
Stochastic Optimal Control as
Approximate Input Inference

Joe Watson, Hany Abdulsamad, Jan Peters†
Department of Computer Science, Technische Universität Darmstadt, Germany

†Robot Learning Group, Max Planck Institute for Intelligent Systems,Tübingen, Germany
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Abstract: Optimal control of stochastic nonlinear dynamical systems is a major
challenge in the domain of robot learning. Given the intractability of the global
control problem, state-of-the-art algorithms focus on approximate sequential op-
timization techniques, that heavily rely on heuristics for regularization in order
to achieve stable convergence. By building upon the duality between inference
and control, we develop the view of Optimal Control as Input Estimation, devis-
ing a probabilistic stochastic optimal control formulation that iteratively infers the
optimal input distributions by minimizing an upper bound of the control cost. In-
ference is performed through Expectation Maximization and message passing on
a probabilistic graphical model of the dynamical system, and time-varying linear
Gaussian feedback controllers are extracted from the joint state-action distribu-
tion. This perspective incorporates uncertainty quantification, effective initial-
ization through priors, and the principled regularization inherent to the Bayesian
treatment. Moreover, it can be shown that for deterministic linearized systems, our
framework derives the maximum entropy linear quadratic optimal control law. We
provide a complete and detailed derivation of our probabilistic approach and high-
light its advantages in comparison to other deterministic and probabilistic solvers.
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1 Introduction

Trajectory Optimization for nonlinear dynamical systems is among the most fundamental paradigms
in the field of robotics. It has proven itself to be a cornerstone for both low- and high-level planning
techniques [1, 2]. A popular tool for devising such planning schemes is Optimal Control [3, 4],
which frames the search for the best sequence of inputs into a dynamical system as the optimization
of the state-action trajectory. While Optimal Control has had great success both in theory and appli-
cation, mainly represented by Sequential Quadratic Programming (SQP) techniques [5], it is known
to struggle with stochastic environments due to its feedforward nature. Meanwhile, a popular tool for
dealing with uncertainty is Bayesian statistics [6], which in part uses the notion of random variables
to describe model uncertainty. The process of determining the characteristics of this uncertainty is
known as inference, and this too is often framed as an optimization problem. Control-as-inference
[7, 8, 9, 10] is a body of research combining these two paradigms, with the proposition that the
principled mechanisms of inference will bring the benefits of faster convergence, more principled
regularization and the addition of uncertainty quantification [11].
In this work we present Input Inference for Control (I2C), a new perspective on control-as-inference.
By moving away from the typical Optimal Control formulation, while preserving the underlying
operations, recursive Bayesian inference can be applied to the inputs to manner that optimizes a
control objective. This builds on previous work that performs recursive approximate inference of
the state trajectory [12] and exact input inference for linear systems [13]. Consider the fundamental
task of control: to find the sequence of actions that generate a desired trajectory. From an inference
perspective, we would call this problem Input Estimation, where the ‘desired’ observed trajectory
in this case is a set of measurements. In Optimal Control, as the desired trajectory is not expected
to be fully achieved, the notion of a cost function is used to describe the desired deviation of the
observed trajectory. Statistically this deviation would be framed as a ‘disturbance’ and described
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by a probability distribution. As likelihoods are often the optimization objective of an inference
problem, by comparing the likelihood of this formulation to typical control cost functions informs
our choice of disturbance noise in order to achieve equivalence. In this work, we focus on the
well-established duality between Gaussian noise and quadratic penalties [6].
By making the linear Gaussian assumption on both our dynamics and observation models, infer-
ence can be performed in closed-form using message passing, and we show that this input inference
reduces to the Linear Quadratic Regulator (LQR) solution in the deterministic case. Moreover,
the inference is in fact performing the same Discrete Algebraic Ricatti equation (DARE) computa-
tion [13]. Additionally, making the inference approximate through local linearizations, we extend
the scheme to nonlinear dynamical systems and arrive at a procedure akin to the popular trajec-
tory optimization of Differential Dynamic Programming (DDP) [14] and variants (e.g. iLQR [15],
eLQR[16], GPS [17]). While these methods require explicit regularization, bounds and heuristics
to maintain steady convergence, the behaviour of our scheme is governed primarily by the choice
of priors, and the regularization only required to account for the log-likelihood approximation. The
use of Bayesian inference also results in self-regularized exploration, as the covariance of each in-
put is a measure of confidence / robustness. Moreover, by examining the conditional distributions
between the resultant posterior state-action distribution, we arrive at (Bayes) optimal time-varying
linear (Gaussian) controllers, as in LQR [13]. We show that the covariance of these controllers
naturally exhibits the maximum entropy characteristic, achieved without explicit incorporation of a
policy entropy term in the objective as done previously.
The contributions of this work are as follows:
A control-as-inference formulation (I2C) that posits optimal control as input estimation for a dy-
namical system, such that the optimization objective is separated from the priors over the controls.
This allows for Bayesian inference of the controls, rather than fixing them for exploration.
A practical realisation through approximate Expectation Maximisation, performing inference via
linearized Gaussian message passing in the E-Step and hyperparameter optimization in the M-Step.
Compared to previous methods, I2C has more principled regularization, relying primarily on the
priors rather than heuristic methods such as line search, smoothing and annealing.

2 Input Inference for Control

Given a stochastic discrete-time fully-observed nonlinear dynamical system, xt+1 ∼ f(xt,ut) with
state x ∈ Rdx and input u ∈ Rdu , we wish to find the optimal control inputs u∗0:T over time horizon
T that minimizes the cost function C(x,u) for moving from an initial state x0 to goal state xg .
Our proposed method reframes optimal control as inference of the inputs of the dynamical system.
This can be achieved with access to a dynamics model and by incorporating the cost function into
the likelihood in an affine manner through an ‘observation model’ p(zt|xt,ut) of our optimization
variables z ∈ Rdz , such that αC(x,u)+β= log p(zt|xt,ut). By maximizing this likelihood

max
u0:T ,θ

p(z0:T ,x0:T ,u0:T ,θ)=p(x0)
∏T -1
t=0 p(xt+1|xt,ut)

∏T
t=0 p(zt|xt,ut,θ)p(ut|xt), (1)

both the control cost (observation likelihood) and trajectory likelihood are jointly optimized, gener-
ating an estimated optimal state-action joint distribution p(x,u). From this, the conditional distri-
bution p(u|x) can be found and used as a policy. The likelihood acts as an unconstrained control
cost function by incorporating the constraint of the dynamical system, present in typical Optimal
Control formulations, as an additional likelihood. This makes sense for stochastic systems, where
the dynamical system can no longer be treated as a deterministic constraint. The likelihood also
depends on hyperparameters θ, which can be optimized via the marginal likelihood.

2.1 The Linear Gaussian Assumption

By applying the linear Gaussian assumption to the models and their respective uncertainties, Equa-
tion 1 can not only be tackled in a tractable manner, but also compared to LQR control (Section A).
Firstly, we can express the conditionals as linear state-space models,

Dynamics: p(xt+1|xt,ut) : xt+1 = Atxt +Btut + at + ηt, ηt ∼ N (0, Σηt
), (2)

Cost: p(zt|xt,ut) : zt = Etxt + Ftut + et + ξt, ξt ∼ N (0, Σξ). (3)
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(a) Linear Transform (b) Addition (c) Equality

Figure 1: Linear Gaussian Message Passing rules for elementary state-space operations [18], with
the mean (µ), covariance (Σ), precision (Λ = Σ−1) and scaled mean (ν = Λµ), which describe
the moment and information (or canonical) form of the Normal distribution respectively.

