressed. A popular opinion is that black-box models are
preferable, as such models are applicable to arbitrary systems
and can approximate complex dynamics with high fidelity. In
contrast, physics-based models can underfit due to unmodeled
phenomena and require specific domain knowledge about the
system.

In this work, we discuss the challenges of model learning
for MBRL and contrast them to the challenges of model-
based control synthesis, the original motivation for model
learning. We compare these requirements to the characteristics
of black-box and physics-based models. To experimentally
highlight the differences between model representations for
MBRL, we compare the performance of each model type using
offline MBRL applied to the common RL benchmark of ball
in a cup (BiC) [8]–[10] on the physical Barrett WAM. The
model performance is evaluated using offline MBRL as this
approach is the most susceptible for model exploitation and
hence amplifies the differences between model representations.
BiC on the Barrett WAM is a challenging task for MBRL as
the task requires precise movements, combines various physics
phenomena including cable drives, rigid-body-dynamics and
string dynamics and uses reduced and maximal coordinates.

In the process we extend the identification of physics models
to nonholonomic systems [11], which previously were limited
to multi-body kinematic chains [12]–[14]. Using the advance-
ments in automatic differentiation (AD) [15] and careful
reparametrizations of the physics parameters one can infer a
guaranteed physically plausible model for arbitrary mechanical
systems with unconstrained gradient based optimization - if the
kinematic structure is known. Thus this extension generalizes
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the elegantly crafted features of [12] by backpropagating
through the computational graph spanned by the differential
equations of physics.

Contributions We provide a experimental evaluation of differ-
ent model representations for solving BiC with offline MBRL.
We show that for some tasks, e.g., BiC, guaranteed physically
plausible models are preferable compared to deep networks
despite the inherent underfitting. Physics-based white-box
models, learned with only four minutes of data, are capable of
solving BiC with offline MBRL. Deep network models do not
achieve this task. In addition, we extend the existing methods
for physics parameters identification to systems with maximal
coordinates and nonholonomic inequality constraints.

In the following we discuss the challenges of models for
MBRL (Section II), describe our approach to physically plau-
sible parameter identification for systems with holonomic and
nonholonomic constraints (Section IV). Finally, Section VI ex-
perimentally compares the model representations extensively
by applying them to offline MBRL to solve the BiC task on
the real Barrett WAM with three different string lengths .

II. MODEL REPRESENTATIONS

Model learning, or system identification [16], aims to infer the
parameters θ of the system dynamics from data containing the
system state x and the control signal u. In the continuous time
case the dynamics are described by

ẍ = f(x, ẋ,u;θ). (1)

The optimal parameters θ∗ are commonly obtained by mini-
mizing the error of the forward or inverse dynamics model,

θ∗for = arg min
θ

∑N
i=0 ‖ẍi − f̂ (xi, ẋi,ui;θ) ‖2 (2)

θ∗inv = arg min
θ

∑N
i=0 ‖ui − f̂ -1 (xi, ẋi, ẍi;θ) ‖2. (3)

Depending on the chosen representation for f , the model
hypotheses spaces and the optimization method changes.

White-box Models These models use the analytical equations
of motions to formalize the hypotheses space of f and the in-
terpretable physical parameters such as mass, inertia or length
as parameters θ. Therefore, white-box models are limited to
describe the phenomena incorporated within the equations of
motions but generalize to unseen state regions as the parame-
ters are global. This approach was initially proposed for rigid-
body chain manipulators by Atkeson et. al. [12]. Using the
recursive Newton-Euler algorithm (RNEA) [17], the authors
derived features that simplify the inference of θ to linear
regression. The resulting parameters must not be necessarily
be physically plausible as constraints between the parameters
exist. For example, the inertia matrix contained in θ∗ must be
positive definite matrix and fulfill the triangle inequality. Since
then, various parameterizations for the physical parameters
have been proposed to enforce these constraints through the
virtual parameters. Various reparameterizations [14], [18],
[19] were proposed to guarantee physically plausible inertia

matrices. Using these virtual parameters, the optimization
does not simplify to linear regression but can be solved by
unconstrained gradient-based optimization and is guaranteed
to preserve physically plausibility.

