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Abstract

Recent advances in robot learning have been enabled by learning rich generative
and recurrent policies from expert demonstrations, such as human teleoperation.
These policies are capable of solving many complex tasks by accurately modelling
human behaviour, which may be multimodal and non-Markovian. However, this
imitation learning approach of behavioural cloning (BC) is limited to being offline,
which increases the requirement for large expert demonstration datasets and does
not enable the policy to learn from its own experience. In this work, we review
the recent imitation learning algorithm coherent soft imitation learning (CSIL)
and outline how it could be applied to more complex policy architectures. CSIL
demonstrates that inverse reinforcement learning can be achieved using only a
behaviour cloning policy, which means that its learned reward can be used to further
improve a BC policy using additional online interactions. However, CSIL has only
been demonstrated using simple feedforward network policies, so we discuss how
such an imitation learning algorithm could be applied to more complex policy
architectures, such as those including transformers and diffusion models.

1 Introduction

Many past successes in robot learning and reinforcement learning have consisted of policies initialized
from human demonstrations and finetuned using online experience [23, 10, 11, 30]. This combination
of behavioural cloning (BC) [25] and reinforcement learning (RL) [32] is a pragmatic and effective
approach to learning complex tasks in a sample-efficient fashion. More recently, behavioural cloning
has become popular due to the rapid development of rich generative models that can accurately
capture the complex action distribution exhibited by humans solving complex robotic tasks [6, 4,
27, 37, 29, 22]. The advances in these models relative to RL algorithms and reward design methods
suggests that behavioural cloning with generative models and human demonstration collection may
be a more practical approach to learning effective robotic policies. However, behavioural cloning
is limited by being a purely offline imitation learning method, which results in the requirement of
a large offline dataset in lieu of learning from online experience. BC also suffers from covariate
shift [28], where incorrect actions in unseen states accumulate errors and results in poor performance.

This work reviews the coherent soft imitation learning algorithm (CSIL) [36], which proposes an
approach of improving a BC policy using on- or offline reinforcement learning. This is achieved
through inverse RL (IRL) [20], by showing that the BC policy can be used to define a ‘shaped’ reward
function. This learned shaped reward allows the agent to learn how to act in states outside of the
demonstration distribution, and thus learn to overcome the covariate shift problem.

∗For further details see joemwatson.github.io/csil and github.com/google-deepmind/csil.
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The goal of this paper is to discuss how expressive BC policies can be improved with online experience.
Section 2 reviews CSIL and Section 3 discusses CSIL’s extension to more expressive policies.

2 Coherent soft imitation learning

We consider the entropy-regularized setting [24, 16, 7] with Markov decision process
⟨S,A,P, r, γ, µ0⟩, with states s∈S, actions a∈A, dynamics P : S ×A×S→R+, reward
r : S ×A→R, discount factor γ, and initial state distribution µ0. The stationary distribution under
policy π is µπ . The RL objective

maxq Est+1∼P(·|st,at),at∼q(·|st), s0∼µ0(·)[
∑

t γ
tr(st,at)]− αEs∼µq(·)[DKL[q(a | s) || p(a | s)]],

yields a ‘soft’ value function Vα where α ≥ 0. The soft Bellman equation for critic Q is

Q(s,a) = r(s,a) + γ Es′∼P(·|s,a)[Vα(s
′)], Vα(s) = α log

∫
exp(Q(s,a)/α)p(a | s) da,

≥ r(s,a) + γ Ea′∼q(·|s′), s′∼P(·|s,a)[Q(s′,a′) + α(log q(a′ | s′)− log p(a′ | s′))],
where the lower bound is easier to optimize when using the current policy q. The policy update is a
closed-form pseudo-posterior [24, 1, 34] combining the policy prior and critic likelihood,

qα(a | s) ∝ exp((Q(s,a)− Vα(s))/α) p(a | s). (1)

To perform inverse RL, we invert the policy update in Equation 1 to obtain an expression of the critic,
and plug this critic into the soft Bellman equation to obtain an expression for the reward [36],

Q(s,a) = α log
q(a | s)
p(a | s) + Vα(s), r(s,a) = α log

q(a | s)
p(a | s) + Vα(s)− γ E[Vα(s

′)]. (2)

Applying reward shaping theory [17], the log policy ratio represents a shaped reward, sharing the
same optimal policy. As the BC policy is optimal for this shaped reward, we call it a ‘coherent’.