Secondly, the log-likelihood is transformed into a convex function (Equation 4) which is quadratic
in the optimization variables x, u and z [19].

−L(θ) =1

2

∑T−1
t=0 log |Σηt

|+ 1
2

∑T
t=0(zt−Etxt−Ftut−et)ᵀΣ-1

ξ (zt−Etxt−Ftut−et)

+
T

2
log |Σξ|+

1

2

∑T−1
t=0 (xt+1−Atxt−Btut−at)ᵀΣ-1

ηt
(xt+1−Atxt−Btut−at) + . . . (4)

In I2C, the ‘measurement’ of z represents the desired state-action trajectory. Therefore to trans-
form the log-likelihood of z to a quadratic control cost, the precision of the ‘observation noise’
ξ is Σ−1ξ =Λξ=αΘ, where Θ represents the weights of the cost function and α accounts for its
scale invariance. For the standard LQ problem (Section A), zt= [xg ug]

ᵀ andΘ=diag(Q,R). Our
hyperparameters θ include α, the scale factor, along with the priors over the inputs u. In Equa-
tion 4, α acts as the scale factor of the LQ cost against the other terms in the likelihood. Typically
for multi-objective cost functions this scaling must be user-defined, but as it has a probabilistic
interpretation here, it can be iteratively estimated during inference. As α scales the given con-
trol cost Θ such that it can be used as the observation noise precision Λξ, it can be estimated
based on the current estimated state-action trajectory deviation about the goal. This inference is
carried out using the Expectation Maximization (EM) algorithm [20], treating α as a latent variable.

=
Xt

Et

+et

+

Z ′t
ξt ξt ∼ N (0, Σξ)

Zt

At
X ′t +

at

+
X ′′t

ηt ∼ N (0, Σηt)

+
X ′′′t Xt+1

Bt

U ′′t

=

U ′t
Ft

Z ′′t

Ut

Figure 2: Forney factor graph of the linear Gaussian dynamical
system used by I2C. Blue terms are intermediate variables used
in the message derivations (Section B).

Expectation Step
The E-Step, estimating the state-
action trajectory, can be per-
formed in a tractable manner
through linear Gaussian message
passing. For model-based sig-
nal processing on linear Gaussian
state space models [18, 21, 22],
expressing inference problems as
Forney-style factor graphs en-
ables the construction of message-
passing algorithms by following
straightforward rules (see Figure
1). For cycle-free graphs, the mes-
sages can be expressed in closed-
form. The forward messages (i.e.−→x ) represents the priors, while the backward messages (i.e. ←−x ) represent likelihood functions (up
to a scale factor). The updated belief is the posterior of an edge, which are the product of the edge’s
forward and backward message:

Σx = (Λ−→x +Λ←−x )−1, µx =Σx (ν−→x +ν←−x ). (5)

In I2C, the backward messages perform optimal control, so the posterior states and controls represent
a regularized update of the estimated optimal state-action trajectory.
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Data: T , α, δα, f(x,u), g(x,u)
µ−→x 0

,Σ−→x 0
,µ−→u t

,Σ−→u t
for t = 0:T

Result: Kt,kt,Σkt for t = 0 : T
while not converged do

// E-Step
for i← 0 to T − 1 do

Compute µ−→x t+1
,Σ−→x t+1

from
forward messages (Equation 18-29),
updatingAt, at,Bt,Et, et and Ft

end
for i← T to 1 do

Compute µxt
,Σxt

µut
,Σut

from
backward messages and
marginalisation (Equation 32-45)

end
// M-Step
Update α with reg. (Equation 6, 10)
Update priors, µ−→u =µu ,Σ−→u =Σu

end
// Controller
Computer linear Gaussian controller
Kt,kt,Σkt for t = 0:T from messages
(Equation 7-9)

Algorithm 1: EM for Linear Gaussian I2C

The message-passing on the graph of Figure 2
performs the same inference as Kalman filter-
ing and smoothing [23], with the addition that
the inputs are also uncertain1 Additionally, the
inference starts with an ‘innovation’ (observa-
tion) of x0 in order to evaluate (xt,ut) rather
than (xt+1,ut), but this is a minor discrep-
ancy as the subsequent prediction and innova-
tion steps are the same. The forward and back-
ward messages are derived in Sections B.1-B.2.
While the message-passing form is more ver-
bose than the standard Kalman filtering and
smoothing equations, they allow us to appreci-
ate how this framework performs optimal con-
trol [13]. From Equation 4 with the LQ-
equivalent zt andΘ, it is clear that the negative
log-likelihood acts an upper bound on the LQ
cost, as it incorporates the trajectory likelihood,
which depends on the system’s stochasticity
and uncertainty in controls. Therefore, as the
EM algorithm maximizes the log-likelihood,
it in turn minimizes the LQ cost, performing
Bayesian optimal control. The further connec-
tions between I2C and LQ control are discusses
in Section 2.1.1 and B.5.
Maximisation Step
To update α, the scale factor between the LQ cost Θ and the estimated Λξ must be found. This is
derived by maximizing the expected log-likelihood via the derivative:

−2 ∂

∂α
E[L(α)] = ∂

∂α
(tr{Σ−1ξ Σ̂ξ}+ T log |Σξ|) = − tr{ΘΣ̂ξ}+ Tdzα

−1 = 0, (6)

where Σ̂ξ =
∑T
t=0

[
(zt −Etµxt

−Ftµut
)(zt−Etµxt

−Ftµut
)ᵀ+EtΣxt

Eᵀ
t +FtΣut

F ᵀ
t

]
.

In practice this means that over EM iterations, as the state-action trajectory moves towards the goal,
Λξ and therefore α steadily increases. This in turn results in the control cost term increasing in
significance in the log-likelihood (Equation 4). The resulting annealing effect aids in stabilizing the
optimization. This effect bares a resemblance to curriculum learning [24], where the task (e.g. cost
function) increases in difficulty as the performance improves, as a strategy for learning complex
tasks effectively.
Linear Gaussian Controller
For finite horizon LQ control, it can be shown that a time-varying linear controller is the optimal
policy. Here we show that this is true for the inference setting as well. By examining the conditional
distribution between the marginalized posteriors of x and u at each timestep, a time-varying linear
Gaussian controller (Equation 7-9) can be derived from the messages (see Section B.4). For a time-
varying linear Gaussian controller of the form ut ∼ N (Ktxt + Kt, Σkt

), I2C computes the
parameters as

Kt = −Σut
BtΓt+1Λ←−x t+1

Ψt+1At, (7)

kt = Σut
(ν−→u t

+ F ᵀ
t (Σξ +EtΣ−→x t

Eᵀ
t )

-1(zt −Etµ−→x t
− et)

+Bᵀ
t (Γt+1ν←−x t+1

+ (I − Γt+1)ν−→x ′′
t
− Γt+1Λ←−x t+1

Ψt+1at)), (8)