Black-box Models These models are generic function approx-
imators such as locally linear models [20], [21], Gaussian
processes [22]–[24], deep- [25], [26] or graph networks [27]
for f . These approximators can fit arbitrary and complex
dynamics with high fidelity but have an undefined behav-
ior outside the training distribution and might be physically
unplausible even on the training domain. Due to the local
nature of the representation, the behavior is only well defined
on the training domain and hence the learned models do
not extrapolate well. Furthermore, these models can learn
implausible system violating fundamental physics laws such
as energy conservation. Only recently deep networks were
augmented with knowledge from physics to constrain network
representations to be physically plausible on the training
domain [1]–[7]. However, the behavior outside the training
domains remains unknown.

III. MODELS FOR MODEL-BASED RL

For MBRL, black-box models have been widely adopted
due to their generic applicability and simplicity [28]–[30].
In the following, we will elaborate on specific aspects of
MBRL which make model learning for MBRL challenging,
and questions the use of black-box over white-box structures.

Data Distribution MBRL is commonly applied to complex
tasks which involve contacts of multiple bodies, such as object
manipulation and locomotion. In this case, the training data
lies on a complex manifold separating physically feasible
and impossible states, e.g., object contact vs. penetration. In
addition, the data is not uniformly distributed over the set of
feasible states, but accumulated at the manifold boundaries.
In the considered BiC task, the ball is mostly observed at
a certain distance from the cup due to the string constraint,
rarely closer and never further. This complex data manifold is
in contrast to model learning for simper tasks where the data
is evenly distributed in the feasible state region, which is the
convex set of the training data.

Model Usage MBRL uses the model to plan trajectories
and evaluate the policy. During the planning, the predicted
trajectories can venture to physically impossible states and
exploit potential shortcuts to improve control. This behavior
is especially likely in constrained tasks where one needs to
traverse along the edge of the feasible states. For example, to
solve the BiC task, one needs to plan with the string maximally
extended. In this configuration, the planned trajectory can
easily diverge to states where the string-length would be longer
than physically possible. Conversely, for model-based policies
such impossible regions are no concern for the model. In this
setting the model is not queried in these configurations as
the system cannot enter these states without system damage,
malfunction or erroneous measurements.



These two characteristics of MBRL affect the model represen-
tations differently. Black-box models are less adapt at learning
models from highly localized data as they can only extrapolate
locally. In particular, this local interpolation can fail at the
boundaries where bodies are in contact. Ill-fitted boundaries
make it very likely that the planned trajectories diverge to
physically implausible regions and that the policy optimiza-
tion exploits any shortcuts within these regions. More data
cannot resolve the problem, as the data from the physically
implausible regions cannot be obtained from the real-world
system. In contrast, white-box models are less susceptible
to the irregular data distribution due to the global structure.
Furthermore, many strategies have been developed for white-
box models to avoid physically implausible regions within
the simulation community. For example, white-box models
avoid implausible states by generating forces orthogonal to the
violated constraint to push the system state back to the phys-
ically feasible states. Due to these advantages of white-box
models, this model representation can be beneficial for MBRL
applications and the underfitting, which limits the application
to model-based policies, is only of secondary concern. To test
this hypothesis, we consider the BiC task, which relies heavily
on the string constraint. In the following we construct a generic
differentiable white-box structure for such a nonholonomic
constraint expressed in maximal coordinates.

IV. DIFFERENTIABLE SIMULATION MODELS

In the following two sections we describe the used differ-
entiable simulator based on the Newton-Euler algorithm in
terms of the elegant Lie algebra formulation [31]. First we
describe the simulator for systems with holonomic constraints,
i.e., kinematic chains, and then extend it to systems with
nonholonomic constraints. In the following we will refer to
these models as DiffNEA as these models are based on the
differentiability of the Newton-Euler equation.

