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Abstract— Discrete-time stochastic optimal control remains
a challenging problem for general, nonlinear systems under
significant uncertainty, with practical solvers typically relying
on the certainty equivalence assumption, replanning and/or ex-
tensive regularization. Control-as-inference is an approach that
frames stochastic control as an equivalent inference problem,
and has demonstrated desirable qualities over existing methods,
namely in exploration and regularization. We look specifically at
the input inference for control (I2C) algorithm, and derive three
key characteristics that enable advanced trajectory optimiza-
tion: An ‘expert’ linear Gaussian controller that combines the
benefits of open-loop optima and closed-loop variance reduction
when optimizing for nonlinear systems, adaptive risk sensitivity
for regularized exploration, and performing covariance control
through specifying the terminal state distribution.

I. INTRODUCTION

The control of stochastic environments is a ubiquitous
problem across many domains, but remains challenging com-
putationally for the general case. Stochastic optimal control
(SOC) solvers trade off computational complexity, exploita-
tion of domain knowledge, use of simplifying assumptions
and/or numerical sensitivity. In this work, we discuss these
trade-offs from the perspective of control-as-inference [1],
[2], which seeks to frame stochastic control as a probabilistic
inference problem. This translation from optimization to in-
ference can be seen as a subset of probabilistic numerics [3],
which utilize statistical methods to solve numerical prob-
lems, providing uncertainty quantification, regularization and
faster convergence. These viewpoints are made considering
input inference for control (I2C) [4], a fully probabilistic
inference-based solver that frames SOC as input estimation.
Unlike classical control theory, an inference-based approach
naturally lends itself to the manipulation of uncertainties,
while also benefiting from mature approximate inference
methods for complex dynamics and uncertainties where ex-
act inference is intractable. Considering nonlinear trajectory
optimization, a key quality is the ability to iteratively explore
in a numerically stable manner due to the lack of a closed-
form solution. Many SOC algorithms require regularization
heuristics such as line search or trust regions to achieve this,
as well as initializing with a sufficiently random solution to
encourage progress. We show inference methods naturally
achieve this, using belief akin to a trust region and leveraging
an adaptive risk-seeking strategy for exploration. Another nu-
merical issue in nonlinear SOC is optimizing open- or closed-
loop. Open-loop strategies are brittle, but simpler to compute,
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whereas closed-loop controllers offer additional stability
and therefore reduce the variance of the state distribution.
However, optimizing with feedback tends to yield actuation-
heavy solutions due to the interplay between exploration and
local feedback during optimization. We show how using the
belief in the controller during optimization allows for this
interplay to be managed, producing superior results on two
nonlinear tasks. Finally, covariance control [14] is achieved
using only a minor adjustment to I2C due to its similarity
to inference, enabling nonlinear distributional control that is
simpler compared to alternative approaches.

The paper is structured as follows. Section II discusses
the SOC literature and related theory, Section III describes
control-as-inference and the I2C algorithm, and Section III
details the extensions to I2C that enable advanced trajectory
optimization.

II. STOCHASTIC OPTIMAL CONTROL

In this section we outline SOC, baseline methods, the risk-
based variant and covariance control.

A. The Finite-Horizon, Discrete-Time Setting

We specifically consider a stochastic, discrete-time, fully-
observed, nonlinear, time-varying dynamical system, ft, with
state x ∈ Rdx and input u ∈ Rdu , desiring the optimal
controls over a time horizon T that minimizes the cost
functions C0:T in expectation,

min
u0:T -1

E[CT (xT ) +
∑

T -1
t=0 Ct(xt,ut)] (1)

s.t. xt+1 = ft(xt,ut). (2)

From Bellman’s dynamic programming perspective, the
optimal controls can be derived from the value function Vt
for the expected cost. For t = 0, . . . , T -1,

Vt(x) = min
u

E[Ct(x,u) + Vt+1(ft(x,u))], (3)

initializing VT using the terminal cost. For time-varying
linear dynamics, quadratic costs and Gaussian disturbances,
the classic LQG solution can be derived in closed-form
from Equation 3. However, in practice this value function
is intractable globally given arbitrary dynamics, objectives
and uncertainties. As a result, solvers involve either devising
a means of approximating the value function, or tackling the
constrained optimization problem directly instead, ignoring
the temporal structure.