Σkt
= Σut

= (Λ−→u t
+ F ᵀ

t (Σξ +EtΣ−→x t
Eᵀ
t )

-1Ft +B
ᵀ
t Γt+1Λ←−x t+1

Bt)
−1. (9)

In Section 2.1.1, it is shown how the expressions for the controller resemble the corresponding
expressions for LQ control. Moreover, the discrepancy between the I2C and LQ controllers can be
interpreted as uncertainty-derived regulation. In the I2C controller two additional (dimensionless)

1If the input is incorporated into the state, the two procedures become identical, however the joint dynamics
then become degenerate due to the independence of the inputs
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LQR Riccati Backward Message Message-derived Controller

Q Eᵀ
t (Σξ + FtΣ−→u t

F ᵀ
t )

-1Et Eᵀ
t (Σξ + FtΣ−→u t

F ᵀ
t )

-1Et
R F ᵀ

t (Σξ +EtΣ−→x t
Eᵀ
t )

-1Ft F ᵀ
t (Σξ +EtΣ−→x t

F ᵀ
t )

-1Ft
Pt Λ←−x t

ΓtΛ←−x t

pt −ν←−x t
−Γtν←−x t

Table 1: Due to the formulation of I2C, the precision of the observation noise is proportional to the
LQ cost function weights. Additionally, due to the linear Gaussian assumption, we can show that
the precision and scaled-mean of the backward messages of the state belief correspond to the value
function parameters in LQR. These equivalences are explained further in Section B.5.

terms appear, Γ and Ψ (see Section B.4), which are functions of Σ←−x t+1
, Σ−→x ′′

t
and Σ−→u ′′

t
. As

process uncertainty increases, Γ acts to ‘turn off’ the optimal control terms of the controller and
rely on the priors. Meanwhile, Ψ represents the confidence in the controller, which counteracts
the attenuating effects of Γ given sufficient control certainty. These findings parallel the ‘turn-
off phenomenon’ observed in Dual Control [25, 26] and Bayesian Reinforcement Learning [27],
where actions are attenuated under uncertainty. This behaviour is important for settings such as
probabilistic Model-based Reinforcement Learning [28], where localised regions of uncertainty can
indicate modelling error, and such errors can lead to detrimental policy updates. Attenuating the
policy updates in these regions between model learning iterations would mitigate this pitfall.

2.1.1 Connections to Finite Horizon Maximum Entropy LQR

To understand how this framework performs optimal control, we look at the backward messages of
the probabilistic graphical model described in Figure 2 with a control perspective [13]. By looking
at the backward messages of the state

←−
X t in Section B.3, the backwards evolution of the precision

(Equation 52) and scaled-mean (Equation 57) can be seen to have a similar Ricatti form to the
quadratic value function parameters for LQ control (Equation 16-17). Extending this analysis to find
the linear Gaussian controllers from the conditional distributions, we see that some of the equivalent
terms have the additional uncertainty-weighted scalar term Γ . Table 1 details the correspondence.
The control covariance, Equation 9, can be seen to resemble that of a Maximum Entropy controller.
In Control Theory and Reinforcement Learning, the entropy of a policy can be interpreted as a
metric for robustness, so a maximum entropy objective has been added to cost functions as regulari-
sation [29]. Augmenting the LQ cost function with the entropy of the control inputs, the covariance
of the input at each timestep can be shown to be Σt = (R + BᵀPt+1B)−1 (using LQ notation,
see Section A) [30]. Comparing this to Equation 9 and Table 1, it can be seen that this maxi-
mum entropy control is calculated by the backward message, and combined with the prior (forward
message) to construct the posterior. This fusion is important as the prior can be used to regularize
exploration during inference, which is essential for mitigating the effects of linearizing the dynamics
during approximate inference of nonlinear systems (see Section 2.2). This smoothing mechanism
has previously been added explicitly or via constraints on the trajectory update during optimization.

2.2 Nonlinear I2C through Approximate Inference

The linear analysis conducted here can be naturally extended to nonlinear dynamical systems
through linearization, taking the Jacobian of the dynamics and observation models about the cur-
rent state-action trajectory. This approach has been applied to both state estimation (i.e. Extended
Kalman Smoothing) and optimal control (i.e. DDP). From a probabilistic perspective, this lineariza-
tion renders the inference approximate. As a consequence, careful consideration of the priors and
additional regularization is required, as the act of linearizing imposes a requirement of local im-
provement during inference. Placing small priors on u ensures that the Bayesian posterior remains
close to the prior, and was found to be critical for systems that where highly nonlinear or with low
sampling frequencies. As in Extended Kalman Filtering and other inference schemes for nonlinear
systems [31], the dynamics are linearized in the forward pass. This linearization-based approximate
inference can be viewed as Gauss-Newton optimization [32], making it closely related to approxi-
mate trajectory optimization algorithms such as iLQR. Additionally, it was found that the α update
during the M-Step must be restricted to ensure the state-action distribution did not change signif-
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Figure 3: Demonstrating how I2C generalizes the Dynamic Programming Finite Horizon LQR solu-
tion. This is achieved when the controls have a large prior and the certainty in the target observation
is high. Note ‘Filtered’ and ‘Prediction’ correspond to µ−→x ′

t
and µ−→x t+1

in Figure 2 respectively.

icantly between iterations. By looking at a bound δξ on the KL divergence between Z updates
(Equation 10), this in fact can be applied as a bound δα on the update ratio. As the expression

DKL
(
Zi
∣∣∣∣Zi+1

)
=

1

2

[
log
|Σi+1
ξ |
|Σi
ξ|

+tr{Λi+1
ξ Σi

ξ}−dz

]
=

1

2

[
log

αi+1

αi
+dz

αi

αi+1
−dz

]
≤δξ (10)

is monotonic increasing in the ratio αi+1
/αi. From the perspective of approximate EM, the regu-

larized M-Step is motivated by mitigating the adverse effect of the linearization assumption on the
likelihood estimate. [33].

3 Experimental Results

An empirical evaluation is presented, first to highlight the equivalence of I2C to the LQR solution
and second to compare I2C to state-of-the-art algorithms on nonlinear dynamical systems2.

3.1 Equivalence with finite-horizon LQR by Dynamic Programming

In Section 2.1, the LQR problem was used to motivate the linear Gaussian assumption for I2C. In
Section B.5 it is shown how, under specific settings, the message passing expressions reduce to
those found when solving the LQR problem via Dynamic Programming. Figure 3 illustrates this
numerically, for an LQR problem described in Section C.1.