Rigid-Body Physics with Holonomic Constraints For rigid-
body systems with holonomic constraints the system dynamics
can expressed analytically in maximal coordinates x, i.e., task
space, and reduced coordinates q, i.e., joint space. If expressed
using maximal coordinates, the dynamics is a constrained
problem with the holonomic constraints g(·). For the reduced
coordinates, the dynamics are reparametrized such that the
constraints are always fulfilled and the dynamics are uncon-
strained. Mathematically this is described by

ẍ = f(x, ẋ,u;θ) s.t. g(x;θ) = 0 (4)
⇒ q̈ = f(q, q̇,u;θ). (5)

For model learning of such systems one commonly exploits
the reduced coordinate formulation and minimizes the squared
loss of the forward or inverse model. For kinematic trees the
forward dynamics f(·) can be easily computed using the artic-
ulated body algorithm (ABA) and the inverse dynamics f -1(·)
via the recursive Newton-Euler algorithm (RNEA) [17]. Both
algorithms are inherently differentiable and one can solve the
optimization problem of Equation 2 using backpropagation.

In this implementation, we use the Lie formulations of ABA
and RNEA [31] for compact and intuitive compared to the
initial derivations by [12], [17]. ABA and RNEA propagate
velocities and accelerations from the kinematic root to the
leaves and the forces and impulses from the leaves to the root.
This propagation along the chain can be easily expressed in
Lie algebra by

v̄j = AdTj,i v̄i, āj = AdTj,i āi, (6)

l̄j = AdT
Tj,i
l̄i, f̄j = AdT

Tj,i
f̄i. (7)

with the generalized velocities v̄, accelerations ā, forces f̄ ,
momentum l̄ and the adjoint transform AdTj,i

from the ith to
the jth link. The generalized entities noted by .̄ combine the
linear and rotational components, e.g., v̄ = [v,ω] with the
linear velocity v and the rotational velocity ω. The Newton-
Euler equation is described by

f̄net = M̄ā− ad∗v̄M̄v̄,

ad∗v̄ =

[
[ω] 0
[v] [ω]

]
, M̄ =

[
J m[pm]

m[pm]T mI

]
with the inertia matrix J , the link mass m, the center of
mass offset pm. Combining this message passing with the
Newton Euler equation enables a compact formulation of
RNEA and ABA. The gradient based optimization also enables
the reparametrization of the physical parameters with virtual
parameters θv that guarantee to be physically plausible [14],
[18], [19].

Rigid-Body Physics with Nonholonomic Constraints For a
mechanical system with nonholonomic constraints, the system
dynamics cannot be expressed via an unconstrained equations
with reduced coordinates. For the system

ẍ = f(x, ẋ,u;θ) s.t. h(x;θ) ≤ 0, g(x, ẋ;θ) = 0,

the constraints are nonholonomic as h(·) is an inequality con-
straint and g(·) depends on the velocity. Inextensible strings
are an example for systems with inequality constraint, while
the bicycle is a system with velocity dependent constraints. For
such systems, one cannot optimize the unconstrained problem
directly, but must identify parameters that explain the data and
adhere to the constraints.

The dynamics of the constrained rigid body system can be
described by the Newton-Euler equation,

f̄net = f̄g + f̄c + f̄u = M̄ā− ad∗v̄M̄v̄, (8)

⇒ ā = M̄ -1 (f̄g + f̄c + f̄u + ad∗v̄M̄v̄
)
, (9)

where the net force f̄net contains the gravitational force f̄g ,
the constraint force f̄c and the control force f̄u. If one can
differentiate the constraint solver computing the constraint
force w.r.t. to the parameters, one can identify the parameters
θ via gradient descent. This optimization problem can be
described by

θ∗ = arg min
θ

∑N
i=0 ‖āi − M̄ -1

θ

(
f̄g(θ)

+ f̄c(x̄i, v̄i;θ) + f̄u + ad∗v̄iM̄(θ)v̄i
)
‖2.

(10)



For the inequality constraint, one can to reframe it as an
easier equality constraint, by passing the function through a
ReLU nonlinearity σ(·), so g(x;θ) = σ(h(x;θ)) = 0. From
a practical perspective, the softplus nonlinearity provides a
soft relaxation of the nonlinearity for smoother optimization.
Since this equality constraint should always be enforced, we
can utilize our dynamics to ensure this on the derivative level,
so g(·) = ġ(·) = g̈(·) = 0 for the whole trajectory. With
this augmentation, the constraint may now be expressed as
g(x, ẋ;θ) = 0. The complete loss is described by

θ∗ = arg min
θ

∑N
i=0 ‖āi − f(x̄i, v̄i, ūi;θ)‖2

+ λg‖g(θ)‖2 + λġ‖ġ(θ)‖2 + λg̈‖g̈(θ)‖2
(11)

with the scalar penalty parameters λg , λġ and λg̈ .