Definition 1. The shaped ‘coherent’ reward and critic
are derived from the log policy ratio introduced in Sec-
tion 2, with value function Vα(s) as the potential Ψ(s).
When policy qα(a|s) models the data D while matching
its prior p otherwise, their density ratio should exhibit
the following shaping

r̃(s,a)=α log
qα(a | s)
p(a | s)


≥ 0 if s,a ∈ D,

< 0 if s ∈ D,a /∈ D,

= 0 if s /∈ D,∀a ∈ A.

In continuous setting, this shaping should be approx-
imately captured by the policy, as shown by Figure 1.
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Figure 1: A coherent reward made using
a stationary Gaussian process policy, ex-
tended out-of-distribution. The reward
approximates the shaping described in
Definition 1. The figure is taken from
Watson et al. [36].

Algorithm 1 shows how CSIL is implemented with function approximation given a policy and critic
loss Jπ and JQ. These two losses depend on the choice of soft policy iteration method.

Algorithm 1: Off-policy coherent soft imitation learning with function approximation
Data: Expert demonstrations D, initial temperature α, refinement temperature, β,
parametric policy class qθ(a | s), prior policy p(a | s), regression regularizer Ψ, total steps T
Result: qθN

(a | s), matching or improving the initial policy qθ1
(a | s)

// Pretrain coherent reward and critic
Train initial policy from demonstrations, θ1 = argmaxθ Es,a∼D[log qθ(a | s)−Ψ(θ)];
Define fixed shaped coherent reward, r̃θ1(s,a) = α(log qθ1(a | s)− log p(a | s));
Pretrain critic with SARSA on D using r̃θ1 .
for t = 1 → T do // finetune policy with reinforcement learning

Interact with environment st+1 = Env(st,at), at ∼ qθt(· | st), store in replay buffer B;
Optimize reward and critic using JQ(ϕ) and Jr(θ) and Jπ(θ) on minibatch from B;

end
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Figure 2: For the coherent reward to be effective, the stochastic policy should return to the prior
distribution outside of the data distribution (left). The typical heteroscedastic parametric policies have
undefined out-of-distribution behaviour and typically collapse to the action limits due to the network
extrapolation and tanh transformation (middle). By approximating stationary Gaussian processes,
we can design policies that exhibit the desired behavior with minimal network modifications (right).
This figure extends the one in Watson et al. [36] to more expressive policies, diffusion models and
normalizing flows. Interestingly, not only do the standard architectures result in the same undefined
out-of-distribution behaviour, but using a stationary feature space in the right way acts to mitigate
this effect. The figure shows samples from the initial policy and trained policy .

Soft actor critic (SAC) [7] uses the squared Bellman error for JQ and the reperameterization trick for
the policy update, derived from the I-projection minθ DKL[qθ(a | s) || qα(a | s)],

Jπ(θ) = Ea∼qθ(·|s), s∼B [Q(s,a)− α (log qθ(· | s)− log p(· | s))] . (3)

One specific requirement for CSIL that is not required of SAC is ’stationary’ policy architectures. This
property ensures that q approximates a constant prior p(a | s) = p(a) at initialisation and retains this
property after training in out-of-distribution regions. This stationary property can be enforced through
an augmented objective [35], but can be achieved using a minor network architecture modification
[15]. For more details, see Watson et al. [36]. Figure 2 shows how this stationarity property can be
achieved, and in this work we demonstrated this for normalizing flow and diffusion policies. The
implementation details are in Appendix B.