3.2 Evaluation on nonlinear trajectory optimization tasks

To evaluate the viability of I2C for nonlinear trajectory optimization, its performance on three stan-
dard control tasks were compared to similar baseline methods. iLQR and GPS are two popular
algorithms that use local linearization for time-varying controllers and have demonstrated strong
performance on complex control problems. iLQR is deterministic, so here it is used as a baseline for

2The code is available at https://github.com/JoeMWatson/input-inference-for-control

6

https://github.com/JoeMWatson/input-inference-for-control


I2C iLQR GPS

0 50 100

2

3

4
·104

Iterations

C
os

t

Pendulum

0 50 100 150 200
1

2

3

4
·105

Iterations

C
os

t

Cartpole

0 50 100 150 200

4

6

8
·105

Iterations

C
os

t

Double Cartpole

Figure 4: Comparison of the trajectory cost prediction over iterations for three simulated tasks
during trajectory optimization. For all algorithms, the dynamics are linearized once per iteration.
For experimental details see Section C.2.

the ignoring uncertainty in stochastic control problems. While GPS was motivated to train Neural
Network policies, here we use its time-varying linear controllers, viewing it as Maximum Entropy
iLQG. In order to perform the linearization required for approximate inference (and the baseline
approaches), the test environments were implemented using the Autograd library [34]. We test on
three classical problems of increasing complexity in state-action-observation dimensionality (dx, du,
dz): Pendulum (2, 1, 4), Cartpole (4, 1, 6) and Double Cartpole (6, 1, 9) swing-up. Both Cartpole
domains are also underactuated, which presents a significant planning challenge. All environments
also have constrained actuation, which introduces both a nonlinearity and increased sensitivity to
disturbances. Experimental details and additional trajectory plots are included in Section C.2.
Figure 4 shows that I2C is capable of performing effective trajectory optimization. The EM aspect
of the algorithm results in a significant portion of the time is used ‘warming up’ the priors, which are
set to be small in order to carry out steady exploration, rather than optimizing the control cost. iLQR
performs superior trajectory optimization, both in rate and final cost. However, actuation constraints
were found to lead to suboptimal convergence (in the Pendulum task, Figure 5), and the optimized
controllers were comparatively highly aggressive. GPS performed steadier optimization due to the
KL bound and exploration in the forward pass. In Table 2, the optimized (deterministic) controllers
were evaluated on the stochastic environment. I2C performs the most consistently, operating close
to its predicted cost for each task. GPS and iLQR, with more aggressive controllers and trajectories,
both suffered reduced performance when evaluated on the simulated systems. We attribute this to the
high-risk strategy of operating at the actuation limits, when also subjected to disturbances, especially
as time-varying control strategies are inherently very brittle to any deviation in trajectory.

4 Related Work

Optimal control of nonlinear dynamical systems through iterative linearization originated from Dif-
ferential Dynamic Programming (DDP) [14]. A drawback of DDP is the need for the computa-
tionally expensive second-order approximation of the dynamics. In the framework of Iterative LQR
(iLQR) [35] and its stochastic extension iLQG [36], this requirement is dropped. Both algorithms
perform only first order approximations, making them akin to a regularized Gauss-Newton method.

I2C iLQR GPS
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Figure 5: Comparison of the state-action trajectories of I2C, iLQR and GPS on the Pendulum swing-
up task after convergence.
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Environment Algorithm Predicted Cost Evaluated Cost

Pendulum
I2C 1.35× 104 1.37× 104 ± 3.82
iLQR 1.66× 103 1.11× 105 ± 20.38
GPS 2.00×104 7.01× 104 ± 30.96

Cartpole
I2C 1.73×105 1.74× 105 ± 0.14
iLQR 1.14× 105 1.76× 107 ± 88.63
GPS 1.65×105 2.94× 106 ± 17.60

Double Cartpole
I2C 3.12×105 3.21× 105 ± 1.79
iLQR 2.37× 105 1.76× 107 ± 5.27× 105

GPS 3.76×105 2.94× 106 ± 44.39

Table 2: Evaluating the optimized deterministic controller of each algorithm on the simulated
stochastic environments. Predicted Cost refers to the converged value from Figure 4, Evaluated
Cost shows the mean and standard deviation after 100 trials.

All former methods however lack a principled forward pass and instead rely on a line-search ap-
proach to find a suitable regularization, that counteracts the greediness of their local approximations.
Extended LQR (eLQR) [16] and its stochastic extension seLQR [37] address this issue and perform
a forward pass based on the ‘cost-to-come’, that has similarities to Kalman filtering. A more elegant
solution to the problem of regularization is proposed in Guided Policy Search (GPS) [38, 39], where
the Stochastic Optimal Control problem is formulated with a KL bound on the change of trajectory
distributions. GPS derives a Maximum Entropy iLQG as a means to train neural network policies.
The connection between optimal control and inference, also known as the estimation-control dual-
ity and Kalman duality [4, 40] was initially noted by Kalman [41], while working on the Kalman
Filter and Optimal Control. Probabilistic Control Design [42, 43, 44] derives a probabilistic vari-
ant of LQR through a KL divergence minimization, also noting the connection between the LQR
cost weight matrices and the precisions of multivariate normal distributions. Furthermore, the sim-
ilarity between LQR and Kalman Smoothed trajectories has previously been utilized for the ERTS
controller [45]. However, this work uses standard smoothing in the state and does not derive a
corresponding controller, relying on an approximate inverse dynamics model instead.
Inference has been applied to reinforcement learning for discrete environments [7], through maxi-
mizing the likelihood of a discrete latent optimality variable. AICO [12] applies this approach to
the continuous LQR setting, with the state cost defining the optimality probability, and the action
weight defining the precision of the action prior, which is treated like a disturbance for exploration.
As with I2C, the backward messages were found to share similarities with the DAREs of LQR,
however unlike I2C, the input priors are fixed. AICO was generalised to Posterior Policy Iteration
(PPI) [46, 47] in which a risk-tuned linear Gaussian controller was obtained from the inferred value
function. The idea of controls as a random diffusion process is shared by Todorov [48], along with
Path Integral (PI) Control (KL Control for discrete environments) [9, 49, 50] that takes advantage of
Feynman-Kac lemma to approximately solve the continuous-time Hamilton-Jacobi-Bellman equa-
tion using stochastic processes. PI methods iteratively compute local improvements to the controls,
allowing them to be used to train parametric policies or for model predictive control.

5 Conclusion

In this work we have introduced Input Inference for Control (I2C), a novel control-as-inference for-
mulation, by casting optimal control as Bayesian inference over the inputs. Through making the
linear Gaussian assumption, we arrived at a tractable approximate EM algorithm with the use of
message passing for approximate inference, and are able to draw connections with linear quadratic
optimal control, Kalman filtering and Kalman smoothing through examination of the messages.
Compared to prior work, this scheme employs natural regularization through the mechanisms of
Bayesian inference, offering a more principled approach than currently established deterministic
solvers. Moreover, our approach improves previous probabilistic approaches by naturally incorpo-
rating and optimizing over actions, enabling us to retrieve time-variant feedback controllers. Fu-
ture avenues of research include the analysis of different approximate inference techniques, such as
Monte Carlo, variational methods, and numerical quadrature, and the investigation of the trade-off
between accuracy of inference, computational cost and benefit to control optimization.
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[44] J. Šindelář, I. Vajda, and M. Kárnỳ. Stochastic control optimal in the kullback sense. Kyber-

netika, 2008.
[45] M. Zima, L. Armesto, V. Girbés, A. Sala, and V. Šmı́dl. Extended rauch-tung-striebel con-
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A The Dynamic Programming solution to the Linear Quadratic Regulator

Given a linear system, we wish to find a control sequence u∗0:T that minimizes a quadratic cost
function over a finite time horizon T for a goal state xg and input ug:

min
u0:T

[
(xT−xg)ᵀQf (xT−xg) +

∑T−1
t=0 (xt−xg)ᵀQ(xt−xg) + (ut−ug)ᵀR(ut−ug)

]
s.t. xt+1 = Axt + a+But (11)

Solving this method via Dynamic Programming, we can construct a quadratic value function back-
wards through time to find the optimal control at each timestep, which we can calculate for Equa-
tion 11 using Bellman’s Principle of Optimality.