V. RELATED WORK

Differentiable simulators have been previously proposed for
model-based reinforcement learning [32], [33] and planning
[34]. In these works, the authors focus on the differentiability
w.r.t. to the previous state and use the differentiable model to
backpropagate in time to optimize policies or plans. Instead,
we focus on the differentiability w.r.t. to model parameter
and deploy the differentiable model for system identification
of robotic system described using reduced and maximal co-
ordinates as well as explicit holonomic and nonholonomic
constraints. Such systems are the main interest of MBRL as
the common task usually cannot be described using solely
unconstrained reduced coordinates.

To obtain differentiable simulators, the main problem is dif-
ferentiating through the constraint force solver computing fc.
Various approaches have been proposed, e.g., Belbute-Peres et.
al. [33] describe a method to differentiate through the common
LCP solver of simulators, Geilinger et. al. [35] describe a
smoothed frictional contact model and Hu et al. [36] describe
a continuous collision resolution approach to improve the
gradient computation. In this work we follow the approach
of [32], [37] and use automatic differentiation to differentiate
through the closed form solution of fc. For our considered
task this closed form solution is possible and we do not need
to rely on more complex approaches presented in literature.

VI. EXPERIMENTAL SETUP

To evaluate the performance of white-box and black-box
models for MBRL, we apply these model representations
within an offline MBRL algorithm on the physical system
to solve BiC. We test the models within an offline RL
algorithm as this approach amplifies the challenges of model
learning. In this setting, additional real-world data cannot be
used to compensate for modeling errors. BiC is a common
benchmark for real-world reinforcement learning and has been
used multiple times for model-free reinforcement learning [8]–
[10] as well as model-free iterative learning control [38]. Until
now this task has not been solved on a physical system with
MBRL as learning a reliable string model is challenging.
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(a) (b) (c)Fig. 2. Comparison of the expected reward and the actual reward on the
MuJoCo simulator for the LSTM, the feed-forward neural network (FF-NN)
as well as the nominal and learnt white-box model. The learnt and nominal
white-box model achieve a comparable performance and solve the BiC swing-
up for multiple seeds. Neither the LSTM nor the FF-NN achieve a single
successful swing-up despite being repeated with 50 different seeds and using
all the data of generated by the white-box models.

BiC Black-box Model A feedforward network (FF-NN) and
a long short-term memory network (LSTM) [39] is used
as black-box model. The networks model only the string
dynamics and receive the task space movement of the last
joint and the ball movement as input and predict the ball
acceleration, i.e., ẍB = f(xJ4 , ẋJ4 , ẍJ4 ,xB , ẋB).

BiC White-box Model For this model, the robot manipulator
is modeled as a rigid-body chain using reduced coordinates.
The ball is modeled via a constrained particle simulation with
an inequality constraint. Both models are interfaced via the
task space movement of the robot after the last joint. The
manipulator model predicts the task-space movement after the
last joint. The string model transforms this movement to the
end-effector frame via TE (Figure 1 a), computes the con-
straint force fc and the ball acceleration ẍB . Mathematically
this model is described by

ẍB = 1
mB

(fg + fc) , (12)

g(x;θS) = σ(‖xB − TE xJ4‖22 − r2) = 0, (13)

where xB is the ball position, xJ4
the position of the last joint

and r the string length. In the following we will abbreviate
xB − TE xJ4 = ∆ and the cup position by TE xJ4 = xC .
The constraint force can be computed analytically with the
principle of virtual work and is described by

fc(θS) = −mB σ′(z)
∆ᵀg − ∆ᵀẍC + ∆̇ᵀ∆̇

∆ᵀ∆ + δ
(14)

