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Abstract— Statistical model-based reinforcement learning
methods should enable efficient data-driven policy optimization
for robotic systems. However, the success of these approaches
relies on how well the learned dynamics model generalizes
outside of its training data distribution, which is difficult to
ensure in practice with ‘black-box’ models unless inductive
biases are incorporated. We demonstrate how a differentiable
simulation model can be used to synthesize a tractable Gaussian
process prior using the linearized Laplace approximation, a
principled approximate inference technique for Gaussian pos-
teriors. Using this statistical model as an inductive bias, we can
perform exploration and decision-making in an informed way
using posterior sampling, performing reinforcement learning
for control, and active learning for system identification. In the
case of simulation-to-reality mismatch, we empirically investi-
gate how this physics-informed prior is best used, comparing
architecture- and objective-based approaches.

I. PROBLEM SETTING

We consider general episodic sequential decision-making,
which we frame as a finite-horizon control task for a
stochastic dynamical system, maximizing episode objective
Jn given the dynamics p(st+1 | st,at) and return Rn [1],

Jn(π, p) = Est+1∼p(·|st,at),a∼π(·|st,t), s1∼µ(·)[Rn(S
T
1 ,A

T
1 )],

where XT
1 = [x1, . . . ,xT ]. This problem defini-

tion covers both decision-making for control and ac-
tive model learning, where the control objective is a
Bayesian regression model’s expected information gain
Ey, θ∼p(·,·|x)[log p(y,θ | x)− log p(y | x)]. To incorporate
uncertainty, we consider model-based methods that learn an
approximate Bayesian dynamics model from data [2]–[7]. To
improve the data efficiency of learning on a real-world sys-
tem, we consider two directions. One is exploration, where
we use posterior sampling [8], [9] of dynamics models as a
principled model-based exploration strategy, which requires a
posterior belief over model parameters. The other is inductive
biases [10], where we seek to incorporate domain knowledge
into the dynamics model to improve generalization. Both
perspectives can be tackled using Bayesian methods, but
require the use of approximate inference [11].

II. PHYSICS-BASED GAUSSIAN PROCESS PRIORS

We obtain a Gaussian process (GP) [12] from a differen-
tiable simulator [13] using the linearized Laplace approxi-
mation (LLA) [14]–[16]. The LLA linearizes the nonlinear
model f about its maximum-a-posteriori (MAP) parameters,
θ∗=argmaxθ log p(D,θ) + log p(θ) with data D,

f̂θ∗(x,θ) ≈ f(x,θ∗) + J(x,θ∗)
⊤(θ − θ∗). (1)
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This approximation yields a Gaussian parameter posterior
q(θ) = N (µq,Σq) given a likelihood N (y,Σϵ), and a
closed-form predictive distribution and posterior covariance,

q(y | x) = N (f(x,θ∗),J(x,θ∗)Σq J(x,θ∗)
⊤ +Σϵ),

Σ−1
q = Σ−1

0 −∇2
θ log p(y | f(x,θ))|θ=θ∗ . (2)

The Laplace approximation naturally transfers to differen-
tiable simulators with only minor modification, as now θ
captures unknown physical parameters such as mass or
length. In practice, we place our belief in an unconstrained
virtual parameter space θ̃ ∈ Rp, and define a mapping that
incorporates the parameter constraints, such as positivity.
This can be done by combining any R → R+ bijection,
such as the sigmoid function, with rectangular parameter
constraints θ ∈ [θmin,θmax], so θ is reparameterized as
θ = θmin + θmax Sigmoid(θ̃). Such reparameterizations have
been adopted in prior works, e.g., [17]. LLA uses the virtual
parameter space, so linearization combines both the dynam-
ics and the bijections. This learning process is visualized for
a two-link manipulator in Figure 1.

When the physical laws provide a reasonable model for
the observed data, SIM2GP is naturally effective at control
and model learning. However, in reality, there is likely a
mismatch between the model and reality, so it is more useful
to use SIM2GP as a prior for a more flexible function approx-
imator, where we use the neural linear model (NLM) [18],
[19]. We consider the residual approach [20], where SIM2GP
is the mean function of an NLM (NLM-SIM2GP-RES),

fRES(x,θ) = fSIM2GP(x,θ1) + fNLM(x,θ2), (3)

and a function-space variational inference approach [19],
[21], where SIM2GP is the prior p(f) (NLM-SIM2GP-FS),

maxq Ef∼q(·)[log p(D | f)]− DKL[q(f) || p(f)]. (4)

the function-space KL is intractable [21], so we replace it
with an average KL between marginals under distribution ρ,

D̂KL[q(f) || p(f)] = Ex∼ρ(·)[DKL[q(y | x) || p(y | x)]].
III. EXPERIMENTAL RESULTS

We consider policy optimization using posterior sampling
reinforcement learning (PSRL) [9], [22], [23] and active
learning using ‘posterior sampling active learning’ (PSAL),
with the information gain as the reward function [24], [25].
Figures 2 – 3 demonstrate performance on a simulated
Furuta pendulum and cartpole, with and without simulator
mismatch.
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(a) A kinematic visualization of
the datasets created for the two-
link manipulator.
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(b) Comparing the prior and first
SIM2GP posterior on the first tra-
jectory dataset.
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(c) Comparing the first and sec-
ond SIM2GP posterior on the sec-
ond trajectory dataset.
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(d) SIM2GP priors and posteriors,
shown in the virtual parameteri-
zation space.

Fig. 1: Applying SIM2GP to identify a simulated, horizontal two-link manipulator across two datasets. The first dataset
seeks to identify the second link, while the second dataset allows the whole manipulator to be learned. This is captured by
the variance of the first and second posterior, as the first posterior remains uncertain about the first link, while the second
posterior is converges about the true value.
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Fig. 2: Best-seen episodic return with posterior sampling
reinforcement learning, using sample-based model predictive
control (MPC) for optimal control. While the hybrid residual
model performs best when the prior is well-specified, the
function-space model performs best under mismatch. Uncer-
tainty intervals are the quartiles over five seeds.
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Fig. 3: Test root mean square error in the posterior sampling
active learning setting. The test dataset is the replay buffer
of the swing-up task, so low error indicates the agent
has managed to swing up through exploration. Uncertainty
intervals are the quartiles over five seeds.
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Fig. 4: Best-seen episodic return with posterior sampling
reinforcement learning, using off-policy deep reinforcement
learning. As with MPC, the function-space approach per-
forms best under mismatch, and the off-policy oracle closely
matches the performance with the oracle dynamics model.
Uncertainty intervals are the quartiles over five seeds.
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Fig. 5: Test negative log-likelihood in the posterior sampling
active learning setting. Uncertainty intervals are the quartiles
over five seeds.
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