Starting with PT = Qf , pT = −xgᵀQ, pT = 0.
Vt(x) = x

ᵀPtx+ 2xᵀpt + pt (12)
= min

u
[(xt − xg)ᵀQ(xt − xg) + (ut − ug)ᵀR(ut − ug) + Vt+1(xt+1)] (13)

The optimal input can be found to be linear in state,

u∗t = −(R+BᵀPt+1B)-1(BᵀPt+1(Axt + a) +B
ᵀpt+1 −Rug) (14)

=Ktxt + kt (15)

The parameters of the value functions follow the recursive form, i.e.

Pt = Q+AᵀPt+1A+AᵀPt+1B(R+BᵀPt+1B)-1BᵀPt+1A (16)

pt = A
ᵀ(Pt+1a+pt+1−Pt+1B(R+BᵀPt+1B)-1(BᵀPt+1a+Bᵀpt+1−Rug))
−Qxg (17)

B Derivation of I2C Linear Gaussian Messages

All messages are derived following the graphical model in Figure 2. Note the figure includes the
intermediate variables (denoted with primes), used to add clarity to the derivations.

B.1 Forward Messages

The forward message are very close to those of Kalman Filtering, except the inputs are also observed
and so have their own innovation step.

The innovation and propagation of the input into the system dynamics:
ν−→u ′

t
= ν−→u t

+ F ᵀ
t (Σξ +EtΣ−→x t

Eᵀ
t )

-1(zt −Etµ−→x t
− et) (18)

Λ−→u ′
t
= Λ−→u t

+ F ᵀ
t (Σξ +EtΣ−→x t

Eᵀ
t )

-1Ft (19)

µ−→u ′′
t
= Btµ−→u ′

t
(20)

Σ−→u ′′
t
= BtΣ−→u ′

t
Bᵀ
t (21)

The innovation and propagation of the state, incorporating the input:
ν−→x ′

t
= ν−→x t

+Eᵀ
t (Σξ + FtΣ−→u t

F ᵀ
t )

-1(zt − Ftµ−→u t
− et) (22)

Λ−→x ′
t
= Λ−→x t

+Eᵀ
t (Σξ + FtΣ−→u t

F ᵀ
t )

-1Et (23)

µ−→x ′′
t
= Atµ−→x ′

t
+ at (24)

Σ−→x ′′
t
= AtΣ−→x ′

t
Aᵀ
t (25)

µ−→x ′′′
t

= µ−→x ′′
t

(26)

Σ−→x ′′′
t

= Σ−→x ′′
t
+Σηt (27)

µ−→x t+1
= µ−→x ′′′

t
+ µ−→u ′′

t
(28)

Σ−→x t+1
= Σ−→x ′′′

t
+Σ−→u ′′

t
(29)
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B.2 Backward Messages

The most efficient means of constructing the backward messages for marginalisation is to make
use of the ‘auxiliary’ form (see [18, 21]), which has several useful properties for message propaga-
tion. In particular they are invariant to the Addition factor, so the various offsets are automatically
considered.

Λ̃x = (Σ−→x +Σ←−x )-1 = Λ−→x −Λ−→x Σx Λ−→x (30)

ν̃x = Λ̃x (µ−→x t
− µ←−x t

) = ν−→x t
−Λ−→x t

µxt
(31)

Like the marginal they are a fusion of the forward and backward message, but in the ‘dual’ form.
For initialising the backward pass there are two approaches. One is to follow the idea of the terminal
cost from Equation 11, where for example PT = Qf = Q,pT = 0, Λ←−x T

= Λξ,ν←−x T
= 0. The

marginals can then be constructed following Equation 5. Any Qf can be used, so long as Λ←−x T

is constructed with an α following Section 2.1 . In practice, it was found crucial to tune up this
terminal cost to ensure the target state is reached with a responsive controller (as many target states
lay at unstable equilibria). HoweverQf the represents another (multi-dimensional) hyperparameter
to tune. Using the probabilistic perspective, instead choose ΣxT

such that the prior Σ−→x T
has been

reduced by a scale factor κ. While this deviates from the previous quadratic cost formulation into an
adaptive cost function, it was found to be both simple and effective when tackling difficult domains.
The adaptation becomes an important quality for nonlinear problems where the initial dynamics are
stable and the target state dynamics are unstable. This scheme acts to tune up the terminal cost as
the dynamics become more unstable, which causes the state uncertainty to grow at a greater rate,
which in turn acts to increase the responsiveness of the controller. As we also wish to keep the prior
and posterior trajectories tight during optimization (to ensure the linearization assumption is valid),
we set µxT

= µ−→x T
. In the experiments of Section 3.2,Qf=Q.

Starting withΣxT
= Σ−→x T

, µxT
= µ−→x T

.

Construct the auxillary for xt+1,

Λ̃xt+1
= Λ−→x t+1

−Λ−→x t+1
Σxt+1

Λ−→x t+1
(32)

ν̃xt+1
= ν−→x t+1

−Λ−→x t+1
µxt+1

(33)

The auxiliary is invariant across an addition operation, so

Λ̃x′′
t
= Λ̃x′′′

t
= Λ̃xt+1

(34)

ν̃x′′
t
= ν̃x′′′

t
= ν̃xt+1

(35)

Propagate the state belief backwards through system dynamics,

Λ̃x′
t
= Aᵀ

t Λ̃x′′
t
At (36)

ν̃x′
t
= Aᵀ

t ν̃x′′
t

(37)

Marginalized variables are invariant across the Equality node, so marginalize xt at x′t,

Σxt
= Σx

′
t
= Σ−→x ′

t
−Σ−→x ′

t
Λ̃x′

t
Σ−→x ′

t
(38)

µxt
= µx′

t
= µ−→x ′

t
−Σ−→x ′

t
ν̃x′

t
(39)

To find µut
, note that due to the addition operation, the auxillary of u′′t is equal to that of x′′′t ,

Λ̃u′′
t
= Λ̃x′′′

t
(40)

ν̃u′′
t
= ν̃x′′′

t
(41)

Λ̃u′
t
= Bᵀ

t Λ̃u′′
t
Bt (42)

ν̃u′
t
= Bᵀ

t ν̃u′′
t

(43)

Σut
= Σu

′
t
= Σ−→u ′

t
−Σ−→u ′

t
Λ̃u′

t
Σ−→u ′

t
(44)

µut
= µu′

t
= µ−→u ′

t
−Σ−→u ′

t
ν̃u′

t
(45)
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B.3 Riccati Backward Messages for Control

To understand the relation to optimal control, the backward messages must be represented recur-
sively as a Discrete Algebraic Ricatti Equation.