with z = ‖∆‖2 − r, and the gravitational vector g. When
simulating the system, we set g̈ = −Kpg − Kdġ ≤ 0
to avoid constraint violations and add friction to the ball
for numerical stability. This closed form constraint force is
differentiable and hence one does not need to incorporate any
special differentiable simulation variants.
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Fig. 3. Three different successful swing-ups for the three different string lengths using the DiffNEA White-Box model with eREPS for offline model-based
reinforcement learning. This approach can learn different swing-ups from just 4 minutes of data, while all tested black-box models fail at the task. The
different solutions are learned using different seeds. The unsuccessful trials of the DiffNEA model nearly solve the BiC tasks but the ball bounces off the cup
or arm. Videos and pictures for all models and all experiments can be found at https://sites.google.com/view/ball-in-a-cup-in-4-minutes/

Offline Reinforcement Learning This RL problem formula-
tion studies the problem of learning an optimal policy from
a fixed dataset of arbitrary experience [40], [41]. Hence,
the agent is bound to a dataset and cannot explore the
environment. For solving this problem, we use a model-
based approach were one first learns a model from the data
and then performs episodic model-free reinforcement learning
(MFRL) using this approximate model. For the model-free
RL we use episodic relative entropy policy search (eREPS)
with an additional KL-divergence constraint on the maximum
likelihood policy update [42] and parameter exploration [43].
The policy is a probabilistic movement primitive (ProMP)
[44], [45] describing a distribution over trajectories.

Dataset For the manipulator identification the robot executes
a 40s high-acceleration sinusoidal joint trajectory (Figure 1 b).
For the string model identification, the robot executes a 40s
slow cosine joint trajectories to induce ball oscillation without
contact with the manipulator (Figure 1 c). The ball trajectories
are averaged over five trajectories to reduce the variance of the
measurement noise. The training data does not contain swing-
up motions and, hence the model must extrapolate to achieve
the accurate simulation of the swing-up. The total dataset used
for offline RL contains only 4 minutes of data. To simplify the
task for the deep networks, the training data consists of the
original training data plus all data generated by the white-box
model during evaluation. Therefore, the network training data
contains successful BiC tasks.

Reward The dense episodic reward is inspired by the potential
of an electric dipole and augmented with regularizing penalties
for joint positions and velocities. The complete reward is
defined as

R(s<N ) = exp

(
1

2
max

t
ψt +

1

2
ψN

)
− 1

N

N∑
i=0

λq‖qi−q0‖22+λq̇‖q̇i‖22,

with ψt = ∆ᵀ
t m̂(qt)/ (∆ᵀ

t ∆t + ε) and the normal vector of
the end-effector frame m̂ which depends on joint configuration
qt. For the white-box model, the predicted end-effector frame
is used during policy optimization. Therefore, the policy is
optimized using the reward computed in the approximated
model. The black-box models uses the true reward, rather than
the reward bootstrapped from the learned model.

VII. EXPERIMENTAL RESULTS

Videos documenting all experiments can be found at
https://sites.google.com/view/ball-in-a-cup-in-4-minutes/.

Simulation Results The simulation experiments test the mod-
els with idealized observations from MuJoCo [46] and enable
a quantitative comparison across many seeds. For each model
representation, 15 different learned models are evaluated with
150 seeds for the MFRL. The average statistics of the best
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TABLE I
OFFLINE REINFORCEMENT LEARNING RESULTS FOR THE BALL IN A CUP TASK, ACROSS BOTH SIMULATION AND THE PHYSICAL SYSTEM. LENGTH
REFERS TO THE STRING LENGTH IN CENTIMETERS. REPEATABILITY IS REPORTED FOR THE BEST PERFORMING REINFORCEMENT LEARNING SEED.

SIMULATION PHYSICAL SYSTEM

MODEL LENGTH AVG. REWARD TRANSFERABILITY REPEATABILITY LENGTH AVG. REWARD TRANSFERABILITY REPEATABILITY

LSTM 40CM 0.92 ± 0.37 0% - 40CM 0.91 ± 0.56 0% 0%
FF-NN 40CM 0.86 ± 0.35 0% - 40CM 1.46 ± 0.78 0% 0%

NOMINAL 40CM 2.45 ± 1.15 64% - 40CM 1.41 ± 0.45 0% 0%
DIFFNEA 40CM 2.73 ± 1.64 52% - 40CM 1.77 ± 0.74 60% 90%

35CM 1.58 ± 0.15 30% 70%
45CM 1.74 ± 0.71 60% 100%

ten reinforcement learning seeds are shown in Table I and the
expected versus obtained reward is shown in Figure 2 (a).