Differential dynamic programming (DDP) [5] exploits the
temporal structure of the SOC task, iteratively constructing
local Taylor series approximations of the dynamics and cost



to compute a local approximate value function for closed-
loop optimization. The stochastic DDP extension (SDDP) to
consider the impact of Gaussian disturbances on the expected
value functions (SDDP) [6]. To mitigate the computational
burden of computing the Hessian, a Gauss-Newton approxi-
mation of DDP is used (iLQR [7], iLQG [8]). These methods
all require regularization and line-search routines for stable
convergence. Guided policy search (GPS) is a method that
uses iLQG to solve a variational form of trajectory optimiza-
tion [9]. This results in a maximum entropy linear Gaussian
control law, and a KL divergence constraint on the trajectory
distribution is used to stabilize the optimization.

For nonlinear, deterministic systems, sequential quadratic
programming (SQP) has been used to compute the optimal
action- or state-action sequence when framed as a con-
strained optimization problem, with quadratic convergence
under mild assumptions [10]. Linearizing along this trajec-
tory, the LQG solution has then been applied to compute an
approximate solution to the SOC problem (T-LQG [11], T-
PFC [12]), justified by a small noise performance bound [13].
While mature and highly-optimized SQP solvers can be used
off the shelf, they can suffer computationally in the SOC
domain. By failing to exploit the temporal structure of the
problem (multiple-shooting) or by considering numerically
sensitive objectives (single-shooting), SQPs do not scale
gracefully under long planning horizons.

B. Covariance Control

While SOC solvers are typically concerned with optimiz-
ing the expected cost over the mean trajectory, methods
have also been devised to control higher order statistics.
Covariance control [14] specifically looks at constraining
the mean and covariance of the terminal state to a target
distribution p(x∗T ). The linear Gaussian setting has been
extensively studied, for both discrete [15] and continuous
time [16], where it can be shown that a solution exists should
the system be controllable and Σx∗T−ΣηT>0, given process
noise covariance Σηt . The hard constraint can be tackled by
decomposing the problem into feedforward control for the
mean, and linear feedback control for the covariance [15].
The discrete-time case corresponds to minimizing the relative
entropy between two MDPs and minimum-energy LQG [17],
[15], where the terminal cost corresponds to the Lagrange
multiplier of the constraint. The nonlinear Gaussian case
has been tackled using stochastic DDP [18] and through the
combination of sequential convex programs and statistical
linearization [19]. The problem can also be viewed as a form
of optimal transport and the Schrödinger bridge, which seeks
to find the mapping (i.e. dynamical system) that transforms
one distribution to another [20]. The solution here is iterative,
using forward and backward Riccati equations until both
constraints are satisfied.

C. Risk-Sensitive Control

Introduced by Jacobson, risk-sensitive linear exponential
quadratic Gaussian (LEQG) control [21], [22] derives a
control law that, unlike LQG, is dependent on the severity of

uncertainty in the system dynamics. This sensitivity is deter-
mined by the scaling parameter σ in the now exponentiated
objective,

min
u0:T -1

-
2

σ
E

[
exp

(
-
σ

2

[
CT (xT )+

T -1∑
t=0

Ct(xt,ut)

])]
, (4)

for quadratic costs C0:T and σ ∈ R. The consequence of this
objective transformation is that, while they still form a LQG-
like discrete algebraic Riccati equation (DARE), the weights
of the value function now also depend on the covariance of
the Gaussian disturbance ηt and risk sensitivity σ, resulting
in the transformation,

PLEQG,t = (P -1
LQG,t + σΣηt)

-1, (5)

given Vt(xt) = x>t Ptxt + 2p>t xt + pt. (6)

While the relationship between the linear feedback law and
the value function is unchanged from the LQG case, the
adjustment of the value function results in ‘risk-preferring’
(σ>0) or ‘risk-averse’ (σ<0) strategies under uncertainty.
On a high level, this tuning can be viewed as a mean /
variance trade-off in the evaluated cost. Moreover, for σ=0
(risk-neutral) the control strategy reduces to the LQG result.
This behavior has lead to interest in risk-sensitive methods
from domains such as quantitative finance and behavioral
sciences. The relationship between system uncertainty and
risk makes this formulation interesting from the inference
perspective, which is discussed in Section IV-B.