Recursion of the precision

Λ←−x t
= Λ←−x ′

t
+Eᵀ

t Λ←−z ′
t
Et (46)

= Aᵀ
tΛ←−x ′′

t
At +E

ᵀ
t Λ←−z ′

t
Et (47)

Λ←−z ′
t
= (Σξ + FtΣ−→u t

F ᵀ
t )

-1 (48)

Using the matrix inversion identity (A-1 +B)-1 = A−A(A+B-1)A[51],

Λ←−x ′′
t
= (Σηt

+Σ−→u ′′
t
+Σ←−x t+1

)-1 (49)

= Λ←−x t+1
−Λ←−x t+1

((Σηt +Σ−→u ′′
t
)-1 +Λ←−x t+1

)-1Λ←−x t+1
(50)

Σ−→u ′′
t
= Bt(Λ−→u t

+ F ᵀ
t (Σξ +EtΣ−→x t

Eᵀ
t )

-1Ft)
-1Bᵀ

t (51)

So the recursion in full is

Λ←−x t
= Eᵀ

t (Σξ+FtΣ−→u t
F ᵀ
t )

-1Et+A
ᵀ
tΛ←−x t+1

At −Aᵀ
tΛ←−x t+1

((Σηt
+Bt(Λ−→u t

+F ᵀ
t (Σξ+EtΣ−→x t

Eᵀ
t )

-1Ft)
-1Bᵀ

t )
-1+Λ←−x t+1

)-1Λ←−x t+1
At (52)

Recursion of the scaled-mean

ν←−x t
= ν←−x ′

t
+Eᵀ

t Λ←−z ′
t
(zt − Ftµ−→u t

− et) (53)

ν←−x ′
t
= Aᵀ

tΛ←−x ′′
t
(µ←−x ′′

t
− at) = Aᵀ

tΛ←−x ′′
t
(Σ←−x t+1

ν←−x t+1
− µ−→u ′′

t
− at) (54)

Substituting Equation 18-21 into Equation 54 (using Λ←−z ′′
t

for brevity)

ν←−x ′
t
= Aᵀ

tΛ←−x ′′
t
(Σ←−x t+1

ν←−x t+1
−at−BtΣ−→u ′

t
(ν−→u t

+ F ᵀ
t Λ←−z ′′

t
(zt −Etµ−→x t

− et))) (55)

Substituting Λ←−x ′′
t

through Equation 50,

ν←−x ′
t
= Aᵀ

t (Λ←−x t+1
−Λ←−x t+1

((Σηt
+Σ−→u ′′

t
)-1+Λ←−x t+1

)-1Λ←−x t+1
)

(Σ←−x t+1
ν←−x t+1

−at−(Bt(Λ−→u t
+ F ᵀ

t Λ←−z ′′
t
Ft)

-1(ν−→u t
+ F ᵀ

t Λ←−z ′′
t
zt))) (56)

So the full recursion is,

ν←−x t
= Aᵀ

t (I−Λ←−x t+1
((Σηt

+Bt(Λ−→u t
+ F ᵀ

t (Σξ +EtΣ−→x t
Eᵀ
t )

-1Ft)
-1Bᵀ

t )
-1+Λ←−x t+1

)-1)

(ν←−x t+1
−Λ←−x t+1

at −Λ←−x t+1
(Bt(Λ−→u t

+ F ᵀ
t (Σξ +EtΣ−→x t

Eᵀ
t )

-1Ft)
-1

(ν−→u t
+ F ᵀ

t (Σξ +EtΣ−→x t
Eᵀ
t )

-1(zt −Etµ−→x t
− et))))

+Eᵀ
t (Σξ + FtΣ−→u t

F ᵀ
t )

-1(zt − Ftµ−→u t
− et) (57)

B.4 Linear Gaussian Controller

To extract the linear Gaussian controllers, we find the conditional distribution between ut and xt.

The input estimate is marginalized by fusing the forward and backward message:

µut
= Σut

(ν−→u t
+ ν←−u t

) (58)

ν←−u t
= F ᵀ

t (Σξ +E
ᵀ
tΣ−→x t

Et)
-1(zt −Etµ−→x t

− et) +Bᵀ
t ν←−u ′′

t
(59)

= F ᵀ
t (Σξ+E

ᵀ
tΣ−→x t

Et)
-1(zt−Etµ−→x t

−et) +Bᵀ
t Λ←−u ′′

t
µ←−u ′′

t
(60)

= F ᵀ
t (Σξ +E

ᵀ
tΣ−→x t

Et)
-1(zt −Etµ−→x t

− et)
+Bᵀ

t Λ←−u ′′
t
(µ←−x t+1

−µ−→x ′′′
t
) (61)
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Eventually we need an expression in terms of the marginal xt, so we need to be able to express
Eq. (61) in terms of µxt

. Taking the marginalisation rule from Equation 5,

µx′′′
t

= Aµxt
+ at = Σx

′′′
t
(ν−→x ′′′

t
+ ν←−x ′′′

t
) (62)

µ−→x ′′′
t

= Σ−→x ′′′
t
(Λx′′′

t
µx′′′

t
− ν←−x ′′′

t
) = Σ−→x ′′′

t
(Λx′′′

t
µx′′′

t
− ν←−x ′′′

t
) (63)

µ←−x t+1
−µ−→x ′′′

t
= µ←−x t+1

+Σ−→x ′′′
t
ν←−x ′′′

t
−Σ−→x ′′′

t
Λx′′′

t
µx′′′

t
(64)

To find Λ←−u ′′
t

, we can use the matrix inversion identity (A-1 +B-1)-1 =B(A+B)-1A=A(A +

B)-1B [51]

Λ←−u ′′
t
= (Σ←−x t+1

+Σ−→x ′′′
t
)-1 (65)

= Λ−→x ′′′
t
(Λ←−x t+1

+Λ−→x ′′′
t
)-1Λ←−x t+1

(66)

= Λ←−x t+1
(Λ←−x t+1

+Λ−→x ′′′
t
)-1Λ−→x ′′′

t
(67)

We introduce dimensionless term Γ for brevity, and will discuss interpretions of it in subsequent
sections,

Γt+1 = Λ−→x ′′′
t
(Λ←−x t+1

+Λ−→x ′′′
t
)-1 (68)

I − Γt+1 = Λ←−x t+1
(Λ←−x t+1

+Λ−→x ′′′
t
)-1 (69)

This allows us to express the last term of Equation 61 as,
Λ←−u ′′

t
(µ←−x t+1

−µ−→x ′′′
t
) = (Γt+1ν←−x t+1

+(I−Γt+1)ν←−x ′′′
t
−Γt+1Λ←−x t+1

Σ−→x ′′′
t
Λx′′′

t
µx′′′

t
) (70)

where
ν←−x ′′′

t
= Λ←−x ′′′

t
(µ←−x t+1

− µ−→u ′′
t
) (71)

To develop the last term of Equation 70, recall the marginalisation rule for Λ (Equation 5),
Σ−→x ′′′

t
Λx′′′

t
µx′′′

t
= Σ−→x ′′′

t
(Λ−→x ′′′

t
+Λ←−x ′′′

t
)µx′′′

t
(72)

To understand this better, it is best to expand Λ←−x ′′′
t

,

Λ←−x ′′′
t

= (Σ←−x t+1
+Σ−→u ′′

t
)-1 = Λ−→u ′′

t
(Λ←−x t+1

+Λ−→u ′′
t
)-1Λ←−x t+1

(73)

