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Abstract
Games have been instrumental to advancing artificial intelligence (AI). In particular,
deep reinforcement learning has shown great success in achieving super-human
level performance on Atari games, the game of Go, and Dota 2. Training AI agents
in modern complex games brings many challenges, such as massive computational
requirements and huge action/state space, rendering many of the techniques that
led to recent success stories inapplicable. We consider training AI agents to play a
modern mobile game and report preliminary progress toward human-like behavior.

Introduction. The human-game interaction dates hundreds of years back to the emergence of
strategic games, such as Shatranj (Chess) and Weiqi (Go), which were developed as a way of bringing
strategic thinking to the military, and evolved over multiple centuries to better engage human players.

In addition to challenging humans to strategic thinking, games have been instrumental to advancing
artificial intelligence (AI), particularly reinforcement learning (RL). IBM Deep Blue was the first
AI agent who beat the chess world champion, Gary Kasparov [1]. Two decades later, DeepMind
demonstrated that deep neural networks combined with Monte Carlo tree search (MCTS) [2, 3] could
lead to AI agents that play Go at a super-human level [4], and solely via self-play [5, 6]. More
recently, OpenAI showed that AI agents could learn to cooperate at a super-human level in Dota 2 [7].

The impressive recent progress on RL for solving games is partly due to the advancements in
processing power and AI computing technology.1 Further, deep Q networks (DQNs) have emerged as
a general representation learning framework combined with Q function approximation without need
for task-specific feature engineering [9]. The design of a DQN and setting the hyperparameters is still
a daunting task. In addition, it takes hundreds of thousands of state-action pairs for the agent to reach
human-level performance. Applying the same techniques to modern games would require obtaining
and processing even more state-action pairs, which is infeasible in most cases because speeding up
the game engine may not be possible and game state may be difficult to infer from the frame buffer.

On modern strategy games, DeepMind and Blizzard showed that existing techniques fall short even
on learning the rules of StarCraft II [10]. On the other hand, breaking the sate space and action space
into a hierarchy of simpler learning problems has shown to be promising [10, 11] (cf. [12]). Training
agents to play modern computer games, particularly in the design stage, poses some novel challenges:

1. the game state space is huge, with continuous attributes, only partially observable to the agent;
2. the set of available actions is huge and unknown to the agent rendering MCTS infeasible;
3. the game itself is dynamic in the design stage and several attributes may change between builds;
4. the games are designed to last millions of ticks leading to potentially long episodes, and the way

the player engages with the game environment makes an impact on the gameplay strategy;
5. multiple players may interact in conflict or cooperation leading to an exploding state space; and
6. the goal of the agent could be to “engage” with real human players or play like humans rather

than to win the game making it non-trivial to design a proper rewarding mechanism.
1The amount of AI compute has been doubling every 3-4 months in the past few years [8].
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Problem setup. We consider a modern mobile game by Electronic Arts (EA) designed to engage
many players for months exhibiting all of the above challenges. Our primary goal is to train agents
that play the game like human players do. To alleviate the huge state space and the dynamic nature of
the game in design space, we move away from processing frame buffers with the hope of training re-
usable agents. Instead, we let the game engine pass information that the player can infer in the game,
such as the inventory, resources, buildings, and the state of neighboring players (∼50 continuous and
∼100 discrete states). The set of available actions consists of ∼25 functions taking 5-20 arguments.
This set is unknown to the agent and only a handful of the actions are valid (available) at each step.
Note that the game server is capable of validating whether a submitted action is available, while it
is not straightforward to encode and pass the set of available actions (along with their permissible
arguments) to the agent at every time step. While the problem of a huge state space could be dealt
with (cf. [13, 14, 15]), these techniques are not directly applicable due to the huge and unorganized
action space in this setup. We study game progression while taking only valid actions. Unfortunately,
the set of the valid actions (or a distribution on it) is not fully determined by the current observation,
and hence, we deal with a partially observable Markov decision process (POMDP).

Method. In this EA game, we show progress toward training an AI agent that takes valid actions,
like human players. We create a universal interface between the Gameplay Environment (which
encapsulates the game) and the AI Learning Environment (where the agent is trained). The interface
extends OpenAI Gym [16] and supports actions that take arguments, which is necessary to encode
functions and is consistent with PySC2 [10, 17]. In addition, our training pipeline enables creating
new players on the game server, logging in/out an existing player, and gathering data from expert
demonstrations. We adapt Dopamine [18] to this pipeline to make DQN [9] and rainbow [19] agents
available for training in the game. In particular, we add support for more complex preprocessing other
than stacking frame buffers. We use a network with two fully connected layers and ReLU activation.

We create an episode by setting an early goal state in the game that takes a human player ∼10 minutes
to reach. Note that we are working on extending the setup to learn long-term strategies coupled with
engagement with the game. We let the agent submit actions to the game server every second. We
reward the agent with ‘+1’ when they reach the goal state, and with ‘-1’ when they take an invalid
action, ‘0’ when they take a valid action, and ‘-0.1’ when they choose the “do nothing” action. The
game is such that at times the agent has no other valid action to choose, and hence they should choose
“do nothing” but such periods do not last more than a few seconds. We intend to modify the rewarding
mechanism by inferring traits from the massive player gameplay data at our disposal.

Preliminary results. We consider two different versions of state space. The first is what we call the
“complete” state space. The complete state space contains information that is not straightforward to
infer from the real observation in the game and is only used as baseline for the agent. The second is
what we call the “augmented” observation space where the state space only contains what the agent
would be able to learn and retain knowledge about from the actual observations in the game. We train
the following agents: Agent 1 is a DQN agent with complete state space; Agent 2 is a rainbow agent
with complete state space; and Agent 3 is a rainbow agent with augmented observation space.

The result of the training is shown in Figure 1. As can be seen, the rainbow agent converges to a better
performance level while with more training episodes compared to the DQN agent. We also see that
the augmented observation space makes the training slower and also results in a worse performance
on the final strategy. We are currently (a) shaping the reward for human-like behavior, (b) studying
the impact of the neural network structure and hyperparameters on the performance of DQN and
rainbow agents, (c) augmenting training with expert demonstrations, and (d) exploring a systematic
solution for augmenting the observation space.

Figure 1: Average cumulative reward (return) in training and evaluation for the agents as a function
of the number of iterations. Each iteration is worth ∼20 minutes of gameplay.
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