III. CONTROL AS INFERENCE

The duality between optimal control and statistical in-
ference techniques dates back to the work of Kalman [23]
from his work on the LQG problem. Later, relative entropy
(KL divergence) was shown as a means of framing the
SOC problem [17], also known as ‘probabilistic control
design’ [24]. While path integral control [1] strengthened
the connection in continuous-time, adopting methods from
probabilistic graphical models demonstrated the relation be-
tween message passing for inference and the discrete-time
Riccati equations in SOC [25], [26]. AICO [2] demonstrated
that, for open-loop nonlinear trajectory optimization, the
linearization-based approximate message passing computa-
tion resembled Gauss-Newton SOC, but converged faster due
to its exploratory forward pass and use of priors over control
inputs. However, AICO’s exploration prior was fixed due to
its dual role as the control regularization, and the translation
of the cost to the distributions is hand tuned. Input inference
for control [4] builds on AICO, extending the probabilistic
perspective by framing optimal control as input estimation.
The closed-loop controller is defined as the conditional dis-
tribution of the state-action trajectory, as in posterior policy
iteration (PPI) [27], [28], and crucially the graphical model
is defined such that the controls have independent priors,
allowing for iterative, variable exploration that corresponds
to maximum entropy control. Moreover, the translation of
the cost function for the graphical model, through a scaling
term, is jointly optimized during inference. The combination



max
X,U , θ

p(X,U ,Z,θ) = p(x0)p(zT |xT ,θ)
∏T -1
t=0 p(xt+1|xt,ut)

∏T -1
t=0 p(zt|xt,ut,θ)

∏T -1
t=0 p(ut|xt), (7)

Dynamics p(xt+1|xt,ut) : xt+1 = ft(xt,ut) + ηt, ηt ∼ N (0,Σηt), (8)
Cost p(zt|xt,ut,θ) : zt = gt(xt,ut) + ξt, ξt ∼ N (0,Σξ(θ)), (9)

of principled exploration and probabilistic regularization
enables competitive performance against comparable algo-
rithms for nonlinear optimal control. To understand how I2C
works, there are four critical components: The latent variable
model, expectation maximization, message passing and the
transformation of the control cost functions into likelihoods.

A. Latent Variable Models

As in state estimation, I2C uses a sequential latent variable
model for the state-action trajectory over time. However, in
the control-as-inference setting, there is no data. Instead, the
‘known’ quantity is the desired trajectory Z=z0:T , which
is some transformation gt(.) of the state-action space. The
transformation is task specific, e.g. z=[x,u]> for LQR,
z=u for minimum-energy control, or z represents cartesian
coordinates for operational space control. Regardless of
form, it is assumed to be fixed and part of the objective.
The inference problem is therefore computing the most
likely state-action distribution that reconstructs this desired
trajectory, which can be done through optimizing the joint
likelihood (Equation 7). As Z is specified, rather than
sampled data, the belief in I2C is with respect to optimality,
rather than typical statistical uncertainty.

B. Cost Functions and Constraints as Likelihoods

In practice, this desired trajectory Z will not be per-
fectly achieved. Therefore, we incorporate additive uncer-
tainty into the observation model to explain this error
(Equation 9). In Section II-A, we discussed LQR for its
tractable quadratic the control costs. These distances can
be expressed more concisely as a Mahalanobis distance,
‖y−x‖2S=(y−x)>S-1(y−x). Assuming Gaussian distribu-
tions, we can draw a connection between LQR and I2C, as
the ‘energy’ / log-likelihood of this distribution is also a
Mahalanobis distance. For Gaussian state space models, the
log-likelihood takes an attractive quadratic form,

y = f(x) + η, η ∼ N (0,Ση), (10)
−Lp(y,x) = − log p(y,x)

= ‖y − f(x)‖2Ση + dx log |2πΣη|. (11)

However, while the control objective in LQG is affine-
invariant, the log-likelihood is not. Therefore, for equivalence
with the observation log-likelihood, there is an unknown
scale factor (α) to relate the LQG cost weights (Q,R) to
the precision (inverse covariance) of the ‘disturbance’ ξ in
I2C, Σ-1

ξ =α diag(Q,R). In Section IV-B, we discuss how
α relates to risk sensitivity. As the only unknown model
parameter in the inference problem (θ={α}), a benefit of
I2C is that α can be automatically tuned during inference.

C. Inference of the Graphical Model

From Equation 7, we see that the general I2C inference
problem depends on two unknowns: the latent state-action
distribution p(X,U) and model parameters θ. Performing
inference with both these unknown quantities jointly is
intractable. Fortunately, for a Gaussian dynamical system
computation can be achieved iteratively using expectation
maximization (EM) [29], [30], which guarantees monotonic
improvement. In the EM convention, the E-step corresponds
to estimating the latent state-action distribution given the
model, while the M-step the optimizes the model param-
eters θ to maximize the expected log-likelihood given the
estimated latent distribution. Using Equation 11, this is of
the form,

−E[Lp(y,x)] =tr{Σ-1
η E[(y−f(x))(y−f(x))>]}

+ dx log |2πΣη|. (12)

This EM procedure is iterated till convergence. While the
M-step improvement can be expressed in closed-form [4],
the E-step requires closer consideration.