Applying this to Equation 72 and introducing Ψ (another dimensionless scaling term)
Σ−→x ′′′

t
(Λ−→x ′′′

t
+Λ←−x ′′′

t
)µx′′′

t
= Σ−→x ′′′

t
(Λ−→x ′′′

t
+Λ−→u ′′

t
(Λ←−x t+1

+Λ−→u ′′
t
)-1Λ←−x t+1

)µx′′′
t

(74)

= Ψt+1µx′′′
t

(75)

where Ψt+1 = Σ−→x ′′′
t
(Λ−→x ′′′

t
+Λ−→u ′′

t
(Λ←−x t+1

+Λ−→u ′′
t
)-1Λ←−x t+1

) (76)

To summarize:
µut

= Σut
(ν−→u t

+ F ᵀ
t (Σξ+E

ᵀ
tΣ−→x t

Et)
-1(zt−Etµ−→x t

−et)
+Bᵀ

t(Γt+1ν←−x t+1
+(I−Γt+1)ν←−x ′′′

t

−Γt+1Λ←−x t+1
Ψt+1(Aµxt

+a))) (77)

To findΣut
,

Σut
= (Λ−→u t

+Λ←−u t
)-1 (78)

Σut
= (Λ−→u t

+ F ᵀ
t ΛξFt +B

ᵀ
t (Σ←−x t+1

+Σ−→x ′′′
t
)-1Bt)

-1 (79)

Using the matrix inversion identity (A-1 +B-1)-1 = B(A+B)-1A [51],

Σut
= (Λ−→u t

+F ᵀ
t (Σξ+E

ᵀ
tΣ−→x t

Et)
-1Ft

+Bᵀ
t Λ−→x ′′′

t
(Λ−→x ′′′

t
+Λ←−x t+1

)-1Λ←−x t+1
Bt)

-1 (80)

Σut
= (Λ−→u t

+ F ᵀ
t (Σξ+E

ᵀ
tΣ−→x t

Et)
-1Ft +B

ᵀ
t Γt+1Λ←−x t+1

Bt)
-1 (81)

Interpreting the scale matrices Γ and Ψ
Deriving the controller lead to the emergence of two scale matrices Γ and Ψ , representing matrix
fractions of the forward messages (uncertainty) and backward messages (optimality). To interpret
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the meaning of these terms, there are four scenarios that are important to consider: high process
uncertainty (Λ−→x ′′′

t
→ 0), low process uncertainty (Λ−→x ′′′

t
→ ∞), high input prior uncertainty

(Λ−→u ′′
t
→ 0) and low input prior uncertainty (Λ−→u ′′

t
→ ∞). Note, ‘process uncertainty’ includes

accumulated uncertainty from previous timesteps, including that from the input priors. The input
prior described above is specific to that timestep.

1. High process uncertainty, high input prior uncertainty
Here Γt+1 → 0, Ψt+1 → 0 andΛ←−x ′′′

t
→ 0. Therefore the controller becomes cut off from

the backward messages (i.e. any sense of optimality) and becomes a weighted average of
it’s prior and goal state.

2. High process uncertainty, low input prior uncertainty
Here Γt+1 → 0, Ψt+1 → Γ -1

t+1 and Λ←−x ′′′
t
→ Λ←−x t+1

. Despite the system uncertainty, the
controller confidence reactivates the control terms by cancelling out Γ .

3. Low process uncertainty, high input prior uncertainty
Here Γt+1 → I , Ψt+1 → I and Λ←−x ′′′

t
→ 0. This is the equivalent LQR setting, assuming

the deterministic controller is used (see Section B.5).

4. Low process uncertainty, low input prior uncertainty
Here Γt+1 → I , Ψt+1 → I and Λ←−x ′′′

t
→ Λ←−x t+1

. As above this is similar to the LQR
setting, however now the controller update will be closer to its prior.

B.5 Equivalence to the Dynamic Programming LQR Solution

First, remembering that the backwards message correspond to likelihoods, the log-likelihood of a
Gaussian distribution is,

logN (x;µ,Σ) = (x− µ)ᵀΣ-1(x− µ) + constant (82)

= xᵀΣ-1x− 2xᵀΣ-1µ+ constant (83)
= xᵀΛx− 2xᵀν + constant (84)

By comparing this to the LQR value function in Equation 12, the equivalence between Λ, P , −ν
and p outlined in Table 1 may be appreciated.
To arrive at the recursive LQR expressions outlined in Section A we must consider linear models,
deterministic dynamics and infinitely broad priors, which requires Σv → 0 and Λ−→u t

→ 0. Ad-
ditionally, from the formulation outlined in Section 2.1, EᵀΛξE = αQ and F ᵀ

t ΛξFt = αR. To
recover the LQR result, we require the observation likelihood to dominate, which occurs for suitable
large α. Moreover, given large input priors, we require α such that (Σξ + FtΣ−→u t

F ᵀ
t )

-1 ≈ Λξ,
therefore α → ∞ as Λ−→u t

→ 0. As the value function parameters scale linearly with the cost
function and the controller is invariant to the scale, we can omit α from the analysis for brevity.
Recursion of the precision

Applying these conditions to the Λ←−x t
recursion in Equation 52,

Λ←−x t
= Q+AᵀΛ←−x t+1

A−AᵀΛ←−x t+1
((BtR

-1Bᵀ
t )

-1 +Λ←−x t+1
)-1Λ←−x t+1

A (85)

= Q+AᵀΛ←−x t+1
A−AᵀΛ←−x t+1

B(R+BᵀΛ←−x t+1
B)-1BᵀΛ←−x t+1

A (86)

Equation 85 to 86 is achieved using the identity (A+B)-1 = B-1(B-1 +A-1)-1A-1[51],

((BR-1Bᵀ)-1 +Λ←−x t+1
)-1 = Σ←−x t+1

(BR-1Bᵀ +Σ←−x t+1
)-1BR-1Bᵀ (87)

along with (A+ JᵀBJ)-1JᵀB = A-1Jᵀ(B-1 + JAJᵀ)-1[51]

= B(R+BᵀΛ←−x t+1
B)-1Bᵀ (88)

Recursion of the scaled-mean
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Applying the conditions to the ν←−x t
recursion in Equation 57, along with the identity tricks used

above,
ν←−x t

= Aᵀ(I−Λ←−x t+1
((BR-1Bᵀ

t )
-1+Λ←−x t+1

)-1)(ν←−x t+1
−Λ←−x t+1

(BR-1(Rug))−Λ←−x t+1
a)

+Qxg (89)

= Aᵀ(I−Λ←−x t+1
B(R+BᵀΛ←−x t+1

Bᵀ)-1Bᵀ)(ν←−x t+1
−Λ←−x t+1

(BR-1(Rug))−Λ←−x t+1
a)

+Qxg (90)

= Aᵀ(ν←−x t+1
−Λ←−x t+1

a−Λ←−x t+1
Bug−Λ←−x t+1

B(R+BᵀΛ←−x t+1
Bᵀ)-1Bᵀ

(ν←−x t+1
−Λ←−x t+1

Bug −Λ←−x t+1
a) +Qxg (91)

Here, there is a discrepancy in the ug terms, but this can be rectified through adding Rug −Rug
and rearranging,