The DiffNEA white-box model is able to learn the BiC swing-
up for every tested model. The transferability to the MuJoCo
simulator depends on the specific seed, as the problem contains
many different local solutions and only some solutions are
robust to slight model variations. The MuJoCo simulator
is different from the DiffNEA model as MuJoCo simulates
the string as a chain of multiple small rigid bodies. The
performance of the learned DiffNEA is comparable to the
performance of the DiffNEA model with the nominal values.

The FF-NN and LSTM black-box models do not learn a
single successful transfers despite being tried on ten different
models and 150 different seeds, using additional data that
includes swing-ups and observing the real instead of the
imagined reward. These learned models cannot stabilize the
ball beneath the cup. The ball immediately diverges to a
physical unfeasible region. The attached videos compare the
real (red) vs. imagined (yellow) ball trajectories. Within the
impossible region the policy optimizer exploits the random
dynamics where the ball teleports into the cup. Therefore, the
policy optimizers converges to random movements.

Real-Robot Results The experiments are performed using the
Barrett WAM and three different string-lengths, i.e., 35cm,
40cm and 45cm. For each model a 50 different seeds are
evaluated on the physical system. A selection of the of trials
using the learned DiffNEA white-box model is shown in
Figure 3. The average statistics of the best ten seeds are
summarized in Table I.

The DiffNEA white-box model is capable of solving BiC
using offline MBRL for all string-lengths. This approach
obtains very different solutions that transfer to the physical
system. Some solutions contain multiple pre-swings which
show the quality of the model for long-planning horizons.
The best movements also repeatedly achieve the successful
task completion. Solutions that do not transfer to the system,
perform feasible movements where the ball bounces of the cup
rim. The nominal DiffNEA model with the measured arm and
string parameters does not achieve a successful swing-up. The
ball always overshoots and bounces of the robot-arm for this
model.

None of the tested black-box models achieve the BiC swing-up
despite using more data and the true rewards during planning.
Especially the FF-NN model converges to random policies,
which result in ball movement that do not even closely re-
semble a potential swing-up. The convergence to very different
movements shows that the models contain multiple shortcuts
capable of teleporting the imagined ball into the cup.

VIII. CONCLUSION & FUTURE WORK

In this paper we argue that for highly constrained tasks,
white-box models provide a benefit over black-box model
for MBRL, and verify this hypothesis through an extensive
evaluation on ball in a cup task on a real robotic platform. The
ball in a cup task shows that guaranteed physically plausible
models are preferable compared to deep networks for this task.
The white-box DiffNEA model solves BiC with only four
minutes of data via offline MBRL. All network models fail
on this task. For MBRL the inherent underfitting of white-box
models for real-world systems might only be of secondary
concern compared to the detrimental effect of divergence to
physically unfeasible states. In addition, we extend the existing
methods for identification of physics parameters to systems
with maximal coordinates and nonholonomic inequality con-
straints. The real-world experiments show that this approach is
also applicable for real-world systems that include unmodeled
physical phenomena, such as cable drives and stiction. In
future work, we want to look at grey-box models as well as
robust policy optimization.

Grey-box Models This model representation combines black-
box and white-box models to achieve high-fidelity approx-
imations of complex physical phenomena with guaranteed
avoidance of impossible state regions. Currently, various initial
variants [13], [24], [47], [48] exist, but a principled method
that optimizes the black- and white-box parameters simulta-
neously remains an open question.

Robust Policy Optimization To improve the transferability of
the learned optimal policies, robustness w.r.t. to model uncer-
tainty needs to be incorporated into the policy optimization.
Within this work we did not incorporate robustness in the
policy optimization but plan to extend the DiffNEA model
to probabilistic DiffNEA models with domain randomization
[49]–[51], which is only applicable to white-box models.
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