Due to the coherence property of its shaped reward, CSIL is able to perform imitation learning that not
only improve the BC policy out-of-distribution, but also does not result in unlearning the initial policy,
which occurs in non-coherent imitation learning [19, 36]. Figure 3 shows CSIL’s performance on the
robomimic tasks [13], which consist of learning manipulation tasks from human demonstrations.
Figure 4 in the Appendix shows learning over environment steps, demonstrating the sample efficiency
of CSIL and how it leverage the BC policy initialization without unlearning. Impressive importance
in robomimic was also demonstration by BC policies that use recurrent architectures and diffusion
models over action sequences Chi et al. [4]. These policies were also capable from learning from
sub-optimal human demonstrations, which may exhibie multi-modality and pauses in motion. The
next section discusses how CSIL may be applied to more complex policies such as these, in order to
leverage the capabilities of both expressive BC and online IRL.

3 The considerations for online imitation with expressive policies

CSIL was evaluated using a stationary variation of the SAC policy, which is a feedforward network
parameterizing a Gaussian distribution which is then clamped through a tanh transformation in
order to satisfy the action limits. More advanced policies take the form [at, . . . ] ∼ π(· | st, . . . ),
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Figure 3: Average success rate over 50 evaluations for online imitation learning for robomimic tasks.
Uncertainty intervals depict quartiles over 10 seeds. To assess convergence across seeds, performance
is chosen using the highest 25th percentile of the averaged success during learning. These results are
from Watson et al. [36], using simple Tanh Gaussian policies.

conditioning on a sequence of observations to sample a sequence of actions from a more expressive
conditional distribution π. We now review these properties in the context of online imitation learning.

Generative models for actions. Many RL algorithms require tractable loglikelihood in order to
update the policy and compute the policy’s entropy. Normalizing flows (NF) [21] are one class of
generative model with tractable loglikelihood, and in fact the tanh policy used by SAC can be seen as
a simple normalizing flow. Diffusion models [9] do not have available loglikelihoods by default, as
the score function predicts noisy perturbations of the data. FlowMatching [12] and ScoreFlow [31]
both demonstrate diffusion-like models with available log-likelihoods by connection diffusion models
to continuous normalizing flows. Stationary conditional generative models have, to the best of our
knowledge, not been investigated. Figure 2 and Appendix B show how this property is approximated
using the architectural modifications proposed by Meronen et al. [15] and Watson et al. [36].

Recurrent architectures. Recurrent policies have previously been investigated in reinforcement
learning, e.g. [8], and can be used with similarly recurrent critic architecture, although careful
implemenation is required to stabilize training and ensure good performance [18].

Action sequence prediction. To ensure temporal consistency with the demonstrations, policies can
sample a sequence of H actions every H timesteps that are executed in an open-loop fashion, i.e.
[at, . . .at+H ] ∼ π(· | st, . . . ) [4, 37]. In order to do policy evaluation with this approach, the critic
would have to consider the extended action space, i.e. Q(st,at, . . . ,at+H), and consider the future
value at Vα(st+H+1). Given that accurate policy evaluation with function approximation remains a
central challenge in RL, it is an open question how current methods scale to an extended action space.

Prior related work. NF policies have been incorporated into SAC due to the availability of the
loglikelihoods and reparameterized gradients [14]. Imitation learning with expressive policies has
predominantly used BC as discussed above. Zhao et al. [37] used a conditional variational autoencoder
as the generative distribution for a recurrent transformer-based BC policy. Expressive policies and
critics have mainly been investigated in reinforcement learning in the offline setting. Wang et al. [33]
combined BC with the critic guidance from Equation 3 to train a diffusion policy. Transformer-based
critics have also been applied in the offline setting, but only by discretizing the continuous action
space [2]. The decision transformer [3] treats RL as a sequence modelling and compute actions by
conditioning on an estimate of the largest possible return.