To perform the E-step efficiently, message passing meth-
ods are a flexible approach for designing such algo-
rithms [31]. Passing linear Gaussian messages is especially
straightforward, following simple rules that can be expressed
in closed form. For nonlinear Gaussian messages, approxi-
mate inference can be performed in several ways. Akin to the
various nonlinear Bayesian filters, Taylor series approxima-
tions, quadrature and Monte Carlo methods can be used to
approximate the marginalization integral [32]. As the graph
is a Gaussian dynamical system, the E-step relates closely to
general recursive Bayesian smoothing, using Equations 8 and
9 as the Gaussian dynamics and ‘observation’ model respec-
tively. However, the key separation from typical smoothing
is the inclusion of the input as part of the probabilistic
state. With a prior on the state-action distribution at time t,
during the forward message passing we compute p(−→x t,−→u t)
from the incoming −→x t computed in the previous timestep by

x̄t
xt

x̄t=

[
xt
ut

] =

gt

+ξt ξt ∼ N (0,Σξ)

zt

ft
x̄′t +

x′′t

ηtηt ∼ N (0,Σηt)

xt+1

Fig. 1. The graphical model of I2C for a single timestep.



TABLE I
The evaluation of SOC algorithms on finite-horizon input-constrained control tasks, comparing variations based on tackling the stochastic (S) or certainty
equivalent (CE) setting and using open-loop (FF), closed-loop (FB) or expert (E) controllers during optimization. Despite each algorithm using different

numerical methods, these features identify similarities in performance. Percentiles were computed from 100 rollouts.

Environment 10th, 90th Cost Percentiles (×103)

I2C (S, E) I2C (CE, E) I2C (S, FF) I2C (S, FB) I2C (CE, FF) I2C (CE, FB) T-PFC (CE, FF) iLQR (CE, FB) GPS (S, FB)

Pendulum 13.46, 21.53 12.81, 17.11 17.72, 21.94 19.23, 21.43 13.97, 26.77 19.49, 22.31 18.10, 26.31 23.33, 26.46 19.45, 20.91
Cartpole 85.06, 87.43 81.83, 83.87 89.53, 94.67 93.53, 95.71 86.93, 89.75 121.89, 123.88 111.31, 118.57 142.23, 145.78 120.80, 122.45

marginalizing over the conditional distribution,

p(−→u t) =

∫
p(ut|xt=−→x t)p(−→x t)d−→x t, (13)

µ−→ut = µut +Kt(µ−→xt − µxt), (14)

Σ−→uut = Σut −ΣuxtΣ
-1
xxt
Σ>uxt +KtΣ−→x tK

>
t , (15)

Σ−→uxt = Σuxt , Kt = ΣuxtΣ
-1
xxt

. (16)

Where Kt is the I2C feedback control gain, which has
been shown to be equivalent to maximum entropy LQR
in the deterministic setting [4]. Note that if the state and
action are independent (i.e. Σuxt

=0) or the state distribution
is unchanged (−→x t=xt), then no ‘feedback’ is applied and
the input distribution remains as the prior −→u t=ut. This
feedback term also exhibits the ‘turn-off phenomena’ from
dual control [33], as the gain is attenuated as the state
uncertainty increases [4].

IV. INFERENCE-BASED ADVANTAGES

In this section we introduce algorithmic improvements for
I2C and explain existing qualities from the SOC perspective.

A. Optimizing Expert Linear Gaussian Controllers

When performing trajectory optimization, considering the
open- or closed-loop setting is a crucial distinction. The
open-loop approach is a simpler optimization problem, but
may be brittle and is limited to shorter planning horizons
and levels of stochasticity. Closed-loop optimization provides
extra stability due to the local control law, however the
numerical procedure has an unfortunate side-effect in the
nonlinear setting: The feedback fights exploration during
optimization, resulting in highly-actuated solutions that are
likely sub-optimal. As I2C derives its controller from the
joint state-action distribution, both open- and closed-loop
optimization can be incorporated into the E-step by consid-
ering the independent (Σ−→uxt=0) or full joint distribution
respectively.