= Aᵀ(ν←−x t+1
−Λ←−x t+1

a−Λ←−x t+1
Bug−Λ←−x t+1

B(R+BᵀΛ←−x t+1
Bᵀ)-1

(Bᵀν←−x t+1
−BᵀΛ←−x t+1

Bug +Rug −Rug −BᵀΛ←−x t+1
a) +Qxg (92)

−(R+BᵀΛ←−x t+1
Bᵀ)ug can be taken outside to cancel out the existing term there, so only one ug

term remains,
= Aᵀ(ν←−x t+1

−Λ←−x t+1
a−Λ←−x t+1

Bug +Λ←−x t+1
Bug−Λ←−x t+1

B(R+BᵀΛ←−x t+1
Bᵀ)-1

(Bᵀν←−x t+1
+Rug−BᵀΛ←−x t+1

a) +Qxg (93)

= Aᵀ(ν←−x t+1
−Λ←−x t+1

a−Λ←−x t+1
B(R+BᵀΛ←−x t+1

Bᵀ)-1

(Bᵀν←−x t+1
−BᵀΛ←−x t+1

a+Rug) +Qxg (94)

Recall that pt is equivalent to −νt, so all non-ν terms should have the opposite sign to those in
Eq. 17.
The linear Gaussian controller
As mentioned above, for the LQR conditions Γt+1 → I , Ψt+1 → I and Λ←−x ′′′

t
→ 0.

Applying the conditions to the controller,
Σut

= (R+Bᵀ
t Λ←−x t+1

Bt)
-1, (95)

µut
= −Σut

(−Rug +Bᵀ
t (−ν←−x t+1

+Λ←−x t+1
(Aµxt

+ a))), (96)

remembering that ν←−x t+1
is the opposite sign to pt+1.

Expanding on the case of highly uncertainty, where Γt → 0, here the stochastic controller is in-
dependent of the backward messages (and therefore any notion of optimality). Therefore it would
depend purely on a weighted combination of its prior and goal:

Σut
= (Λ−→u t

+ αR)-1, (97)

µut
= (Λ−→u t

+ αR)-1(ν−→u t
+ αRug), (98)

where the stationary distribution would beΣut
→ 0 and µut

→ 0.

B.6 Hyperparameter Sensitivity

For nonlinear tasks, the crucial hyperparameters for I2C are the initial input priors Σ−→u and the
update limit (motivated as a KL bound) of α, δα. The role of Σ−→u t

is to facilitate exploration, but
too much uncertainty in the trajectory leads to the linearization assumption becoming invalid during
inference. This failure mode manifests as the posterior inputs becoming inaccurate, therefore leading
to the subsequent prior trajectory deviating from the previous posterior trajectory. This means that
the predicted performance of the controller diverges from the true performance when evaluated on
the actual system. Therefore, for fast and successful convergence, Σ−→u depends not only on the
expected input range, but should also be tuned based on the inherent uncertainty of the system and
nonlinearity of the dynamics.
Even after tuning Σ−→u , the approximate inference can fail after aggressive updates to α in the M-
Step, due to the approximate nature of the log-likelihood evaluation with the linearization assump-
tion. A KL bound, simplified to a bound δα on the update ratio, smooths the optimization by limiting
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Environment z zg Θ = diag(Q,R) ulimit Ση

Pendulum [sin θ, cos θ, θ̇, u]ᵀ [0, 1, 0, 0]ᵀ diag(1, 100, 1, 1) [−2, 2]diag(ε1, ε3)

Cartpole [x, sin θ, cos θ, ẋ, θ̇, u]ᵀ [0, 0, 1, 0, 0, 0]ᵀdiag(1, 1, 100, 1, 1, 1) [−5, 5]diag(ε1, ε1, ε2, ε2)

Double
Cartpole

[x, sin θ1, cos θ1, sin θ2,

cos θ2, ẋ, θ̇1, θ̇2, u]
ᵀ

[0, 0, 1, 0, 1,
0, 0, 0, 0]ᵀ

diag(1, 1, 100, 1, 100,
1, 1, 1, 1)

[−10,
10]

diag(ε1, ε1, ε1,
ε2, ε2, ε2)

Table 3: Environment parameters of the nonlinear tasks. ε1=1e-12, ε2=1e-6 and ε3=1e-3.

aggressive updates. For tuning, δα should smooth out any large updates to α while limiting the im-
pact to the rate of convergence. Note that as α is increasing, it is numerically easier to work with
α-1, which tends to zero, so the limiting is implemented in practice as δα-1 acting on αi

/αi+1. Figure
6 demonstrates the behaviour of the hyperparameters for the Cartpole swing-up task.

C Experimental Details

C.1 Equivalence with finite-horizon LQR by Dynamic Programming

xt+1 =

[
1.1 0
0.1 1.1

]
xt +

[
0.1
0

]
ut +

[
−1
−2

]
(99)

Q =

[
10 0
0 10

]
, R = [1], xg =

[
10
10

]
, ug = [0], α = 1e5, Σ−→u t

= [100] (100)

C.2 Evaluation on nonlinear trajectory optimization tasks

Both iLQR and GPS required the cost function in Table 3 to be scaled in order to have good nu-
merics. In Table 5 and 6 we refer to this has α (as it performs the same role as the I2C parameter).
Additionally, iLQR and GPS were enable to optimize without a random initialization. In order
to compare with I2C, which initializes by design with fixed priors, the random initialisation was
set to have a smallest amplitude that allowed optimization to take place. All algorithms achieved
faster converged with random initialisation, however such ‘warm start’ strategies were not the focus
of this work, instead we wished to focus on I2C strength in deterministic initialisation. For these
experiments we use the terminal costQf = Q.
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(a) Cost difference over iterations with varying Σ−→u for
δα-1=0. Smaller values delay the point of divergence, al-
though optimization progress is also slowed.

(b) Cost difference over iterations with vary-
ing δα-1 for Σ−→u =0.25. Increasing δα-1 sta-
bilizes the approximate inference.

Figure 6: Difference between evaluated cost and predicted cost over EM iterations across hyperpa-
rameters for the Cartpole swing-up task.
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Environment Σ−→u (init.) α (init.) δα-1

Pendulum [0.2] 1/100 0.99
Cartpole [0.25] 1/67 0.993
Double Cartpole [0.04] 1/90 0.9995

Table 4: I2C parameters for the nonlinear trajectory optimization tasks.

Environment λ range λmultiplier σk (init.) α

Pendulum [1− 1e-9] 1.002 1e-2 1e-4
Cartpole [1− 1e-7] 1.001 1e-2 1e-3
Double Cartpole [1− 1e-7] 1.001 1e-2 1e-3

Table 5: iLQR parameters for the nonlinear trajectory optimization tasks.

Environment ΣExplore KL bound σk (init.) α

Pendulum [2.0] 0.07 1e-2 1e-4
Cartpole [1.25] 1.0 1e-1 1e-3
Double Cartpole [5.0] 0.75 1e-1 1e-3

Table 6: GPS parameters for the nonlinear trajectory optimization tasks
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I2C iLQR GPS
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Figure 7: Comparison of the state-action trajectories of I2C, iLQR and GPS on the Cartpole swing-
up task after convergence.
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Figure 8: Comparison of the state-action trajectories of I2C, iLQR and GPS on the Double Cartpole
swing-up task after convergence.
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