4 Discussion

We have discussed how the recent trend of recurrent and generative policy architectures can finetuned
online in a sample-efficient manner using the CSIL algorithm. However, for the CSIL algorithm
to be applicable, two design design decisions are required: tractable log-likelihood computation
and a stationarity. We have demonstrated how the stationary property can be incorporated into
normalizing flows and diffusion models. Tractable log-likelihood computation is available from a
subset of generative models, namely normalizing flows and flow matching. It remains to be seen
if the additional design decisions described in Section 3, recurrent critics and extending the action
space, result in effective policy evaluation that facilitates online improvement in a scalable fashion.
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A Additional experimental results
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Figure 4: Average success rate over 50 evaluations for online imitation learning for robomimic tasks.
Uncertainty intervals depict quartiles over 10 seeds. The BC policy is trained on the demonstration
data. n refers to demonstration trajectories. Taken from Watson et al. [36].

B Implementation details

The nominal SAC policy defines a latent stochastic policy using a feedforward network with two
heads, where one predicts the mean and other parameterizes the predictive variance by adding a
transform that ensures positivity. The latent action is then passed through a tanh to ensure the action
constraints, under the assumption the action space in normalized such that a ∈ [−1, 1]. The policy
can be expressed as a = tanh(z(s)), where µz(s) = Wϕ(s), where ϕ is the shared network feature
space that defines both the mean and variance.

The stationary HETSTAT policy in Figure 2 is achieved by defining a stationary parametric Gaussian
process (GP) using a specific feature space ϕ. The GP is alternatively defined as z(s) = Wϕ(s) with
Gaussian weights W . The weights are factorized row-wise W = [w1, . . . ,wda ]

⊤, wi = N (µi,Σi)
to define a GP with independent actions. Using change-of-variables like SAC [7], the policy is
expressed per-action as

q(ai | s) = N
(
zi;µ

⊤
i ϕ(s), ϕ(s)

⊤Σi ϕ(s)
)
·
∣∣∣∣det

(
dai
dzi

) ∣∣∣∣−1

, ϕ(s) = fper(W̃ϕmlp(s)). (4)

The stationary features ϕ are achieved using periodic activation fper in the spirit of the random
Fourier feature approximation of the squared exponential stationary covariance function [26], but
can be non-sinusoidal function, e.g. triangle waves or periodic ReLUs [15]. The pre-periodic weight
distribution W̃ij ∼ N (0, 1), which is another requirement of the stationary covariance function
approximation.

B.1 Normalizing flows

Normalizing flow policies consist of a latent heteroscedastic policy where z ∼ N (µθ(s),Σθ(s))
and action sample a = φp(s) where φp is a parametric bijective function. For the normalizing flow
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policy, φp was made up of a tanh layer followed by five parametric rational quadratic spline flows [5]
defined between [−1, 1], as we assume actions are normalized to this range. We chose spline flows
because they are expressive and invertible. The bijection parameters p are learned using a function
approximator. For parameter efficiency we share a torso with the latent policy so p = Pϕ(s).

For the stationary approximation in Figure 2, we use the stationary parametric Gaussian process from
Watson et al. [36] for the latent policy, and define the spline network using the stationary features.
For the splines, zero-valued parameters result in the identity mapping, so a zero-mean prior for that
network results in the HETSTAT policy from Watson et al. [36].

B.2 Diffusion models

Our conditional diffusion models are defined by a parametric score function ϵθ(s,a, t) where
action samples a0 are obtained through repeating at−τ = α(t)at − β(t) ϵθ(s,at, t) + σ(t)vt

where t ∈ [0, 1], discretization τ = 1/N for N sampling steps, vt ∼ N (0, I) and a1 ∼ N (0, I).
Schedules α, β and σ are designed in Ho et al. [9]. The objective for learning the score

min
θ

Ea∼D, t∼U(0,1), v∼N (0,I)[ω(t)|v − ϵθ(s, γ(t)a+ κ(t)v, t)|2], (5)

as shown in Equation 12 of Ho et al. [9] where temporal weightings ω, γ and κ are defined.

For the stationary approximation in Figure 2, we simply parameterize ϵθ as the stationary mean
function which is zero. If ϵ(s,a, t) = 0 ∀ s ∈ S,a ∈ A, t ∈ [0, 1], then the predictive samples
a0 ∼ N (0, σ0I) where σ0 depends on the noise schedules α(t) and σ(t).
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