In Table 1 we compare these variations on two stochasic,
nonlinear swing-up tasks, looking at open- and closed-loop
optimization for both I2C and baseline SOC solvers, which
also vary between considering the actual stochastic problem
or a certainty equivalent approximation. For both tasks, open-
loop methods resulted in better optima but were also high
variance in the cost, while the closed-loop alternatives had
much lower variance but sub-optimal performance on the
simulated systems due to their over-actuation. Reassuringly,
the results of the I2C variant and equivalent baseline solver
were generally similar due to the comparable computation.

These results suggest that ideally we should be able to
combine the benefits of open- and closed-loop optimization
to improve performance during inference. With I2C this is
indeed possible, by adjusting the conditional distribution (πt)
to act as an ‘expert’ controller, which utilizes the probability
that the local controller applies to the current state p(xt=x),

πt(u|x) = p(xt=x) p(ut | xt=x) + p(xt 6=x) p(ut). (17)

This weighting softens the controller to fall back to the
open-loop controls p(ut) as x moves sufficiently far from
estimated optimal state trajectory. Therefore, the feedback
effect is reduced during significant exploration in the E-step,
and as the open-loop controls are well regularized this avoids
highly-actuated trajectories forming. Table 1 demonstrates
the effectiveness of this addition, where this expert controller
matches the open-loop optima but with the closed-loop
variance reduction. For a Gaussian distribution, p(xt=x) is
defined as the confidence interval ‖x − µxt‖

2
Σxt
≤ X 2

k (p)

for probability p, where X 2
k is the chi-square distribution.

In practice, we also found the stochastic setting required
greater care regarding hyperparameter tuning. This is because
under greater uncertainty the inaccuracy in the approximate
inference is more severe, thus requiring greater regularization
during inference. Moreover, from the probabilistic numerics
view, greater uncertainty corresponds to greater numerical
regularization e.g. the turn-off phenomena in the feedback
gains, which may also be at play. Studying this phenomena
is greater detail, especially with more accurate approximate
inference techniques, will be a topic of future work.

B. Adaptive Risk-Sensitivity

For Gaussian I2C, the expected likelihood in Equation 7
may be reformulated to expose the quadratic cost function
from the observation likelihood,

E

[
A(X,U ,α)exp

(
-
α

2

[
CT (xT )+

T -1∑
t=0

Ct(xt,ut)

])]
(18)

where A(.) contains the remaining likelihood and normal-
izing terms. Comparing this form to Equation 4, α may be
interpreted as equivalent to risk sensitivity [27]. For both
LEQG and I2C, σ=α=0 corresponds to the deterministic
LQR result. However, for I2C, α > 0 due to the probabilistic
treatment, resulting in only risk-seeking behavior possible,
with risk neural control as the limit of α→0. Risk-seeking
behavior is an inherent issue for control-as-inference meth-
ods, due to the probabilistic formulation naturally attenuating
the effect of unlikely trajectories in the objective. Related



methods such as GPS and path integral control also share
this property. However, due to the other terms at play in I2C,
α and σ do not have a direct correspondence, nor do their
resultant trajectories exactly match. This discrepancy can be
identified by examining the linear Gaussian message passing
equations. First note in the deterministic setting (without ηt),

Λx′′t
= Λxt+1

,where xt′′ denotes the state after f . (19)

Moreover in the LQR equivalent case, where there are
sufficiently uninformative priors placed on Ut,

Λxt+1
= Λ−→x t+1

+Λ←−x t+1
≈ Λ←−x t+1

for large Σ−→x t+1
. (20)

This provides an inference-based perspective on why LQR
can be solved without considering the forward propagation.
However, considering disturbance ηt,

Σxt+1
= Σx′′t

+Σηt , Λxt+1
= (Λ-1

x
′′
t

+Σηt)
-1, (21)

Λ-1
x
′′
t

= (Λ−→x t′′+Λ←−x t′′)
-1, (22)

= Λ-1←−x t′′−Λ
-1←−x t′′(Λ

-1−→x t′′+Λ
-1←−x t′′)

-1Λ-1←−x t′′ , (23)

Λxt+1
≈ (Λ-1←−x t′′ + Σ̂ηt)

-1. (24)

Therefore, LEQG’s risk sensitivity may be viewed as a
means to approximate the prior state distribution while using
LQR’s Riccati equation, through the transformed disturbance
term Σ̂ηt=σΣηt . Moreover, we can see that setting σ > 0
(i.e. risk avoidance) acts to reduce the uncertainty in the
trajectory in a way that probabilistically invalid, as Σ̂ηt must
be positive definite.

While risk-seeking behavior is typically seldom desired,
α’s influence on both exploration and risk suggests that
risk-seeking control is useful (for nonlinear systems) by
greedily seeking the desired trajectory. Moreover, further
consideration of this term may improve the robustness of
the controller by limiting risky strategies.

C. Covariance Control as Inference
For I2C, the idea of a terminal cost can be tackled in

two ways. Previously, we have used the idea of a termi-
nal observation function gT (x), which allows for arbitrary
terminal costs, as described in Section III-B. However,
another approach is to work with the terminal latent state
distribution. In other time-series inference applications, e.g.
state estimation, the terminal state posterior is set to the prior
as there is no additional information to use. However, for
control we can avoid the cost function design and the cost-
to-likelihood translation by setting the terminal distribution
directly, but are now limited to stipulating the desired state
directly rather through than a useful transformation (e.g.
cos θ). This approach is equivalent to covariance control
(Section II-B) as, like solving a Schrödinger bridge, iterations
of forward and backward Riccati equations are performed
until the boundary condition are satisfied. In this setting,ΣξT
now acts as the Lagrange multiplier. Examining the expected
log-likelihood (Equation 12) term for the terminal state (LzT )
for the direct state optimization case zT=xT+ξT , we get

LzT ∝ ‖µzT−µxT ‖
2
Σξ

+tr{Σ-1
ξTΣxT }+ const. (25)
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Fig. 2. I2C for exact minimum-energy linear Gaussian covariance control
on an unstable system, with a fixed small α and Σηt=diag(0.1, 0.1). The
KL divergence is between the terminal goal and closed-loop distributions.

which is equivalent the LQG correspondence proved in
Equation 41 of Goldshtein et al. [15], where Σ-1

ξT
is the

terminal cost / Lagrange multiplier matrix. However, rather
than compute this term, using our probabilistic framework
we can set the terminal distribution directly via the poste-
rior of xT . In this case, the inference iteratively seeks to
satisfy the boundary conditions on x0 and xT . Figure 2
demonstrates covariance control on a linear Gaussian system,
where inference is exact. It should be noted that I2C uses
linear Gaussian controllers, whose uncertainty is required to
achieve the desired state distribution, whereas the previous
literature solves the task using deterministic control laws.
This variation of I2C naturally translates to nonlinear systems
(Figure 3), avoiding the complexity of the additional forward
sampling required for DDP-based covariance control [18].
However, the terminal boundary constraint still requires a
means of being applied in an gradual manner, due to the
iterative aspect of the nonlinear optimization. The terminal
state distribution can be shifted from the prior to the con-
straint by ‘annealing’ [34] the prior during inference

p(xT ) = p(x∗T ) p(−→x T )β , for 1 ≥ β ≥ 0, (26)

where β is the annealing temperature on the prior
from the forward pass. By decreasing β over iterations,
p(xT )→p(x∗T ) as β→0. This annealing strategy has previ-
ously been applied to regularize inference algorithms.

V. CONCLUSION

In this work, we have discussed control as inference
and the I2C algorithm from the perspective of stochastic
optimal control. We have analysed I2C with respect to the



Fig. 3. Nonlinear minimum-energy covariance control on the pendulum
swing-up task, using I2C with approximate inference. Plot depicts the
inferred trajectory for target distribution , with simulated rollouts

.
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risk-sensitive control, highlighting the similarities between
LEQG, inference, and how I2C utilizes adaptive risk during
EM. Moreover, by analyzing the numerical consequences of
open- and closed-loop optimization with I2C and baseline
solvers, we have motivated an ‘expert’ linear Gaussian con-
troller that leverages the state belief to balance exploration
with stabilizing feedback, which achieves superior results
on simulated nonlinear SOC tasks. Finally, we demonstrated
how covariance control can be implemented with a minor
adjustment to I2C, enabling exact and approximate solutions
in the linear and nonlinear setting respectively.
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APPENDIX

Experimental Details
For the experiment reported in Table 1, task parameters are
similar to prior work [4], but with the Cartpole environment
now operating at a 4ms timestep for a time horizon of
500. For I2C, cubature quadrature was used for approx-
imate inference [35]. T-PFC was implemented using the
transcription method (i.e. (T+1)dx+Tdu state space and
T+1 constraints) .


